firewire: sbp2: Take into account Unit_Unique_ID
[linux-3.10.git] / drivers / firewire / sbp2.c
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  *     James Goodwin <jamesg@filanet.com>
25  * with later contributions and ongoing maintenance from
26  *     Ben Collins <bcollins@debian.org>,
27  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28  * and many others.
29  */
30
31 #include <linux/blkdev.h>
32 #include <linux/bug.h>
33 #include <linux/completion.h>
34 #include <linux/delay.h>
35 #include <linux/device.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/firewire.h>
38 #include <linux/firewire-constants.h>
39 #include <linux/init.h>
40 #include <linux/jiffies.h>
41 #include <linux/kernel.h>
42 #include <linux/kref.h>
43 #include <linux/list.h>
44 #include <linux/mod_devicetable.h>
45 #include <linux/module.h>
46 #include <linux/moduleparam.h>
47 #include <linux/scatterlist.h>
48 #include <linux/slab.h>
49 #include <linux/spinlock.h>
50 #include <linux/string.h>
51 #include <linux/stringify.h>
52 #include <linux/workqueue.h>
53
54 #include <asm/byteorder.h>
55 #include <asm/system.h>
56
57 #include <scsi/scsi.h>
58 #include <scsi/scsi_cmnd.h>
59 #include <scsi/scsi_device.h>
60 #include <scsi/scsi_host.h>
61
62 /*
63  * So far only bridges from Oxford Semiconductor are known to support
64  * concurrent logins. Depending on firmware, four or two concurrent logins
65  * are possible on OXFW911 and newer Oxsemi bridges.
66  *
67  * Concurrent logins are useful together with cluster filesystems.
68  */
69 static int sbp2_param_exclusive_login = 1;
70 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
71 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
72                  "(default = Y, use N for concurrent initiators)");
73
74 /*
75  * Flags for firmware oddities
76  *
77  * - 128kB max transfer
78  *   Limit transfer size. Necessary for some old bridges.
79  *
80  * - 36 byte inquiry
81  *   When scsi_mod probes the device, let the inquiry command look like that
82  *   from MS Windows.
83  *
84  * - skip mode page 8
85  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
86  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
87  *
88  * - fix capacity
89  *   Tell sd_mod to correct the last sector number reported by read_capacity.
90  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
91  *   Don't use this with devices which don't have this bug.
92  *
93  * - delay inquiry
94  *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
95  *
96  * - power condition
97  *   Set the power condition field in the START STOP UNIT commands sent by
98  *   sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
99  *   Some disks need this to spin down or to resume properly.
100  *
101  * - override internal blacklist
102  *   Instead of adding to the built-in blacklist, use only the workarounds
103  *   specified in the module load parameter.
104  *   Useful if a blacklist entry interfered with a non-broken device.
105  */
106 #define SBP2_WORKAROUND_128K_MAX_TRANS  0x1
107 #define SBP2_WORKAROUND_INQUIRY_36      0x2
108 #define SBP2_WORKAROUND_MODE_SENSE_8    0x4
109 #define SBP2_WORKAROUND_FIX_CAPACITY    0x8
110 #define SBP2_WORKAROUND_DELAY_INQUIRY   0x10
111 #define SBP2_INQUIRY_DELAY              12
112 #define SBP2_WORKAROUND_POWER_CONDITION 0x20
113 #define SBP2_WORKAROUND_OVERRIDE        0x100
114
115 static int sbp2_param_workarounds;
116 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
117 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
118         ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
119         ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
120         ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
121         ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
122         ", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
123         ", set power condition in start stop unit = "
124                                   __stringify(SBP2_WORKAROUND_POWER_CONDITION)
125         ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
126         ", or a combination)");
127
128 /*
129  * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
130  * and one struct scsi_device per sbp2_logical_unit.
131  */
132 struct sbp2_logical_unit {
133         struct sbp2_target *tgt;
134         struct list_head link;
135         struct fw_address_handler address_handler;
136         struct list_head orb_list;
137
138         u64 command_block_agent_address;
139         u16 lun;
140         int login_id;
141
142         /*
143          * The generation is updated once we've logged in or reconnected
144          * to the logical unit.  Thus, I/O to the device will automatically
145          * fail and get retried if it happens in a window where the device
146          * is not ready, e.g. after a bus reset but before we reconnect.
147          */
148         int generation;
149         int retries;
150         struct delayed_work work;
151         bool has_sdev;
152         bool blocked;
153 };
154
155 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
156 {
157         queue_delayed_work(fw_workqueue, &lu->work, delay);
158 }
159
160 /*
161  * We create one struct sbp2_target per IEEE 1212 Unit Directory
162  * and one struct Scsi_Host per sbp2_target.
163  */
164 struct sbp2_target {
165         struct fw_unit *unit;
166         struct list_head lu_list;
167
168         u64 management_agent_address;
169         u64 guid;
170         int directory_id;
171         int node_id;
172         int address_high;
173         unsigned int workarounds;
174         unsigned int mgt_orb_timeout;
175         unsigned int max_payload;
176
177         int dont_block; /* counter for each logical unit */
178         int blocked;    /* ditto */
179 };
180
181 static struct fw_device *target_parent_device(struct sbp2_target *tgt)
182 {
183         return fw_parent_device(tgt->unit);
184 }
185
186 static const struct device *tgt_dev(const struct sbp2_target *tgt)
187 {
188         return &tgt->unit->device;
189 }
190
191 static const struct device *lu_dev(const struct sbp2_logical_unit *lu)
192 {
193         return &lu->tgt->unit->device;
194 }
195
196 /* Impossible login_id, to detect logout attempt before successful login */
197 #define INVALID_LOGIN_ID 0x10000
198
199 #define SBP2_ORB_TIMEOUT                2000U           /* Timeout in ms */
200 #define SBP2_ORB_NULL                   0x80000000
201 #define SBP2_RETRY_LIMIT                0xf             /* 15 retries */
202 #define SBP2_CYCLE_LIMIT                (0xc8 << 12)    /* 200 125us cycles */
203
204 /*
205  * There is no transport protocol limit to the CDB length,  but we implement
206  * a fixed length only.  16 bytes is enough for disks larger than 2 TB.
207  */
208 #define SBP2_MAX_CDB_SIZE               16
209
210 /*
211  * The default maximum s/g segment size of a FireWire controller is
212  * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
213  * be quadlet-aligned, we set the length limit to 0xffff & ~3.
214  */
215 #define SBP2_MAX_SEG_SIZE               0xfffc
216
217 /* Unit directory keys */
218 #define SBP2_CSR_UNIT_CHARACTERISTICS   0x3a
219 #define SBP2_CSR_FIRMWARE_REVISION      0x3c
220 #define SBP2_CSR_LOGICAL_UNIT_NUMBER    0x14
221 #define SBP2_CSR_UNIT_UNIQUE_ID         0x8d
222 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
223
224 /* Management orb opcodes */
225 #define SBP2_LOGIN_REQUEST              0x0
226 #define SBP2_QUERY_LOGINS_REQUEST       0x1
227 #define SBP2_RECONNECT_REQUEST          0x3
228 #define SBP2_SET_PASSWORD_REQUEST       0x4
229 #define SBP2_LOGOUT_REQUEST             0x7
230 #define SBP2_ABORT_TASK_REQUEST         0xb
231 #define SBP2_ABORT_TASK_SET             0xc
232 #define SBP2_LOGICAL_UNIT_RESET         0xe
233 #define SBP2_TARGET_RESET_REQUEST       0xf
234
235 /* Offsets for command block agent registers */
236 #define SBP2_AGENT_STATE                0x00
237 #define SBP2_AGENT_RESET                0x04
238 #define SBP2_ORB_POINTER                0x08
239 #define SBP2_DOORBELL                   0x10
240 #define SBP2_UNSOLICITED_STATUS_ENABLE  0x14
241
242 /* Status write response codes */
243 #define SBP2_STATUS_REQUEST_COMPLETE    0x0
244 #define SBP2_STATUS_TRANSPORT_FAILURE   0x1
245 #define SBP2_STATUS_ILLEGAL_REQUEST     0x2
246 #define SBP2_STATUS_VENDOR_DEPENDENT    0x3
247
248 #define STATUS_GET_ORB_HIGH(v)          ((v).status & 0xffff)
249 #define STATUS_GET_SBP_STATUS(v)        (((v).status >> 16) & 0xff)
250 #define STATUS_GET_LEN(v)               (((v).status >> 24) & 0x07)
251 #define STATUS_GET_DEAD(v)              (((v).status >> 27) & 0x01)
252 #define STATUS_GET_RESPONSE(v)          (((v).status >> 28) & 0x03)
253 #define STATUS_GET_SOURCE(v)            (((v).status >> 30) & 0x03)
254 #define STATUS_GET_ORB_LOW(v)           ((v).orb_low)
255 #define STATUS_GET_DATA(v)              ((v).data)
256
257 struct sbp2_status {
258         u32 status;
259         u32 orb_low;
260         u8 data[24];
261 };
262
263 struct sbp2_pointer {
264         __be32 high;
265         __be32 low;
266 };
267
268 struct sbp2_orb {
269         struct fw_transaction t;
270         struct kref kref;
271         dma_addr_t request_bus;
272         int rcode;
273         void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
274         struct list_head link;
275 };
276
277 #define MANAGEMENT_ORB_LUN(v)                   ((v))
278 #define MANAGEMENT_ORB_FUNCTION(v)              ((v) << 16)
279 #define MANAGEMENT_ORB_RECONNECT(v)             ((v) << 20)
280 #define MANAGEMENT_ORB_EXCLUSIVE(v)             ((v) ? 1 << 28 : 0)
281 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)        ((v) << 29)
282 #define MANAGEMENT_ORB_NOTIFY                   ((1) << 31)
283
284 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)       ((v))
285 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)       ((v) << 16)
286
287 struct sbp2_management_orb {
288         struct sbp2_orb base;
289         struct {
290                 struct sbp2_pointer password;
291                 struct sbp2_pointer response;
292                 __be32 misc;
293                 __be32 length;
294                 struct sbp2_pointer status_fifo;
295         } request;
296         __be32 response[4];
297         dma_addr_t response_bus;
298         struct completion done;
299         struct sbp2_status status;
300 };
301
302 struct sbp2_login_response {
303         __be32 misc;
304         struct sbp2_pointer command_block_agent;
305         __be32 reconnect_hold;
306 };
307 #define COMMAND_ORB_DATA_SIZE(v)        ((v))
308 #define COMMAND_ORB_PAGE_SIZE(v)        ((v) << 16)
309 #define COMMAND_ORB_PAGE_TABLE_PRESENT  ((1) << 19)
310 #define COMMAND_ORB_MAX_PAYLOAD(v)      ((v) << 20)
311 #define COMMAND_ORB_SPEED(v)            ((v) << 24)
312 #define COMMAND_ORB_DIRECTION           ((1) << 27)
313 #define COMMAND_ORB_REQUEST_FORMAT(v)   ((v) << 29)
314 #define COMMAND_ORB_NOTIFY              ((1) << 31)
315
316 struct sbp2_command_orb {
317         struct sbp2_orb base;
318         struct {
319                 struct sbp2_pointer next;
320                 struct sbp2_pointer data_descriptor;
321                 __be32 misc;
322                 u8 command_block[SBP2_MAX_CDB_SIZE];
323         } request;
324         struct scsi_cmnd *cmd;
325         struct sbp2_logical_unit *lu;
326
327         struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
328         dma_addr_t page_table_bus;
329 };
330
331 #define SBP2_ROM_VALUE_WILDCARD ~0         /* match all */
332 #define SBP2_ROM_VALUE_MISSING  0xff000000 /* not present in the unit dir. */
333
334 /*
335  * List of devices with known bugs.
336  *
337  * The firmware_revision field, masked with 0xffff00, is the best
338  * indicator for the type of bridge chip of a device.  It yields a few
339  * false positives but this did not break correctly behaving devices
340  * so far.
341  */
342 static const struct {
343         u32 firmware_revision;
344         u32 model;
345         unsigned int workarounds;
346 } sbp2_workarounds_table[] = {
347         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
348                 .firmware_revision      = 0x002800,
349                 .model                  = 0x001010,
350                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
351                                           SBP2_WORKAROUND_MODE_SENSE_8 |
352                                           SBP2_WORKAROUND_POWER_CONDITION,
353         },
354         /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
355                 .firmware_revision      = 0x002800,
356                 .model                  = 0x000000,
357                 .workarounds            = SBP2_WORKAROUND_POWER_CONDITION,
358         },
359         /* Initio bridges, actually only needed for some older ones */ {
360                 .firmware_revision      = 0x000200,
361                 .model                  = SBP2_ROM_VALUE_WILDCARD,
362                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
363         },
364         /* PL-3507 bridge with Prolific firmware */ {
365                 .firmware_revision      = 0x012800,
366                 .model                  = SBP2_ROM_VALUE_WILDCARD,
367                 .workarounds            = SBP2_WORKAROUND_POWER_CONDITION,
368         },
369         /* Symbios bridge */ {
370                 .firmware_revision      = 0xa0b800,
371                 .model                  = SBP2_ROM_VALUE_WILDCARD,
372                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
373         },
374         /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
375                 .firmware_revision      = 0x002600,
376                 .model                  = SBP2_ROM_VALUE_WILDCARD,
377                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
378         },
379         /*
380          * iPod 2nd generation: needs 128k max transfer size workaround
381          * iPod 3rd generation: needs fix capacity workaround
382          */
383         {
384                 .firmware_revision      = 0x0a2700,
385                 .model                  = 0x000000,
386                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS |
387                                           SBP2_WORKAROUND_FIX_CAPACITY,
388         },
389         /* iPod 4th generation */ {
390                 .firmware_revision      = 0x0a2700,
391                 .model                  = 0x000021,
392                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
393         },
394         /* iPod mini */ {
395                 .firmware_revision      = 0x0a2700,
396                 .model                  = 0x000022,
397                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
398         },
399         /* iPod mini */ {
400                 .firmware_revision      = 0x0a2700,
401                 .model                  = 0x000023,
402                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
403         },
404         /* iPod Photo */ {
405                 .firmware_revision      = 0x0a2700,
406                 .model                  = 0x00007e,
407                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
408         }
409 };
410
411 static void free_orb(struct kref *kref)
412 {
413         struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
414
415         kfree(orb);
416 }
417
418 static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
419                               int tcode, int destination, int source,
420                               int generation, unsigned long long offset,
421                               void *payload, size_t length, void *callback_data)
422 {
423         struct sbp2_logical_unit *lu = callback_data;
424         struct sbp2_orb *orb;
425         struct sbp2_status status;
426         unsigned long flags;
427
428         if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
429             length < 8 || length > sizeof(status)) {
430                 fw_send_response(card, request, RCODE_TYPE_ERROR);
431                 return;
432         }
433
434         status.status  = be32_to_cpup(payload);
435         status.orb_low = be32_to_cpup(payload + 4);
436         memset(status.data, 0, sizeof(status.data));
437         if (length > 8)
438                 memcpy(status.data, payload + 8, length - 8);
439
440         if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
441                 dev_notice(lu_dev(lu),
442                            "non-ORB related status write, not handled\n");
443                 fw_send_response(card, request, RCODE_COMPLETE);
444                 return;
445         }
446
447         /* Lookup the orb corresponding to this status write. */
448         spin_lock_irqsave(&card->lock, flags);
449         list_for_each_entry(orb, &lu->orb_list, link) {
450                 if (STATUS_GET_ORB_HIGH(status) == 0 &&
451                     STATUS_GET_ORB_LOW(status) == orb->request_bus) {
452                         orb->rcode = RCODE_COMPLETE;
453                         list_del(&orb->link);
454                         break;
455                 }
456         }
457         spin_unlock_irqrestore(&card->lock, flags);
458
459         if (&orb->link != &lu->orb_list) {
460                 orb->callback(orb, &status);
461                 kref_put(&orb->kref, free_orb); /* orb callback reference */
462         } else {
463                 dev_err(lu_dev(lu), "status write for unknown ORB\n");
464         }
465
466         fw_send_response(card, request, RCODE_COMPLETE);
467 }
468
469 static void complete_transaction(struct fw_card *card, int rcode,
470                                  void *payload, size_t length, void *data)
471 {
472         struct sbp2_orb *orb = data;
473         unsigned long flags;
474
475         /*
476          * This is a little tricky.  We can get the status write for
477          * the orb before we get this callback.  The status write
478          * handler above will assume the orb pointer transaction was
479          * successful and set the rcode to RCODE_COMPLETE for the orb.
480          * So this callback only sets the rcode if it hasn't already
481          * been set and only does the cleanup if the transaction
482          * failed and we didn't already get a status write.
483          */
484         spin_lock_irqsave(&card->lock, flags);
485
486         if (orb->rcode == -1)
487                 orb->rcode = rcode;
488         if (orb->rcode != RCODE_COMPLETE) {
489                 list_del(&orb->link);
490                 spin_unlock_irqrestore(&card->lock, flags);
491
492                 orb->callback(orb, NULL);
493                 kref_put(&orb->kref, free_orb); /* orb callback reference */
494         } else {
495                 spin_unlock_irqrestore(&card->lock, flags);
496         }
497
498         kref_put(&orb->kref, free_orb); /* transaction callback reference */
499 }
500
501 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
502                           int node_id, int generation, u64 offset)
503 {
504         struct fw_device *device = target_parent_device(lu->tgt);
505         struct sbp2_pointer orb_pointer;
506         unsigned long flags;
507
508         orb_pointer.high = 0;
509         orb_pointer.low = cpu_to_be32(orb->request_bus);
510
511         spin_lock_irqsave(&device->card->lock, flags);
512         list_add_tail(&orb->link, &lu->orb_list);
513         spin_unlock_irqrestore(&device->card->lock, flags);
514
515         kref_get(&orb->kref); /* transaction callback reference */
516         kref_get(&orb->kref); /* orb callback reference */
517
518         fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
519                         node_id, generation, device->max_speed, offset,
520                         &orb_pointer, 8, complete_transaction, orb);
521 }
522
523 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
524 {
525         struct fw_device *device = target_parent_device(lu->tgt);
526         struct sbp2_orb *orb, *next;
527         struct list_head list;
528         unsigned long flags;
529         int retval = -ENOENT;
530
531         INIT_LIST_HEAD(&list);
532         spin_lock_irqsave(&device->card->lock, flags);
533         list_splice_init(&lu->orb_list, &list);
534         spin_unlock_irqrestore(&device->card->lock, flags);
535
536         list_for_each_entry_safe(orb, next, &list, link) {
537                 retval = 0;
538                 if (fw_cancel_transaction(device->card, &orb->t) == 0)
539                         continue;
540
541                 orb->rcode = RCODE_CANCELLED;
542                 orb->callback(orb, NULL);
543                 kref_put(&orb->kref, free_orb); /* orb callback reference */
544         }
545
546         return retval;
547 }
548
549 static void complete_management_orb(struct sbp2_orb *base_orb,
550                                     struct sbp2_status *status)
551 {
552         struct sbp2_management_orb *orb =
553                 container_of(base_orb, struct sbp2_management_orb, base);
554
555         if (status)
556                 memcpy(&orb->status, status, sizeof(*status));
557         complete(&orb->done);
558 }
559
560 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
561                                     int generation, int function,
562                                     int lun_or_login_id, void *response)
563 {
564         struct fw_device *device = target_parent_device(lu->tgt);
565         struct sbp2_management_orb *orb;
566         unsigned int timeout;
567         int retval = -ENOMEM;
568
569         if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
570                 return 0;
571
572         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
573         if (orb == NULL)
574                 return -ENOMEM;
575
576         kref_init(&orb->base.kref);
577         orb->response_bus =
578                 dma_map_single(device->card->device, &orb->response,
579                                sizeof(orb->response), DMA_FROM_DEVICE);
580         if (dma_mapping_error(device->card->device, orb->response_bus))
581                 goto fail_mapping_response;
582
583         orb->request.response.high = 0;
584         orb->request.response.low  = cpu_to_be32(orb->response_bus);
585
586         orb->request.misc = cpu_to_be32(
587                 MANAGEMENT_ORB_NOTIFY |
588                 MANAGEMENT_ORB_FUNCTION(function) |
589                 MANAGEMENT_ORB_LUN(lun_or_login_id));
590         orb->request.length = cpu_to_be32(
591                 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
592
593         orb->request.status_fifo.high =
594                 cpu_to_be32(lu->address_handler.offset >> 32);
595         orb->request.status_fifo.low  =
596                 cpu_to_be32(lu->address_handler.offset);
597
598         if (function == SBP2_LOGIN_REQUEST) {
599                 /* Ask for 2^2 == 4 seconds reconnect grace period */
600                 orb->request.misc |= cpu_to_be32(
601                         MANAGEMENT_ORB_RECONNECT(2) |
602                         MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
603                 timeout = lu->tgt->mgt_orb_timeout;
604         } else {
605                 timeout = SBP2_ORB_TIMEOUT;
606         }
607
608         init_completion(&orb->done);
609         orb->base.callback = complete_management_orb;
610
611         orb->base.request_bus =
612                 dma_map_single(device->card->device, &orb->request,
613                                sizeof(orb->request), DMA_TO_DEVICE);
614         if (dma_mapping_error(device->card->device, orb->base.request_bus))
615                 goto fail_mapping_request;
616
617         sbp2_send_orb(&orb->base, lu, node_id, generation,
618                       lu->tgt->management_agent_address);
619
620         wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
621
622         retval = -EIO;
623         if (sbp2_cancel_orbs(lu) == 0) {
624                 dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n",
625                         orb->base.rcode);
626                 goto out;
627         }
628
629         if (orb->base.rcode != RCODE_COMPLETE) {
630                 dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n",
631                         orb->base.rcode);
632                 goto out;
633         }
634
635         if (STATUS_GET_RESPONSE(orb->status) != 0 ||
636             STATUS_GET_SBP_STATUS(orb->status) != 0) {
637                 dev_err(lu_dev(lu), "error status: %d:%d\n",
638                          STATUS_GET_RESPONSE(orb->status),
639                          STATUS_GET_SBP_STATUS(orb->status));
640                 goto out;
641         }
642
643         retval = 0;
644  out:
645         dma_unmap_single(device->card->device, orb->base.request_bus,
646                          sizeof(orb->request), DMA_TO_DEVICE);
647  fail_mapping_request:
648         dma_unmap_single(device->card->device, orb->response_bus,
649                          sizeof(orb->response), DMA_FROM_DEVICE);
650  fail_mapping_response:
651         if (response)
652                 memcpy(response, orb->response, sizeof(orb->response));
653         kref_put(&orb->base.kref, free_orb);
654
655         return retval;
656 }
657
658 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
659 {
660         struct fw_device *device = target_parent_device(lu->tgt);
661         __be32 d = 0;
662
663         fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
664                            lu->tgt->node_id, lu->generation, device->max_speed,
665                            lu->command_block_agent_address + SBP2_AGENT_RESET,
666                            &d, 4);
667 }
668
669 static void complete_agent_reset_write_no_wait(struct fw_card *card,
670                 int rcode, void *payload, size_t length, void *data)
671 {
672         kfree(data);
673 }
674
675 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
676 {
677         struct fw_device *device = target_parent_device(lu->tgt);
678         struct fw_transaction *t;
679         static __be32 d;
680
681         t = kmalloc(sizeof(*t), GFP_ATOMIC);
682         if (t == NULL)
683                 return;
684
685         fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
686                         lu->tgt->node_id, lu->generation, device->max_speed,
687                         lu->command_block_agent_address + SBP2_AGENT_RESET,
688                         &d, 4, complete_agent_reset_write_no_wait, t);
689 }
690
691 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
692 {
693         /*
694          * We may access dont_block without taking card->lock here:
695          * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
696          * are currently serialized against each other.
697          * And a wrong result in sbp2_conditionally_block()'s access of
698          * dont_block is rather harmless, it simply misses its first chance.
699          */
700         --lu->tgt->dont_block;
701 }
702
703 /*
704  * Blocks lu->tgt if all of the following conditions are met:
705  *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
706  *     logical units have been finished (indicated by dont_block == 0).
707  *   - lu->generation is stale.
708  *
709  * Note, scsi_block_requests() must be called while holding card->lock,
710  * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
711  * unblock the target.
712  */
713 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
714 {
715         struct sbp2_target *tgt = lu->tgt;
716         struct fw_card *card = target_parent_device(tgt)->card;
717         struct Scsi_Host *shost =
718                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
719         unsigned long flags;
720
721         spin_lock_irqsave(&card->lock, flags);
722         if (!tgt->dont_block && !lu->blocked &&
723             lu->generation != card->generation) {
724                 lu->blocked = true;
725                 if (++tgt->blocked == 1)
726                         scsi_block_requests(shost);
727         }
728         spin_unlock_irqrestore(&card->lock, flags);
729 }
730
731 /*
732  * Unblocks lu->tgt as soon as all its logical units can be unblocked.
733  * Note, it is harmless to run scsi_unblock_requests() outside the
734  * card->lock protected section.  On the other hand, running it inside
735  * the section might clash with shost->host_lock.
736  */
737 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
738 {
739         struct sbp2_target *tgt = lu->tgt;
740         struct fw_card *card = target_parent_device(tgt)->card;
741         struct Scsi_Host *shost =
742                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
743         unsigned long flags;
744         bool unblock = false;
745
746         spin_lock_irqsave(&card->lock, flags);
747         if (lu->blocked && lu->generation == card->generation) {
748                 lu->blocked = false;
749                 unblock = --tgt->blocked == 0;
750         }
751         spin_unlock_irqrestore(&card->lock, flags);
752
753         if (unblock)
754                 scsi_unblock_requests(shost);
755 }
756
757 /*
758  * Prevents future blocking of tgt and unblocks it.
759  * Note, it is harmless to run scsi_unblock_requests() outside the
760  * card->lock protected section.  On the other hand, running it inside
761  * the section might clash with shost->host_lock.
762  */
763 static void sbp2_unblock(struct sbp2_target *tgt)
764 {
765         struct fw_card *card = target_parent_device(tgt)->card;
766         struct Scsi_Host *shost =
767                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
768         unsigned long flags;
769
770         spin_lock_irqsave(&card->lock, flags);
771         ++tgt->dont_block;
772         spin_unlock_irqrestore(&card->lock, flags);
773
774         scsi_unblock_requests(shost);
775 }
776
777 static int sbp2_lun2int(u16 lun)
778 {
779         struct scsi_lun eight_bytes_lun;
780
781         memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
782         eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
783         eight_bytes_lun.scsi_lun[1] = lun & 0xff;
784
785         return scsilun_to_int(&eight_bytes_lun);
786 }
787
788 /*
789  * Write retransmit retry values into the BUSY_TIMEOUT register.
790  * - The single-phase retry protocol is supported by all SBP-2 devices, but the
791  *   default retry_limit value is 0 (i.e. never retry transmission). We write a
792  *   saner value after logging into the device.
793  * - The dual-phase retry protocol is optional to implement, and if not
794  *   supported, writes to the dual-phase portion of the register will be
795  *   ignored. We try to write the original 1394-1995 default here.
796  * - In the case of devices that are also SBP-3-compliant, all writes are
797  *   ignored, as the register is read-only, but contains single-phase retry of
798  *   15, which is what we're trying to set for all SBP-2 device anyway, so this
799  *   write attempt is safe and yields more consistent behavior for all devices.
800  *
801  * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
802  * and section 6.4 of the SBP-3 spec for further details.
803  */
804 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
805 {
806         struct fw_device *device = target_parent_device(lu->tgt);
807         __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
808
809         fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
810                            lu->tgt->node_id, lu->generation, device->max_speed,
811                            CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
812 }
813
814 static void sbp2_reconnect(struct work_struct *work);
815
816 static void sbp2_login(struct work_struct *work)
817 {
818         struct sbp2_logical_unit *lu =
819                 container_of(work, struct sbp2_logical_unit, work.work);
820         struct sbp2_target *tgt = lu->tgt;
821         struct fw_device *device = target_parent_device(tgt);
822         struct Scsi_Host *shost;
823         struct scsi_device *sdev;
824         struct sbp2_login_response response;
825         int generation, node_id, local_node_id;
826
827         if (fw_device_is_shutdown(device))
828                 return;
829
830         generation    = device->generation;
831         smp_rmb();    /* node IDs must not be older than generation */
832         node_id       = device->node_id;
833         local_node_id = device->card->node_id;
834
835         /* If this is a re-login attempt, log out, or we might be rejected. */
836         if (lu->has_sdev)
837                 sbp2_send_management_orb(lu, device->node_id, generation,
838                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
839
840         if (sbp2_send_management_orb(lu, node_id, generation,
841                                 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
842                 if (lu->retries++ < 5) {
843                         sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
844                 } else {
845                         dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n",
846                                 lu->lun);
847                         /* Let any waiting I/O fail from now on. */
848                         sbp2_unblock(lu->tgt);
849                 }
850                 return;
851         }
852
853         tgt->node_id      = node_id;
854         tgt->address_high = local_node_id << 16;
855         smp_wmb();        /* node IDs must not be older than generation */
856         lu->generation    = generation;
857
858         lu->command_block_agent_address =
859                 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
860                       << 32) | be32_to_cpu(response.command_block_agent.low);
861         lu->login_id = be32_to_cpu(response.misc) & 0xffff;
862
863         dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n",
864                    lu->lun, lu->retries);
865
866         /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
867         sbp2_set_busy_timeout(lu);
868
869         PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
870         sbp2_agent_reset(lu);
871
872         /* This was a re-login. */
873         if (lu->has_sdev) {
874                 sbp2_cancel_orbs(lu);
875                 sbp2_conditionally_unblock(lu);
876
877                 return;
878         }
879
880         if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
881                 ssleep(SBP2_INQUIRY_DELAY);
882
883         shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
884         sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
885         /*
886          * FIXME:  We are unable to perform reconnects while in sbp2_login().
887          * Therefore __scsi_add_device() will get into trouble if a bus reset
888          * happens in parallel.  It will either fail or leave us with an
889          * unusable sdev.  As a workaround we check for this and retry the
890          * whole login and SCSI probing.
891          */
892
893         /* Reported error during __scsi_add_device() */
894         if (IS_ERR(sdev))
895                 goto out_logout_login;
896
897         /* Unreported error during __scsi_add_device() */
898         smp_rmb(); /* get current card generation */
899         if (generation != device->card->generation) {
900                 scsi_remove_device(sdev);
901                 scsi_device_put(sdev);
902                 goto out_logout_login;
903         }
904
905         /* No error during __scsi_add_device() */
906         lu->has_sdev = true;
907         scsi_device_put(sdev);
908         sbp2_allow_block(lu);
909
910         return;
911
912  out_logout_login:
913         smp_rmb(); /* generation may have changed */
914         generation = device->generation;
915         smp_rmb(); /* node_id must not be older than generation */
916
917         sbp2_send_management_orb(lu, device->node_id, generation,
918                                  SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
919         /*
920          * If a bus reset happened, sbp2_update will have requeued
921          * lu->work already.  Reset the work from reconnect to login.
922          */
923         PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
924 }
925
926 static void sbp2_reconnect(struct work_struct *work)
927 {
928         struct sbp2_logical_unit *lu =
929                 container_of(work, struct sbp2_logical_unit, work.work);
930         struct sbp2_target *tgt = lu->tgt;
931         struct fw_device *device = target_parent_device(tgt);
932         int generation, node_id, local_node_id;
933
934         if (fw_device_is_shutdown(device))
935                 return;
936
937         generation    = device->generation;
938         smp_rmb();    /* node IDs must not be older than generation */
939         node_id       = device->node_id;
940         local_node_id = device->card->node_id;
941
942         if (sbp2_send_management_orb(lu, node_id, generation,
943                                      SBP2_RECONNECT_REQUEST,
944                                      lu->login_id, NULL) < 0) {
945                 /*
946                  * If reconnect was impossible even though we are in the
947                  * current generation, fall back and try to log in again.
948                  *
949                  * We could check for "Function rejected" status, but
950                  * looking at the bus generation as simpler and more general.
951                  */
952                 smp_rmb(); /* get current card generation */
953                 if (generation == device->card->generation ||
954                     lu->retries++ >= 5) {
955                         dev_err(tgt_dev(tgt), "failed to reconnect\n");
956                         lu->retries = 0;
957                         PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
958                 }
959                 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
960
961                 return;
962         }
963
964         tgt->node_id      = node_id;
965         tgt->address_high = local_node_id << 16;
966         smp_wmb();        /* node IDs must not be older than generation */
967         lu->generation    = generation;
968
969         dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n",
970                    lu->lun, lu->retries);
971
972         sbp2_agent_reset(lu);
973         sbp2_cancel_orbs(lu);
974         sbp2_conditionally_unblock(lu);
975 }
976
977 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
978 {
979         struct sbp2_logical_unit *lu;
980
981         lu = kmalloc(sizeof(*lu), GFP_KERNEL);
982         if (!lu)
983                 return -ENOMEM;
984
985         lu->address_handler.length           = 0x100;
986         lu->address_handler.address_callback = sbp2_status_write;
987         lu->address_handler.callback_data    = lu;
988
989         if (fw_core_add_address_handler(&lu->address_handler,
990                                         &fw_high_memory_region) < 0) {
991                 kfree(lu);
992                 return -ENOMEM;
993         }
994
995         lu->tgt      = tgt;
996         lu->lun      = lun_entry & 0xffff;
997         lu->login_id = INVALID_LOGIN_ID;
998         lu->retries  = 0;
999         lu->has_sdev = false;
1000         lu->blocked  = false;
1001         ++tgt->dont_block;
1002         INIT_LIST_HEAD(&lu->orb_list);
1003         INIT_DELAYED_WORK(&lu->work, sbp2_login);
1004
1005         list_add_tail(&lu->link, &tgt->lu_list);
1006         return 0;
1007 }
1008
1009 static void sbp2_get_unit_unique_id(struct sbp2_target *tgt,
1010                                     const u32 *leaf)
1011 {
1012         if ((leaf[0] & 0xffff0000) == 0x00020000)
1013                 tgt->guid = (u64)leaf[1] << 32 | leaf[2];
1014 }
1015
1016 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1017                                       const u32 *directory)
1018 {
1019         struct fw_csr_iterator ci;
1020         int key, value;
1021
1022         fw_csr_iterator_init(&ci, directory);
1023         while (fw_csr_iterator_next(&ci, &key, &value))
1024                 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1025                     sbp2_add_logical_unit(tgt, value) < 0)
1026                         return -ENOMEM;
1027         return 0;
1028 }
1029
1030 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1031                               u32 *model, u32 *firmware_revision)
1032 {
1033         struct fw_csr_iterator ci;
1034         int key, value;
1035
1036         fw_csr_iterator_init(&ci, directory);
1037         while (fw_csr_iterator_next(&ci, &key, &value)) {
1038                 switch (key) {
1039
1040                 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1041                         tgt->management_agent_address =
1042                                         CSR_REGISTER_BASE + 4 * value;
1043                         break;
1044
1045                 case CSR_DIRECTORY_ID:
1046                         tgt->directory_id = value;
1047                         break;
1048
1049                 case CSR_MODEL:
1050                         *model = value;
1051                         break;
1052
1053                 case SBP2_CSR_FIRMWARE_REVISION:
1054                         *firmware_revision = value;
1055                         break;
1056
1057                 case SBP2_CSR_UNIT_CHARACTERISTICS:
1058                         /* the timeout value is stored in 500ms units */
1059                         tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1060                         break;
1061
1062                 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1063                         if (sbp2_add_logical_unit(tgt, value) < 0)
1064                                 return -ENOMEM;
1065                         break;
1066
1067                 case SBP2_CSR_UNIT_UNIQUE_ID:
1068                         sbp2_get_unit_unique_id(tgt, ci.p - 1 + value);
1069                         break;
1070
1071                 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1072                         /* Adjust for the increment in the iterator */
1073                         if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1074                                 return -ENOMEM;
1075                         break;
1076                 }
1077         }
1078         return 0;
1079 }
1080
1081 /*
1082  * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1083  * provided in the config rom. Most devices do provide a value, which
1084  * we'll use for login management orbs, but with some sane limits.
1085  */
1086 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1087 {
1088         unsigned int timeout = tgt->mgt_orb_timeout;
1089
1090         if (timeout > 40000)
1091                 dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n",
1092                            timeout / 1000);
1093
1094         tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1095 }
1096
1097 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1098                                   u32 firmware_revision)
1099 {
1100         int i;
1101         unsigned int w = sbp2_param_workarounds;
1102
1103         if (w)
1104                 dev_notice(tgt_dev(tgt),
1105                            "Please notify linux1394-devel@lists.sf.net "
1106                            "if you need the workarounds parameter\n");
1107
1108         if (w & SBP2_WORKAROUND_OVERRIDE)
1109                 goto out;
1110
1111         for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1112
1113                 if (sbp2_workarounds_table[i].firmware_revision !=
1114                     (firmware_revision & 0xffffff00))
1115                         continue;
1116
1117                 if (sbp2_workarounds_table[i].model != model &&
1118                     sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1119                         continue;
1120
1121                 w |= sbp2_workarounds_table[i].workarounds;
1122                 break;
1123         }
1124  out:
1125         if (w)
1126                 dev_notice(tgt_dev(tgt), "workarounds 0x%x "
1127                            "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1128                            w, firmware_revision, model);
1129         tgt->workarounds = w;
1130 }
1131
1132 static struct scsi_host_template scsi_driver_template;
1133 static int sbp2_remove(struct device *dev);
1134
1135 static int sbp2_probe(struct device *dev)
1136 {
1137         struct fw_unit *unit = fw_unit(dev);
1138         struct fw_device *device = fw_parent_device(unit);
1139         struct sbp2_target *tgt;
1140         struct sbp2_logical_unit *lu;
1141         struct Scsi_Host *shost;
1142         u32 model, firmware_revision;
1143
1144         if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1145                 BUG_ON(dma_set_max_seg_size(device->card->device,
1146                                             SBP2_MAX_SEG_SIZE));
1147
1148         shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1149         if (shost == NULL)
1150                 return -ENOMEM;
1151
1152         tgt = (struct sbp2_target *)shost->hostdata;
1153         dev_set_drvdata(&unit->device, tgt);
1154         tgt->unit = unit;
1155         INIT_LIST_HEAD(&tgt->lu_list);
1156         tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1157
1158         if (fw_device_enable_phys_dma(device) < 0)
1159                 goto fail_shost_put;
1160
1161         shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1162
1163         if (scsi_add_host(shost, &unit->device) < 0)
1164                 goto fail_shost_put;
1165
1166         /* implicit directory ID */
1167         tgt->directory_id = ((unit->directory - device->config_rom) * 4
1168                              + CSR_CONFIG_ROM) & 0xffffff;
1169
1170         firmware_revision = SBP2_ROM_VALUE_MISSING;
1171         model             = SBP2_ROM_VALUE_MISSING;
1172
1173         if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1174                                &firmware_revision) < 0)
1175                 goto fail_remove;
1176
1177         sbp2_clamp_management_orb_timeout(tgt);
1178         sbp2_init_workarounds(tgt, model, firmware_revision);
1179
1180         /*
1181          * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1182          * and so on up to 4096 bytes.  The SBP-2 max_payload field
1183          * specifies the max payload size as 2 ^ (max_payload + 2), so
1184          * if we set this to max_speed + 7, we get the right value.
1185          */
1186         tgt->max_payload = min3(device->max_speed + 7, 10U,
1187                                 device->card->max_receive - 1);
1188
1189         /* Do the login in a workqueue so we can easily reschedule retries. */
1190         list_for_each_entry(lu, &tgt->lu_list, link)
1191                 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1192
1193         return 0;
1194
1195  fail_remove:
1196         sbp2_remove(dev);
1197         return -ENOMEM;
1198
1199  fail_shost_put:
1200         scsi_host_put(shost);
1201         return -ENOMEM;
1202 }
1203
1204 static void sbp2_update(struct fw_unit *unit)
1205 {
1206         struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1207         struct sbp2_logical_unit *lu;
1208
1209         fw_device_enable_phys_dma(fw_parent_device(unit));
1210
1211         /*
1212          * Fw-core serializes sbp2_update() against sbp2_remove().
1213          * Iteration over tgt->lu_list is therefore safe here.
1214          */
1215         list_for_each_entry(lu, &tgt->lu_list, link) {
1216                 sbp2_conditionally_block(lu);
1217                 lu->retries = 0;
1218                 sbp2_queue_work(lu, 0);
1219         }
1220 }
1221
1222 static int sbp2_remove(struct device *dev)
1223 {
1224         struct fw_unit *unit = fw_unit(dev);
1225         struct fw_device *device = fw_parent_device(unit);
1226         struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1227         struct sbp2_logical_unit *lu, *next;
1228         struct Scsi_Host *shost =
1229                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
1230         struct scsi_device *sdev;
1231
1232         /* prevent deadlocks */
1233         sbp2_unblock(tgt);
1234
1235         list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
1236                 cancel_delayed_work_sync(&lu->work);
1237                 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
1238                 if (sdev) {
1239                         scsi_remove_device(sdev);
1240                         scsi_device_put(sdev);
1241                 }
1242                 if (lu->login_id != INVALID_LOGIN_ID) {
1243                         int generation, node_id;
1244                         /*
1245                          * tgt->node_id may be obsolete here if we failed
1246                          * during initial login or after a bus reset where
1247                          * the topology changed.
1248                          */
1249                         generation = device->generation;
1250                         smp_rmb(); /* node_id vs. generation */
1251                         node_id    = device->node_id;
1252                         sbp2_send_management_orb(lu, node_id, generation,
1253                                                  SBP2_LOGOUT_REQUEST,
1254                                                  lu->login_id, NULL);
1255                 }
1256                 fw_core_remove_address_handler(&lu->address_handler);
1257                 list_del(&lu->link);
1258                 kfree(lu);
1259         }
1260         scsi_remove_host(shost);
1261         dev_notice(dev, "released target %d:0:0\n", shost->host_no);
1262
1263         scsi_host_put(shost);
1264         return 0;
1265 }
1266
1267 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1268 #define SBP2_SW_VERSION_ENTRY   0x00010483
1269
1270 static const struct ieee1394_device_id sbp2_id_table[] = {
1271         {
1272                 .match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1273                                 IEEE1394_MATCH_VERSION,
1274                 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1275                 .version      = SBP2_SW_VERSION_ENTRY,
1276         },
1277         { }
1278 };
1279
1280 static struct fw_driver sbp2_driver = {
1281         .driver   = {
1282                 .owner  = THIS_MODULE,
1283                 .name   = KBUILD_MODNAME,
1284                 .bus    = &fw_bus_type,
1285                 .probe  = sbp2_probe,
1286                 .remove = sbp2_remove,
1287         },
1288         .update   = sbp2_update,
1289         .id_table = sbp2_id_table,
1290 };
1291
1292 static void sbp2_unmap_scatterlist(struct device *card_device,
1293                                    struct sbp2_command_orb *orb)
1294 {
1295         if (scsi_sg_count(orb->cmd))
1296                 dma_unmap_sg(card_device, scsi_sglist(orb->cmd),
1297                              scsi_sg_count(orb->cmd),
1298                              orb->cmd->sc_data_direction);
1299
1300         if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1301                 dma_unmap_single(card_device, orb->page_table_bus,
1302                                  sizeof(orb->page_table), DMA_TO_DEVICE);
1303 }
1304
1305 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1306 {
1307         int sam_status;
1308
1309         sense_data[0] = 0x70;
1310         sense_data[1] = 0x0;
1311         sense_data[2] = sbp2_status[1];
1312         sense_data[3] = sbp2_status[4];
1313         sense_data[4] = sbp2_status[5];
1314         sense_data[5] = sbp2_status[6];
1315         sense_data[6] = sbp2_status[7];
1316         sense_data[7] = 10;
1317         sense_data[8] = sbp2_status[8];
1318         sense_data[9] = sbp2_status[9];
1319         sense_data[10] = sbp2_status[10];
1320         sense_data[11] = sbp2_status[11];
1321         sense_data[12] = sbp2_status[2];
1322         sense_data[13] = sbp2_status[3];
1323         sense_data[14] = sbp2_status[12];
1324         sense_data[15] = sbp2_status[13];
1325
1326         sam_status = sbp2_status[0] & 0x3f;
1327
1328         switch (sam_status) {
1329         case SAM_STAT_GOOD:
1330         case SAM_STAT_CHECK_CONDITION:
1331         case SAM_STAT_CONDITION_MET:
1332         case SAM_STAT_BUSY:
1333         case SAM_STAT_RESERVATION_CONFLICT:
1334         case SAM_STAT_COMMAND_TERMINATED:
1335                 return DID_OK << 16 | sam_status;
1336
1337         default:
1338                 return DID_ERROR << 16;
1339         }
1340 }
1341
1342 static void complete_command_orb(struct sbp2_orb *base_orb,
1343                                  struct sbp2_status *status)
1344 {
1345         struct sbp2_command_orb *orb =
1346                 container_of(base_orb, struct sbp2_command_orb, base);
1347         struct fw_device *device = target_parent_device(orb->lu->tgt);
1348         int result;
1349
1350         if (status != NULL) {
1351                 if (STATUS_GET_DEAD(*status))
1352                         sbp2_agent_reset_no_wait(orb->lu);
1353
1354                 switch (STATUS_GET_RESPONSE(*status)) {
1355                 case SBP2_STATUS_REQUEST_COMPLETE:
1356                         result = DID_OK << 16;
1357                         break;
1358                 case SBP2_STATUS_TRANSPORT_FAILURE:
1359                         result = DID_BUS_BUSY << 16;
1360                         break;
1361                 case SBP2_STATUS_ILLEGAL_REQUEST:
1362                 case SBP2_STATUS_VENDOR_DEPENDENT:
1363                 default:
1364                         result = DID_ERROR << 16;
1365                         break;
1366                 }
1367
1368                 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1369                         result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1370                                                            orb->cmd->sense_buffer);
1371         } else {
1372                 /*
1373                  * If the orb completes with status == NULL, something
1374                  * went wrong, typically a bus reset happened mid-orb
1375                  * or when sending the write (less likely).
1376                  */
1377                 result = DID_BUS_BUSY << 16;
1378                 sbp2_conditionally_block(orb->lu);
1379         }
1380
1381         dma_unmap_single(device->card->device, orb->base.request_bus,
1382                          sizeof(orb->request), DMA_TO_DEVICE);
1383         sbp2_unmap_scatterlist(device->card->device, orb);
1384
1385         orb->cmd->result = result;
1386         orb->cmd->scsi_done(orb->cmd);
1387 }
1388
1389 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1390                 struct fw_device *device, struct sbp2_logical_unit *lu)
1391 {
1392         struct scatterlist *sg = scsi_sglist(orb->cmd);
1393         int i, n;
1394
1395         n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1396                        orb->cmd->sc_data_direction);
1397         if (n == 0)
1398                 goto fail;
1399
1400         /*
1401          * Handle the special case where there is only one element in
1402          * the scatter list by converting it to an immediate block
1403          * request. This is also a workaround for broken devices such
1404          * as the second generation iPod which doesn't support page
1405          * tables.
1406          */
1407         if (n == 1) {
1408                 orb->request.data_descriptor.high =
1409                         cpu_to_be32(lu->tgt->address_high);
1410                 orb->request.data_descriptor.low  =
1411                         cpu_to_be32(sg_dma_address(sg));
1412                 orb->request.misc |=
1413                         cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1414                 return 0;
1415         }
1416
1417         for_each_sg(sg, sg, n, i) {
1418                 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1419                 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1420         }
1421
1422         orb->page_table_bus =
1423                 dma_map_single(device->card->device, orb->page_table,
1424                                sizeof(orb->page_table), DMA_TO_DEVICE);
1425         if (dma_mapping_error(device->card->device, orb->page_table_bus))
1426                 goto fail_page_table;
1427
1428         /*
1429          * The data_descriptor pointer is the one case where we need
1430          * to fill in the node ID part of the address.  All other
1431          * pointers assume that the data referenced reside on the
1432          * initiator (i.e. us), but data_descriptor can refer to data
1433          * on other nodes so we need to put our ID in descriptor.high.
1434          */
1435         orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1436         orb->request.data_descriptor.low  = cpu_to_be32(orb->page_table_bus);
1437         orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1438                                          COMMAND_ORB_DATA_SIZE(n));
1439
1440         return 0;
1441
1442  fail_page_table:
1443         dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1444                      scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
1445  fail:
1446         return -ENOMEM;
1447 }
1448
1449 /* SCSI stack integration */
1450
1451 static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1452                                   struct scsi_cmnd *cmd)
1453 {
1454         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1455         struct fw_device *device = target_parent_device(lu->tgt);
1456         struct sbp2_command_orb *orb;
1457         int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1458
1459         /*
1460          * Bidirectional commands are not yet implemented, and unknown
1461          * transfer direction not handled.
1462          */
1463         if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1464                 dev_err(lu_dev(lu), "cannot handle bidirectional command\n");
1465                 cmd->result = DID_ERROR << 16;
1466                 cmd->scsi_done(cmd);
1467                 return 0;
1468         }
1469
1470         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1471         if (orb == NULL) {
1472                 dev_notice(lu_dev(lu), "failed to alloc ORB\n");
1473                 return SCSI_MLQUEUE_HOST_BUSY;
1474         }
1475
1476         /* Initialize rcode to something not RCODE_COMPLETE. */
1477         orb->base.rcode = -1;
1478         kref_init(&orb->base.kref);
1479         orb->lu = lu;
1480         orb->cmd = cmd;
1481         orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1482         orb->request.misc = cpu_to_be32(
1483                 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1484                 COMMAND_ORB_SPEED(device->max_speed) |
1485                 COMMAND_ORB_NOTIFY);
1486
1487         if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1488                 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1489
1490         generation = device->generation;
1491         smp_rmb();    /* sbp2_map_scatterlist looks at tgt->address_high */
1492
1493         if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1494                 goto out;
1495
1496         memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1497
1498         orb->base.callback = complete_command_orb;
1499         orb->base.request_bus =
1500                 dma_map_single(device->card->device, &orb->request,
1501                                sizeof(orb->request), DMA_TO_DEVICE);
1502         if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1503                 sbp2_unmap_scatterlist(device->card->device, orb);
1504                 goto out;
1505         }
1506
1507         sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1508                       lu->command_block_agent_address + SBP2_ORB_POINTER);
1509         retval = 0;
1510  out:
1511         kref_put(&orb->base.kref, free_orb);
1512         return retval;
1513 }
1514
1515 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1516 {
1517         struct sbp2_logical_unit *lu = sdev->hostdata;
1518
1519         /* (Re-)Adding logical units via the SCSI stack is not supported. */
1520         if (!lu)
1521                 return -ENOSYS;
1522
1523         sdev->allow_restart = 1;
1524
1525         /* SBP-2 requires quadlet alignment of the data buffers. */
1526         blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1527
1528         if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1529                 sdev->inquiry_len = 36;
1530
1531         return 0;
1532 }
1533
1534 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1535 {
1536         struct sbp2_logical_unit *lu = sdev->hostdata;
1537
1538         sdev->use_10_for_rw = 1;
1539
1540         if (sbp2_param_exclusive_login)
1541                 sdev->manage_start_stop = 1;
1542
1543         if (sdev->type == TYPE_ROM)
1544                 sdev->use_10_for_ms = 1;
1545
1546         if (sdev->type == TYPE_DISK &&
1547             lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1548                 sdev->skip_ms_page_8 = 1;
1549
1550         if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1551                 sdev->fix_capacity = 1;
1552
1553         if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1554                 sdev->start_stop_pwr_cond = 1;
1555
1556         if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1557                 blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1558
1559         blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
1560
1561         return 0;
1562 }
1563
1564 /*
1565  * Called by scsi stack when something has really gone wrong.  Usually
1566  * called when a command has timed-out for some reason.
1567  */
1568 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1569 {
1570         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1571
1572         dev_notice(lu_dev(lu), "sbp2_scsi_abort\n");
1573         sbp2_agent_reset(lu);
1574         sbp2_cancel_orbs(lu);
1575
1576         return SUCCESS;
1577 }
1578
1579 /*
1580  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1581  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1582  *
1583  * This is the concatenation of target port identifier and logical unit
1584  * identifier as per SAM-2...SAM-4 annex A.
1585  */
1586 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1587                         struct device_attribute *attr, char *buf)
1588 {
1589         struct scsi_device *sdev = to_scsi_device(dev);
1590         struct sbp2_logical_unit *lu;
1591
1592         if (!sdev)
1593                 return 0;
1594
1595         lu = sdev->hostdata;
1596
1597         return sprintf(buf, "%016llx:%06x:%04x\n",
1598                         (unsigned long long)lu->tgt->guid,
1599                         lu->tgt->directory_id, lu->lun);
1600 }
1601
1602 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1603
1604 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1605         &dev_attr_ieee1394_id,
1606         NULL
1607 };
1608
1609 static struct scsi_host_template scsi_driver_template = {
1610         .module                 = THIS_MODULE,
1611         .name                   = "SBP-2 IEEE-1394",
1612         .proc_name              = "sbp2",
1613         .queuecommand           = sbp2_scsi_queuecommand,
1614         .slave_alloc            = sbp2_scsi_slave_alloc,
1615         .slave_configure        = sbp2_scsi_slave_configure,
1616         .eh_abort_handler       = sbp2_scsi_abort,
1617         .this_id                = -1,
1618         .sg_tablesize           = SG_ALL,
1619         .use_clustering         = ENABLE_CLUSTERING,
1620         .cmd_per_lun            = 1,
1621         .can_queue              = 1,
1622         .sdev_attrs             = sbp2_scsi_sysfs_attrs,
1623 };
1624
1625 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1626 MODULE_DESCRIPTION("SCSI over IEEE1394");
1627 MODULE_LICENSE("GPL");
1628 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1629
1630 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1631 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1632 MODULE_ALIAS("sbp2");
1633 #endif
1634
1635 static int __init sbp2_init(void)
1636 {
1637         return driver_register(&sbp2_driver.driver);
1638 }
1639
1640 static void __exit sbp2_cleanup(void)
1641 {
1642         driver_unregister(&sbp2_driver.driver);
1643 }
1644
1645 module_init(sbp2_init);
1646 module_exit(sbp2_cleanup);