include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[linux-3.10.git] / arch / x86 / mm / pgtable.c
1 #include <linux/mm.h>
2 #include <linux/gfp.h>
3 #include <asm/pgalloc.h>
4 #include <asm/pgtable.h>
5 #include <asm/tlb.h>
6 #include <asm/fixmap.h>
7
8 #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
9
10 #ifdef CONFIG_HIGHPTE
11 #define PGALLOC_USER_GFP __GFP_HIGHMEM
12 #else
13 #define PGALLOC_USER_GFP 0
14 #endif
15
16 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
17
18 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
19 {
20         return (pte_t *)__get_free_page(PGALLOC_GFP);
21 }
22
23 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
24 {
25         struct page *pte;
26
27         pte = alloc_pages(__userpte_alloc_gfp, 0);
28         if (pte)
29                 pgtable_page_ctor(pte);
30         return pte;
31 }
32
33 static int __init setup_userpte(char *arg)
34 {
35         if (!arg)
36                 return -EINVAL;
37
38         /*
39          * "userpte=nohigh" disables allocation of user pagetables in
40          * high memory.
41          */
42         if (strcmp(arg, "nohigh") == 0)
43                 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
44         else
45                 return -EINVAL;
46         return 0;
47 }
48 early_param("userpte", setup_userpte);
49
50 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
51 {
52         pgtable_page_dtor(pte);
53         paravirt_release_pte(page_to_pfn(pte));
54         tlb_remove_page(tlb, pte);
55 }
56
57 #if PAGETABLE_LEVELS > 2
58 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
59 {
60         paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
61         tlb_remove_page(tlb, virt_to_page(pmd));
62 }
63
64 #if PAGETABLE_LEVELS > 3
65 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
66 {
67         paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
68         tlb_remove_page(tlb, virt_to_page(pud));
69 }
70 #endif  /* PAGETABLE_LEVELS > 3 */
71 #endif  /* PAGETABLE_LEVELS > 2 */
72
73 static inline void pgd_list_add(pgd_t *pgd)
74 {
75         struct page *page = virt_to_page(pgd);
76
77         list_add(&page->lru, &pgd_list);
78 }
79
80 static inline void pgd_list_del(pgd_t *pgd)
81 {
82         struct page *page = virt_to_page(pgd);
83
84         list_del(&page->lru);
85 }
86
87 #define UNSHARED_PTRS_PER_PGD                           \
88         (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
89
90 static void pgd_ctor(pgd_t *pgd)
91 {
92         /* If the pgd points to a shared pagetable level (either the
93            ptes in non-PAE, or shared PMD in PAE), then just copy the
94            references from swapper_pg_dir. */
95         if (PAGETABLE_LEVELS == 2 ||
96             (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
97             PAGETABLE_LEVELS == 4) {
98                 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
99                                 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
100                                 KERNEL_PGD_PTRS);
101                 paravirt_alloc_pmd_clone(__pa(pgd) >> PAGE_SHIFT,
102                                          __pa(swapper_pg_dir) >> PAGE_SHIFT,
103                                          KERNEL_PGD_BOUNDARY,
104                                          KERNEL_PGD_PTRS);
105         }
106
107         /* list required to sync kernel mapping updates */
108         if (!SHARED_KERNEL_PMD)
109                 pgd_list_add(pgd);
110 }
111
112 static void pgd_dtor(pgd_t *pgd)
113 {
114         unsigned long flags; /* can be called from interrupt context */
115
116         if (SHARED_KERNEL_PMD)
117                 return;
118
119         spin_lock_irqsave(&pgd_lock, flags);
120         pgd_list_del(pgd);
121         spin_unlock_irqrestore(&pgd_lock, flags);
122 }
123
124 /*
125  * List of all pgd's needed for non-PAE so it can invalidate entries
126  * in both cached and uncached pgd's; not needed for PAE since the
127  * kernel pmd is shared. If PAE were not to share the pmd a similar
128  * tactic would be needed. This is essentially codepath-based locking
129  * against pageattr.c; it is the unique case in which a valid change
130  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
131  * vmalloc faults work because attached pagetables are never freed.
132  * -- wli
133  */
134
135 #ifdef CONFIG_X86_PAE
136 /*
137  * In PAE mode, we need to do a cr3 reload (=tlb flush) when
138  * updating the top-level pagetable entries to guarantee the
139  * processor notices the update.  Since this is expensive, and
140  * all 4 top-level entries are used almost immediately in a
141  * new process's life, we just pre-populate them here.
142  *
143  * Also, if we're in a paravirt environment where the kernel pmd is
144  * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
145  * and initialize the kernel pmds here.
146  */
147 #define PREALLOCATED_PMDS       UNSHARED_PTRS_PER_PGD
148
149 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
150 {
151         paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
152
153         /* Note: almost everything apart from _PAGE_PRESENT is
154            reserved at the pmd (PDPT) level. */
155         set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
156
157         /*
158          * According to Intel App note "TLBs, Paging-Structure Caches,
159          * and Their Invalidation", April 2007, document 317080-001,
160          * section 8.1: in PAE mode we explicitly have to flush the
161          * TLB via cr3 if the top-level pgd is changed...
162          */
163         if (mm == current->active_mm)
164                 write_cr3(read_cr3());
165 }
166 #else  /* !CONFIG_X86_PAE */
167
168 /* No need to prepopulate any pagetable entries in non-PAE modes. */
169 #define PREALLOCATED_PMDS       0
170
171 #endif  /* CONFIG_X86_PAE */
172
173 static void free_pmds(pmd_t *pmds[])
174 {
175         int i;
176
177         for(i = 0; i < PREALLOCATED_PMDS; i++)
178                 if (pmds[i])
179                         free_page((unsigned long)pmds[i]);
180 }
181
182 static int preallocate_pmds(pmd_t *pmds[])
183 {
184         int i;
185         bool failed = false;
186
187         for(i = 0; i < PREALLOCATED_PMDS; i++) {
188                 pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
189                 if (pmd == NULL)
190                         failed = true;
191                 pmds[i] = pmd;
192         }
193
194         if (failed) {
195                 free_pmds(pmds);
196                 return -ENOMEM;
197         }
198
199         return 0;
200 }
201
202 /*
203  * Mop up any pmd pages which may still be attached to the pgd.
204  * Normally they will be freed by munmap/exit_mmap, but any pmd we
205  * preallocate which never got a corresponding vma will need to be
206  * freed manually.
207  */
208 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
209 {
210         int i;
211
212         for(i = 0; i < PREALLOCATED_PMDS; i++) {
213                 pgd_t pgd = pgdp[i];
214
215                 if (pgd_val(pgd) != 0) {
216                         pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
217
218                         pgdp[i] = native_make_pgd(0);
219
220                         paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
221                         pmd_free(mm, pmd);
222                 }
223         }
224 }
225
226 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
227 {
228         pud_t *pud;
229         unsigned long addr;
230         int i;
231
232         if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
233                 return;
234
235         pud = pud_offset(pgd, 0);
236
237         for (addr = i = 0; i < PREALLOCATED_PMDS;
238              i++, pud++, addr += PUD_SIZE) {
239                 pmd_t *pmd = pmds[i];
240
241                 if (i >= KERNEL_PGD_BOUNDARY)
242                         memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
243                                sizeof(pmd_t) * PTRS_PER_PMD);
244
245                 pud_populate(mm, pud, pmd);
246         }
247 }
248
249 pgd_t *pgd_alloc(struct mm_struct *mm)
250 {
251         pgd_t *pgd;
252         pmd_t *pmds[PREALLOCATED_PMDS];
253         unsigned long flags;
254
255         pgd = (pgd_t *)__get_free_page(PGALLOC_GFP);
256
257         if (pgd == NULL)
258                 goto out;
259
260         mm->pgd = pgd;
261
262         if (preallocate_pmds(pmds) != 0)
263                 goto out_free_pgd;
264
265         if (paravirt_pgd_alloc(mm) != 0)
266                 goto out_free_pmds;
267
268         /*
269          * Make sure that pre-populating the pmds is atomic with
270          * respect to anything walking the pgd_list, so that they
271          * never see a partially populated pgd.
272          */
273         spin_lock_irqsave(&pgd_lock, flags);
274
275         pgd_ctor(pgd);
276         pgd_prepopulate_pmd(mm, pgd, pmds);
277
278         spin_unlock_irqrestore(&pgd_lock, flags);
279
280         return pgd;
281
282 out_free_pmds:
283         free_pmds(pmds);
284 out_free_pgd:
285         free_page((unsigned long)pgd);
286 out:
287         return NULL;
288 }
289
290 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
291 {
292         pgd_mop_up_pmds(mm, pgd);
293         pgd_dtor(pgd);
294         paravirt_pgd_free(mm, pgd);
295         free_page((unsigned long)pgd);
296 }
297
298 int ptep_set_access_flags(struct vm_area_struct *vma,
299                           unsigned long address, pte_t *ptep,
300                           pte_t entry, int dirty)
301 {
302         int changed = !pte_same(*ptep, entry);
303
304         if (changed && dirty) {
305                 *ptep = entry;
306                 pte_update_defer(vma->vm_mm, address, ptep);
307                 flush_tlb_page(vma, address);
308         }
309
310         return changed;
311 }
312
313 int ptep_test_and_clear_young(struct vm_area_struct *vma,
314                               unsigned long addr, pte_t *ptep)
315 {
316         int ret = 0;
317
318         if (pte_young(*ptep))
319                 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
320                                          (unsigned long *) &ptep->pte);
321
322         if (ret)
323                 pte_update(vma->vm_mm, addr, ptep);
324
325         return ret;
326 }
327
328 int ptep_clear_flush_young(struct vm_area_struct *vma,
329                            unsigned long address, pte_t *ptep)
330 {
331         int young;
332
333         young = ptep_test_and_clear_young(vma, address, ptep);
334         if (young)
335                 flush_tlb_page(vma, address);
336
337         return young;
338 }
339
340 /**
341  * reserve_top_address - reserves a hole in the top of kernel address space
342  * @reserve - size of hole to reserve
343  *
344  * Can be used to relocate the fixmap area and poke a hole in the top
345  * of kernel address space to make room for a hypervisor.
346  */
347 void __init reserve_top_address(unsigned long reserve)
348 {
349 #ifdef CONFIG_X86_32
350         BUG_ON(fixmaps_set > 0);
351         printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
352                (int)-reserve);
353         __FIXADDR_TOP = -reserve - PAGE_SIZE;
354 #endif
355 }
356
357 int fixmaps_set;
358
359 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
360 {
361         unsigned long address = __fix_to_virt(idx);
362
363         if (idx >= __end_of_fixed_addresses) {
364                 BUG();
365                 return;
366         }
367         set_pte_vaddr(address, pte);
368         fixmaps_set++;
369 }
370
371 void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
372                        pgprot_t flags)
373 {
374         __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
375 }