KVM: s390: add parameter for KVM_CREATE_VM
[linux-3.10.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <trace/events/kvm.h>
50
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53
54 #include <asm/debugreg.h>
55 #include <asm/msr.h>
56 #include <asm/desc.h>
57 #include <asm/mtrr.h>
58 #include <asm/mce.h>
59 #include <asm/i387.h>
60 #include <asm/xcr.h>
61 #include <asm/pvclock.h>
62 #include <asm/div64.h>
63
64 #define MAX_IO_MSRS 256
65 #define KVM_MAX_MCE_BANKS 32
66 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
67
68 #define emul_to_vcpu(ctxt) \
69         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
70
71 /* EFER defaults:
72  * - enable syscall per default because its emulated by KVM
73  * - enable LME and LMA per default on 64 bit KVM
74  */
75 #ifdef CONFIG_X86_64
76 static
77 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
78 #else
79 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
80 #endif
81
82 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
83 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
84
85 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
86 static void process_nmi(struct kvm_vcpu *vcpu);
87
88 struct kvm_x86_ops *kvm_x86_ops;
89 EXPORT_SYMBOL_GPL(kvm_x86_ops);
90
91 static bool ignore_msrs = 0;
92 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
93
94 bool kvm_has_tsc_control;
95 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
96 u32  kvm_max_guest_tsc_khz;
97 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
98
99 #define KVM_NR_SHARED_MSRS 16
100
101 struct kvm_shared_msrs_global {
102         int nr;
103         u32 msrs[KVM_NR_SHARED_MSRS];
104 };
105
106 struct kvm_shared_msrs {
107         struct user_return_notifier urn;
108         bool registered;
109         struct kvm_shared_msr_values {
110                 u64 host;
111                 u64 curr;
112         } values[KVM_NR_SHARED_MSRS];
113 };
114
115 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
116 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
117
118 struct kvm_stats_debugfs_item debugfs_entries[] = {
119         { "pf_fixed", VCPU_STAT(pf_fixed) },
120         { "pf_guest", VCPU_STAT(pf_guest) },
121         { "tlb_flush", VCPU_STAT(tlb_flush) },
122         { "invlpg", VCPU_STAT(invlpg) },
123         { "exits", VCPU_STAT(exits) },
124         { "io_exits", VCPU_STAT(io_exits) },
125         { "mmio_exits", VCPU_STAT(mmio_exits) },
126         { "signal_exits", VCPU_STAT(signal_exits) },
127         { "irq_window", VCPU_STAT(irq_window_exits) },
128         { "nmi_window", VCPU_STAT(nmi_window_exits) },
129         { "halt_exits", VCPU_STAT(halt_exits) },
130         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
131         { "hypercalls", VCPU_STAT(hypercalls) },
132         { "request_irq", VCPU_STAT(request_irq_exits) },
133         { "irq_exits", VCPU_STAT(irq_exits) },
134         { "host_state_reload", VCPU_STAT(host_state_reload) },
135         { "efer_reload", VCPU_STAT(efer_reload) },
136         { "fpu_reload", VCPU_STAT(fpu_reload) },
137         { "insn_emulation", VCPU_STAT(insn_emulation) },
138         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
139         { "irq_injections", VCPU_STAT(irq_injections) },
140         { "nmi_injections", VCPU_STAT(nmi_injections) },
141         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
142         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
143         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
144         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
145         { "mmu_flooded", VM_STAT(mmu_flooded) },
146         { "mmu_recycled", VM_STAT(mmu_recycled) },
147         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
148         { "mmu_unsync", VM_STAT(mmu_unsync) },
149         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
150         { "largepages", VM_STAT(lpages) },
151         { NULL }
152 };
153
154 u64 __read_mostly host_xcr0;
155
156 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
157
158 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
159 {
160         int i;
161         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
162                 vcpu->arch.apf.gfns[i] = ~0;
163 }
164
165 static void kvm_on_user_return(struct user_return_notifier *urn)
166 {
167         unsigned slot;
168         struct kvm_shared_msrs *locals
169                 = container_of(urn, struct kvm_shared_msrs, urn);
170         struct kvm_shared_msr_values *values;
171
172         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
173                 values = &locals->values[slot];
174                 if (values->host != values->curr) {
175                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
176                         values->curr = values->host;
177                 }
178         }
179         locals->registered = false;
180         user_return_notifier_unregister(urn);
181 }
182
183 static void shared_msr_update(unsigned slot, u32 msr)
184 {
185         struct kvm_shared_msrs *smsr;
186         u64 value;
187
188         smsr = &__get_cpu_var(shared_msrs);
189         /* only read, and nobody should modify it at this time,
190          * so don't need lock */
191         if (slot >= shared_msrs_global.nr) {
192                 printk(KERN_ERR "kvm: invalid MSR slot!");
193                 return;
194         }
195         rdmsrl_safe(msr, &value);
196         smsr->values[slot].host = value;
197         smsr->values[slot].curr = value;
198 }
199
200 void kvm_define_shared_msr(unsigned slot, u32 msr)
201 {
202         if (slot >= shared_msrs_global.nr)
203                 shared_msrs_global.nr = slot + 1;
204         shared_msrs_global.msrs[slot] = msr;
205         /* we need ensured the shared_msr_global have been updated */
206         smp_wmb();
207 }
208 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
209
210 static void kvm_shared_msr_cpu_online(void)
211 {
212         unsigned i;
213
214         for (i = 0; i < shared_msrs_global.nr; ++i)
215                 shared_msr_update(i, shared_msrs_global.msrs[i]);
216 }
217
218 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
219 {
220         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
221
222         if (((value ^ smsr->values[slot].curr) & mask) == 0)
223                 return;
224         smsr->values[slot].curr = value;
225         wrmsrl(shared_msrs_global.msrs[slot], value);
226         if (!smsr->registered) {
227                 smsr->urn.on_user_return = kvm_on_user_return;
228                 user_return_notifier_register(&smsr->urn);
229                 smsr->registered = true;
230         }
231 }
232 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
233
234 static void drop_user_return_notifiers(void *ignore)
235 {
236         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
237
238         if (smsr->registered)
239                 kvm_on_user_return(&smsr->urn);
240 }
241
242 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
243 {
244         if (irqchip_in_kernel(vcpu->kvm))
245                 return vcpu->arch.apic_base;
246         else
247                 return vcpu->arch.apic_base;
248 }
249 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
250
251 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
252 {
253         /* TODO: reserve bits check */
254         if (irqchip_in_kernel(vcpu->kvm))
255                 kvm_lapic_set_base(vcpu, data);
256         else
257                 vcpu->arch.apic_base = data;
258 }
259 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
260
261 #define EXCPT_BENIGN            0
262 #define EXCPT_CONTRIBUTORY      1
263 #define EXCPT_PF                2
264
265 static int exception_class(int vector)
266 {
267         switch (vector) {
268         case PF_VECTOR:
269                 return EXCPT_PF;
270         case DE_VECTOR:
271         case TS_VECTOR:
272         case NP_VECTOR:
273         case SS_VECTOR:
274         case GP_VECTOR:
275                 return EXCPT_CONTRIBUTORY;
276         default:
277                 break;
278         }
279         return EXCPT_BENIGN;
280 }
281
282 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
283                 unsigned nr, bool has_error, u32 error_code,
284                 bool reinject)
285 {
286         u32 prev_nr;
287         int class1, class2;
288
289         kvm_make_request(KVM_REQ_EVENT, vcpu);
290
291         if (!vcpu->arch.exception.pending) {
292         queue:
293                 vcpu->arch.exception.pending = true;
294                 vcpu->arch.exception.has_error_code = has_error;
295                 vcpu->arch.exception.nr = nr;
296                 vcpu->arch.exception.error_code = error_code;
297                 vcpu->arch.exception.reinject = reinject;
298                 return;
299         }
300
301         /* to check exception */
302         prev_nr = vcpu->arch.exception.nr;
303         if (prev_nr == DF_VECTOR) {
304                 /* triple fault -> shutdown */
305                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
306                 return;
307         }
308         class1 = exception_class(prev_nr);
309         class2 = exception_class(nr);
310         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
311                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
312                 /* generate double fault per SDM Table 5-5 */
313                 vcpu->arch.exception.pending = true;
314                 vcpu->arch.exception.has_error_code = true;
315                 vcpu->arch.exception.nr = DF_VECTOR;
316                 vcpu->arch.exception.error_code = 0;
317         } else
318                 /* replace previous exception with a new one in a hope
319                    that instruction re-execution will regenerate lost
320                    exception */
321                 goto queue;
322 }
323
324 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
325 {
326         kvm_multiple_exception(vcpu, nr, false, 0, false);
327 }
328 EXPORT_SYMBOL_GPL(kvm_queue_exception);
329
330 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
331 {
332         kvm_multiple_exception(vcpu, nr, false, 0, true);
333 }
334 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
335
336 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
337 {
338         if (err)
339                 kvm_inject_gp(vcpu, 0);
340         else
341                 kvm_x86_ops->skip_emulated_instruction(vcpu);
342 }
343 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
344
345 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
346 {
347         ++vcpu->stat.pf_guest;
348         vcpu->arch.cr2 = fault->address;
349         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
350 }
351 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
352
353 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
354 {
355         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
356                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
357         else
358                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
359 }
360
361 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
362 {
363         atomic_inc(&vcpu->arch.nmi_queued);
364         kvm_make_request(KVM_REQ_NMI, vcpu);
365 }
366 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
367
368 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
369 {
370         kvm_multiple_exception(vcpu, nr, true, error_code, false);
371 }
372 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
373
374 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
375 {
376         kvm_multiple_exception(vcpu, nr, true, error_code, true);
377 }
378 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
379
380 /*
381  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
382  * a #GP and return false.
383  */
384 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
385 {
386         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
387                 return true;
388         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
389         return false;
390 }
391 EXPORT_SYMBOL_GPL(kvm_require_cpl);
392
393 /*
394  * This function will be used to read from the physical memory of the currently
395  * running guest. The difference to kvm_read_guest_page is that this function
396  * can read from guest physical or from the guest's guest physical memory.
397  */
398 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
399                             gfn_t ngfn, void *data, int offset, int len,
400                             u32 access)
401 {
402         gfn_t real_gfn;
403         gpa_t ngpa;
404
405         ngpa     = gfn_to_gpa(ngfn);
406         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
407         if (real_gfn == UNMAPPED_GVA)
408                 return -EFAULT;
409
410         real_gfn = gpa_to_gfn(real_gfn);
411
412         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
413 }
414 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
415
416 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
417                                void *data, int offset, int len, u32 access)
418 {
419         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
420                                        data, offset, len, access);
421 }
422
423 /*
424  * Load the pae pdptrs.  Return true is they are all valid.
425  */
426 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
427 {
428         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
429         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
430         int i;
431         int ret;
432         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
433
434         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
435                                       offset * sizeof(u64), sizeof(pdpte),
436                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
437         if (ret < 0) {
438                 ret = 0;
439                 goto out;
440         }
441         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
442                 if (is_present_gpte(pdpte[i]) &&
443                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
444                         ret = 0;
445                         goto out;
446                 }
447         }
448         ret = 1;
449
450         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
451         __set_bit(VCPU_EXREG_PDPTR,
452                   (unsigned long *)&vcpu->arch.regs_avail);
453         __set_bit(VCPU_EXREG_PDPTR,
454                   (unsigned long *)&vcpu->arch.regs_dirty);
455 out:
456
457         return ret;
458 }
459 EXPORT_SYMBOL_GPL(load_pdptrs);
460
461 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
462 {
463         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
464         bool changed = true;
465         int offset;
466         gfn_t gfn;
467         int r;
468
469         if (is_long_mode(vcpu) || !is_pae(vcpu))
470                 return false;
471
472         if (!test_bit(VCPU_EXREG_PDPTR,
473                       (unsigned long *)&vcpu->arch.regs_avail))
474                 return true;
475
476         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
477         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
478         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
479                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
480         if (r < 0)
481                 goto out;
482         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
483 out:
484
485         return changed;
486 }
487
488 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
489 {
490         unsigned long old_cr0 = kvm_read_cr0(vcpu);
491         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
492                                     X86_CR0_CD | X86_CR0_NW;
493
494         cr0 |= X86_CR0_ET;
495
496 #ifdef CONFIG_X86_64
497         if (cr0 & 0xffffffff00000000UL)
498                 return 1;
499 #endif
500
501         cr0 &= ~CR0_RESERVED_BITS;
502
503         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
504                 return 1;
505
506         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
507                 return 1;
508
509         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
510 #ifdef CONFIG_X86_64
511                 if ((vcpu->arch.efer & EFER_LME)) {
512                         int cs_db, cs_l;
513
514                         if (!is_pae(vcpu))
515                                 return 1;
516                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
517                         if (cs_l)
518                                 return 1;
519                 } else
520 #endif
521                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
522                                                  kvm_read_cr3(vcpu)))
523                         return 1;
524         }
525
526         kvm_x86_ops->set_cr0(vcpu, cr0);
527
528         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
529                 kvm_clear_async_pf_completion_queue(vcpu);
530                 kvm_async_pf_hash_reset(vcpu);
531         }
532
533         if ((cr0 ^ old_cr0) & update_bits)
534                 kvm_mmu_reset_context(vcpu);
535         return 0;
536 }
537 EXPORT_SYMBOL_GPL(kvm_set_cr0);
538
539 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
540 {
541         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
542 }
543 EXPORT_SYMBOL_GPL(kvm_lmsw);
544
545 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
546 {
547         u64 xcr0;
548
549         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
550         if (index != XCR_XFEATURE_ENABLED_MASK)
551                 return 1;
552         xcr0 = xcr;
553         if (kvm_x86_ops->get_cpl(vcpu) != 0)
554                 return 1;
555         if (!(xcr0 & XSTATE_FP))
556                 return 1;
557         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
558                 return 1;
559         if (xcr0 & ~host_xcr0)
560                 return 1;
561         vcpu->arch.xcr0 = xcr0;
562         vcpu->guest_xcr0_loaded = 0;
563         return 0;
564 }
565
566 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
567 {
568         if (__kvm_set_xcr(vcpu, index, xcr)) {
569                 kvm_inject_gp(vcpu, 0);
570                 return 1;
571         }
572         return 0;
573 }
574 EXPORT_SYMBOL_GPL(kvm_set_xcr);
575
576 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
577 {
578         unsigned long old_cr4 = kvm_read_cr4(vcpu);
579         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
580                                    X86_CR4_PAE | X86_CR4_SMEP;
581         if (cr4 & CR4_RESERVED_BITS)
582                 return 1;
583
584         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
585                 return 1;
586
587         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
588                 return 1;
589
590         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
591                 return 1;
592
593         if (is_long_mode(vcpu)) {
594                 if (!(cr4 & X86_CR4_PAE))
595                         return 1;
596         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
597                    && ((cr4 ^ old_cr4) & pdptr_bits)
598                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
599                                    kvm_read_cr3(vcpu)))
600                 return 1;
601
602         if (kvm_x86_ops->set_cr4(vcpu, cr4))
603                 return 1;
604
605         if ((cr4 ^ old_cr4) & pdptr_bits)
606                 kvm_mmu_reset_context(vcpu);
607
608         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
609                 kvm_update_cpuid(vcpu);
610
611         return 0;
612 }
613 EXPORT_SYMBOL_GPL(kvm_set_cr4);
614
615 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
616 {
617         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
618                 kvm_mmu_sync_roots(vcpu);
619                 kvm_mmu_flush_tlb(vcpu);
620                 return 0;
621         }
622
623         if (is_long_mode(vcpu)) {
624                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
625                         return 1;
626         } else {
627                 if (is_pae(vcpu)) {
628                         if (cr3 & CR3_PAE_RESERVED_BITS)
629                                 return 1;
630                         if (is_paging(vcpu) &&
631                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
632                                 return 1;
633                 }
634                 /*
635                  * We don't check reserved bits in nonpae mode, because
636                  * this isn't enforced, and VMware depends on this.
637                  */
638         }
639
640         /*
641          * Does the new cr3 value map to physical memory? (Note, we
642          * catch an invalid cr3 even in real-mode, because it would
643          * cause trouble later on when we turn on paging anyway.)
644          *
645          * A real CPU would silently accept an invalid cr3 and would
646          * attempt to use it - with largely undefined (and often hard
647          * to debug) behavior on the guest side.
648          */
649         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
650                 return 1;
651         vcpu->arch.cr3 = cr3;
652         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
653         vcpu->arch.mmu.new_cr3(vcpu);
654         return 0;
655 }
656 EXPORT_SYMBOL_GPL(kvm_set_cr3);
657
658 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
659 {
660         if (cr8 & CR8_RESERVED_BITS)
661                 return 1;
662         if (irqchip_in_kernel(vcpu->kvm))
663                 kvm_lapic_set_tpr(vcpu, cr8);
664         else
665                 vcpu->arch.cr8 = cr8;
666         return 0;
667 }
668 EXPORT_SYMBOL_GPL(kvm_set_cr8);
669
670 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
671 {
672         if (irqchip_in_kernel(vcpu->kvm))
673                 return kvm_lapic_get_cr8(vcpu);
674         else
675                 return vcpu->arch.cr8;
676 }
677 EXPORT_SYMBOL_GPL(kvm_get_cr8);
678
679 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
680 {
681         switch (dr) {
682         case 0 ... 3:
683                 vcpu->arch.db[dr] = val;
684                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
685                         vcpu->arch.eff_db[dr] = val;
686                 break;
687         case 4:
688                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
689                         return 1; /* #UD */
690                 /* fall through */
691         case 6:
692                 if (val & 0xffffffff00000000ULL)
693                         return -1; /* #GP */
694                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
695                 break;
696         case 5:
697                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
698                         return 1; /* #UD */
699                 /* fall through */
700         default: /* 7 */
701                 if (val & 0xffffffff00000000ULL)
702                         return -1; /* #GP */
703                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
704                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
705                         kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
706                         vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
707                 }
708                 break;
709         }
710
711         return 0;
712 }
713
714 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
715 {
716         int res;
717
718         res = __kvm_set_dr(vcpu, dr, val);
719         if (res > 0)
720                 kvm_queue_exception(vcpu, UD_VECTOR);
721         else if (res < 0)
722                 kvm_inject_gp(vcpu, 0);
723
724         return res;
725 }
726 EXPORT_SYMBOL_GPL(kvm_set_dr);
727
728 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
729 {
730         switch (dr) {
731         case 0 ... 3:
732                 *val = vcpu->arch.db[dr];
733                 break;
734         case 4:
735                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
736                         return 1;
737                 /* fall through */
738         case 6:
739                 *val = vcpu->arch.dr6;
740                 break;
741         case 5:
742                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
743                         return 1;
744                 /* fall through */
745         default: /* 7 */
746                 *val = vcpu->arch.dr7;
747                 break;
748         }
749
750         return 0;
751 }
752
753 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
754 {
755         if (_kvm_get_dr(vcpu, dr, val)) {
756                 kvm_queue_exception(vcpu, UD_VECTOR);
757                 return 1;
758         }
759         return 0;
760 }
761 EXPORT_SYMBOL_GPL(kvm_get_dr);
762
763 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
764 {
765         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
766         u64 data;
767         int err;
768
769         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
770         if (err)
771                 return err;
772         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
773         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
774         return err;
775 }
776 EXPORT_SYMBOL_GPL(kvm_rdpmc);
777
778 /*
779  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
780  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
781  *
782  * This list is modified at module load time to reflect the
783  * capabilities of the host cpu. This capabilities test skips MSRs that are
784  * kvm-specific. Those are put in the beginning of the list.
785  */
786
787 #define KVM_SAVE_MSRS_BEGIN     9
788 static u32 msrs_to_save[] = {
789         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
790         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
791         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
792         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
793         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
794         MSR_STAR,
795 #ifdef CONFIG_X86_64
796         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
797 #endif
798         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
799 };
800
801 static unsigned num_msrs_to_save;
802
803 static u32 emulated_msrs[] = {
804         MSR_IA32_TSCDEADLINE,
805         MSR_IA32_MISC_ENABLE,
806         MSR_IA32_MCG_STATUS,
807         MSR_IA32_MCG_CTL,
808 };
809
810 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
811 {
812         u64 old_efer = vcpu->arch.efer;
813
814         if (efer & efer_reserved_bits)
815                 return 1;
816
817         if (is_paging(vcpu)
818             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
819                 return 1;
820
821         if (efer & EFER_FFXSR) {
822                 struct kvm_cpuid_entry2 *feat;
823
824                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
825                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
826                         return 1;
827         }
828
829         if (efer & EFER_SVME) {
830                 struct kvm_cpuid_entry2 *feat;
831
832                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
833                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
834                         return 1;
835         }
836
837         efer &= ~EFER_LMA;
838         efer |= vcpu->arch.efer & EFER_LMA;
839
840         kvm_x86_ops->set_efer(vcpu, efer);
841
842         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
843
844         /* Update reserved bits */
845         if ((efer ^ old_efer) & EFER_NX)
846                 kvm_mmu_reset_context(vcpu);
847
848         return 0;
849 }
850
851 void kvm_enable_efer_bits(u64 mask)
852 {
853        efer_reserved_bits &= ~mask;
854 }
855 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
856
857
858 /*
859  * Writes msr value into into the appropriate "register".
860  * Returns 0 on success, non-0 otherwise.
861  * Assumes vcpu_load() was already called.
862  */
863 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
864 {
865         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
866 }
867
868 /*
869  * Adapt set_msr() to msr_io()'s calling convention
870  */
871 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
872 {
873         return kvm_set_msr(vcpu, index, *data);
874 }
875
876 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
877 {
878         int version;
879         int r;
880         struct pvclock_wall_clock wc;
881         struct timespec boot;
882
883         if (!wall_clock)
884                 return;
885
886         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
887         if (r)
888                 return;
889
890         if (version & 1)
891                 ++version;  /* first time write, random junk */
892
893         ++version;
894
895         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
896
897         /*
898          * The guest calculates current wall clock time by adding
899          * system time (updated by kvm_guest_time_update below) to the
900          * wall clock specified here.  guest system time equals host
901          * system time for us, thus we must fill in host boot time here.
902          */
903         getboottime(&boot);
904
905         wc.sec = boot.tv_sec;
906         wc.nsec = boot.tv_nsec;
907         wc.version = version;
908
909         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
910
911         version++;
912         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
913 }
914
915 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
916 {
917         uint32_t quotient, remainder;
918
919         /* Don't try to replace with do_div(), this one calculates
920          * "(dividend << 32) / divisor" */
921         __asm__ ( "divl %4"
922                   : "=a" (quotient), "=d" (remainder)
923                   : "0" (0), "1" (dividend), "r" (divisor) );
924         return quotient;
925 }
926
927 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
928                                s8 *pshift, u32 *pmultiplier)
929 {
930         uint64_t scaled64;
931         int32_t  shift = 0;
932         uint64_t tps64;
933         uint32_t tps32;
934
935         tps64 = base_khz * 1000LL;
936         scaled64 = scaled_khz * 1000LL;
937         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
938                 tps64 >>= 1;
939                 shift--;
940         }
941
942         tps32 = (uint32_t)tps64;
943         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
944                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
945                         scaled64 >>= 1;
946                 else
947                         tps32 <<= 1;
948                 shift++;
949         }
950
951         *pshift = shift;
952         *pmultiplier = div_frac(scaled64, tps32);
953
954         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
955                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
956 }
957
958 static inline u64 get_kernel_ns(void)
959 {
960         struct timespec ts;
961
962         WARN_ON(preemptible());
963         ktime_get_ts(&ts);
964         monotonic_to_bootbased(&ts);
965         return timespec_to_ns(&ts);
966 }
967
968 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
969 unsigned long max_tsc_khz;
970
971 static inline int kvm_tsc_changes_freq(void)
972 {
973         int cpu = get_cpu();
974         int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
975                   cpufreq_quick_get(cpu) != 0;
976         put_cpu();
977         return ret;
978 }
979
980 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu)
981 {
982         if (vcpu->arch.virtual_tsc_khz)
983                 return vcpu->arch.virtual_tsc_khz;
984         else
985                 return __this_cpu_read(cpu_tsc_khz);
986 }
987
988 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
989 {
990         u64 ret;
991
992         WARN_ON(preemptible());
993         if (kvm_tsc_changes_freq())
994                 printk_once(KERN_WARNING
995                  "kvm: unreliable cycle conversion on adjustable rate TSC\n");
996         ret = nsec * vcpu_tsc_khz(vcpu);
997         do_div(ret, USEC_PER_SEC);
998         return ret;
999 }
1000
1001 static void kvm_init_tsc_catchup(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1002 {
1003         /* Compute a scale to convert nanoseconds in TSC cycles */
1004         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1005                            &vcpu->arch.tsc_catchup_shift,
1006                            &vcpu->arch.tsc_catchup_mult);
1007 }
1008
1009 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1010 {
1011         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1012                                       vcpu->arch.tsc_catchup_mult,
1013                                       vcpu->arch.tsc_catchup_shift);
1014         tsc += vcpu->arch.last_tsc_write;
1015         return tsc;
1016 }
1017
1018 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1019 {
1020         struct kvm *kvm = vcpu->kvm;
1021         u64 offset, ns, elapsed;
1022         unsigned long flags;
1023         s64 sdiff;
1024
1025         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1026         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1027         ns = get_kernel_ns();
1028         elapsed = ns - kvm->arch.last_tsc_nsec;
1029         sdiff = data - kvm->arch.last_tsc_write;
1030         if (sdiff < 0)
1031                 sdiff = -sdiff;
1032
1033         /*
1034          * Special case: close write to TSC within 5 seconds of
1035          * another CPU is interpreted as an attempt to synchronize
1036          * The 5 seconds is to accommodate host load / swapping as
1037          * well as any reset of TSC during the boot process.
1038          *
1039          * In that case, for a reliable TSC, we can match TSC offsets,
1040          * or make a best guest using elapsed value.
1041          */
1042         if (sdiff < nsec_to_cycles(vcpu, 5ULL * NSEC_PER_SEC) &&
1043             elapsed < 5ULL * NSEC_PER_SEC) {
1044                 if (!check_tsc_unstable()) {
1045                         offset = kvm->arch.last_tsc_offset;
1046                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1047                 } else {
1048                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1049                         offset += delta;
1050                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1051                 }
1052                 ns = kvm->arch.last_tsc_nsec;
1053         }
1054         kvm->arch.last_tsc_nsec = ns;
1055         kvm->arch.last_tsc_write = data;
1056         kvm->arch.last_tsc_offset = offset;
1057         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1058         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1059
1060         /* Reset of TSC must disable overshoot protection below */
1061         vcpu->arch.hv_clock.tsc_timestamp = 0;
1062         vcpu->arch.last_tsc_write = data;
1063         vcpu->arch.last_tsc_nsec = ns;
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1066
1067 static int kvm_guest_time_update(struct kvm_vcpu *v)
1068 {
1069         unsigned long flags;
1070         struct kvm_vcpu_arch *vcpu = &v->arch;
1071         void *shared_kaddr;
1072         unsigned long this_tsc_khz;
1073         s64 kernel_ns, max_kernel_ns;
1074         u64 tsc_timestamp;
1075
1076         /* Keep irq disabled to prevent changes to the clock */
1077         local_irq_save(flags);
1078         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1079         kernel_ns = get_kernel_ns();
1080         this_tsc_khz = vcpu_tsc_khz(v);
1081         if (unlikely(this_tsc_khz == 0)) {
1082                 local_irq_restore(flags);
1083                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1084                 return 1;
1085         }
1086
1087         /*
1088          * We may have to catch up the TSC to match elapsed wall clock
1089          * time for two reasons, even if kvmclock is used.
1090          *   1) CPU could have been running below the maximum TSC rate
1091          *   2) Broken TSC compensation resets the base at each VCPU
1092          *      entry to avoid unknown leaps of TSC even when running
1093          *      again on the same CPU.  This may cause apparent elapsed
1094          *      time to disappear, and the guest to stand still or run
1095          *      very slowly.
1096          */
1097         if (vcpu->tsc_catchup) {
1098                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1099                 if (tsc > tsc_timestamp) {
1100                         kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1101                         tsc_timestamp = tsc;
1102                 }
1103         }
1104
1105         local_irq_restore(flags);
1106
1107         if (!vcpu->time_page)
1108                 return 0;
1109
1110         /*
1111          * Time as measured by the TSC may go backwards when resetting the base
1112          * tsc_timestamp.  The reason for this is that the TSC resolution is
1113          * higher than the resolution of the other clock scales.  Thus, many
1114          * possible measurments of the TSC correspond to one measurement of any
1115          * other clock, and so a spread of values is possible.  This is not a
1116          * problem for the computation of the nanosecond clock; with TSC rates
1117          * around 1GHZ, there can only be a few cycles which correspond to one
1118          * nanosecond value, and any path through this code will inevitably
1119          * take longer than that.  However, with the kernel_ns value itself,
1120          * the precision may be much lower, down to HZ granularity.  If the
1121          * first sampling of TSC against kernel_ns ends in the low part of the
1122          * range, and the second in the high end of the range, we can get:
1123          *
1124          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1125          *
1126          * As the sampling errors potentially range in the thousands of cycles,
1127          * it is possible such a time value has already been observed by the
1128          * guest.  To protect against this, we must compute the system time as
1129          * observed by the guest and ensure the new system time is greater.
1130          */
1131         max_kernel_ns = 0;
1132         if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1133                 max_kernel_ns = vcpu->last_guest_tsc -
1134                                 vcpu->hv_clock.tsc_timestamp;
1135                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1136                                     vcpu->hv_clock.tsc_to_system_mul,
1137                                     vcpu->hv_clock.tsc_shift);
1138                 max_kernel_ns += vcpu->last_kernel_ns;
1139         }
1140
1141         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1142                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1143                                    &vcpu->hv_clock.tsc_shift,
1144                                    &vcpu->hv_clock.tsc_to_system_mul);
1145                 vcpu->hw_tsc_khz = this_tsc_khz;
1146         }
1147
1148         if (max_kernel_ns > kernel_ns)
1149                 kernel_ns = max_kernel_ns;
1150
1151         /* With all the info we got, fill in the values */
1152         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1153         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1154         vcpu->last_kernel_ns = kernel_ns;
1155         vcpu->last_guest_tsc = tsc_timestamp;
1156         vcpu->hv_clock.flags = 0;
1157
1158         /*
1159          * The interface expects us to write an even number signaling that the
1160          * update is finished. Since the guest won't see the intermediate
1161          * state, we just increase by 2 at the end.
1162          */
1163         vcpu->hv_clock.version += 2;
1164
1165         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1166
1167         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1168                sizeof(vcpu->hv_clock));
1169
1170         kunmap_atomic(shared_kaddr, KM_USER0);
1171
1172         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1173         return 0;
1174 }
1175
1176 static bool msr_mtrr_valid(unsigned msr)
1177 {
1178         switch (msr) {
1179         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1180         case MSR_MTRRfix64K_00000:
1181         case MSR_MTRRfix16K_80000:
1182         case MSR_MTRRfix16K_A0000:
1183         case MSR_MTRRfix4K_C0000:
1184         case MSR_MTRRfix4K_C8000:
1185         case MSR_MTRRfix4K_D0000:
1186         case MSR_MTRRfix4K_D8000:
1187         case MSR_MTRRfix4K_E0000:
1188         case MSR_MTRRfix4K_E8000:
1189         case MSR_MTRRfix4K_F0000:
1190         case MSR_MTRRfix4K_F8000:
1191         case MSR_MTRRdefType:
1192         case MSR_IA32_CR_PAT:
1193                 return true;
1194         case 0x2f8:
1195                 return true;
1196         }
1197         return false;
1198 }
1199
1200 static bool valid_pat_type(unsigned t)
1201 {
1202         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1203 }
1204
1205 static bool valid_mtrr_type(unsigned t)
1206 {
1207         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1208 }
1209
1210 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1211 {
1212         int i;
1213
1214         if (!msr_mtrr_valid(msr))
1215                 return false;
1216
1217         if (msr == MSR_IA32_CR_PAT) {
1218                 for (i = 0; i < 8; i++)
1219                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1220                                 return false;
1221                 return true;
1222         } else if (msr == MSR_MTRRdefType) {
1223                 if (data & ~0xcff)
1224                         return false;
1225                 return valid_mtrr_type(data & 0xff);
1226         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1227                 for (i = 0; i < 8 ; i++)
1228                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1229                                 return false;
1230                 return true;
1231         }
1232
1233         /* variable MTRRs */
1234         return valid_mtrr_type(data & 0xff);
1235 }
1236
1237 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1238 {
1239         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1240
1241         if (!mtrr_valid(vcpu, msr, data))
1242                 return 1;
1243
1244         if (msr == MSR_MTRRdefType) {
1245                 vcpu->arch.mtrr_state.def_type = data;
1246                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1247         } else if (msr == MSR_MTRRfix64K_00000)
1248                 p[0] = data;
1249         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1250                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1251         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1252                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1253         else if (msr == MSR_IA32_CR_PAT)
1254                 vcpu->arch.pat = data;
1255         else {  /* Variable MTRRs */
1256                 int idx, is_mtrr_mask;
1257                 u64 *pt;
1258
1259                 idx = (msr - 0x200) / 2;
1260                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1261                 if (!is_mtrr_mask)
1262                         pt =
1263                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1264                 else
1265                         pt =
1266                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1267                 *pt = data;
1268         }
1269
1270         kvm_mmu_reset_context(vcpu);
1271         return 0;
1272 }
1273
1274 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1275 {
1276         u64 mcg_cap = vcpu->arch.mcg_cap;
1277         unsigned bank_num = mcg_cap & 0xff;
1278
1279         switch (msr) {
1280         case MSR_IA32_MCG_STATUS:
1281                 vcpu->arch.mcg_status = data;
1282                 break;
1283         case MSR_IA32_MCG_CTL:
1284                 if (!(mcg_cap & MCG_CTL_P))
1285                         return 1;
1286                 if (data != 0 && data != ~(u64)0)
1287                         return -1;
1288                 vcpu->arch.mcg_ctl = data;
1289                 break;
1290         default:
1291                 if (msr >= MSR_IA32_MC0_CTL &&
1292                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1293                         u32 offset = msr - MSR_IA32_MC0_CTL;
1294                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1295                          * some Linux kernels though clear bit 10 in bank 4 to
1296                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1297                          * this to avoid an uncatched #GP in the guest
1298                          */
1299                         if ((offset & 0x3) == 0 &&
1300                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1301                                 return -1;
1302                         vcpu->arch.mce_banks[offset] = data;
1303                         break;
1304                 }
1305                 return 1;
1306         }
1307         return 0;
1308 }
1309
1310 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1311 {
1312         struct kvm *kvm = vcpu->kvm;
1313         int lm = is_long_mode(vcpu);
1314         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1315                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1316         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1317                 : kvm->arch.xen_hvm_config.blob_size_32;
1318         u32 page_num = data & ~PAGE_MASK;
1319         u64 page_addr = data & PAGE_MASK;
1320         u8 *page;
1321         int r;
1322
1323         r = -E2BIG;
1324         if (page_num >= blob_size)
1325                 goto out;
1326         r = -ENOMEM;
1327         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1328         if (IS_ERR(page)) {
1329                 r = PTR_ERR(page);
1330                 goto out;
1331         }
1332         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1333                 goto out_free;
1334         r = 0;
1335 out_free:
1336         kfree(page);
1337 out:
1338         return r;
1339 }
1340
1341 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1342 {
1343         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1344 }
1345
1346 static bool kvm_hv_msr_partition_wide(u32 msr)
1347 {
1348         bool r = false;
1349         switch (msr) {
1350         case HV_X64_MSR_GUEST_OS_ID:
1351         case HV_X64_MSR_HYPERCALL:
1352                 r = true;
1353                 break;
1354         }
1355
1356         return r;
1357 }
1358
1359 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1360 {
1361         struct kvm *kvm = vcpu->kvm;
1362
1363         switch (msr) {
1364         case HV_X64_MSR_GUEST_OS_ID:
1365                 kvm->arch.hv_guest_os_id = data;
1366                 /* setting guest os id to zero disables hypercall page */
1367                 if (!kvm->arch.hv_guest_os_id)
1368                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1369                 break;
1370         case HV_X64_MSR_HYPERCALL: {
1371                 u64 gfn;
1372                 unsigned long addr;
1373                 u8 instructions[4];
1374
1375                 /* if guest os id is not set hypercall should remain disabled */
1376                 if (!kvm->arch.hv_guest_os_id)
1377                         break;
1378                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1379                         kvm->arch.hv_hypercall = data;
1380                         break;
1381                 }
1382                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1383                 addr = gfn_to_hva(kvm, gfn);
1384                 if (kvm_is_error_hva(addr))
1385                         return 1;
1386                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1387                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1388                 if (__copy_to_user((void __user *)addr, instructions, 4))
1389                         return 1;
1390                 kvm->arch.hv_hypercall = data;
1391                 break;
1392         }
1393         default:
1394                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1395                           "data 0x%llx\n", msr, data);
1396                 return 1;
1397         }
1398         return 0;
1399 }
1400
1401 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1402 {
1403         switch (msr) {
1404         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1405                 unsigned long addr;
1406
1407                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1408                         vcpu->arch.hv_vapic = data;
1409                         break;
1410                 }
1411                 addr = gfn_to_hva(vcpu->kvm, data >>
1412                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1413                 if (kvm_is_error_hva(addr))
1414                         return 1;
1415                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1416                         return 1;
1417                 vcpu->arch.hv_vapic = data;
1418                 break;
1419         }
1420         case HV_X64_MSR_EOI:
1421                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1422         case HV_X64_MSR_ICR:
1423                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1424         case HV_X64_MSR_TPR:
1425                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1426         default:
1427                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1428                           "data 0x%llx\n", msr, data);
1429                 return 1;
1430         }
1431
1432         return 0;
1433 }
1434
1435 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1436 {
1437         gpa_t gpa = data & ~0x3f;
1438
1439         /* Bits 2:5 are resrved, Should be zero */
1440         if (data & 0x3c)
1441                 return 1;
1442
1443         vcpu->arch.apf.msr_val = data;
1444
1445         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1446                 kvm_clear_async_pf_completion_queue(vcpu);
1447                 kvm_async_pf_hash_reset(vcpu);
1448                 return 0;
1449         }
1450
1451         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1452                 return 1;
1453
1454         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1455         kvm_async_pf_wakeup_all(vcpu);
1456         return 0;
1457 }
1458
1459 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1460 {
1461         if (vcpu->arch.time_page) {
1462                 kvm_release_page_dirty(vcpu->arch.time_page);
1463                 vcpu->arch.time_page = NULL;
1464         }
1465 }
1466
1467 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1468 {
1469         u64 delta;
1470
1471         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1472                 return;
1473
1474         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1475         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1476         vcpu->arch.st.accum_steal = delta;
1477 }
1478
1479 static void record_steal_time(struct kvm_vcpu *vcpu)
1480 {
1481         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1482                 return;
1483
1484         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1485                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1486                 return;
1487
1488         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1489         vcpu->arch.st.steal.version += 2;
1490         vcpu->arch.st.accum_steal = 0;
1491
1492         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1493                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1494 }
1495
1496 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1497 {
1498         bool pr = false;
1499
1500         switch (msr) {
1501         case MSR_EFER:
1502                 return set_efer(vcpu, data);
1503         case MSR_K7_HWCR:
1504                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1505                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1506                 if (data != 0) {
1507                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1508                                 data);
1509                         return 1;
1510                 }
1511                 break;
1512         case MSR_FAM10H_MMIO_CONF_BASE:
1513                 if (data != 0) {
1514                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1515                                 "0x%llx\n", data);
1516                         return 1;
1517                 }
1518                 break;
1519         case MSR_AMD64_NB_CFG:
1520                 break;
1521         case MSR_IA32_DEBUGCTLMSR:
1522                 if (!data) {
1523                         /* We support the non-activated case already */
1524                         break;
1525                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1526                         /* Values other than LBR and BTF are vendor-specific,
1527                            thus reserved and should throw a #GP */
1528                         return 1;
1529                 }
1530                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1531                         __func__, data);
1532                 break;
1533         case MSR_IA32_UCODE_REV:
1534         case MSR_IA32_UCODE_WRITE:
1535         case MSR_VM_HSAVE_PA:
1536         case MSR_AMD64_PATCH_LOADER:
1537                 break;
1538         case 0x200 ... 0x2ff:
1539                 return set_msr_mtrr(vcpu, msr, data);
1540         case MSR_IA32_APICBASE:
1541                 kvm_set_apic_base(vcpu, data);
1542                 break;
1543         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1544                 return kvm_x2apic_msr_write(vcpu, msr, data);
1545         case MSR_IA32_TSCDEADLINE:
1546                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1547                 break;
1548         case MSR_IA32_MISC_ENABLE:
1549                 vcpu->arch.ia32_misc_enable_msr = data;
1550                 break;
1551         case MSR_KVM_WALL_CLOCK_NEW:
1552         case MSR_KVM_WALL_CLOCK:
1553                 vcpu->kvm->arch.wall_clock = data;
1554                 kvm_write_wall_clock(vcpu->kvm, data);
1555                 break;
1556         case MSR_KVM_SYSTEM_TIME_NEW:
1557         case MSR_KVM_SYSTEM_TIME: {
1558                 kvmclock_reset(vcpu);
1559
1560                 vcpu->arch.time = data;
1561                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1562
1563                 /* we verify if the enable bit is set... */
1564                 if (!(data & 1))
1565                         break;
1566
1567                 /* ...but clean it before doing the actual write */
1568                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1569
1570                 vcpu->arch.time_page =
1571                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1572
1573                 if (is_error_page(vcpu->arch.time_page)) {
1574                         kvm_release_page_clean(vcpu->arch.time_page);
1575                         vcpu->arch.time_page = NULL;
1576                 }
1577                 break;
1578         }
1579         case MSR_KVM_ASYNC_PF_EN:
1580                 if (kvm_pv_enable_async_pf(vcpu, data))
1581                         return 1;
1582                 break;
1583         case MSR_KVM_STEAL_TIME:
1584
1585                 if (unlikely(!sched_info_on()))
1586                         return 1;
1587
1588                 if (data & KVM_STEAL_RESERVED_MASK)
1589                         return 1;
1590
1591                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1592                                                         data & KVM_STEAL_VALID_BITS))
1593                         return 1;
1594
1595                 vcpu->arch.st.msr_val = data;
1596
1597                 if (!(data & KVM_MSR_ENABLED))
1598                         break;
1599
1600                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1601
1602                 preempt_disable();
1603                 accumulate_steal_time(vcpu);
1604                 preempt_enable();
1605
1606                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1607
1608                 break;
1609
1610         case MSR_IA32_MCG_CTL:
1611         case MSR_IA32_MCG_STATUS:
1612         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1613                 return set_msr_mce(vcpu, msr, data);
1614
1615         /* Performance counters are not protected by a CPUID bit,
1616          * so we should check all of them in the generic path for the sake of
1617          * cross vendor migration.
1618          * Writing a zero into the event select MSRs disables them,
1619          * which we perfectly emulate ;-). Any other value should be at least
1620          * reported, some guests depend on them.
1621          */
1622         case MSR_K7_EVNTSEL0:
1623         case MSR_K7_EVNTSEL1:
1624         case MSR_K7_EVNTSEL2:
1625         case MSR_K7_EVNTSEL3:
1626                 if (data != 0)
1627                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1628                                 "0x%x data 0x%llx\n", msr, data);
1629                 break;
1630         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1631          * so we ignore writes to make it happy.
1632          */
1633         case MSR_K7_PERFCTR0:
1634         case MSR_K7_PERFCTR1:
1635         case MSR_K7_PERFCTR2:
1636         case MSR_K7_PERFCTR3:
1637                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1638                         "0x%x data 0x%llx\n", msr, data);
1639                 break;
1640         case MSR_P6_PERFCTR0:
1641         case MSR_P6_PERFCTR1:
1642                 pr = true;
1643         case MSR_P6_EVNTSEL0:
1644         case MSR_P6_EVNTSEL1:
1645                 if (kvm_pmu_msr(vcpu, msr))
1646                         return kvm_pmu_set_msr(vcpu, msr, data);
1647
1648                 if (pr || data != 0)
1649                         pr_unimpl(vcpu, "disabled perfctr wrmsr: "
1650                                 "0x%x data 0x%llx\n", msr, data);
1651                 break;
1652         case MSR_K7_CLK_CTL:
1653                 /*
1654                  * Ignore all writes to this no longer documented MSR.
1655                  * Writes are only relevant for old K7 processors,
1656                  * all pre-dating SVM, but a recommended workaround from
1657                  * AMD for these chips. It is possible to speicify the
1658                  * affected processor models on the command line, hence
1659                  * the need to ignore the workaround.
1660                  */
1661                 break;
1662         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1663                 if (kvm_hv_msr_partition_wide(msr)) {
1664                         int r;
1665                         mutex_lock(&vcpu->kvm->lock);
1666                         r = set_msr_hyperv_pw(vcpu, msr, data);
1667                         mutex_unlock(&vcpu->kvm->lock);
1668                         return r;
1669                 } else
1670                         return set_msr_hyperv(vcpu, msr, data);
1671                 break;
1672         case MSR_IA32_BBL_CR_CTL3:
1673                 /* Drop writes to this legacy MSR -- see rdmsr
1674                  * counterpart for further detail.
1675                  */
1676                 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1677                 break;
1678         default:
1679                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1680                         return xen_hvm_config(vcpu, data);
1681                 if (kvm_pmu_msr(vcpu, msr))
1682                         return kvm_pmu_set_msr(vcpu, msr, data);
1683                 if (!ignore_msrs) {
1684                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1685                                 msr, data);
1686                         return 1;
1687                 } else {
1688                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1689                                 msr, data);
1690                         break;
1691                 }
1692         }
1693         return 0;
1694 }
1695 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1696
1697
1698 /*
1699  * Reads an msr value (of 'msr_index') into 'pdata'.
1700  * Returns 0 on success, non-0 otherwise.
1701  * Assumes vcpu_load() was already called.
1702  */
1703 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1704 {
1705         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1706 }
1707
1708 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1709 {
1710         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1711
1712         if (!msr_mtrr_valid(msr))
1713                 return 1;
1714
1715         if (msr == MSR_MTRRdefType)
1716                 *pdata = vcpu->arch.mtrr_state.def_type +
1717                          (vcpu->arch.mtrr_state.enabled << 10);
1718         else if (msr == MSR_MTRRfix64K_00000)
1719                 *pdata = p[0];
1720         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1721                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1722         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1723                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1724         else if (msr == MSR_IA32_CR_PAT)
1725                 *pdata = vcpu->arch.pat;
1726         else {  /* Variable MTRRs */
1727                 int idx, is_mtrr_mask;
1728                 u64 *pt;
1729
1730                 idx = (msr - 0x200) / 2;
1731                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1732                 if (!is_mtrr_mask)
1733                         pt =
1734                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1735                 else
1736                         pt =
1737                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1738                 *pdata = *pt;
1739         }
1740
1741         return 0;
1742 }
1743
1744 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1745 {
1746         u64 data;
1747         u64 mcg_cap = vcpu->arch.mcg_cap;
1748         unsigned bank_num = mcg_cap & 0xff;
1749
1750         switch (msr) {
1751         case MSR_IA32_P5_MC_ADDR:
1752         case MSR_IA32_P5_MC_TYPE:
1753                 data = 0;
1754                 break;
1755         case MSR_IA32_MCG_CAP:
1756                 data = vcpu->arch.mcg_cap;
1757                 break;
1758         case MSR_IA32_MCG_CTL:
1759                 if (!(mcg_cap & MCG_CTL_P))
1760                         return 1;
1761                 data = vcpu->arch.mcg_ctl;
1762                 break;
1763         case MSR_IA32_MCG_STATUS:
1764                 data = vcpu->arch.mcg_status;
1765                 break;
1766         default:
1767                 if (msr >= MSR_IA32_MC0_CTL &&
1768                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1769                         u32 offset = msr - MSR_IA32_MC0_CTL;
1770                         data = vcpu->arch.mce_banks[offset];
1771                         break;
1772                 }
1773                 return 1;
1774         }
1775         *pdata = data;
1776         return 0;
1777 }
1778
1779 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1780 {
1781         u64 data = 0;
1782         struct kvm *kvm = vcpu->kvm;
1783
1784         switch (msr) {
1785         case HV_X64_MSR_GUEST_OS_ID:
1786                 data = kvm->arch.hv_guest_os_id;
1787                 break;
1788         case HV_X64_MSR_HYPERCALL:
1789                 data = kvm->arch.hv_hypercall;
1790                 break;
1791         default:
1792                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1793                 return 1;
1794         }
1795
1796         *pdata = data;
1797         return 0;
1798 }
1799
1800 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1801 {
1802         u64 data = 0;
1803
1804         switch (msr) {
1805         case HV_X64_MSR_VP_INDEX: {
1806                 int r;
1807                 struct kvm_vcpu *v;
1808                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1809                         if (v == vcpu)
1810                                 data = r;
1811                 break;
1812         }
1813         case HV_X64_MSR_EOI:
1814                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1815         case HV_X64_MSR_ICR:
1816                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1817         case HV_X64_MSR_TPR:
1818                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1819         case HV_X64_MSR_APIC_ASSIST_PAGE:
1820                 data = vcpu->arch.hv_vapic;
1821                 break;
1822         default:
1823                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1824                 return 1;
1825         }
1826         *pdata = data;
1827         return 0;
1828 }
1829
1830 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1831 {
1832         u64 data;
1833
1834         switch (msr) {
1835         case MSR_IA32_PLATFORM_ID:
1836         case MSR_IA32_EBL_CR_POWERON:
1837         case MSR_IA32_DEBUGCTLMSR:
1838         case MSR_IA32_LASTBRANCHFROMIP:
1839         case MSR_IA32_LASTBRANCHTOIP:
1840         case MSR_IA32_LASTINTFROMIP:
1841         case MSR_IA32_LASTINTTOIP:
1842         case MSR_K8_SYSCFG:
1843         case MSR_K7_HWCR:
1844         case MSR_VM_HSAVE_PA:
1845         case MSR_K7_EVNTSEL0:
1846         case MSR_K7_PERFCTR0:
1847         case MSR_K8_INT_PENDING_MSG:
1848         case MSR_AMD64_NB_CFG:
1849         case MSR_FAM10H_MMIO_CONF_BASE:
1850                 data = 0;
1851                 break;
1852         case MSR_P6_PERFCTR0:
1853         case MSR_P6_PERFCTR1:
1854         case MSR_P6_EVNTSEL0:
1855         case MSR_P6_EVNTSEL1:
1856                 if (kvm_pmu_msr(vcpu, msr))
1857                         return kvm_pmu_get_msr(vcpu, msr, pdata);
1858                 data = 0;
1859                 break;
1860         case MSR_IA32_UCODE_REV:
1861                 data = 0x100000000ULL;
1862                 break;
1863         case MSR_MTRRcap:
1864                 data = 0x500 | KVM_NR_VAR_MTRR;
1865                 break;
1866         case 0x200 ... 0x2ff:
1867                 return get_msr_mtrr(vcpu, msr, pdata);
1868         case 0xcd: /* fsb frequency */
1869                 data = 3;
1870                 break;
1871                 /*
1872                  * MSR_EBC_FREQUENCY_ID
1873                  * Conservative value valid for even the basic CPU models.
1874                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1875                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1876                  * and 266MHz for model 3, or 4. Set Core Clock
1877                  * Frequency to System Bus Frequency Ratio to 1 (bits
1878                  * 31:24) even though these are only valid for CPU
1879                  * models > 2, however guests may end up dividing or
1880                  * multiplying by zero otherwise.
1881                  */
1882         case MSR_EBC_FREQUENCY_ID:
1883                 data = 1 << 24;
1884                 break;
1885         case MSR_IA32_APICBASE:
1886                 data = kvm_get_apic_base(vcpu);
1887                 break;
1888         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1889                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1890                 break;
1891         case MSR_IA32_TSCDEADLINE:
1892                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
1893                 break;
1894         case MSR_IA32_MISC_ENABLE:
1895                 data = vcpu->arch.ia32_misc_enable_msr;
1896                 break;
1897         case MSR_IA32_PERF_STATUS:
1898                 /* TSC increment by tick */
1899                 data = 1000ULL;
1900                 /* CPU multiplier */
1901                 data |= (((uint64_t)4ULL) << 40);
1902                 break;
1903         case MSR_EFER:
1904                 data = vcpu->arch.efer;
1905                 break;
1906         case MSR_KVM_WALL_CLOCK:
1907         case MSR_KVM_WALL_CLOCK_NEW:
1908                 data = vcpu->kvm->arch.wall_clock;
1909                 break;
1910         case MSR_KVM_SYSTEM_TIME:
1911         case MSR_KVM_SYSTEM_TIME_NEW:
1912                 data = vcpu->arch.time;
1913                 break;
1914         case MSR_KVM_ASYNC_PF_EN:
1915                 data = vcpu->arch.apf.msr_val;
1916                 break;
1917         case MSR_KVM_STEAL_TIME:
1918                 data = vcpu->arch.st.msr_val;
1919                 break;
1920         case MSR_IA32_P5_MC_ADDR:
1921         case MSR_IA32_P5_MC_TYPE:
1922         case MSR_IA32_MCG_CAP:
1923         case MSR_IA32_MCG_CTL:
1924         case MSR_IA32_MCG_STATUS:
1925         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1926                 return get_msr_mce(vcpu, msr, pdata);
1927         case MSR_K7_CLK_CTL:
1928                 /*
1929                  * Provide expected ramp-up count for K7. All other
1930                  * are set to zero, indicating minimum divisors for
1931                  * every field.
1932                  *
1933                  * This prevents guest kernels on AMD host with CPU
1934                  * type 6, model 8 and higher from exploding due to
1935                  * the rdmsr failing.
1936                  */
1937                 data = 0x20000000;
1938                 break;
1939         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1940                 if (kvm_hv_msr_partition_wide(msr)) {
1941                         int r;
1942                         mutex_lock(&vcpu->kvm->lock);
1943                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1944                         mutex_unlock(&vcpu->kvm->lock);
1945                         return r;
1946                 } else
1947                         return get_msr_hyperv(vcpu, msr, pdata);
1948                 break;
1949         case MSR_IA32_BBL_CR_CTL3:
1950                 /* This legacy MSR exists but isn't fully documented in current
1951                  * silicon.  It is however accessed by winxp in very narrow
1952                  * scenarios where it sets bit #19, itself documented as
1953                  * a "reserved" bit.  Best effort attempt to source coherent
1954                  * read data here should the balance of the register be
1955                  * interpreted by the guest:
1956                  *
1957                  * L2 cache control register 3: 64GB range, 256KB size,
1958                  * enabled, latency 0x1, configured
1959                  */
1960                 data = 0xbe702111;
1961                 break;
1962         default:
1963                 if (kvm_pmu_msr(vcpu, msr))
1964                         return kvm_pmu_get_msr(vcpu, msr, pdata);
1965                 if (!ignore_msrs) {
1966                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1967                         return 1;
1968                 } else {
1969                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1970                         data = 0;
1971                 }
1972                 break;
1973         }
1974         *pdata = data;
1975         return 0;
1976 }
1977 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1978
1979 /*
1980  * Read or write a bunch of msrs. All parameters are kernel addresses.
1981  *
1982  * @return number of msrs set successfully.
1983  */
1984 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1985                     struct kvm_msr_entry *entries,
1986                     int (*do_msr)(struct kvm_vcpu *vcpu,
1987                                   unsigned index, u64 *data))
1988 {
1989         int i, idx;
1990
1991         idx = srcu_read_lock(&vcpu->kvm->srcu);
1992         for (i = 0; i < msrs->nmsrs; ++i)
1993                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1994                         break;
1995         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1996
1997         return i;
1998 }
1999
2000 /*
2001  * Read or write a bunch of msrs. Parameters are user addresses.
2002  *
2003  * @return number of msrs set successfully.
2004  */
2005 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2006                   int (*do_msr)(struct kvm_vcpu *vcpu,
2007                                 unsigned index, u64 *data),
2008                   int writeback)
2009 {
2010         struct kvm_msrs msrs;
2011         struct kvm_msr_entry *entries;
2012         int r, n;
2013         unsigned size;
2014
2015         r = -EFAULT;
2016         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2017                 goto out;
2018
2019         r = -E2BIG;
2020         if (msrs.nmsrs >= MAX_IO_MSRS)
2021                 goto out;
2022
2023         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2024         entries = memdup_user(user_msrs->entries, size);
2025         if (IS_ERR(entries)) {
2026                 r = PTR_ERR(entries);
2027                 goto out;
2028         }
2029
2030         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2031         if (r < 0)
2032                 goto out_free;
2033
2034         r = -EFAULT;
2035         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2036                 goto out_free;
2037
2038         r = n;
2039
2040 out_free:
2041         kfree(entries);
2042 out:
2043         return r;
2044 }
2045
2046 int kvm_dev_ioctl_check_extension(long ext)
2047 {
2048         int r;
2049
2050         switch (ext) {
2051         case KVM_CAP_IRQCHIP:
2052         case KVM_CAP_HLT:
2053         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2054         case KVM_CAP_SET_TSS_ADDR:
2055         case KVM_CAP_EXT_CPUID:
2056         case KVM_CAP_CLOCKSOURCE:
2057         case KVM_CAP_PIT:
2058         case KVM_CAP_NOP_IO_DELAY:
2059         case KVM_CAP_MP_STATE:
2060         case KVM_CAP_SYNC_MMU:
2061         case KVM_CAP_USER_NMI:
2062         case KVM_CAP_REINJECT_CONTROL:
2063         case KVM_CAP_IRQ_INJECT_STATUS:
2064         case KVM_CAP_ASSIGN_DEV_IRQ:
2065         case KVM_CAP_IRQFD:
2066         case KVM_CAP_IOEVENTFD:
2067         case KVM_CAP_PIT2:
2068         case KVM_CAP_PIT_STATE2:
2069         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2070         case KVM_CAP_XEN_HVM:
2071         case KVM_CAP_ADJUST_CLOCK:
2072         case KVM_CAP_VCPU_EVENTS:
2073         case KVM_CAP_HYPERV:
2074         case KVM_CAP_HYPERV_VAPIC:
2075         case KVM_CAP_HYPERV_SPIN:
2076         case KVM_CAP_PCI_SEGMENT:
2077         case KVM_CAP_DEBUGREGS:
2078         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2079         case KVM_CAP_XSAVE:
2080         case KVM_CAP_ASYNC_PF:
2081         case KVM_CAP_GET_TSC_KHZ:
2082                 r = 1;
2083                 break;
2084         case KVM_CAP_COALESCED_MMIO:
2085                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2086                 break;
2087         case KVM_CAP_VAPIC:
2088                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2089                 break;
2090         case KVM_CAP_NR_VCPUS:
2091                 r = KVM_SOFT_MAX_VCPUS;
2092                 break;
2093         case KVM_CAP_MAX_VCPUS:
2094                 r = KVM_MAX_VCPUS;
2095                 break;
2096         case KVM_CAP_NR_MEMSLOTS:
2097                 r = KVM_MEMORY_SLOTS;
2098                 break;
2099         case KVM_CAP_PV_MMU:    /* obsolete */
2100                 r = 0;
2101                 break;
2102         case KVM_CAP_IOMMU:
2103                 r = iommu_present(&pci_bus_type);
2104                 break;
2105         case KVM_CAP_MCE:
2106                 r = KVM_MAX_MCE_BANKS;
2107                 break;
2108         case KVM_CAP_XCRS:
2109                 r = cpu_has_xsave;
2110                 break;
2111         case KVM_CAP_TSC_CONTROL:
2112                 r = kvm_has_tsc_control;
2113                 break;
2114         case KVM_CAP_TSC_DEADLINE_TIMER:
2115                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2116                 break;
2117         default:
2118                 r = 0;
2119                 break;
2120         }
2121         return r;
2122
2123 }
2124
2125 long kvm_arch_dev_ioctl(struct file *filp,
2126                         unsigned int ioctl, unsigned long arg)
2127 {
2128         void __user *argp = (void __user *)arg;
2129         long r;
2130
2131         switch (ioctl) {
2132         case KVM_GET_MSR_INDEX_LIST: {
2133                 struct kvm_msr_list __user *user_msr_list = argp;
2134                 struct kvm_msr_list msr_list;
2135                 unsigned n;
2136
2137                 r = -EFAULT;
2138                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2139                         goto out;
2140                 n = msr_list.nmsrs;
2141                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2142                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2143                         goto out;
2144                 r = -E2BIG;
2145                 if (n < msr_list.nmsrs)
2146                         goto out;
2147                 r = -EFAULT;
2148                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2149                                  num_msrs_to_save * sizeof(u32)))
2150                         goto out;
2151                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2152                                  &emulated_msrs,
2153                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2154                         goto out;
2155                 r = 0;
2156                 break;
2157         }
2158         case KVM_GET_SUPPORTED_CPUID: {
2159                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2160                 struct kvm_cpuid2 cpuid;
2161
2162                 r = -EFAULT;
2163                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2164                         goto out;
2165                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2166                                                       cpuid_arg->entries);
2167                 if (r)
2168                         goto out;
2169
2170                 r = -EFAULT;
2171                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2172                         goto out;
2173                 r = 0;
2174                 break;
2175         }
2176         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2177                 u64 mce_cap;
2178
2179                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2180                 r = -EFAULT;
2181                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2182                         goto out;
2183                 r = 0;
2184                 break;
2185         }
2186         default:
2187                 r = -EINVAL;
2188         }
2189 out:
2190         return r;
2191 }
2192
2193 static void wbinvd_ipi(void *garbage)
2194 {
2195         wbinvd();
2196 }
2197
2198 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2199 {
2200         return vcpu->kvm->arch.iommu_domain &&
2201                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2202 }
2203
2204 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2205 {
2206         /* Address WBINVD may be executed by guest */
2207         if (need_emulate_wbinvd(vcpu)) {
2208                 if (kvm_x86_ops->has_wbinvd_exit())
2209                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2210                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2211                         smp_call_function_single(vcpu->cpu,
2212                                         wbinvd_ipi, NULL, 1);
2213         }
2214
2215         kvm_x86_ops->vcpu_load(vcpu, cpu);
2216         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2217                 /* Make sure TSC doesn't go backwards */
2218                 s64 tsc_delta;
2219                 u64 tsc;
2220
2221                 tsc = kvm_x86_ops->read_l1_tsc(vcpu);
2222                 tsc_delta = !vcpu->arch.last_guest_tsc ? 0 :
2223                              tsc - vcpu->arch.last_guest_tsc;
2224
2225                 if (tsc_delta < 0)
2226                         mark_tsc_unstable("KVM discovered backwards TSC");
2227                 if (check_tsc_unstable()) {
2228                         kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2229                         vcpu->arch.tsc_catchup = 1;
2230                 }
2231                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2232                 if (vcpu->cpu != cpu)
2233                         kvm_migrate_timers(vcpu);
2234                 vcpu->cpu = cpu;
2235         }
2236
2237         accumulate_steal_time(vcpu);
2238         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2239 }
2240
2241 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2242 {
2243         kvm_x86_ops->vcpu_put(vcpu);
2244         kvm_put_guest_fpu(vcpu);
2245         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
2246 }
2247
2248 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2249                                     struct kvm_lapic_state *s)
2250 {
2251         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2252
2253         return 0;
2254 }
2255
2256 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2257                                     struct kvm_lapic_state *s)
2258 {
2259         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2260         kvm_apic_post_state_restore(vcpu);
2261         update_cr8_intercept(vcpu);
2262
2263         return 0;
2264 }
2265
2266 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2267                                     struct kvm_interrupt *irq)
2268 {
2269         if (irq->irq < 0 || irq->irq >= 256)
2270                 return -EINVAL;
2271         if (irqchip_in_kernel(vcpu->kvm))
2272                 return -ENXIO;
2273
2274         kvm_queue_interrupt(vcpu, irq->irq, false);
2275         kvm_make_request(KVM_REQ_EVENT, vcpu);
2276
2277         return 0;
2278 }
2279
2280 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2281 {
2282         kvm_inject_nmi(vcpu);
2283
2284         return 0;
2285 }
2286
2287 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2288                                            struct kvm_tpr_access_ctl *tac)
2289 {
2290         if (tac->flags)
2291                 return -EINVAL;
2292         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2293         return 0;
2294 }
2295
2296 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2297                                         u64 mcg_cap)
2298 {
2299         int r;
2300         unsigned bank_num = mcg_cap & 0xff, bank;
2301
2302         r = -EINVAL;
2303         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2304                 goto out;
2305         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2306                 goto out;
2307         r = 0;
2308         vcpu->arch.mcg_cap = mcg_cap;
2309         /* Init IA32_MCG_CTL to all 1s */
2310         if (mcg_cap & MCG_CTL_P)
2311                 vcpu->arch.mcg_ctl = ~(u64)0;
2312         /* Init IA32_MCi_CTL to all 1s */
2313         for (bank = 0; bank < bank_num; bank++)
2314                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2315 out:
2316         return r;
2317 }
2318
2319 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2320                                       struct kvm_x86_mce *mce)
2321 {
2322         u64 mcg_cap = vcpu->arch.mcg_cap;
2323         unsigned bank_num = mcg_cap & 0xff;
2324         u64 *banks = vcpu->arch.mce_banks;
2325
2326         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2327                 return -EINVAL;
2328         /*
2329          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2330          * reporting is disabled
2331          */
2332         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2333             vcpu->arch.mcg_ctl != ~(u64)0)
2334                 return 0;
2335         banks += 4 * mce->bank;
2336         /*
2337          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2338          * reporting is disabled for the bank
2339          */
2340         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2341                 return 0;
2342         if (mce->status & MCI_STATUS_UC) {
2343                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2344                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2345                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2346                         return 0;
2347                 }
2348                 if (banks[1] & MCI_STATUS_VAL)
2349                         mce->status |= MCI_STATUS_OVER;
2350                 banks[2] = mce->addr;
2351                 banks[3] = mce->misc;
2352                 vcpu->arch.mcg_status = mce->mcg_status;
2353                 banks[1] = mce->status;
2354                 kvm_queue_exception(vcpu, MC_VECTOR);
2355         } else if (!(banks[1] & MCI_STATUS_VAL)
2356                    || !(banks[1] & MCI_STATUS_UC)) {
2357                 if (banks[1] & MCI_STATUS_VAL)
2358                         mce->status |= MCI_STATUS_OVER;
2359                 banks[2] = mce->addr;
2360                 banks[3] = mce->misc;
2361                 banks[1] = mce->status;
2362         } else
2363                 banks[1] |= MCI_STATUS_OVER;
2364         return 0;
2365 }
2366
2367 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2368                                                struct kvm_vcpu_events *events)
2369 {
2370         process_nmi(vcpu);
2371         events->exception.injected =
2372                 vcpu->arch.exception.pending &&
2373                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2374         events->exception.nr = vcpu->arch.exception.nr;
2375         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2376         events->exception.pad = 0;
2377         events->exception.error_code = vcpu->arch.exception.error_code;
2378
2379         events->interrupt.injected =
2380                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2381         events->interrupt.nr = vcpu->arch.interrupt.nr;
2382         events->interrupt.soft = 0;
2383         events->interrupt.shadow =
2384                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2385                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2386
2387         events->nmi.injected = vcpu->arch.nmi_injected;
2388         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2389         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2390         events->nmi.pad = 0;
2391
2392         events->sipi_vector = vcpu->arch.sipi_vector;
2393
2394         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2395                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2396                          | KVM_VCPUEVENT_VALID_SHADOW);
2397         memset(&events->reserved, 0, sizeof(events->reserved));
2398 }
2399
2400 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2401                                               struct kvm_vcpu_events *events)
2402 {
2403         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2404                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2405                               | KVM_VCPUEVENT_VALID_SHADOW))
2406                 return -EINVAL;
2407
2408         process_nmi(vcpu);
2409         vcpu->arch.exception.pending = events->exception.injected;
2410         vcpu->arch.exception.nr = events->exception.nr;
2411         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2412         vcpu->arch.exception.error_code = events->exception.error_code;
2413
2414         vcpu->arch.interrupt.pending = events->interrupt.injected;
2415         vcpu->arch.interrupt.nr = events->interrupt.nr;
2416         vcpu->arch.interrupt.soft = events->interrupt.soft;
2417         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2418                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2419                                                   events->interrupt.shadow);
2420
2421         vcpu->arch.nmi_injected = events->nmi.injected;
2422         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2423                 vcpu->arch.nmi_pending = events->nmi.pending;
2424         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2425
2426         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2427                 vcpu->arch.sipi_vector = events->sipi_vector;
2428
2429         kvm_make_request(KVM_REQ_EVENT, vcpu);
2430
2431         return 0;
2432 }
2433
2434 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2435                                              struct kvm_debugregs *dbgregs)
2436 {
2437         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2438         dbgregs->dr6 = vcpu->arch.dr6;
2439         dbgregs->dr7 = vcpu->arch.dr7;
2440         dbgregs->flags = 0;
2441         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2442 }
2443
2444 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2445                                             struct kvm_debugregs *dbgregs)
2446 {
2447         if (dbgregs->flags)
2448                 return -EINVAL;
2449
2450         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2451         vcpu->arch.dr6 = dbgregs->dr6;
2452         vcpu->arch.dr7 = dbgregs->dr7;
2453
2454         return 0;
2455 }
2456
2457 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2458                                          struct kvm_xsave *guest_xsave)
2459 {
2460         if (cpu_has_xsave)
2461                 memcpy(guest_xsave->region,
2462                         &vcpu->arch.guest_fpu.state->xsave,
2463                         xstate_size);
2464         else {
2465                 memcpy(guest_xsave->region,
2466                         &vcpu->arch.guest_fpu.state->fxsave,
2467                         sizeof(struct i387_fxsave_struct));
2468                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2469                         XSTATE_FPSSE;
2470         }
2471 }
2472
2473 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2474                                         struct kvm_xsave *guest_xsave)
2475 {
2476         u64 xstate_bv =
2477                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2478
2479         if (cpu_has_xsave)
2480                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2481                         guest_xsave->region, xstate_size);
2482         else {
2483                 if (xstate_bv & ~XSTATE_FPSSE)
2484                         return -EINVAL;
2485                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2486                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2487         }
2488         return 0;
2489 }
2490
2491 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2492                                         struct kvm_xcrs *guest_xcrs)
2493 {
2494         if (!cpu_has_xsave) {
2495                 guest_xcrs->nr_xcrs = 0;
2496                 return;
2497         }
2498
2499         guest_xcrs->nr_xcrs = 1;
2500         guest_xcrs->flags = 0;
2501         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2502         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2503 }
2504
2505 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2506                                        struct kvm_xcrs *guest_xcrs)
2507 {
2508         int i, r = 0;
2509
2510         if (!cpu_has_xsave)
2511                 return -EINVAL;
2512
2513         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2514                 return -EINVAL;
2515
2516         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2517                 /* Only support XCR0 currently */
2518                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2519                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2520                                 guest_xcrs->xcrs[0].value);
2521                         break;
2522                 }
2523         if (r)
2524                 r = -EINVAL;
2525         return r;
2526 }
2527
2528 long kvm_arch_vcpu_ioctl(struct file *filp,
2529                          unsigned int ioctl, unsigned long arg)
2530 {
2531         struct kvm_vcpu *vcpu = filp->private_data;
2532         void __user *argp = (void __user *)arg;
2533         int r;
2534         union {
2535                 struct kvm_lapic_state *lapic;
2536                 struct kvm_xsave *xsave;
2537                 struct kvm_xcrs *xcrs;
2538                 void *buffer;
2539         } u;
2540
2541         u.buffer = NULL;
2542         switch (ioctl) {
2543         case KVM_GET_LAPIC: {
2544                 r = -EINVAL;
2545                 if (!vcpu->arch.apic)
2546                         goto out;
2547                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2548
2549                 r = -ENOMEM;
2550                 if (!u.lapic)
2551                         goto out;
2552                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2553                 if (r)
2554                         goto out;
2555                 r = -EFAULT;
2556                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2557                         goto out;
2558                 r = 0;
2559                 break;
2560         }
2561         case KVM_SET_LAPIC: {
2562                 r = -EINVAL;
2563                 if (!vcpu->arch.apic)
2564                         goto out;
2565                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
2566                 if (IS_ERR(u.lapic)) {
2567                         r = PTR_ERR(u.lapic);
2568                         goto out;
2569                 }
2570
2571                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2572                 if (r)
2573                         goto out;
2574                 r = 0;
2575                 break;
2576         }
2577         case KVM_INTERRUPT: {
2578                 struct kvm_interrupt irq;
2579
2580                 r = -EFAULT;
2581                 if (copy_from_user(&irq, argp, sizeof irq))
2582                         goto out;
2583                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2584                 if (r)
2585                         goto out;
2586                 r = 0;
2587                 break;
2588         }
2589         case KVM_NMI: {
2590                 r = kvm_vcpu_ioctl_nmi(vcpu);
2591                 if (r)
2592                         goto out;
2593                 r = 0;
2594                 break;
2595         }
2596         case KVM_SET_CPUID: {
2597                 struct kvm_cpuid __user *cpuid_arg = argp;
2598                 struct kvm_cpuid cpuid;
2599
2600                 r = -EFAULT;
2601                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2602                         goto out;
2603                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2604                 if (r)
2605                         goto out;
2606                 break;
2607         }
2608         case KVM_SET_CPUID2: {
2609                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2610                 struct kvm_cpuid2 cpuid;
2611
2612                 r = -EFAULT;
2613                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2614                         goto out;
2615                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2616                                               cpuid_arg->entries);
2617                 if (r)
2618                         goto out;
2619                 break;
2620         }
2621         case KVM_GET_CPUID2: {
2622                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2623                 struct kvm_cpuid2 cpuid;
2624
2625                 r = -EFAULT;
2626                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2627                         goto out;
2628                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2629                                               cpuid_arg->entries);
2630                 if (r)
2631                         goto out;
2632                 r = -EFAULT;
2633                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2634                         goto out;
2635                 r = 0;
2636                 break;
2637         }
2638         case KVM_GET_MSRS:
2639                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2640                 break;
2641         case KVM_SET_MSRS:
2642                 r = msr_io(vcpu, argp, do_set_msr, 0);
2643                 break;
2644         case KVM_TPR_ACCESS_REPORTING: {
2645                 struct kvm_tpr_access_ctl tac;
2646
2647                 r = -EFAULT;
2648                 if (copy_from_user(&tac, argp, sizeof tac))
2649                         goto out;
2650                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2651                 if (r)
2652                         goto out;
2653                 r = -EFAULT;
2654                 if (copy_to_user(argp, &tac, sizeof tac))
2655                         goto out;
2656                 r = 0;
2657                 break;
2658         };
2659         case KVM_SET_VAPIC_ADDR: {
2660                 struct kvm_vapic_addr va;
2661
2662                 r = -EINVAL;
2663                 if (!irqchip_in_kernel(vcpu->kvm))
2664                         goto out;
2665                 r = -EFAULT;
2666                 if (copy_from_user(&va, argp, sizeof va))
2667                         goto out;
2668                 r = 0;
2669                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2670                 break;
2671         }
2672         case KVM_X86_SETUP_MCE: {
2673                 u64 mcg_cap;
2674
2675                 r = -EFAULT;
2676                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2677                         goto out;
2678                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2679                 break;
2680         }
2681         case KVM_X86_SET_MCE: {
2682                 struct kvm_x86_mce mce;
2683
2684                 r = -EFAULT;
2685                 if (copy_from_user(&mce, argp, sizeof mce))
2686                         goto out;
2687                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2688                 break;
2689         }
2690         case KVM_GET_VCPU_EVENTS: {
2691                 struct kvm_vcpu_events events;
2692
2693                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2694
2695                 r = -EFAULT;
2696                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2697                         break;
2698                 r = 0;
2699                 break;
2700         }
2701         case KVM_SET_VCPU_EVENTS: {
2702                 struct kvm_vcpu_events events;
2703
2704                 r = -EFAULT;
2705                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2706                         break;
2707
2708                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2709                 break;
2710         }
2711         case KVM_GET_DEBUGREGS: {
2712                 struct kvm_debugregs dbgregs;
2713
2714                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2715
2716                 r = -EFAULT;
2717                 if (copy_to_user(argp, &dbgregs,
2718                                  sizeof(struct kvm_debugregs)))
2719                         break;
2720                 r = 0;
2721                 break;
2722         }
2723         case KVM_SET_DEBUGREGS: {
2724                 struct kvm_debugregs dbgregs;
2725
2726                 r = -EFAULT;
2727                 if (copy_from_user(&dbgregs, argp,
2728                                    sizeof(struct kvm_debugregs)))
2729                         break;
2730
2731                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2732                 break;
2733         }
2734         case KVM_GET_XSAVE: {
2735                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2736                 r = -ENOMEM;
2737                 if (!u.xsave)
2738                         break;
2739
2740                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2741
2742                 r = -EFAULT;
2743                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2744                         break;
2745                 r = 0;
2746                 break;
2747         }
2748         case KVM_SET_XSAVE: {
2749                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
2750                 if (IS_ERR(u.xsave)) {
2751                         r = PTR_ERR(u.xsave);
2752                         goto out;
2753                 }
2754
2755                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2756                 break;
2757         }
2758         case KVM_GET_XCRS: {
2759                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2760                 r = -ENOMEM;
2761                 if (!u.xcrs)
2762                         break;
2763
2764                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2765
2766                 r = -EFAULT;
2767                 if (copy_to_user(argp, u.xcrs,
2768                                  sizeof(struct kvm_xcrs)))
2769                         break;
2770                 r = 0;
2771                 break;
2772         }
2773         case KVM_SET_XCRS: {
2774                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
2775                 if (IS_ERR(u.xcrs)) {
2776                         r = PTR_ERR(u.xcrs);
2777                         goto out;
2778                 }
2779
2780                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2781                 break;
2782         }
2783         case KVM_SET_TSC_KHZ: {
2784                 u32 user_tsc_khz;
2785
2786                 r = -EINVAL;
2787                 if (!kvm_has_tsc_control)
2788                         break;
2789
2790                 user_tsc_khz = (u32)arg;
2791
2792                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
2793                         goto out;
2794
2795                 kvm_x86_ops->set_tsc_khz(vcpu, user_tsc_khz);
2796
2797                 r = 0;
2798                 goto out;
2799         }
2800         case KVM_GET_TSC_KHZ: {
2801                 r = -EIO;
2802                 if (check_tsc_unstable())
2803                         goto out;
2804
2805                 r = vcpu_tsc_khz(vcpu);
2806
2807                 goto out;
2808         }
2809         default:
2810                 r = -EINVAL;
2811         }
2812 out:
2813         kfree(u.buffer);
2814         return r;
2815 }
2816
2817 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2818 {
2819         int ret;
2820
2821         if (addr > (unsigned int)(-3 * PAGE_SIZE))
2822                 return -1;
2823         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2824         return ret;
2825 }
2826
2827 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2828                                               u64 ident_addr)
2829 {
2830         kvm->arch.ept_identity_map_addr = ident_addr;
2831         return 0;
2832 }
2833
2834 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2835                                           u32 kvm_nr_mmu_pages)
2836 {
2837         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2838                 return -EINVAL;
2839
2840         mutex_lock(&kvm->slots_lock);
2841         spin_lock(&kvm->mmu_lock);
2842
2843         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2844         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2845
2846         spin_unlock(&kvm->mmu_lock);
2847         mutex_unlock(&kvm->slots_lock);
2848         return 0;
2849 }
2850
2851 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2852 {
2853         return kvm->arch.n_max_mmu_pages;
2854 }
2855
2856 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2857 {
2858         int r;
2859
2860         r = 0;
2861         switch (chip->chip_id) {
2862         case KVM_IRQCHIP_PIC_MASTER:
2863                 memcpy(&chip->chip.pic,
2864                         &pic_irqchip(kvm)->pics[0],
2865                         sizeof(struct kvm_pic_state));
2866                 break;
2867         case KVM_IRQCHIP_PIC_SLAVE:
2868                 memcpy(&chip->chip.pic,
2869                         &pic_irqchip(kvm)->pics[1],
2870                         sizeof(struct kvm_pic_state));
2871                 break;
2872         case KVM_IRQCHIP_IOAPIC:
2873                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2874                 break;
2875         default:
2876                 r = -EINVAL;
2877                 break;
2878         }
2879         return r;
2880 }
2881
2882 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2883 {
2884         int r;
2885
2886         r = 0;
2887         switch (chip->chip_id) {
2888         case KVM_IRQCHIP_PIC_MASTER:
2889                 spin_lock(&pic_irqchip(kvm)->lock);
2890                 memcpy(&pic_irqchip(kvm)->pics[0],
2891                         &chip->chip.pic,
2892                         sizeof(struct kvm_pic_state));
2893                 spin_unlock(&pic_irqchip(kvm)->lock);
2894                 break;
2895         case KVM_IRQCHIP_PIC_SLAVE:
2896                 spin_lock(&pic_irqchip(kvm)->lock);
2897                 memcpy(&pic_irqchip(kvm)->pics[1],
2898                         &chip->chip.pic,
2899                         sizeof(struct kvm_pic_state));
2900                 spin_unlock(&pic_irqchip(kvm)->lock);
2901                 break;
2902         case KVM_IRQCHIP_IOAPIC:
2903                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2904                 break;
2905         default:
2906                 r = -EINVAL;
2907                 break;
2908         }
2909         kvm_pic_update_irq(pic_irqchip(kvm));
2910         return r;
2911 }
2912
2913 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2914 {
2915         int r = 0;
2916
2917         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2918         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2919         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2920         return r;
2921 }
2922
2923 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2924 {
2925         int r = 0;
2926
2927         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2928         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2929         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2930         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2931         return r;
2932 }
2933
2934 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2935 {
2936         int r = 0;
2937
2938         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2939         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2940                 sizeof(ps->channels));
2941         ps->flags = kvm->arch.vpit->pit_state.flags;
2942         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2943         memset(&ps->reserved, 0, sizeof(ps->reserved));
2944         return r;
2945 }
2946
2947 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2948 {
2949         int r = 0, start = 0;
2950         u32 prev_legacy, cur_legacy;
2951         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2952         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2953         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2954         if (!prev_legacy && cur_legacy)
2955                 start = 1;
2956         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2957                sizeof(kvm->arch.vpit->pit_state.channels));
2958         kvm->arch.vpit->pit_state.flags = ps->flags;
2959         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2960         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2961         return r;
2962 }
2963
2964 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2965                                  struct kvm_reinject_control *control)
2966 {
2967         if (!kvm->arch.vpit)
2968                 return -ENXIO;
2969         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2970         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2971         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2972         return 0;
2973 }
2974
2975 /**
2976  * write_protect_slot - write protect a slot for dirty logging
2977  * @kvm: the kvm instance
2978  * @memslot: the slot we protect
2979  * @dirty_bitmap: the bitmap indicating which pages are dirty
2980  * @nr_dirty_pages: the number of dirty pages
2981  *
2982  * We have two ways to find all sptes to protect:
2983  * 1. Use kvm_mmu_slot_remove_write_access() which walks all shadow pages and
2984  *    checks ones that have a spte mapping a page in the slot.
2985  * 2. Use kvm_mmu_rmap_write_protect() for each gfn found in the bitmap.
2986  *
2987  * Generally speaking, if there are not so many dirty pages compared to the
2988  * number of shadow pages, we should use the latter.
2989  *
2990  * Note that letting others write into a page marked dirty in the old bitmap
2991  * by using the remaining tlb entry is not a problem.  That page will become
2992  * write protected again when we flush the tlb and then be reported dirty to
2993  * the user space by copying the old bitmap.
2994  */
2995 static void write_protect_slot(struct kvm *kvm,
2996                                struct kvm_memory_slot *memslot,
2997                                unsigned long *dirty_bitmap,
2998                                unsigned long nr_dirty_pages)
2999 {
3000         /* Not many dirty pages compared to # of shadow pages. */
3001         if (nr_dirty_pages < kvm->arch.n_used_mmu_pages) {
3002                 unsigned long gfn_offset;
3003
3004                 for_each_set_bit(gfn_offset, dirty_bitmap, memslot->npages) {
3005                         unsigned long gfn = memslot->base_gfn + gfn_offset;
3006
3007                         spin_lock(&kvm->mmu_lock);
3008                         kvm_mmu_rmap_write_protect(kvm, gfn, memslot);
3009                         spin_unlock(&kvm->mmu_lock);
3010                 }
3011                 kvm_flush_remote_tlbs(kvm);
3012         } else {
3013                 spin_lock(&kvm->mmu_lock);
3014                 kvm_mmu_slot_remove_write_access(kvm, memslot->id);
3015                 spin_unlock(&kvm->mmu_lock);
3016         }
3017 }
3018
3019 /*
3020  * Get (and clear) the dirty memory log for a memory slot.
3021  */
3022 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3023                                       struct kvm_dirty_log *log)
3024 {
3025         int r;
3026         struct kvm_memory_slot *memslot;
3027         unsigned long n, nr_dirty_pages;
3028
3029         mutex_lock(&kvm->slots_lock);
3030
3031         r = -EINVAL;
3032         if (log->slot >= KVM_MEMORY_SLOTS)
3033                 goto out;
3034
3035         memslot = id_to_memslot(kvm->memslots, log->slot);
3036         r = -ENOENT;
3037         if (!memslot->dirty_bitmap)
3038                 goto out;
3039
3040         n = kvm_dirty_bitmap_bytes(memslot);
3041         nr_dirty_pages = memslot->nr_dirty_pages;
3042
3043         /* If nothing is dirty, don't bother messing with page tables. */
3044         if (nr_dirty_pages) {
3045                 struct kvm_memslots *slots, *old_slots;
3046                 unsigned long *dirty_bitmap, *dirty_bitmap_head;
3047
3048                 dirty_bitmap = memslot->dirty_bitmap;
3049                 dirty_bitmap_head = memslot->dirty_bitmap_head;
3050                 if (dirty_bitmap == dirty_bitmap_head)
3051                         dirty_bitmap_head += n / sizeof(long);
3052                 memset(dirty_bitmap_head, 0, n);
3053
3054                 r = -ENOMEM;
3055                 slots = kmemdup(kvm->memslots, sizeof(*kvm->memslots), GFP_KERNEL);
3056                 if (!slots)
3057                         goto out;
3058
3059                 memslot = id_to_memslot(slots, log->slot);
3060                 memslot->nr_dirty_pages = 0;
3061                 memslot->dirty_bitmap = dirty_bitmap_head;
3062                 update_memslots(slots, NULL);
3063
3064                 old_slots = kvm->memslots;
3065                 rcu_assign_pointer(kvm->memslots, slots);
3066                 synchronize_srcu_expedited(&kvm->srcu);
3067                 kfree(old_slots);
3068
3069                 write_protect_slot(kvm, memslot, dirty_bitmap, nr_dirty_pages);
3070
3071                 r = -EFAULT;
3072                 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3073                         goto out;
3074         } else {
3075                 r = -EFAULT;
3076                 if (clear_user(log->dirty_bitmap, n))
3077                         goto out;
3078         }
3079
3080         r = 0;
3081 out:
3082         mutex_unlock(&kvm->slots_lock);
3083         return r;
3084 }
3085
3086 long kvm_arch_vm_ioctl(struct file *filp,
3087                        unsigned int ioctl, unsigned long arg)
3088 {
3089         struct kvm *kvm = filp->private_data;
3090         void __user *argp = (void __user *)arg;
3091         int r = -ENOTTY;
3092         /*
3093          * This union makes it completely explicit to gcc-3.x
3094          * that these two variables' stack usage should be
3095          * combined, not added together.
3096          */
3097         union {
3098                 struct kvm_pit_state ps;
3099                 struct kvm_pit_state2 ps2;
3100                 struct kvm_pit_config pit_config;
3101         } u;
3102
3103         switch (ioctl) {
3104         case KVM_SET_TSS_ADDR:
3105                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3106                 if (r < 0)
3107                         goto out;
3108                 break;
3109         case KVM_SET_IDENTITY_MAP_ADDR: {
3110                 u64 ident_addr;
3111
3112                 r = -EFAULT;
3113                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3114                         goto out;
3115                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3116                 if (r < 0)
3117                         goto out;
3118                 break;
3119         }
3120         case KVM_SET_NR_MMU_PAGES:
3121                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3122                 if (r)
3123                         goto out;
3124                 break;
3125         case KVM_GET_NR_MMU_PAGES:
3126                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3127                 break;
3128         case KVM_CREATE_IRQCHIP: {
3129                 struct kvm_pic *vpic;
3130
3131                 mutex_lock(&kvm->lock);
3132                 r = -EEXIST;
3133                 if (kvm->arch.vpic)
3134                         goto create_irqchip_unlock;
3135                 r = -ENOMEM;
3136                 vpic = kvm_create_pic(kvm);
3137                 if (vpic) {
3138                         r = kvm_ioapic_init(kvm);
3139                         if (r) {
3140                                 mutex_lock(&kvm->slots_lock);
3141                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3142                                                           &vpic->dev_master);
3143                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3144                                                           &vpic->dev_slave);
3145                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3146                                                           &vpic->dev_eclr);
3147                                 mutex_unlock(&kvm->slots_lock);
3148                                 kfree(vpic);
3149                                 goto create_irqchip_unlock;
3150                         }
3151                 } else
3152                         goto create_irqchip_unlock;
3153                 smp_wmb();
3154                 kvm->arch.vpic = vpic;
3155                 smp_wmb();
3156                 r = kvm_setup_default_irq_routing(kvm);
3157                 if (r) {
3158                         mutex_lock(&kvm->slots_lock);
3159                         mutex_lock(&kvm->irq_lock);
3160                         kvm_ioapic_destroy(kvm);
3161                         kvm_destroy_pic(kvm);
3162                         mutex_unlock(&kvm->irq_lock);
3163                         mutex_unlock(&kvm->slots_lock);
3164                 }
3165         create_irqchip_unlock:
3166                 mutex_unlock(&kvm->lock);
3167                 break;
3168         }
3169         case KVM_CREATE_PIT:
3170                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3171                 goto create_pit;
3172         case KVM_CREATE_PIT2:
3173                 r = -EFAULT;
3174                 if (copy_from_user(&u.pit_config, argp,
3175                                    sizeof(struct kvm_pit_config)))
3176                         goto out;
3177         create_pit:
3178                 mutex_lock(&kvm->slots_lock);
3179                 r = -EEXIST;
3180                 if (kvm->arch.vpit)
3181                         goto create_pit_unlock;
3182                 r = -ENOMEM;
3183                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3184                 if (kvm->arch.vpit)
3185                         r = 0;
3186         create_pit_unlock:
3187                 mutex_unlock(&kvm->slots_lock);
3188                 break;
3189         case KVM_IRQ_LINE_STATUS:
3190         case KVM_IRQ_LINE: {
3191                 struct kvm_irq_level irq_event;
3192
3193                 r = -EFAULT;
3194                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3195                         goto out;
3196                 r = -ENXIO;
3197                 if (irqchip_in_kernel(kvm)) {
3198                         __s32 status;
3199                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3200                                         irq_event.irq, irq_event.level);
3201                         if (ioctl == KVM_IRQ_LINE_STATUS) {
3202                                 r = -EFAULT;
3203                                 irq_event.status = status;
3204                                 if (copy_to_user(argp, &irq_event,
3205                                                         sizeof irq_event))
3206                                         goto out;
3207                         }
3208                         r = 0;
3209                 }
3210                 break;
3211         }
3212         case KVM_GET_IRQCHIP: {
3213                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3214                 struct kvm_irqchip *chip;
3215
3216                 chip = memdup_user(argp, sizeof(*chip));
3217                 if (IS_ERR(chip)) {
3218                         r = PTR_ERR(chip);
3219                         goto out;
3220                 }
3221
3222                 r = -ENXIO;
3223                 if (!irqchip_in_kernel(kvm))
3224                         goto get_irqchip_out;
3225                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3226                 if (r)
3227                         goto get_irqchip_out;
3228                 r = -EFAULT;
3229                 if (copy_to_user(argp, chip, sizeof *chip))
3230                         goto get_irqchip_out;
3231                 r = 0;
3232         get_irqchip_out:
3233                 kfree(chip);
3234                 if (r)
3235                         goto out;
3236                 break;
3237         }
3238         case KVM_SET_IRQCHIP: {
3239                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3240                 struct kvm_irqchip *chip;
3241
3242                 chip = memdup_user(argp, sizeof(*chip));
3243                 if (IS_ERR(chip)) {
3244                         r = PTR_ERR(chip);
3245                         goto out;
3246                 }
3247
3248                 r = -ENXIO;
3249                 if (!irqchip_in_kernel(kvm))
3250                         goto set_irqchip_out;
3251                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3252                 if (r)
3253                         goto set_irqchip_out;
3254                 r = 0;
3255         set_irqchip_out:
3256                 kfree(chip);
3257                 if (r)
3258                         goto out;
3259                 break;
3260         }
3261         case KVM_GET_PIT: {
3262                 r = -EFAULT;
3263                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3264                         goto out;
3265                 r = -ENXIO;
3266                 if (!kvm->arch.vpit)
3267                         goto out;
3268                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3269                 if (r)
3270                         goto out;
3271                 r = -EFAULT;
3272                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3273                         goto out;
3274                 r = 0;
3275                 break;
3276         }
3277         case KVM_SET_PIT: {
3278                 r = -EFAULT;
3279                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3280                         goto out;
3281                 r = -ENXIO;
3282                 if (!kvm->arch.vpit)
3283                         goto out;
3284                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3285                 if (r)
3286                         goto out;
3287                 r = 0;
3288                 break;
3289         }
3290         case KVM_GET_PIT2: {
3291                 r = -ENXIO;
3292                 if (!kvm->arch.vpit)
3293                         goto out;
3294                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3295                 if (r)
3296                         goto out;
3297                 r = -EFAULT;
3298                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3299                         goto out;
3300                 r = 0;
3301                 break;
3302         }
3303         case KVM_SET_PIT2: {
3304                 r = -EFAULT;
3305                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3306                         goto out;
3307                 r = -ENXIO;
3308                 if (!kvm->arch.vpit)
3309                         goto out;
3310                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3311                 if (r)
3312                         goto out;
3313                 r = 0;
3314                 break;
3315         }
3316         case KVM_REINJECT_CONTROL: {
3317                 struct kvm_reinject_control control;
3318                 r =  -EFAULT;
3319                 if (copy_from_user(&control, argp, sizeof(control)))
3320                         goto out;
3321                 r = kvm_vm_ioctl_reinject(kvm, &control);
3322                 if (r)
3323                         goto out;
3324                 r = 0;
3325                 break;
3326         }
3327         case KVM_XEN_HVM_CONFIG: {
3328                 r = -EFAULT;
3329                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3330                                    sizeof(struct kvm_xen_hvm_config)))
3331                         goto out;
3332                 r = -EINVAL;
3333                 if (kvm->arch.xen_hvm_config.flags)
3334                         goto out;
3335                 r = 0;
3336                 break;
3337         }
3338         case KVM_SET_CLOCK: {
3339                 struct kvm_clock_data user_ns;
3340                 u64 now_ns;
3341                 s64 delta;
3342
3343                 r = -EFAULT;
3344                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3345                         goto out;
3346
3347                 r = -EINVAL;
3348                 if (user_ns.flags)
3349                         goto out;
3350
3351                 r = 0;
3352                 local_irq_disable();
3353                 now_ns = get_kernel_ns();
3354                 delta = user_ns.clock - now_ns;
3355                 local_irq_enable();
3356                 kvm->arch.kvmclock_offset = delta;
3357                 break;
3358         }
3359         case KVM_GET_CLOCK: {
3360                 struct kvm_clock_data user_ns;
3361                 u64 now_ns;
3362
3363                 local_irq_disable();
3364                 now_ns = get_kernel_ns();
3365                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3366                 local_irq_enable();
3367                 user_ns.flags = 0;
3368                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3369
3370                 r = -EFAULT;
3371                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3372                         goto out;
3373                 r = 0;
3374                 break;
3375         }
3376
3377         default:
3378                 ;
3379         }
3380 out:
3381         return r;
3382 }
3383
3384 static void kvm_init_msr_list(void)
3385 {
3386         u32 dummy[2];
3387         unsigned i, j;
3388
3389         /* skip the first msrs in the list. KVM-specific */
3390         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3391                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3392                         continue;
3393                 if (j < i)
3394                         msrs_to_save[j] = msrs_to_save[i];
3395                 j++;
3396         }
3397         num_msrs_to_save = j;
3398 }
3399
3400 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3401                            const void *v)
3402 {
3403         int handled = 0;
3404         int n;
3405
3406         do {
3407                 n = min(len, 8);
3408                 if (!(vcpu->arch.apic &&
3409                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3410                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3411                         break;
3412                 handled += n;
3413                 addr += n;
3414                 len -= n;
3415                 v += n;
3416         } while (len);
3417
3418         return handled;
3419 }
3420
3421 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3422 {
3423         int handled = 0;
3424         int n;
3425
3426         do {
3427                 n = min(len, 8);
3428                 if (!(vcpu->arch.apic &&
3429                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3430                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3431                         break;
3432                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3433                 handled += n;
3434                 addr += n;
3435                 len -= n;
3436                 v += n;
3437         } while (len);
3438
3439         return handled;
3440 }
3441
3442 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3443                         struct kvm_segment *var, int seg)
3444 {
3445         kvm_x86_ops->set_segment(vcpu, var, seg);
3446 }
3447
3448 void kvm_get_segment(struct kvm_vcpu *vcpu,
3449                      struct kvm_segment *var, int seg)
3450 {
3451         kvm_x86_ops->get_segment(vcpu, var, seg);
3452 }
3453
3454 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3455 {
3456         gpa_t t_gpa;
3457         struct x86_exception exception;
3458
3459         BUG_ON(!mmu_is_nested(vcpu));
3460
3461         /* NPT walks are always user-walks */
3462         access |= PFERR_USER_MASK;
3463         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3464
3465         return t_gpa;
3466 }
3467
3468 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3469                               struct x86_exception *exception)
3470 {
3471         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3472         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3473 }
3474
3475  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3476                                 struct x86_exception *exception)
3477 {
3478         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3479         access |= PFERR_FETCH_MASK;
3480         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3481 }
3482
3483 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3484                                struct x86_exception *exception)
3485 {
3486         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3487         access |= PFERR_WRITE_MASK;
3488         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3489 }
3490
3491 /* uses this to access any guest's mapped memory without checking CPL */
3492 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3493                                 struct x86_exception *exception)
3494 {
3495         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3496 }
3497
3498 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3499                                       struct kvm_vcpu *vcpu, u32 access,
3500                                       struct x86_exception *exception)
3501 {
3502         void *data = val;
3503         int r = X86EMUL_CONTINUE;
3504
3505         while (bytes) {
3506                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3507                                                             exception);
3508                 unsigned offset = addr & (PAGE_SIZE-1);
3509                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3510                 int ret;
3511
3512                 if (gpa == UNMAPPED_GVA)
3513                         return X86EMUL_PROPAGATE_FAULT;
3514                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3515                 if (ret < 0) {
3516                         r = X86EMUL_IO_NEEDED;
3517                         goto out;
3518                 }
3519
3520                 bytes -= toread;
3521                 data += toread;
3522                 addr += toread;
3523         }
3524 out:
3525         return r;
3526 }
3527
3528 /* used for instruction fetching */
3529 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3530                                 gva_t addr, void *val, unsigned int bytes,
3531                                 struct x86_exception *exception)
3532 {
3533         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3534         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3535
3536         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3537                                           access | PFERR_FETCH_MASK,
3538                                           exception);
3539 }
3540
3541 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3542                                gva_t addr, void *val, unsigned int bytes,
3543                                struct x86_exception *exception)
3544 {
3545         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3546         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3547
3548         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3549                                           exception);
3550 }
3551 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3552
3553 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3554                                       gva_t addr, void *val, unsigned int bytes,
3555                                       struct x86_exception *exception)
3556 {
3557         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3558         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3559 }
3560
3561 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3562                                        gva_t addr, void *val,
3563                                        unsigned int bytes,
3564                                        struct x86_exception *exception)
3565 {
3566         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3567         void *data = val;
3568         int r = X86EMUL_CONTINUE;
3569
3570         while (bytes) {
3571                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3572                                                              PFERR_WRITE_MASK,
3573                                                              exception);
3574                 unsigned offset = addr & (PAGE_SIZE-1);
3575                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3576                 int ret;
3577
3578                 if (gpa == UNMAPPED_GVA)
3579                         return X86EMUL_PROPAGATE_FAULT;
3580                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3581                 if (ret < 0) {
3582                         r = X86EMUL_IO_NEEDED;
3583                         goto out;
3584                 }
3585
3586                 bytes -= towrite;
3587                 data += towrite;
3588                 addr += towrite;
3589         }
3590 out:
3591         return r;
3592 }
3593 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3594
3595 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3596                                 gpa_t *gpa, struct x86_exception *exception,
3597                                 bool write)
3598 {
3599         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3600
3601         if (vcpu_match_mmio_gva(vcpu, gva) &&
3602                   check_write_user_access(vcpu, write, access,
3603                   vcpu->arch.access)) {
3604                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3605                                         (gva & (PAGE_SIZE - 1));
3606                 trace_vcpu_match_mmio(gva, *gpa, write, false);
3607                 return 1;
3608         }
3609
3610         if (write)
3611                 access |= PFERR_WRITE_MASK;
3612
3613         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3614
3615         if (*gpa == UNMAPPED_GVA)
3616                 return -1;
3617
3618         /* For APIC access vmexit */
3619         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3620                 return 1;
3621
3622         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3623                 trace_vcpu_match_mmio(gva, *gpa, write, true);
3624                 return 1;
3625         }
3626
3627         return 0;
3628 }
3629
3630 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3631                         const void *val, int bytes)
3632 {
3633         int ret;
3634
3635         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3636         if (ret < 0)
3637                 return 0;
3638         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
3639         return 1;
3640 }
3641
3642 struct read_write_emulator_ops {
3643         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
3644                                   int bytes);
3645         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
3646                                   void *val, int bytes);
3647         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3648                                int bytes, void *val);
3649         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3650                                     void *val, int bytes);
3651         bool write;
3652 };
3653
3654 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
3655 {
3656         if (vcpu->mmio_read_completed) {
3657                 memcpy(val, vcpu->mmio_data, bytes);
3658                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3659                                vcpu->mmio_phys_addr, *(u64 *)val);
3660                 vcpu->mmio_read_completed = 0;
3661                 return 1;
3662         }
3663
3664         return 0;
3665 }
3666
3667 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3668                         void *val, int bytes)
3669 {
3670         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
3671 }
3672
3673 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3674                          void *val, int bytes)
3675 {
3676         return emulator_write_phys(vcpu, gpa, val, bytes);
3677 }
3678
3679 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
3680 {
3681         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3682         return vcpu_mmio_write(vcpu, gpa, bytes, val);
3683 }
3684
3685 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3686                           void *val, int bytes)
3687 {
3688         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3689         return X86EMUL_IO_NEEDED;
3690 }
3691
3692 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3693                            void *val, int bytes)
3694 {
3695         memcpy(vcpu->mmio_data, val, bytes);
3696         memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8);
3697         return X86EMUL_CONTINUE;
3698 }
3699
3700 static struct read_write_emulator_ops read_emultor = {
3701         .read_write_prepare = read_prepare,
3702         .read_write_emulate = read_emulate,
3703         .read_write_mmio = vcpu_mmio_read,
3704         .read_write_exit_mmio = read_exit_mmio,
3705 };
3706
3707 static struct read_write_emulator_ops write_emultor = {
3708         .read_write_emulate = write_emulate,
3709         .read_write_mmio = write_mmio,
3710         .read_write_exit_mmio = write_exit_mmio,
3711         .write = true,
3712 };
3713
3714 static int emulator_read_write_onepage(unsigned long addr, void *val,
3715                                        unsigned int bytes,
3716                                        struct x86_exception *exception,
3717                                        struct kvm_vcpu *vcpu,
3718                                        struct read_write_emulator_ops *ops)
3719 {
3720         gpa_t gpa;
3721         int handled, ret;
3722         bool write = ops->write;
3723
3724         if (ops->read_write_prepare &&
3725                   ops->read_write_prepare(vcpu, val, bytes))
3726                 return X86EMUL_CONTINUE;
3727
3728         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
3729
3730         if (ret < 0)
3731                 return X86EMUL_PROPAGATE_FAULT;
3732
3733         /* For APIC access vmexit */
3734         if (ret)
3735                 goto mmio;
3736
3737         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
3738                 return X86EMUL_CONTINUE;
3739
3740 mmio:
3741         /*
3742          * Is this MMIO handled locally?
3743          */
3744         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
3745         if (handled == bytes)
3746                 return X86EMUL_CONTINUE;
3747
3748         gpa += handled;
3749         bytes -= handled;
3750         val += handled;
3751
3752         vcpu->mmio_needed = 1;
3753         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3754         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3755         vcpu->mmio_size = bytes;
3756         vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
3757         vcpu->run->mmio.is_write = vcpu->mmio_is_write = write;
3758         vcpu->mmio_index = 0;
3759
3760         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
3761 }
3762
3763 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
3764                         void *val, unsigned int bytes,
3765                         struct x86_exception *exception,
3766                         struct read_write_emulator_ops *ops)
3767 {
3768         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3769
3770         /* Crossing a page boundary? */
3771         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3772                 int rc, now;
3773
3774                 now = -addr & ~PAGE_MASK;
3775                 rc = emulator_read_write_onepage(addr, val, now, exception,
3776                                                  vcpu, ops);
3777
3778                 if (rc != X86EMUL_CONTINUE)
3779                         return rc;
3780                 addr += now;
3781                 val += now;
3782                 bytes -= now;
3783         }
3784
3785         return emulator_read_write_onepage(addr, val, bytes, exception,
3786                                            vcpu, ops);
3787 }
3788
3789 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3790                                   unsigned long addr,
3791                                   void *val,
3792                                   unsigned int bytes,
3793                                   struct x86_exception *exception)
3794 {
3795         return emulator_read_write(ctxt, addr, val, bytes,
3796                                    exception, &read_emultor);
3797 }
3798
3799 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
3800                             unsigned long addr,
3801                             const void *val,
3802                             unsigned int bytes,
3803                             struct x86_exception *exception)
3804 {
3805         return emulator_read_write(ctxt, addr, (void *)val, bytes,
3806                                    exception, &write_emultor);
3807 }
3808
3809 #define CMPXCHG_TYPE(t, ptr, old, new) \
3810         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3811
3812 #ifdef CONFIG_X86_64
3813 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3814 #else
3815 #  define CMPXCHG64(ptr, old, new) \
3816         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3817 #endif
3818
3819 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
3820                                      unsigned long addr,
3821                                      const void *old,
3822                                      const void *new,
3823                                      unsigned int bytes,
3824                                      struct x86_exception *exception)
3825 {
3826         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3827         gpa_t gpa;
3828         struct page *page;
3829         char *kaddr;
3830         bool exchanged;
3831
3832         /* guests cmpxchg8b have to be emulated atomically */
3833         if (bytes > 8 || (bytes & (bytes - 1)))
3834                 goto emul_write;
3835
3836         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3837
3838         if (gpa == UNMAPPED_GVA ||
3839             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3840                 goto emul_write;
3841
3842         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3843                 goto emul_write;
3844
3845         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3846         if (is_error_page(page)) {
3847                 kvm_release_page_clean(page);
3848                 goto emul_write;
3849         }
3850
3851         kaddr = kmap_atomic(page, KM_USER0);
3852         kaddr += offset_in_page(gpa);
3853         switch (bytes) {
3854         case 1:
3855                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3856                 break;
3857         case 2:
3858                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3859                 break;
3860         case 4:
3861                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3862                 break;
3863         case 8:
3864                 exchanged = CMPXCHG64(kaddr, old, new);
3865                 break;
3866         default:
3867                 BUG();
3868         }
3869         kunmap_atomic(kaddr, KM_USER0);
3870         kvm_release_page_dirty(page);
3871
3872         if (!exchanged)
3873                 return X86EMUL_CMPXCHG_FAILED;
3874
3875         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
3876
3877         return X86EMUL_CONTINUE;
3878
3879 emul_write:
3880         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3881
3882         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
3883 }
3884
3885 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3886 {
3887         /* TODO: String I/O for in kernel device */
3888         int r;
3889
3890         if (vcpu->arch.pio.in)
3891                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3892                                     vcpu->arch.pio.size, pd);
3893         else
3894                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3895                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
3896                                      pd);
3897         return r;
3898 }
3899
3900 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
3901                                unsigned short port, void *val,
3902                                unsigned int count, bool in)
3903 {
3904         trace_kvm_pio(!in, port, size, count);
3905
3906         vcpu->arch.pio.port = port;
3907         vcpu->arch.pio.in = in;
3908         vcpu->arch.pio.count  = count;
3909         vcpu->arch.pio.size = size;
3910
3911         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3912                 vcpu->arch.pio.count = 0;
3913                 return 1;
3914         }
3915
3916         vcpu->run->exit_reason = KVM_EXIT_IO;
3917         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3918         vcpu->run->io.size = size;
3919         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3920         vcpu->run->io.count = count;
3921         vcpu->run->io.port = port;
3922
3923         return 0;
3924 }
3925
3926 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
3927                                     int size, unsigned short port, void *val,
3928                                     unsigned int count)
3929 {
3930         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3931         int ret;
3932
3933         if (vcpu->arch.pio.count)
3934                 goto data_avail;
3935
3936         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
3937         if (ret) {
3938 data_avail:
3939                 memcpy(val, vcpu->arch.pio_data, size * count);
3940                 vcpu->arch.pio.count = 0;
3941                 return 1;
3942         }
3943
3944         return 0;
3945 }
3946
3947 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
3948                                      int size, unsigned short port,
3949                                      const void *val, unsigned int count)
3950 {
3951         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3952
3953         memcpy(vcpu->arch.pio_data, val, size * count);
3954         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
3955 }
3956
3957 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3958 {
3959         return kvm_x86_ops->get_segment_base(vcpu, seg);
3960 }
3961
3962 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
3963 {
3964         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
3965 }
3966
3967 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
3968 {
3969         if (!need_emulate_wbinvd(vcpu))
3970                 return X86EMUL_CONTINUE;
3971
3972         if (kvm_x86_ops->has_wbinvd_exit()) {
3973                 int cpu = get_cpu();
3974
3975                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3976                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
3977                                 wbinvd_ipi, NULL, 1);
3978                 put_cpu();
3979                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
3980         } else
3981                 wbinvd();
3982         return X86EMUL_CONTINUE;
3983 }
3984 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
3985
3986 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
3987 {
3988         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
3989 }
3990
3991 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
3992 {
3993         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
3994 }
3995
3996 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
3997 {
3998
3999         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4000 }
4001
4002 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4003 {
4004         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4005 }
4006
4007 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4008 {
4009         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4010         unsigned long value;
4011
4012         switch (cr) {
4013         case 0:
4014                 value = kvm_read_cr0(vcpu);
4015                 break;
4016         case 2:
4017                 value = vcpu->arch.cr2;
4018                 break;
4019         case 3:
4020                 value = kvm_read_cr3(vcpu);
4021                 break;
4022         case 4:
4023                 value = kvm_read_cr4(vcpu);
4024                 break;
4025         case 8:
4026                 value = kvm_get_cr8(vcpu);
4027                 break;
4028         default:
4029                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4030                 return 0;
4031         }
4032
4033         return value;
4034 }
4035
4036 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4037 {
4038         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4039         int res = 0;
4040
4041         switch (cr) {
4042         case 0:
4043                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4044                 break;
4045         case 2:
4046                 vcpu->arch.cr2 = val;
4047                 break;
4048         case 3:
4049                 res = kvm_set_cr3(vcpu, val);
4050                 break;
4051         case 4:
4052                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4053                 break;
4054         case 8:
4055                 res = kvm_set_cr8(vcpu, val);
4056                 break;
4057         default:
4058                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4059                 res = -1;
4060         }
4061
4062         return res;
4063 }
4064
4065 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4066 {
4067         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4068 }
4069
4070 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4071 {
4072         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4073 }
4074
4075 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4076 {
4077         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4078 }
4079
4080 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4081 {
4082         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4083 }
4084
4085 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4086 {
4087         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4088 }
4089
4090 static unsigned long emulator_get_cached_segment_base(
4091         struct x86_emulate_ctxt *ctxt, int seg)
4092 {
4093         return get_segment_base(emul_to_vcpu(ctxt), seg);
4094 }
4095
4096 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4097                                  struct desc_struct *desc, u32 *base3,
4098                                  int seg)
4099 {
4100         struct kvm_segment var;
4101
4102         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4103         *selector = var.selector;
4104
4105         if (var.unusable)
4106                 return false;
4107
4108         if (var.g)
4109                 var.limit >>= 12;
4110         set_desc_limit(desc, var.limit);
4111         set_desc_base(desc, (unsigned long)var.base);
4112 #ifdef CONFIG_X86_64
4113         if (base3)
4114                 *base3 = var.base >> 32;
4115 #endif
4116         desc->type = var.type;
4117         desc->s = var.s;
4118         desc->dpl = var.dpl;
4119         desc->p = var.present;
4120         desc->avl = var.avl;
4121         desc->l = var.l;
4122         desc->d = var.db;
4123         desc->g = var.g;
4124
4125         return true;
4126 }
4127
4128 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4129                                  struct desc_struct *desc, u32 base3,
4130                                  int seg)
4131 {
4132         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4133         struct kvm_segment var;
4134
4135         var.selector = selector;
4136         var.base = get_desc_base(desc);
4137 #ifdef CONFIG_X86_64
4138         var.base |= ((u64)base3) << 32;
4139 #endif
4140         var.limit = get_desc_limit(desc);
4141         if (desc->g)
4142                 var.limit = (var.limit << 12) | 0xfff;
4143         var.type = desc->type;
4144         var.present = desc->p;
4145         var.dpl = desc->dpl;
4146         var.db = desc->d;
4147         var.s = desc->s;
4148         var.l = desc->l;
4149         var.g = desc->g;
4150         var.avl = desc->avl;
4151         var.present = desc->p;
4152         var.unusable = !var.present;
4153         var.padding = 0;
4154
4155         kvm_set_segment(vcpu, &var, seg);
4156         return;
4157 }
4158
4159 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4160                             u32 msr_index, u64 *pdata)
4161 {
4162         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4163 }
4164
4165 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4166                             u32 msr_index, u64 data)
4167 {
4168         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4169 }
4170
4171 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4172                              u32 pmc, u64 *pdata)
4173 {
4174         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4175 }
4176
4177 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4178 {
4179         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4180 }
4181
4182 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4183 {
4184         preempt_disable();
4185         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4186         /*
4187          * CR0.TS may reference the host fpu state, not the guest fpu state,
4188          * so it may be clear at this point.
4189          */
4190         clts();
4191 }
4192
4193 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4194 {
4195         preempt_enable();
4196 }
4197
4198 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4199                               struct x86_instruction_info *info,
4200                               enum x86_intercept_stage stage)
4201 {
4202         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4203 }
4204
4205 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4206                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4207 {
4208         struct kvm_cpuid_entry2 *cpuid = NULL;
4209
4210         if (eax && ecx)
4211                 cpuid = kvm_find_cpuid_entry(emul_to_vcpu(ctxt),
4212                                             *eax, *ecx);
4213
4214         if (cpuid) {
4215                 *eax = cpuid->eax;
4216                 *ecx = cpuid->ecx;
4217                 if (ebx)
4218                         *ebx = cpuid->ebx;
4219                 if (edx)
4220                         *edx = cpuid->edx;
4221                 return true;
4222         }
4223
4224         return false;
4225 }
4226
4227 static struct x86_emulate_ops emulate_ops = {
4228         .read_std            = kvm_read_guest_virt_system,
4229         .write_std           = kvm_write_guest_virt_system,
4230         .fetch               = kvm_fetch_guest_virt,
4231         .read_emulated       = emulator_read_emulated,
4232         .write_emulated      = emulator_write_emulated,
4233         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4234         .invlpg              = emulator_invlpg,
4235         .pio_in_emulated     = emulator_pio_in_emulated,
4236         .pio_out_emulated    = emulator_pio_out_emulated,
4237         .get_segment         = emulator_get_segment,
4238         .set_segment         = emulator_set_segment,
4239         .get_cached_segment_base = emulator_get_cached_segment_base,
4240         .get_gdt             = emulator_get_gdt,
4241         .get_idt             = emulator_get_idt,
4242         .set_gdt             = emulator_set_gdt,
4243         .set_idt             = emulator_set_idt,
4244         .get_cr              = emulator_get_cr,
4245         .set_cr              = emulator_set_cr,
4246         .cpl                 = emulator_get_cpl,
4247         .get_dr              = emulator_get_dr,
4248         .set_dr              = emulator_set_dr,
4249         .set_msr             = emulator_set_msr,
4250         .get_msr             = emulator_get_msr,
4251         .read_pmc            = emulator_read_pmc,
4252         .halt                = emulator_halt,
4253         .wbinvd              = emulator_wbinvd,
4254         .fix_hypercall       = emulator_fix_hypercall,
4255         .get_fpu             = emulator_get_fpu,
4256         .put_fpu             = emulator_put_fpu,
4257         .intercept           = emulator_intercept,
4258         .get_cpuid           = emulator_get_cpuid,
4259 };
4260
4261 static void cache_all_regs(struct kvm_vcpu *vcpu)
4262 {
4263         kvm_register_read(vcpu, VCPU_REGS_RAX);
4264         kvm_register_read(vcpu, VCPU_REGS_RSP);
4265         kvm_register_read(vcpu, VCPU_REGS_RIP);
4266         vcpu->arch.regs_dirty = ~0;
4267 }
4268
4269 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4270 {
4271         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4272         /*
4273          * an sti; sti; sequence only disable interrupts for the first
4274          * instruction. So, if the last instruction, be it emulated or
4275          * not, left the system with the INT_STI flag enabled, it
4276          * means that the last instruction is an sti. We should not
4277          * leave the flag on in this case. The same goes for mov ss
4278          */
4279         if (!(int_shadow & mask))
4280                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4281 }
4282
4283 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4284 {
4285         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4286         if (ctxt->exception.vector == PF_VECTOR)
4287                 kvm_propagate_fault(vcpu, &ctxt->exception);
4288         else if (ctxt->exception.error_code_valid)
4289                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4290                                       ctxt->exception.error_code);
4291         else
4292                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4293 }
4294
4295 static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
4296                               const unsigned long *regs)
4297 {
4298         memset(&ctxt->twobyte, 0,
4299                (void *)&ctxt->regs - (void *)&ctxt->twobyte);
4300         memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
4301
4302         ctxt->fetch.start = 0;
4303         ctxt->fetch.end = 0;
4304         ctxt->io_read.pos = 0;
4305         ctxt->io_read.end = 0;
4306         ctxt->mem_read.pos = 0;
4307         ctxt->mem_read.end = 0;
4308 }
4309
4310 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4311 {
4312         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4313         int cs_db, cs_l;
4314
4315         /*
4316          * TODO: fix emulate.c to use guest_read/write_register
4317          * instead of direct ->regs accesses, can save hundred cycles
4318          * on Intel for instructions that don't read/change RSP, for
4319          * for example.
4320          */
4321         cache_all_regs(vcpu);
4322
4323         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4324
4325         ctxt->eflags = kvm_get_rflags(vcpu);
4326         ctxt->eip = kvm_rip_read(vcpu);
4327         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4328                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4329                      cs_l                               ? X86EMUL_MODE_PROT64 :
4330                      cs_db                              ? X86EMUL_MODE_PROT32 :
4331                                                           X86EMUL_MODE_PROT16;
4332         ctxt->guest_mode = is_guest_mode(vcpu);
4333
4334         init_decode_cache(ctxt, vcpu->arch.regs);
4335         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4336 }
4337
4338 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4339 {
4340         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4341         int ret;
4342
4343         init_emulate_ctxt(vcpu);
4344
4345         ctxt->op_bytes = 2;
4346         ctxt->ad_bytes = 2;
4347         ctxt->_eip = ctxt->eip + inc_eip;
4348         ret = emulate_int_real(ctxt, irq);
4349
4350         if (ret != X86EMUL_CONTINUE)
4351                 return EMULATE_FAIL;
4352
4353         ctxt->eip = ctxt->_eip;
4354         memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4355         kvm_rip_write(vcpu, ctxt->eip);
4356         kvm_set_rflags(vcpu, ctxt->eflags);
4357
4358         if (irq == NMI_VECTOR)
4359                 vcpu->arch.nmi_pending = 0;
4360         else
4361                 vcpu->arch.interrupt.pending = false;
4362
4363         return EMULATE_DONE;
4364 }
4365 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4366
4367 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4368 {
4369         int r = EMULATE_DONE;
4370
4371         ++vcpu->stat.insn_emulation_fail;
4372         trace_kvm_emulate_insn_failed(vcpu);
4373         if (!is_guest_mode(vcpu)) {
4374                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4375                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4376                 vcpu->run->internal.ndata = 0;
4377                 r = EMULATE_FAIL;
4378         }
4379         kvm_queue_exception(vcpu, UD_VECTOR);
4380
4381         return r;
4382 }
4383
4384 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4385 {
4386         gpa_t gpa;
4387
4388         if (tdp_enabled)
4389                 return false;
4390
4391         /*
4392          * if emulation was due to access to shadowed page table
4393          * and it failed try to unshadow page and re-entetr the
4394          * guest to let CPU execute the instruction.
4395          */
4396         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4397                 return true;
4398
4399         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4400
4401         if (gpa == UNMAPPED_GVA)
4402                 return true; /* let cpu generate fault */
4403
4404         if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4405                 return true;
4406
4407         return false;
4408 }
4409
4410 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4411                               unsigned long cr2,  int emulation_type)
4412 {
4413         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4414         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4415
4416         last_retry_eip = vcpu->arch.last_retry_eip;
4417         last_retry_addr = vcpu->arch.last_retry_addr;
4418
4419         /*
4420          * If the emulation is caused by #PF and it is non-page_table
4421          * writing instruction, it means the VM-EXIT is caused by shadow
4422          * page protected, we can zap the shadow page and retry this
4423          * instruction directly.
4424          *
4425          * Note: if the guest uses a non-page-table modifying instruction
4426          * on the PDE that points to the instruction, then we will unmap
4427          * the instruction and go to an infinite loop. So, we cache the
4428          * last retried eip and the last fault address, if we meet the eip
4429          * and the address again, we can break out of the potential infinite
4430          * loop.
4431          */
4432         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4433
4434         if (!(emulation_type & EMULTYPE_RETRY))
4435                 return false;
4436
4437         if (x86_page_table_writing_insn(ctxt))
4438                 return false;
4439
4440         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4441                 return false;
4442
4443         vcpu->arch.last_retry_eip = ctxt->eip;
4444         vcpu->arch.last_retry_addr = cr2;
4445
4446         if (!vcpu->arch.mmu.direct_map)
4447                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4448
4449         kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4450
4451         return true;
4452 }
4453
4454 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4455                             unsigned long cr2,
4456                             int emulation_type,
4457                             void *insn,
4458                             int insn_len)
4459 {
4460         int r;
4461         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4462         bool writeback = true;
4463
4464         kvm_clear_exception_queue(vcpu);
4465
4466         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4467                 init_emulate_ctxt(vcpu);
4468                 ctxt->interruptibility = 0;
4469                 ctxt->have_exception = false;
4470                 ctxt->perm_ok = false;
4471
4472                 ctxt->only_vendor_specific_insn
4473                         = emulation_type & EMULTYPE_TRAP_UD;
4474
4475                 r = x86_decode_insn(ctxt, insn, insn_len);
4476
4477                 trace_kvm_emulate_insn_start(vcpu);
4478                 ++vcpu->stat.insn_emulation;
4479                 if (r != EMULATION_OK)  {
4480                         if (emulation_type & EMULTYPE_TRAP_UD)
4481                                 return EMULATE_FAIL;
4482                         if (reexecute_instruction(vcpu, cr2))
4483                                 return EMULATE_DONE;
4484                         if (emulation_type & EMULTYPE_SKIP)
4485                                 return EMULATE_FAIL;
4486                         return handle_emulation_failure(vcpu);
4487                 }
4488         }
4489
4490         if (emulation_type & EMULTYPE_SKIP) {
4491                 kvm_rip_write(vcpu, ctxt->_eip);
4492                 return EMULATE_DONE;
4493         }
4494
4495         if (retry_instruction(ctxt, cr2, emulation_type))
4496                 return EMULATE_DONE;
4497
4498         /* this is needed for vmware backdoor interface to work since it
4499            changes registers values  during IO operation */
4500         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4501                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4502                 memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
4503         }
4504
4505 restart:
4506         r = x86_emulate_insn(ctxt);
4507
4508         if (r == EMULATION_INTERCEPTED)
4509                 return EMULATE_DONE;
4510
4511         if (r == EMULATION_FAILED) {
4512                 if (reexecute_instruction(vcpu, cr2))
4513                         return EMULATE_DONE;
4514
4515                 return handle_emulation_failure(vcpu);
4516         }
4517
4518         if (ctxt->have_exception) {
4519                 inject_emulated_exception(vcpu);
4520                 r = EMULATE_DONE;
4521         } else if (vcpu->arch.pio.count) {
4522                 if (!vcpu->arch.pio.in)
4523                         vcpu->arch.pio.count = 0;
4524                 else
4525                         writeback = false;
4526                 r = EMULATE_DO_MMIO;
4527         } else if (vcpu->mmio_needed) {
4528                 if (!vcpu->mmio_is_write)
4529                         writeback = false;
4530                 r = EMULATE_DO_MMIO;
4531         } else if (r == EMULATION_RESTART)
4532                 goto restart;
4533         else
4534                 r = EMULATE_DONE;
4535
4536         if (writeback) {
4537                 toggle_interruptibility(vcpu, ctxt->interruptibility);
4538                 kvm_set_rflags(vcpu, ctxt->eflags);
4539                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4540                 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4541                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4542                 kvm_rip_write(vcpu, ctxt->eip);
4543         } else
4544                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4545
4546         return r;
4547 }
4548 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4549
4550 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4551 {
4552         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4553         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4554                                             size, port, &val, 1);
4555         /* do not return to emulator after return from userspace */
4556         vcpu->arch.pio.count = 0;
4557         return ret;
4558 }
4559 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4560
4561 static void tsc_bad(void *info)
4562 {
4563         __this_cpu_write(cpu_tsc_khz, 0);
4564 }
4565
4566 static void tsc_khz_changed(void *data)
4567 {
4568         struct cpufreq_freqs *freq = data;
4569         unsigned long khz = 0;
4570
4571         if (data)
4572                 khz = freq->new;
4573         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4574                 khz = cpufreq_quick_get(raw_smp_processor_id());
4575         if (!khz)
4576                 khz = tsc_khz;
4577         __this_cpu_write(cpu_tsc_khz, khz);
4578 }
4579
4580 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4581                                      void *data)
4582 {
4583         struct cpufreq_freqs *freq = data;
4584         struct kvm *kvm;
4585         struct kvm_vcpu *vcpu;
4586         int i, send_ipi = 0;
4587
4588         /*
4589          * We allow guests to temporarily run on slowing clocks,
4590          * provided we notify them after, or to run on accelerating
4591          * clocks, provided we notify them before.  Thus time never
4592          * goes backwards.
4593          *
4594          * However, we have a problem.  We can't atomically update
4595          * the frequency of a given CPU from this function; it is
4596          * merely a notifier, which can be called from any CPU.
4597          * Changing the TSC frequency at arbitrary points in time
4598          * requires a recomputation of local variables related to
4599          * the TSC for each VCPU.  We must flag these local variables
4600          * to be updated and be sure the update takes place with the
4601          * new frequency before any guests proceed.
4602          *
4603          * Unfortunately, the combination of hotplug CPU and frequency
4604          * change creates an intractable locking scenario; the order
4605          * of when these callouts happen is undefined with respect to
4606          * CPU hotplug, and they can race with each other.  As such,
4607          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4608          * undefined; you can actually have a CPU frequency change take
4609          * place in between the computation of X and the setting of the
4610          * variable.  To protect against this problem, all updates of
4611          * the per_cpu tsc_khz variable are done in an interrupt
4612          * protected IPI, and all callers wishing to update the value
4613          * must wait for a synchronous IPI to complete (which is trivial
4614          * if the caller is on the CPU already).  This establishes the
4615          * necessary total order on variable updates.
4616          *
4617          * Note that because a guest time update may take place
4618          * anytime after the setting of the VCPU's request bit, the
4619          * correct TSC value must be set before the request.  However,
4620          * to ensure the update actually makes it to any guest which
4621          * starts running in hardware virtualization between the set
4622          * and the acquisition of the spinlock, we must also ping the
4623          * CPU after setting the request bit.
4624          *
4625          */
4626
4627         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4628                 return 0;
4629         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4630                 return 0;
4631
4632         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4633
4634         raw_spin_lock(&kvm_lock);
4635         list_for_each_entry(kvm, &vm_list, vm_list) {
4636                 kvm_for_each_vcpu(i, vcpu, kvm) {
4637                         if (vcpu->cpu != freq->cpu)
4638                                 continue;
4639                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4640                         if (vcpu->cpu != smp_processor_id())
4641                                 send_ipi = 1;
4642                 }
4643         }
4644         raw_spin_unlock(&kvm_lock);
4645
4646         if (freq->old < freq->new && send_ipi) {
4647                 /*
4648                  * We upscale the frequency.  Must make the guest
4649                  * doesn't see old kvmclock values while running with
4650                  * the new frequency, otherwise we risk the guest sees
4651                  * time go backwards.
4652                  *
4653                  * In case we update the frequency for another cpu
4654                  * (which might be in guest context) send an interrupt
4655                  * to kick the cpu out of guest context.  Next time
4656                  * guest context is entered kvmclock will be updated,
4657                  * so the guest will not see stale values.
4658                  */
4659                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4660         }
4661         return 0;
4662 }
4663
4664 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4665         .notifier_call  = kvmclock_cpufreq_notifier
4666 };
4667
4668 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4669                                         unsigned long action, void *hcpu)
4670 {
4671         unsigned int cpu = (unsigned long)hcpu;
4672
4673         switch (action) {
4674                 case CPU_ONLINE:
4675                 case CPU_DOWN_FAILED:
4676                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4677                         break;
4678                 case CPU_DOWN_PREPARE:
4679                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
4680                         break;
4681         }
4682         return NOTIFY_OK;
4683 }
4684
4685 static struct notifier_block kvmclock_cpu_notifier_block = {
4686         .notifier_call  = kvmclock_cpu_notifier,
4687         .priority = -INT_MAX
4688 };
4689
4690 static void kvm_timer_init(void)
4691 {
4692         int cpu;
4693
4694         max_tsc_khz = tsc_khz;
4695         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4696         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4697 #ifdef CONFIG_CPU_FREQ
4698                 struct cpufreq_policy policy;
4699                 memset(&policy, 0, sizeof(policy));
4700                 cpu = get_cpu();
4701                 cpufreq_get_policy(&policy, cpu);
4702                 if (policy.cpuinfo.max_freq)
4703                         max_tsc_khz = policy.cpuinfo.max_freq;
4704                 put_cpu();
4705 #endif
4706                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4707                                           CPUFREQ_TRANSITION_NOTIFIER);
4708         }
4709         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4710         for_each_online_cpu(cpu)
4711                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4712 }
4713
4714 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4715
4716 int kvm_is_in_guest(void)
4717 {
4718         return __this_cpu_read(current_vcpu) != NULL;
4719 }
4720
4721 static int kvm_is_user_mode(void)
4722 {
4723         int user_mode = 3;
4724
4725         if (__this_cpu_read(current_vcpu))
4726                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
4727
4728         return user_mode != 0;
4729 }
4730
4731 static unsigned long kvm_get_guest_ip(void)
4732 {
4733         unsigned long ip = 0;
4734
4735         if (__this_cpu_read(current_vcpu))
4736                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
4737
4738         return ip;
4739 }
4740
4741 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4742         .is_in_guest            = kvm_is_in_guest,
4743         .is_user_mode           = kvm_is_user_mode,
4744         .get_guest_ip           = kvm_get_guest_ip,
4745 };
4746
4747 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4748 {
4749         __this_cpu_write(current_vcpu, vcpu);
4750 }
4751 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4752
4753 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4754 {
4755         __this_cpu_write(current_vcpu, NULL);
4756 }
4757 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4758
4759 static void kvm_set_mmio_spte_mask(void)
4760 {
4761         u64 mask;
4762         int maxphyaddr = boot_cpu_data.x86_phys_bits;
4763
4764         /*
4765          * Set the reserved bits and the present bit of an paging-structure
4766          * entry to generate page fault with PFER.RSV = 1.
4767          */
4768         mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
4769         mask |= 1ull;
4770
4771 #ifdef CONFIG_X86_64
4772         /*
4773          * If reserved bit is not supported, clear the present bit to disable
4774          * mmio page fault.
4775          */
4776         if (maxphyaddr == 52)
4777                 mask &= ~1ull;
4778 #endif
4779
4780         kvm_mmu_set_mmio_spte_mask(mask);
4781 }
4782
4783 int kvm_arch_init(void *opaque)
4784 {
4785         int r;
4786         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4787
4788         if (kvm_x86_ops) {
4789                 printk(KERN_ERR "kvm: already loaded the other module\n");
4790                 r = -EEXIST;
4791                 goto out;
4792         }
4793
4794         if (!ops->cpu_has_kvm_support()) {
4795                 printk(KERN_ERR "kvm: no hardware support\n");
4796                 r = -EOPNOTSUPP;
4797                 goto out;
4798         }
4799         if (ops->disabled_by_bios()) {
4800                 printk(KERN_ERR "kvm: disabled by bios\n");
4801                 r = -EOPNOTSUPP;
4802                 goto out;
4803         }
4804
4805         r = kvm_mmu_module_init();
4806         if (r)
4807                 goto out;
4808
4809         kvm_set_mmio_spte_mask();
4810         kvm_init_msr_list();
4811
4812         kvm_x86_ops = ops;
4813         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4814                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
4815
4816         kvm_timer_init();
4817
4818         perf_register_guest_info_callbacks(&kvm_guest_cbs);
4819
4820         if (cpu_has_xsave)
4821                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4822
4823         return 0;
4824
4825 out:
4826         return r;
4827 }
4828
4829 void kvm_arch_exit(void)
4830 {
4831         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4832
4833         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4834                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4835                                             CPUFREQ_TRANSITION_NOTIFIER);
4836         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4837         kvm_x86_ops = NULL;
4838         kvm_mmu_module_exit();
4839 }
4840
4841 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4842 {
4843         ++vcpu->stat.halt_exits;
4844         if (irqchip_in_kernel(vcpu->kvm)) {
4845                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4846                 return 1;
4847         } else {
4848                 vcpu->run->exit_reason = KVM_EXIT_HLT;
4849                 return 0;
4850         }
4851 }
4852 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4853
4854 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4855 {
4856         u64 param, ingpa, outgpa, ret;
4857         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4858         bool fast, longmode;
4859         int cs_db, cs_l;
4860
4861         /*
4862          * hypercall generates UD from non zero cpl and real mode
4863          * per HYPER-V spec
4864          */
4865         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4866                 kvm_queue_exception(vcpu, UD_VECTOR);
4867                 return 0;
4868         }
4869
4870         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4871         longmode = is_long_mode(vcpu) && cs_l == 1;
4872
4873         if (!longmode) {
4874                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4875                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4876                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4877                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4878                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4879                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4880         }
4881 #ifdef CONFIG_X86_64
4882         else {
4883                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4884                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4885                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4886         }
4887 #endif
4888
4889         code = param & 0xffff;
4890         fast = (param >> 16) & 0x1;
4891         rep_cnt = (param >> 32) & 0xfff;
4892         rep_idx = (param >> 48) & 0xfff;
4893
4894         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4895
4896         switch (code) {
4897         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4898                 kvm_vcpu_on_spin(vcpu);
4899                 break;
4900         default:
4901                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4902                 break;
4903         }
4904
4905         ret = res | (((u64)rep_done & 0xfff) << 32);
4906         if (longmode) {
4907                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4908         } else {
4909                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4910                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4911         }
4912
4913         return 1;
4914 }
4915
4916 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4917 {
4918         unsigned long nr, a0, a1, a2, a3, ret;
4919         int r = 1;
4920
4921         if (kvm_hv_hypercall_enabled(vcpu->kvm))
4922                 return kvm_hv_hypercall(vcpu);
4923
4924         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4925         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4926         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4927         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4928         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4929
4930         trace_kvm_hypercall(nr, a0, a1, a2, a3);
4931
4932         if (!is_long_mode(vcpu)) {
4933                 nr &= 0xFFFFFFFF;
4934                 a0 &= 0xFFFFFFFF;
4935                 a1 &= 0xFFFFFFFF;
4936                 a2 &= 0xFFFFFFFF;
4937                 a3 &= 0xFFFFFFFF;
4938         }
4939
4940         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4941                 ret = -KVM_EPERM;
4942                 goto out;
4943         }
4944
4945         switch (nr) {
4946         case KVM_HC_VAPIC_POLL_IRQ:
4947                 ret = 0;
4948                 break;
4949         default:
4950                 ret = -KVM_ENOSYS;
4951                 break;
4952         }
4953 out:
4954         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4955         ++vcpu->stat.hypercalls;
4956         return r;
4957 }
4958 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4959
4960 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
4961 {
4962         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4963         char instruction[3];
4964         unsigned long rip = kvm_rip_read(vcpu);
4965
4966         /*
4967          * Blow out the MMU to ensure that no other VCPU has an active mapping
4968          * to ensure that the updated hypercall appears atomically across all
4969          * VCPUs.
4970          */
4971         kvm_mmu_zap_all(vcpu->kvm);
4972
4973         kvm_x86_ops->patch_hypercall(vcpu, instruction);
4974
4975         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
4976 }
4977
4978 /*
4979  * Check if userspace requested an interrupt window, and that the
4980  * interrupt window is open.
4981  *
4982  * No need to exit to userspace if we already have an interrupt queued.
4983  */
4984 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4985 {
4986         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4987                 vcpu->run->request_interrupt_window &&
4988                 kvm_arch_interrupt_allowed(vcpu));
4989 }
4990
4991 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4992 {
4993         struct kvm_run *kvm_run = vcpu->run;
4994
4995         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4996         kvm_run->cr8 = kvm_get_cr8(vcpu);
4997         kvm_run->apic_base = kvm_get_apic_base(vcpu);
4998         if (irqchip_in_kernel(vcpu->kvm))
4999                 kvm_run->ready_for_interrupt_injection = 1;
5000         else
5001                 kvm_run->ready_for_interrupt_injection =
5002                         kvm_arch_interrupt_allowed(vcpu) &&
5003                         !kvm_cpu_has_interrupt(vcpu) &&
5004                         !kvm_event_needs_reinjection(vcpu);
5005 }
5006
5007 static void vapic_enter(struct kvm_vcpu *vcpu)
5008 {
5009         struct kvm_lapic *apic = vcpu->arch.apic;
5010         struct page *page;
5011
5012         if (!apic || !apic->vapic_addr)
5013                 return;
5014
5015         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5016
5017         vcpu->arch.apic->vapic_page = page;
5018 }
5019
5020 static void vapic_exit(struct kvm_vcpu *vcpu)
5021 {
5022         struct kvm_lapic *apic = vcpu->arch.apic;
5023         int idx;
5024
5025         if (!apic || !apic->vapic_addr)
5026                 return;
5027
5028         idx = srcu_read_lock(&vcpu->kvm->srcu);
5029         kvm_release_page_dirty(apic->vapic_page);
5030         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5031         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5032 }
5033
5034 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5035 {
5036         int max_irr, tpr;
5037
5038         if (!kvm_x86_ops->update_cr8_intercept)
5039                 return;
5040
5041         if (!vcpu->arch.apic)
5042                 return;
5043
5044         if (!vcpu->arch.apic->vapic_addr)
5045                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5046         else
5047                 max_irr = -1;
5048
5049         if (max_irr != -1)
5050                 max_irr >>= 4;
5051
5052         tpr = kvm_lapic_get_cr8(vcpu);
5053
5054         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5055 }
5056
5057 static void inject_pending_event(struct kvm_vcpu *vcpu)
5058 {
5059         /* try to reinject previous events if any */
5060         if (vcpu->arch.exception.pending) {
5061                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5062                                         vcpu->arch.exception.has_error_code,
5063                                         vcpu->arch.exception.error_code);
5064                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5065                                           vcpu->arch.exception.has_error_code,
5066                                           vcpu->arch.exception.error_code,
5067                                           vcpu->arch.exception.reinject);
5068                 return;
5069         }
5070
5071         if (vcpu->arch.nmi_injected) {
5072                 kvm_x86_ops->set_nmi(vcpu);
5073                 return;
5074         }
5075
5076         if (vcpu->arch.interrupt.pending) {
5077                 kvm_x86_ops->set_irq(vcpu);
5078                 return;
5079         }
5080
5081         /* try to inject new event if pending */
5082         if (vcpu->arch.nmi_pending) {
5083                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5084                         --vcpu->arch.nmi_pending;
5085                         vcpu->arch.nmi_injected = true;
5086                         kvm_x86_ops->set_nmi(vcpu);
5087                 }
5088         } else if (kvm_cpu_has_interrupt(vcpu)) {
5089                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5090                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5091                                             false);
5092                         kvm_x86_ops->set_irq(vcpu);
5093                 }
5094         }
5095 }
5096
5097 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5098 {
5099         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5100                         !vcpu->guest_xcr0_loaded) {
5101                 /* kvm_set_xcr() also depends on this */
5102                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5103                 vcpu->guest_xcr0_loaded = 1;
5104         }
5105 }
5106
5107 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5108 {
5109         if (vcpu->guest_xcr0_loaded) {
5110                 if (vcpu->arch.xcr0 != host_xcr0)
5111                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5112                 vcpu->guest_xcr0_loaded = 0;
5113         }
5114 }
5115
5116 static void process_nmi(struct kvm_vcpu *vcpu)
5117 {
5118         unsigned limit = 2;
5119
5120         /*
5121          * x86 is limited to one NMI running, and one NMI pending after it.
5122          * If an NMI is already in progress, limit further NMIs to just one.
5123          * Otherwise, allow two (and we'll inject the first one immediately).
5124          */
5125         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5126                 limit = 1;
5127
5128         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5129         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5130         kvm_make_request(KVM_REQ_EVENT, vcpu);
5131 }
5132
5133 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5134 {
5135         int r;
5136         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5137                 vcpu->run->request_interrupt_window;
5138         bool req_immediate_exit = 0;
5139
5140         if (vcpu->requests) {
5141                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5142                         kvm_mmu_unload(vcpu);
5143                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5144                         __kvm_migrate_timers(vcpu);
5145                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5146                         r = kvm_guest_time_update(vcpu);
5147                         if (unlikely(r))
5148                                 goto out;
5149                 }
5150                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5151                         kvm_mmu_sync_roots(vcpu);
5152                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5153                         kvm_x86_ops->tlb_flush(vcpu);
5154                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5155                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5156                         r = 0;
5157                         goto out;
5158                 }
5159                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5160                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5161                         r = 0;
5162                         goto out;
5163                 }
5164                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5165                         vcpu->fpu_active = 0;
5166                         kvm_x86_ops->fpu_deactivate(vcpu);
5167                 }
5168                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5169                         /* Page is swapped out. Do synthetic halt */
5170                         vcpu->arch.apf.halted = true;
5171                         r = 1;
5172                         goto out;
5173                 }
5174                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5175                         record_steal_time(vcpu);
5176                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5177                         process_nmi(vcpu);
5178                 req_immediate_exit =
5179                         kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5180                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5181                         kvm_handle_pmu_event(vcpu);
5182                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5183                         kvm_deliver_pmi(vcpu);
5184         }
5185
5186         r = kvm_mmu_reload(vcpu);
5187         if (unlikely(r))
5188                 goto out;
5189
5190         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5191                 inject_pending_event(vcpu);
5192
5193                 /* enable NMI/IRQ window open exits if needed */
5194                 if (vcpu->arch.nmi_pending)
5195                         kvm_x86_ops->enable_nmi_window(vcpu);
5196                 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5197                         kvm_x86_ops->enable_irq_window(vcpu);
5198
5199                 if (kvm_lapic_enabled(vcpu)) {
5200                         update_cr8_intercept(vcpu);
5201                         kvm_lapic_sync_to_vapic(vcpu);
5202                 }
5203         }
5204
5205         preempt_disable();
5206
5207         kvm_x86_ops->prepare_guest_switch(vcpu);
5208         if (vcpu->fpu_active)
5209                 kvm_load_guest_fpu(vcpu);
5210         kvm_load_guest_xcr0(vcpu);
5211
5212         vcpu->mode = IN_GUEST_MODE;
5213
5214         /* We should set ->mode before check ->requests,
5215          * see the comment in make_all_cpus_request.
5216          */
5217         smp_mb();
5218
5219         local_irq_disable();
5220
5221         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5222             || need_resched() || signal_pending(current)) {
5223                 vcpu->mode = OUTSIDE_GUEST_MODE;
5224                 smp_wmb();
5225                 local_irq_enable();
5226                 preempt_enable();
5227                 kvm_x86_ops->cancel_injection(vcpu);
5228                 r = 1;
5229                 goto out;
5230         }
5231
5232         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5233
5234         if (req_immediate_exit)
5235                 smp_send_reschedule(vcpu->cpu);
5236
5237         kvm_guest_enter();
5238
5239         if (unlikely(vcpu->arch.switch_db_regs)) {
5240                 set_debugreg(0, 7);
5241                 set_debugreg(vcpu->arch.eff_db[0], 0);
5242                 set_debugreg(vcpu->arch.eff_db[1], 1);
5243                 set_debugreg(vcpu->arch.eff_db[2], 2);
5244                 set_debugreg(vcpu->arch.eff_db[3], 3);
5245         }
5246
5247         trace_kvm_entry(vcpu->vcpu_id);
5248         kvm_x86_ops->run(vcpu);
5249
5250         /*
5251          * If the guest has used debug registers, at least dr7
5252          * will be disabled while returning to the host.
5253          * If we don't have active breakpoints in the host, we don't
5254          * care about the messed up debug address registers. But if
5255          * we have some of them active, restore the old state.
5256          */
5257         if (hw_breakpoint_active())
5258                 hw_breakpoint_restore();
5259
5260         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
5261
5262         vcpu->mode = OUTSIDE_GUEST_MODE;
5263         smp_wmb();
5264         local_irq_enable();
5265
5266         ++vcpu->stat.exits;
5267
5268         /*
5269          * We must have an instruction between local_irq_enable() and
5270          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5271          * the interrupt shadow.  The stat.exits increment will do nicely.
5272          * But we need to prevent reordering, hence this barrier():
5273          */
5274         barrier();
5275
5276         kvm_guest_exit();
5277
5278         preempt_enable();
5279
5280         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5281
5282         /*
5283          * Profile KVM exit RIPs:
5284          */
5285         if (unlikely(prof_on == KVM_PROFILING)) {
5286                 unsigned long rip = kvm_rip_read(vcpu);
5287                 profile_hit(KVM_PROFILING, (void *)rip);
5288         }
5289
5290
5291         kvm_lapic_sync_from_vapic(vcpu);
5292
5293         r = kvm_x86_ops->handle_exit(vcpu);
5294 out:
5295         return r;
5296 }
5297
5298
5299 static int __vcpu_run(struct kvm_vcpu *vcpu)
5300 {
5301         int r;
5302         struct kvm *kvm = vcpu->kvm;
5303
5304         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5305                 pr_debug("vcpu %d received sipi with vector # %x\n",
5306                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5307                 kvm_lapic_reset(vcpu);
5308                 r = kvm_arch_vcpu_reset(vcpu);
5309                 if (r)
5310                         return r;
5311                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5312         }
5313
5314         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5315         vapic_enter(vcpu);
5316
5317         r = 1;
5318         while (r > 0) {
5319                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5320                     !vcpu->arch.apf.halted)
5321                         r = vcpu_enter_guest(vcpu);
5322                 else {
5323                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5324                         kvm_vcpu_block(vcpu);
5325                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5326                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5327                         {
5328                                 switch(vcpu->arch.mp_state) {
5329                                 case KVM_MP_STATE_HALTED:
5330                                         vcpu->arch.mp_state =
5331                                                 KVM_MP_STATE_RUNNABLE;
5332                                 case KVM_MP_STATE_RUNNABLE:
5333                                         vcpu->arch.apf.halted = false;
5334                                         break;
5335                                 case KVM_MP_STATE_SIPI_RECEIVED:
5336                                 default:
5337                                         r = -EINTR;
5338                                         break;
5339                                 }
5340                         }
5341                 }
5342
5343                 if (r <= 0)
5344                         break;
5345
5346                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5347                 if (kvm_cpu_has_pending_timer(vcpu))
5348                         kvm_inject_pending_timer_irqs(vcpu);
5349
5350                 if (dm_request_for_irq_injection(vcpu)) {
5351                         r = -EINTR;
5352                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5353                         ++vcpu->stat.request_irq_exits;
5354                 }
5355
5356                 kvm_check_async_pf_completion(vcpu);
5357
5358                 if (signal_pending(current)) {
5359                         r = -EINTR;
5360                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5361                         ++vcpu->stat.signal_exits;
5362                 }
5363                 if (need_resched()) {
5364                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5365                         kvm_resched(vcpu);
5366                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5367                 }
5368         }
5369
5370         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5371
5372         vapic_exit(vcpu);
5373
5374         return r;
5375 }
5376
5377 static int complete_mmio(struct kvm_vcpu *vcpu)
5378 {
5379         struct kvm_run *run = vcpu->run;
5380         int r;
5381
5382         if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5383                 return 1;
5384
5385         if (vcpu->mmio_needed) {
5386                 vcpu->mmio_needed = 0;
5387                 if (!vcpu->mmio_is_write)
5388                         memcpy(vcpu->mmio_data + vcpu->mmio_index,
5389                                run->mmio.data, 8);
5390                 vcpu->mmio_index += 8;
5391                 if (vcpu->mmio_index < vcpu->mmio_size) {
5392                         run->exit_reason = KVM_EXIT_MMIO;
5393                         run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index;
5394                         memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8);
5395                         run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8);
5396                         run->mmio.is_write = vcpu->mmio_is_write;
5397                         vcpu->mmio_needed = 1;
5398                         return 0;
5399                 }
5400                 if (vcpu->mmio_is_write)
5401                         return 1;
5402                 vcpu->mmio_read_completed = 1;
5403         }
5404         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5405         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5406         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5407         if (r != EMULATE_DONE)
5408                 return 0;
5409         return 1;
5410 }
5411
5412 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5413 {
5414         int r;
5415         sigset_t sigsaved;
5416
5417         if (!tsk_used_math(current) && init_fpu(current))
5418                 return -ENOMEM;
5419
5420         if (vcpu->sigset_active)
5421                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5422
5423         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5424                 kvm_vcpu_block(vcpu);
5425                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5426                 r = -EAGAIN;
5427                 goto out;
5428         }
5429
5430         /* re-sync apic's tpr */
5431         if (!irqchip_in_kernel(vcpu->kvm)) {
5432                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5433                         r = -EINVAL;
5434                         goto out;
5435                 }
5436         }
5437
5438         r = complete_mmio(vcpu);
5439         if (r <= 0)
5440                 goto out;
5441
5442         r = __vcpu_run(vcpu);
5443
5444 out:
5445         post_kvm_run_save(vcpu);
5446         if (vcpu->sigset_active)
5447                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5448
5449         return r;
5450 }
5451
5452 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5453 {
5454         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5455                 /*
5456                  * We are here if userspace calls get_regs() in the middle of
5457                  * instruction emulation. Registers state needs to be copied
5458                  * back from emulation context to vcpu. Usrapace shouldn't do
5459                  * that usually, but some bad designed PV devices (vmware
5460                  * backdoor interface) need this to work
5461                  */
5462                 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5463                 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5464                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5465         }
5466         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5467         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5468         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5469         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5470         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5471         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5472         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5473         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5474 #ifdef CONFIG_X86_64
5475         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5476         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5477         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5478         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5479         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5480         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5481         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5482         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5483 #endif
5484
5485         regs->rip = kvm_rip_read(vcpu);
5486         regs->rflags = kvm_get_rflags(vcpu);
5487
5488         return 0;
5489 }
5490
5491 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5492 {
5493         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5494         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5495
5496         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5497         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5498         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5499         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5500         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5501         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5502         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5503         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5504 #ifdef CONFIG_X86_64
5505         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5506         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5507         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5508         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5509         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5510         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5511         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5512         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5513 #endif
5514
5515         kvm_rip_write(vcpu, regs->rip);
5516         kvm_set_rflags(vcpu, regs->rflags);
5517
5518         vcpu->arch.exception.pending = false;
5519
5520         kvm_make_request(KVM_REQ_EVENT, vcpu);
5521
5522         return 0;
5523 }
5524
5525 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5526 {
5527         struct kvm_segment cs;
5528
5529         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5530         *db = cs.db;
5531         *l = cs.l;
5532 }
5533 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5534
5535 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5536                                   struct kvm_sregs *sregs)
5537 {
5538         struct desc_ptr dt;
5539
5540         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5541         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5542         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5543         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5544         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5545         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5546
5547         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5548         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5549
5550         kvm_x86_ops->get_idt(vcpu, &dt);
5551         sregs->idt.limit = dt.size;
5552         sregs->idt.base = dt.address;
5553         kvm_x86_ops->get_gdt(vcpu, &dt);
5554         sregs->gdt.limit = dt.size;
5555         sregs->gdt.base = dt.address;
5556
5557         sregs->cr0 = kvm_read_cr0(vcpu);
5558         sregs->cr2 = vcpu->arch.cr2;
5559         sregs->cr3 = kvm_read_cr3(vcpu);
5560         sregs->cr4 = kvm_read_cr4(vcpu);
5561         sregs->cr8 = kvm_get_cr8(vcpu);
5562         sregs->efer = vcpu->arch.efer;
5563         sregs->apic_base = kvm_get_apic_base(vcpu);
5564
5565         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5566
5567         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5568                 set_bit(vcpu->arch.interrupt.nr,
5569                         (unsigned long *)sregs->interrupt_bitmap);
5570
5571         return 0;
5572 }
5573
5574 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5575                                     struct kvm_mp_state *mp_state)
5576 {
5577         mp_state->mp_state = vcpu->arch.mp_state;
5578         return 0;
5579 }
5580
5581 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5582                                     struct kvm_mp_state *mp_state)
5583 {
5584         vcpu->arch.mp_state = mp_state->mp_state;
5585         kvm_make_request(KVM_REQ_EVENT, vcpu);
5586         return 0;
5587 }
5588
5589 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5590                     bool has_error_code, u32 error_code)
5591 {
5592         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5593         int ret;
5594
5595         init_emulate_ctxt(vcpu);
5596
5597         ret = emulator_task_switch(ctxt, tss_selector, reason,
5598                                    has_error_code, error_code);
5599
5600         if (ret)
5601                 return EMULATE_FAIL;
5602
5603         memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5604         kvm_rip_write(vcpu, ctxt->eip);
5605         kvm_set_rflags(vcpu, ctxt->eflags);
5606         kvm_make_request(KVM_REQ_EVENT, vcpu);
5607         return EMULATE_DONE;
5608 }
5609 EXPORT_SYMBOL_GPL(kvm_task_switch);
5610
5611 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5612                                   struct kvm_sregs *sregs)
5613 {
5614         int mmu_reset_needed = 0;
5615         int pending_vec, max_bits, idx;
5616         struct desc_ptr dt;
5617
5618         dt.size = sregs->idt.limit;
5619         dt.address = sregs->idt.base;
5620         kvm_x86_ops->set_idt(vcpu, &dt);
5621         dt.size = sregs->gdt.limit;
5622         dt.address = sregs->gdt.base;
5623         kvm_x86_ops->set_gdt(vcpu, &dt);
5624
5625         vcpu->arch.cr2 = sregs->cr2;
5626         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5627         vcpu->arch.cr3 = sregs->cr3;
5628         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5629
5630         kvm_set_cr8(vcpu, sregs->cr8);
5631
5632         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5633         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5634         kvm_set_apic_base(vcpu, sregs->apic_base);
5635
5636         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5637         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5638         vcpu->arch.cr0 = sregs->cr0;
5639
5640         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5641         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5642         if (sregs->cr4 & X86_CR4_OSXSAVE)
5643                 kvm_update_cpuid(vcpu);
5644
5645         idx = srcu_read_lock(&vcpu->kvm->srcu);
5646         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5647                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5648                 mmu_reset_needed = 1;
5649         }
5650         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5651
5652         if (mmu_reset_needed)
5653                 kvm_mmu_reset_context(vcpu);
5654
5655         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5656         pending_vec = find_first_bit(
5657                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5658         if (pending_vec < max_bits) {
5659                 kvm_queue_interrupt(vcpu, pending_vec, false);
5660                 pr_debug("Set back pending irq %d\n", pending_vec);
5661         }
5662
5663         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5664         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5665         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5666         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5667         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5668         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5669
5670         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5671         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5672
5673         update_cr8_intercept(vcpu);
5674
5675         /* Older userspace won't unhalt the vcpu on reset. */
5676         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5677             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5678             !is_protmode(vcpu))
5679                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5680
5681         kvm_make_request(KVM_REQ_EVENT, vcpu);
5682
5683         return 0;
5684 }
5685
5686 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5687                                         struct kvm_guest_debug *dbg)
5688 {
5689         unsigned long rflags;
5690         int i, r;
5691
5692         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5693                 r = -EBUSY;
5694                 if (vcpu->arch.exception.pending)
5695                         goto out;
5696                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5697                         kvm_queue_exception(vcpu, DB_VECTOR);
5698                 else
5699                         kvm_queue_exception(vcpu, BP_VECTOR);
5700         }
5701
5702         /*
5703          * Read rflags as long as potentially injected trace flags are still
5704          * filtered out.
5705          */
5706         rflags = kvm_get_rflags(vcpu);
5707
5708         vcpu->guest_debug = dbg->control;
5709         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5710                 vcpu->guest_debug = 0;
5711
5712         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5713                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5714                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5715                 vcpu->arch.switch_db_regs =
5716                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5717         } else {
5718                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5719                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5720                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5721         }
5722
5723         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5724                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5725                         get_segment_base(vcpu, VCPU_SREG_CS);
5726
5727         /*
5728          * Trigger an rflags update that will inject or remove the trace
5729          * flags.
5730          */
5731         kvm_set_rflags(vcpu, rflags);
5732
5733         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5734
5735         r = 0;
5736
5737 out:
5738
5739         return r;
5740 }
5741
5742 /*
5743  * Translate a guest virtual address to a guest physical address.
5744  */
5745 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5746                                     struct kvm_translation *tr)
5747 {
5748         unsigned long vaddr = tr->linear_address;
5749         gpa_t gpa;
5750         int idx;
5751
5752         idx = srcu_read_lock(&vcpu->kvm->srcu);
5753         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5754         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5755         tr->physical_address = gpa;
5756         tr->valid = gpa != UNMAPPED_GVA;
5757         tr->writeable = 1;
5758         tr->usermode = 0;
5759
5760         return 0;
5761 }
5762
5763 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5764 {
5765         struct i387_fxsave_struct *fxsave =
5766                         &vcpu->arch.guest_fpu.state->fxsave;
5767
5768         memcpy(fpu->fpr, fxsave->st_space, 128);
5769         fpu->fcw = fxsave->cwd;
5770         fpu->fsw = fxsave->swd;
5771         fpu->ftwx = fxsave->twd;
5772         fpu->last_opcode = fxsave->fop;
5773         fpu->last_ip = fxsave->rip;
5774         fpu->last_dp = fxsave->rdp;
5775         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5776
5777         return 0;
5778 }
5779
5780 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5781 {
5782         struct i387_fxsave_struct *fxsave =
5783                         &vcpu->arch.guest_fpu.state->fxsave;
5784
5785         memcpy(fxsave->st_space, fpu->fpr, 128);
5786         fxsave->cwd = fpu->fcw;
5787         fxsave->swd = fpu->fsw;
5788         fxsave->twd = fpu->ftwx;
5789         fxsave->fop = fpu->last_opcode;
5790         fxsave->rip = fpu->last_ip;
5791         fxsave->rdp = fpu->last_dp;
5792         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5793
5794         return 0;
5795 }
5796
5797 int fx_init(struct kvm_vcpu *vcpu)
5798 {
5799         int err;
5800
5801         err = fpu_alloc(&vcpu->arch.guest_fpu);
5802         if (err)
5803                 return err;
5804
5805         fpu_finit(&vcpu->arch.guest_fpu);
5806
5807         /*
5808          * Ensure guest xcr0 is valid for loading
5809          */
5810         vcpu->arch.xcr0 = XSTATE_FP;
5811
5812         vcpu->arch.cr0 |= X86_CR0_ET;
5813
5814         return 0;
5815 }
5816 EXPORT_SYMBOL_GPL(fx_init);
5817
5818 static void fx_free(struct kvm_vcpu *vcpu)
5819 {
5820         fpu_free(&vcpu->arch.guest_fpu);
5821 }
5822
5823 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5824 {
5825         if (vcpu->guest_fpu_loaded)
5826                 return;
5827
5828         /*
5829          * Restore all possible states in the guest,
5830          * and assume host would use all available bits.
5831          * Guest xcr0 would be loaded later.
5832          */
5833         kvm_put_guest_xcr0(vcpu);
5834         vcpu->guest_fpu_loaded = 1;
5835         unlazy_fpu(current);
5836         fpu_restore_checking(&vcpu->arch.guest_fpu);
5837         trace_kvm_fpu(1);
5838 }
5839
5840 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5841 {
5842         kvm_put_guest_xcr0(vcpu);
5843
5844         if (!vcpu->guest_fpu_loaded)
5845                 return;
5846
5847         vcpu->guest_fpu_loaded = 0;
5848         fpu_save_init(&vcpu->arch.guest_fpu);
5849         ++vcpu->stat.fpu_reload;
5850         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5851         trace_kvm_fpu(0);
5852 }
5853
5854 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5855 {
5856         kvmclock_reset(vcpu);
5857
5858         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5859         fx_free(vcpu);
5860         kvm_x86_ops->vcpu_free(vcpu);
5861 }
5862
5863 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5864                                                 unsigned int id)
5865 {
5866         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5867                 printk_once(KERN_WARNING
5868                 "kvm: SMP vm created on host with unstable TSC; "
5869                 "guest TSC will not be reliable\n");
5870         return kvm_x86_ops->vcpu_create(kvm, id);
5871 }
5872
5873 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5874 {
5875         int r;
5876
5877         vcpu->arch.mtrr_state.have_fixed = 1;
5878         vcpu_load(vcpu);
5879         r = kvm_arch_vcpu_reset(vcpu);
5880         if (r == 0)
5881                 r = kvm_mmu_setup(vcpu);
5882         vcpu_put(vcpu);
5883
5884         return r;
5885 }
5886
5887 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5888 {
5889         vcpu->arch.apf.msr_val = 0;
5890
5891         vcpu_load(vcpu);
5892         kvm_mmu_unload(vcpu);
5893         vcpu_put(vcpu);
5894
5895         fx_free(vcpu);
5896         kvm_x86_ops->vcpu_free(vcpu);
5897 }
5898
5899 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5900 {
5901         atomic_set(&vcpu->arch.nmi_queued, 0);
5902         vcpu->arch.nmi_pending = 0;
5903         vcpu->arch.nmi_injected = false;
5904
5905         vcpu->arch.switch_db_regs = 0;
5906         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5907         vcpu->arch.dr6 = DR6_FIXED_1;
5908         vcpu->arch.dr7 = DR7_FIXED_1;
5909
5910         kvm_make_request(KVM_REQ_EVENT, vcpu);
5911         vcpu->arch.apf.msr_val = 0;
5912         vcpu->arch.st.msr_val = 0;
5913
5914         kvmclock_reset(vcpu);
5915
5916         kvm_clear_async_pf_completion_queue(vcpu);
5917         kvm_async_pf_hash_reset(vcpu);
5918         vcpu->arch.apf.halted = false;
5919
5920         kvm_pmu_reset(vcpu);
5921
5922         return kvm_x86_ops->vcpu_reset(vcpu);
5923 }
5924
5925 int kvm_arch_hardware_enable(void *garbage)
5926 {
5927         struct kvm *kvm;
5928         struct kvm_vcpu *vcpu;
5929         int i;
5930
5931         kvm_shared_msr_cpu_online();
5932         list_for_each_entry(kvm, &vm_list, vm_list)
5933                 kvm_for_each_vcpu(i, vcpu, kvm)
5934                         if (vcpu->cpu == smp_processor_id())
5935                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5936         return kvm_x86_ops->hardware_enable(garbage);
5937 }
5938
5939 void kvm_arch_hardware_disable(void *garbage)
5940 {
5941         kvm_x86_ops->hardware_disable(garbage);
5942         drop_user_return_notifiers(garbage);
5943 }
5944
5945 int kvm_arch_hardware_setup(void)
5946 {
5947         return kvm_x86_ops->hardware_setup();
5948 }
5949
5950 void kvm_arch_hardware_unsetup(void)
5951 {
5952         kvm_x86_ops->hardware_unsetup();
5953 }
5954
5955 void kvm_arch_check_processor_compat(void *rtn)
5956 {
5957         kvm_x86_ops->check_processor_compatibility(rtn);
5958 }
5959
5960 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5961 {
5962         struct page *page;
5963         struct kvm *kvm;
5964         int r;
5965
5966         BUG_ON(vcpu->kvm == NULL);
5967         kvm = vcpu->kvm;
5968
5969         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5970         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5971                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5972         else
5973                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5974
5975         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5976         if (!page) {
5977                 r = -ENOMEM;
5978                 goto fail;
5979         }
5980         vcpu->arch.pio_data = page_address(page);
5981
5982         kvm_init_tsc_catchup(vcpu, max_tsc_khz);
5983
5984         r = kvm_mmu_create(vcpu);
5985         if (r < 0)
5986                 goto fail_free_pio_data;
5987
5988         if (irqchip_in_kernel(kvm)) {
5989                 r = kvm_create_lapic(vcpu);
5990                 if (r < 0)
5991                         goto fail_mmu_destroy;
5992         }
5993
5994         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5995                                        GFP_KERNEL);
5996         if (!vcpu->arch.mce_banks) {
5997                 r = -ENOMEM;
5998                 goto fail_free_lapic;
5999         }
6000         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6001
6002         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6003                 goto fail_free_mce_banks;
6004
6005         kvm_async_pf_hash_reset(vcpu);
6006         kvm_pmu_init(vcpu);
6007
6008         return 0;
6009 fail_free_mce_banks:
6010         kfree(vcpu->arch.mce_banks);
6011 fail_free_lapic:
6012         kvm_free_lapic(vcpu);
6013 fail_mmu_destroy:
6014         kvm_mmu_destroy(vcpu);
6015 fail_free_pio_data:
6016         free_page((unsigned long)vcpu->arch.pio_data);
6017 fail:
6018         return r;
6019 }
6020
6021 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6022 {
6023         int idx;
6024
6025         kvm_pmu_destroy(vcpu);
6026         kfree(vcpu->arch.mce_banks);
6027         kvm_free_lapic(vcpu);
6028         idx = srcu_read_lock(&vcpu->kvm->srcu);
6029         kvm_mmu_destroy(vcpu);
6030         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6031         free_page((unsigned long)vcpu->arch.pio_data);
6032 }
6033
6034 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6035 {
6036         if (type)
6037                 return -EINVAL;
6038
6039         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6040         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6041
6042         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6043         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6044
6045         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6046
6047         return 0;
6048 }
6049
6050 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6051 {
6052         vcpu_load(vcpu);
6053         kvm_mmu_unload(vcpu);
6054         vcpu_put(vcpu);
6055 }
6056
6057 static void kvm_free_vcpus(struct kvm *kvm)
6058 {
6059         unsigned int i;
6060         struct kvm_vcpu *vcpu;
6061
6062         /*
6063          * Unpin any mmu pages first.
6064          */
6065         kvm_for_each_vcpu(i, vcpu, kvm) {
6066                 kvm_clear_async_pf_completion_queue(vcpu);
6067                 kvm_unload_vcpu_mmu(vcpu);
6068         }
6069         kvm_for_each_vcpu(i, vcpu, kvm)
6070                 kvm_arch_vcpu_free(vcpu);
6071
6072         mutex_lock(&kvm->lock);
6073         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6074                 kvm->vcpus[i] = NULL;
6075
6076         atomic_set(&kvm->online_vcpus, 0);
6077         mutex_unlock(&kvm->lock);
6078 }
6079
6080 void kvm_arch_sync_events(struct kvm *kvm)
6081 {
6082         kvm_free_all_assigned_devices(kvm);
6083         kvm_free_pit(kvm);
6084 }
6085
6086 void kvm_arch_destroy_vm(struct kvm *kvm)
6087 {
6088         kvm_iommu_unmap_guest(kvm);
6089         kfree(kvm->arch.vpic);
6090         kfree(kvm->arch.vioapic);
6091         kvm_free_vcpus(kvm);
6092         if (kvm->arch.apic_access_page)
6093                 put_page(kvm->arch.apic_access_page);
6094         if (kvm->arch.ept_identity_pagetable)
6095                 put_page(kvm->arch.ept_identity_pagetable);
6096 }
6097
6098 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6099                                 struct kvm_memory_slot *memslot,
6100                                 struct kvm_memory_slot old,
6101                                 struct kvm_userspace_memory_region *mem,
6102                                 int user_alloc)
6103 {
6104         int npages = memslot->npages;
6105         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6106
6107         /* Prevent internal slot pages from being moved by fork()/COW. */
6108         if (memslot->id >= KVM_MEMORY_SLOTS)
6109                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6110
6111         /*To keep backward compatibility with older userspace,
6112          *x86 needs to hanlde !user_alloc case.
6113          */
6114         if (!user_alloc) {
6115                 if (npages && !old.rmap) {
6116                         unsigned long userspace_addr;
6117
6118                         down_write(&current->mm->mmap_sem);
6119                         userspace_addr = do_mmap(NULL, 0,
6120                                                  npages * PAGE_SIZE,
6121                                                  PROT_READ | PROT_WRITE,
6122                                                  map_flags,
6123                                                  0);
6124                         up_write(&current->mm->mmap_sem);
6125
6126                         if (IS_ERR((void *)userspace_addr))
6127                                 return PTR_ERR((void *)userspace_addr);
6128
6129                         memslot->userspace_addr = userspace_addr;
6130                 }
6131         }
6132
6133
6134         return 0;
6135 }
6136
6137 void kvm_arch_commit_memory_region(struct kvm *kvm,
6138                                 struct kvm_userspace_memory_region *mem,
6139                                 struct kvm_memory_slot old,
6140                                 int user_alloc)
6141 {
6142
6143         int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6144
6145         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6146                 int ret;
6147
6148                 down_write(&current->mm->mmap_sem);
6149                 ret = do_munmap(current->mm, old.userspace_addr,
6150                                 old.npages * PAGE_SIZE);
6151                 up_write(&current->mm->mmap_sem);
6152                 if (ret < 0)
6153                         printk(KERN_WARNING
6154                                "kvm_vm_ioctl_set_memory_region: "
6155                                "failed to munmap memory\n");
6156         }
6157
6158         if (!kvm->arch.n_requested_mmu_pages)
6159                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6160
6161         spin_lock(&kvm->mmu_lock);
6162         if (nr_mmu_pages)
6163                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6164         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6165         spin_unlock(&kvm->mmu_lock);
6166 }
6167
6168 void kvm_arch_flush_shadow(struct kvm *kvm)
6169 {
6170         kvm_mmu_zap_all(kvm);
6171         kvm_reload_remote_mmus(kvm);
6172 }
6173
6174 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6175 {
6176         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6177                 !vcpu->arch.apf.halted)
6178                 || !list_empty_careful(&vcpu->async_pf.done)
6179                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6180                 || atomic_read(&vcpu->arch.nmi_queued) ||
6181                 (kvm_arch_interrupt_allowed(vcpu) &&
6182                  kvm_cpu_has_interrupt(vcpu));
6183 }
6184
6185 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6186 {
6187         int me;
6188         int cpu = vcpu->cpu;
6189
6190         if (waitqueue_active(&vcpu->wq)) {
6191                 wake_up_interruptible(&vcpu->wq);
6192                 ++vcpu->stat.halt_wakeup;
6193         }
6194
6195         me = get_cpu();
6196         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6197                 if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6198                         smp_send_reschedule(cpu);
6199         put_cpu();
6200 }
6201
6202 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6203 {
6204         return kvm_x86_ops->interrupt_allowed(vcpu);
6205 }
6206
6207 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6208 {
6209         unsigned long current_rip = kvm_rip_read(vcpu) +
6210                 get_segment_base(vcpu, VCPU_SREG_CS);
6211
6212         return current_rip == linear_rip;
6213 }
6214 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6215
6216 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6217 {
6218         unsigned long rflags;
6219
6220         rflags = kvm_x86_ops->get_rflags(vcpu);
6221         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6222                 rflags &= ~X86_EFLAGS_TF;
6223         return rflags;
6224 }
6225 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6226
6227 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6228 {
6229         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6230             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6231                 rflags |= X86_EFLAGS_TF;
6232         kvm_x86_ops->set_rflags(vcpu, rflags);
6233         kvm_make_request(KVM_REQ_EVENT, vcpu);
6234 }
6235 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6236
6237 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6238 {
6239         int r;
6240
6241         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6242               is_error_page(work->page))
6243                 return;
6244
6245         r = kvm_mmu_reload(vcpu);
6246         if (unlikely(r))
6247                 return;
6248
6249         if (!vcpu->arch.mmu.direct_map &&
6250               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6251                 return;
6252
6253         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6254 }
6255
6256 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6257 {
6258         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6259 }
6260
6261 static inline u32 kvm_async_pf_next_probe(u32 key)
6262 {
6263         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6264 }
6265
6266 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6267 {
6268         u32 key = kvm_async_pf_hash_fn(gfn);
6269
6270         while (vcpu->arch.apf.gfns[key] != ~0)
6271                 key = kvm_async_pf_next_probe(key);
6272
6273         vcpu->arch.apf.gfns[key] = gfn;
6274 }
6275
6276 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6277 {
6278         int i;
6279         u32 key = kvm_async_pf_hash_fn(gfn);
6280
6281         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6282                      (vcpu->arch.apf.gfns[key] != gfn &&
6283                       vcpu->arch.apf.gfns[key] != ~0); i++)
6284                 key = kvm_async_pf_next_probe(key);
6285
6286         return key;
6287 }
6288
6289 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6290 {
6291         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)]&n