KVM: x86 emulator: add framework for instruction intercepts
[linux-3.10.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <trace/events/kvm.h>
48
49 #define CREATE_TRACE_POINTS
50 #include "trace.h"
51
52 #include <asm/debugreg.h>
53 #include <asm/msr.h>
54 #include <asm/desc.h>
55 #include <asm/mtrr.h>
56 #include <asm/mce.h>
57 #include <asm/i387.h>
58 #include <asm/xcr.h>
59 #include <asm/pvclock.h>
60 #include <asm/div64.h>
61
62 #define MAX_IO_MSRS 256
63 #define CR0_RESERVED_BITS                                               \
64         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
65                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
66                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
67 #define CR4_RESERVED_BITS                                               \
68         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
69                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
70                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
71                           | X86_CR4_OSXSAVE \
72                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
73
74 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
75
76 #define KVM_MAX_MCE_BANKS 32
77 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
78
79 /* EFER defaults:
80  * - enable syscall per default because its emulated by KVM
81  * - enable LME and LMA per default on 64 bit KVM
82  */
83 #ifdef CONFIG_X86_64
84 static
85 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
86 #else
87 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
88 #endif
89
90 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
91 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
92
93 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
94 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
95                                     struct kvm_cpuid_entry2 __user *entries);
96
97 struct kvm_x86_ops *kvm_x86_ops;
98 EXPORT_SYMBOL_GPL(kvm_x86_ops);
99
100 int ignore_msrs = 0;
101 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
102
103 #define KVM_NR_SHARED_MSRS 16
104
105 struct kvm_shared_msrs_global {
106         int nr;
107         u32 msrs[KVM_NR_SHARED_MSRS];
108 };
109
110 struct kvm_shared_msrs {
111         struct user_return_notifier urn;
112         bool registered;
113         struct kvm_shared_msr_values {
114                 u64 host;
115                 u64 curr;
116         } values[KVM_NR_SHARED_MSRS];
117 };
118
119 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
120 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
121
122 struct kvm_stats_debugfs_item debugfs_entries[] = {
123         { "pf_fixed", VCPU_STAT(pf_fixed) },
124         { "pf_guest", VCPU_STAT(pf_guest) },
125         { "tlb_flush", VCPU_STAT(tlb_flush) },
126         { "invlpg", VCPU_STAT(invlpg) },
127         { "exits", VCPU_STAT(exits) },
128         { "io_exits", VCPU_STAT(io_exits) },
129         { "mmio_exits", VCPU_STAT(mmio_exits) },
130         { "signal_exits", VCPU_STAT(signal_exits) },
131         { "irq_window", VCPU_STAT(irq_window_exits) },
132         { "nmi_window", VCPU_STAT(nmi_window_exits) },
133         { "halt_exits", VCPU_STAT(halt_exits) },
134         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
135         { "hypercalls", VCPU_STAT(hypercalls) },
136         { "request_irq", VCPU_STAT(request_irq_exits) },
137         { "irq_exits", VCPU_STAT(irq_exits) },
138         { "host_state_reload", VCPU_STAT(host_state_reload) },
139         { "efer_reload", VCPU_STAT(efer_reload) },
140         { "fpu_reload", VCPU_STAT(fpu_reload) },
141         { "insn_emulation", VCPU_STAT(insn_emulation) },
142         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
143         { "irq_injections", VCPU_STAT(irq_injections) },
144         { "nmi_injections", VCPU_STAT(nmi_injections) },
145         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
146         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
147         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
148         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
149         { "mmu_flooded", VM_STAT(mmu_flooded) },
150         { "mmu_recycled", VM_STAT(mmu_recycled) },
151         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
152         { "mmu_unsync", VM_STAT(mmu_unsync) },
153         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
154         { "largepages", VM_STAT(lpages) },
155         { NULL }
156 };
157
158 u64 __read_mostly host_xcr0;
159
160 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
161 {
162         int i;
163         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
164                 vcpu->arch.apf.gfns[i] = ~0;
165 }
166
167 static void kvm_on_user_return(struct user_return_notifier *urn)
168 {
169         unsigned slot;
170         struct kvm_shared_msrs *locals
171                 = container_of(urn, struct kvm_shared_msrs, urn);
172         struct kvm_shared_msr_values *values;
173
174         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
175                 values = &locals->values[slot];
176                 if (values->host != values->curr) {
177                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
178                         values->curr = values->host;
179                 }
180         }
181         locals->registered = false;
182         user_return_notifier_unregister(urn);
183 }
184
185 static void shared_msr_update(unsigned slot, u32 msr)
186 {
187         struct kvm_shared_msrs *smsr;
188         u64 value;
189
190         smsr = &__get_cpu_var(shared_msrs);
191         /* only read, and nobody should modify it at this time,
192          * so don't need lock */
193         if (slot >= shared_msrs_global.nr) {
194                 printk(KERN_ERR "kvm: invalid MSR slot!");
195                 return;
196         }
197         rdmsrl_safe(msr, &value);
198         smsr->values[slot].host = value;
199         smsr->values[slot].curr = value;
200 }
201
202 void kvm_define_shared_msr(unsigned slot, u32 msr)
203 {
204         if (slot >= shared_msrs_global.nr)
205                 shared_msrs_global.nr = slot + 1;
206         shared_msrs_global.msrs[slot] = msr;
207         /* we need ensured the shared_msr_global have been updated */
208         smp_wmb();
209 }
210 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
211
212 static void kvm_shared_msr_cpu_online(void)
213 {
214         unsigned i;
215
216         for (i = 0; i < shared_msrs_global.nr; ++i)
217                 shared_msr_update(i, shared_msrs_global.msrs[i]);
218 }
219
220 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
221 {
222         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
223
224         if (((value ^ smsr->values[slot].curr) & mask) == 0)
225                 return;
226         smsr->values[slot].curr = value;
227         wrmsrl(shared_msrs_global.msrs[slot], value);
228         if (!smsr->registered) {
229                 smsr->urn.on_user_return = kvm_on_user_return;
230                 user_return_notifier_register(&smsr->urn);
231                 smsr->registered = true;
232         }
233 }
234 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
235
236 static void drop_user_return_notifiers(void *ignore)
237 {
238         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
239
240         if (smsr->registered)
241                 kvm_on_user_return(&smsr->urn);
242 }
243
244 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
245 {
246         if (irqchip_in_kernel(vcpu->kvm))
247                 return vcpu->arch.apic_base;
248         else
249                 return vcpu->arch.apic_base;
250 }
251 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
252
253 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
254 {
255         /* TODO: reserve bits check */
256         if (irqchip_in_kernel(vcpu->kvm))
257                 kvm_lapic_set_base(vcpu, data);
258         else
259                 vcpu->arch.apic_base = data;
260 }
261 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
262
263 #define EXCPT_BENIGN            0
264 #define EXCPT_CONTRIBUTORY      1
265 #define EXCPT_PF                2
266
267 static int exception_class(int vector)
268 {
269         switch (vector) {
270         case PF_VECTOR:
271                 return EXCPT_PF;
272         case DE_VECTOR:
273         case TS_VECTOR:
274         case NP_VECTOR:
275         case SS_VECTOR:
276         case GP_VECTOR:
277                 return EXCPT_CONTRIBUTORY;
278         default:
279                 break;
280         }
281         return EXCPT_BENIGN;
282 }
283
284 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
285                 unsigned nr, bool has_error, u32 error_code,
286                 bool reinject)
287 {
288         u32 prev_nr;
289         int class1, class2;
290
291         kvm_make_request(KVM_REQ_EVENT, vcpu);
292
293         if (!vcpu->arch.exception.pending) {
294         queue:
295                 vcpu->arch.exception.pending = true;
296                 vcpu->arch.exception.has_error_code = has_error;
297                 vcpu->arch.exception.nr = nr;
298                 vcpu->arch.exception.error_code = error_code;
299                 vcpu->arch.exception.reinject = reinject;
300                 return;
301         }
302
303         /* to check exception */
304         prev_nr = vcpu->arch.exception.nr;
305         if (prev_nr == DF_VECTOR) {
306                 /* triple fault -> shutdown */
307                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
308                 return;
309         }
310         class1 = exception_class(prev_nr);
311         class2 = exception_class(nr);
312         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
313                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
314                 /* generate double fault per SDM Table 5-5 */
315                 vcpu->arch.exception.pending = true;
316                 vcpu->arch.exception.has_error_code = true;
317                 vcpu->arch.exception.nr = DF_VECTOR;
318                 vcpu->arch.exception.error_code = 0;
319         } else
320                 /* replace previous exception with a new one in a hope
321                    that instruction re-execution will regenerate lost
322                    exception */
323                 goto queue;
324 }
325
326 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
327 {
328         kvm_multiple_exception(vcpu, nr, false, 0, false);
329 }
330 EXPORT_SYMBOL_GPL(kvm_queue_exception);
331
332 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
333 {
334         kvm_multiple_exception(vcpu, nr, false, 0, true);
335 }
336 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
337
338 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
339 {
340         if (err)
341                 kvm_inject_gp(vcpu, 0);
342         else
343                 kvm_x86_ops->skip_emulated_instruction(vcpu);
344 }
345 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
346
347 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
348 {
349         ++vcpu->stat.pf_guest;
350         vcpu->arch.cr2 = fault->address;
351         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
352 }
353
354 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
355 {
356         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
357                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
358         else
359                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
360 }
361
362 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
363 {
364         kvm_make_request(KVM_REQ_EVENT, vcpu);
365         vcpu->arch.nmi_pending = 1;
366 }
367 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
368
369 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
370 {
371         kvm_multiple_exception(vcpu, nr, true, error_code, false);
372 }
373 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
374
375 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
376 {
377         kvm_multiple_exception(vcpu, nr, true, error_code, true);
378 }
379 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
380
381 /*
382  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
383  * a #GP and return false.
384  */
385 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
386 {
387         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
388                 return true;
389         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
390         return false;
391 }
392 EXPORT_SYMBOL_GPL(kvm_require_cpl);
393
394 /*
395  * This function will be used to read from the physical memory of the currently
396  * running guest. The difference to kvm_read_guest_page is that this function
397  * can read from guest physical or from the guest's guest physical memory.
398  */
399 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
400                             gfn_t ngfn, void *data, int offset, int len,
401                             u32 access)
402 {
403         gfn_t real_gfn;
404         gpa_t ngpa;
405
406         ngpa     = gfn_to_gpa(ngfn);
407         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
408         if (real_gfn == UNMAPPED_GVA)
409                 return -EFAULT;
410
411         real_gfn = gpa_to_gfn(real_gfn);
412
413         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
414 }
415 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
416
417 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
418                                void *data, int offset, int len, u32 access)
419 {
420         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
421                                        data, offset, len, access);
422 }
423
424 /*
425  * Load the pae pdptrs.  Return true is they are all valid.
426  */
427 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
428 {
429         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
430         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
431         int i;
432         int ret;
433         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
434
435         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
436                                       offset * sizeof(u64), sizeof(pdpte),
437                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
438         if (ret < 0) {
439                 ret = 0;
440                 goto out;
441         }
442         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
443                 if (is_present_gpte(pdpte[i]) &&
444                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
445                         ret = 0;
446                         goto out;
447                 }
448         }
449         ret = 1;
450
451         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
452         __set_bit(VCPU_EXREG_PDPTR,
453                   (unsigned long *)&vcpu->arch.regs_avail);
454         __set_bit(VCPU_EXREG_PDPTR,
455                   (unsigned long *)&vcpu->arch.regs_dirty);
456 out:
457
458         return ret;
459 }
460 EXPORT_SYMBOL_GPL(load_pdptrs);
461
462 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
463 {
464         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
465         bool changed = true;
466         int offset;
467         gfn_t gfn;
468         int r;
469
470         if (is_long_mode(vcpu) || !is_pae(vcpu))
471                 return false;
472
473         if (!test_bit(VCPU_EXREG_PDPTR,
474                       (unsigned long *)&vcpu->arch.regs_avail))
475                 return true;
476
477         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
478         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
479         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
480                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
481         if (r < 0)
482                 goto out;
483         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
484 out:
485
486         return changed;
487 }
488
489 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
490 {
491         unsigned long old_cr0 = kvm_read_cr0(vcpu);
492         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
493                                     X86_CR0_CD | X86_CR0_NW;
494
495         cr0 |= X86_CR0_ET;
496
497 #ifdef CONFIG_X86_64
498         if (cr0 & 0xffffffff00000000UL)
499                 return 1;
500 #endif
501
502         cr0 &= ~CR0_RESERVED_BITS;
503
504         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
505                 return 1;
506
507         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
508                 return 1;
509
510         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
511 #ifdef CONFIG_X86_64
512                 if ((vcpu->arch.efer & EFER_LME)) {
513                         int cs_db, cs_l;
514
515                         if (!is_pae(vcpu))
516                                 return 1;
517                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
518                         if (cs_l)
519                                 return 1;
520                 } else
521 #endif
522                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
523                                                  kvm_read_cr3(vcpu)))
524                         return 1;
525         }
526
527         kvm_x86_ops->set_cr0(vcpu, cr0);
528
529         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
530                 kvm_clear_async_pf_completion_queue(vcpu);
531                 kvm_async_pf_hash_reset(vcpu);
532         }
533
534         if ((cr0 ^ old_cr0) & update_bits)
535                 kvm_mmu_reset_context(vcpu);
536         return 0;
537 }
538 EXPORT_SYMBOL_GPL(kvm_set_cr0);
539
540 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
541 {
542         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
543 }
544 EXPORT_SYMBOL_GPL(kvm_lmsw);
545
546 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
547 {
548         u64 xcr0;
549
550         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
551         if (index != XCR_XFEATURE_ENABLED_MASK)
552                 return 1;
553         xcr0 = xcr;
554         if (kvm_x86_ops->get_cpl(vcpu) != 0)
555                 return 1;
556         if (!(xcr0 & XSTATE_FP))
557                 return 1;
558         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
559                 return 1;
560         if (xcr0 & ~host_xcr0)
561                 return 1;
562         vcpu->arch.xcr0 = xcr0;
563         vcpu->guest_xcr0_loaded = 0;
564         return 0;
565 }
566
567 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
568 {
569         if (__kvm_set_xcr(vcpu, index, xcr)) {
570                 kvm_inject_gp(vcpu, 0);
571                 return 1;
572         }
573         return 0;
574 }
575 EXPORT_SYMBOL_GPL(kvm_set_xcr);
576
577 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
578 {
579         struct kvm_cpuid_entry2 *best;
580
581         best = kvm_find_cpuid_entry(vcpu, 1, 0);
582         return best && (best->ecx & bit(X86_FEATURE_XSAVE));
583 }
584
585 static void update_cpuid(struct kvm_vcpu *vcpu)
586 {
587         struct kvm_cpuid_entry2 *best;
588
589         best = kvm_find_cpuid_entry(vcpu, 1, 0);
590         if (!best)
591                 return;
592
593         /* Update OSXSAVE bit */
594         if (cpu_has_xsave && best->function == 0x1) {
595                 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
596                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
597                         best->ecx |= bit(X86_FEATURE_OSXSAVE);
598         }
599 }
600
601 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
602 {
603         unsigned long old_cr4 = kvm_read_cr4(vcpu);
604         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
605
606         if (cr4 & CR4_RESERVED_BITS)
607                 return 1;
608
609         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
610                 return 1;
611
612         if (is_long_mode(vcpu)) {
613                 if (!(cr4 & X86_CR4_PAE))
614                         return 1;
615         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
616                    && ((cr4 ^ old_cr4) & pdptr_bits)
617                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
618                                    kvm_read_cr3(vcpu)))
619                 return 1;
620
621         if (cr4 & X86_CR4_VMXE)
622                 return 1;
623
624         kvm_x86_ops->set_cr4(vcpu, cr4);
625
626         if ((cr4 ^ old_cr4) & pdptr_bits)
627                 kvm_mmu_reset_context(vcpu);
628
629         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
630                 update_cpuid(vcpu);
631
632         return 0;
633 }
634 EXPORT_SYMBOL_GPL(kvm_set_cr4);
635
636 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
637 {
638         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
639                 kvm_mmu_sync_roots(vcpu);
640                 kvm_mmu_flush_tlb(vcpu);
641                 return 0;
642         }
643
644         if (is_long_mode(vcpu)) {
645                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
646                         return 1;
647         } else {
648                 if (is_pae(vcpu)) {
649                         if (cr3 & CR3_PAE_RESERVED_BITS)
650                                 return 1;
651                         if (is_paging(vcpu) &&
652                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
653                                 return 1;
654                 }
655                 /*
656                  * We don't check reserved bits in nonpae mode, because
657                  * this isn't enforced, and VMware depends on this.
658                  */
659         }
660
661         /*
662          * Does the new cr3 value map to physical memory? (Note, we
663          * catch an invalid cr3 even in real-mode, because it would
664          * cause trouble later on when we turn on paging anyway.)
665          *
666          * A real CPU would silently accept an invalid cr3 and would
667          * attempt to use it - with largely undefined (and often hard
668          * to debug) behavior on the guest side.
669          */
670         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
671                 return 1;
672         vcpu->arch.cr3 = cr3;
673         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
674         vcpu->arch.mmu.new_cr3(vcpu);
675         return 0;
676 }
677 EXPORT_SYMBOL_GPL(kvm_set_cr3);
678
679 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
680 {
681         if (cr8 & CR8_RESERVED_BITS)
682                 return 1;
683         if (irqchip_in_kernel(vcpu->kvm))
684                 kvm_lapic_set_tpr(vcpu, cr8);
685         else
686                 vcpu->arch.cr8 = cr8;
687         return 0;
688 }
689 EXPORT_SYMBOL_GPL(kvm_set_cr8);
690
691 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
692 {
693         if (irqchip_in_kernel(vcpu->kvm))
694                 return kvm_lapic_get_cr8(vcpu);
695         else
696                 return vcpu->arch.cr8;
697 }
698 EXPORT_SYMBOL_GPL(kvm_get_cr8);
699
700 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
701 {
702         switch (dr) {
703         case 0 ... 3:
704                 vcpu->arch.db[dr] = val;
705                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
706                         vcpu->arch.eff_db[dr] = val;
707                 break;
708         case 4:
709                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
710                         return 1; /* #UD */
711                 /* fall through */
712         case 6:
713                 if (val & 0xffffffff00000000ULL)
714                         return -1; /* #GP */
715                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
716                 break;
717         case 5:
718                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
719                         return 1; /* #UD */
720                 /* fall through */
721         default: /* 7 */
722                 if (val & 0xffffffff00000000ULL)
723                         return -1; /* #GP */
724                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
725                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
726                         kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
727                         vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
728                 }
729                 break;
730         }
731
732         return 0;
733 }
734
735 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
736 {
737         int res;
738
739         res = __kvm_set_dr(vcpu, dr, val);
740         if (res > 0)
741                 kvm_queue_exception(vcpu, UD_VECTOR);
742         else if (res < 0)
743                 kvm_inject_gp(vcpu, 0);
744
745         return res;
746 }
747 EXPORT_SYMBOL_GPL(kvm_set_dr);
748
749 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
750 {
751         switch (dr) {
752         case 0 ... 3:
753                 *val = vcpu->arch.db[dr];
754                 break;
755         case 4:
756                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
757                         return 1;
758                 /* fall through */
759         case 6:
760                 *val = vcpu->arch.dr6;
761                 break;
762         case 5:
763                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
764                         return 1;
765                 /* fall through */
766         default: /* 7 */
767                 *val = vcpu->arch.dr7;
768                 break;
769         }
770
771         return 0;
772 }
773
774 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
775 {
776         if (_kvm_get_dr(vcpu, dr, val)) {
777                 kvm_queue_exception(vcpu, UD_VECTOR);
778                 return 1;
779         }
780         return 0;
781 }
782 EXPORT_SYMBOL_GPL(kvm_get_dr);
783
784 /*
785  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
786  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
787  *
788  * This list is modified at module load time to reflect the
789  * capabilities of the host cpu. This capabilities test skips MSRs that are
790  * kvm-specific. Those are put in the beginning of the list.
791  */
792
793 #define KVM_SAVE_MSRS_BEGIN     8
794 static u32 msrs_to_save[] = {
795         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
796         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
797         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
798         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
799         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
800         MSR_STAR,
801 #ifdef CONFIG_X86_64
802         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
803 #endif
804         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
805 };
806
807 static unsigned num_msrs_to_save;
808
809 static u32 emulated_msrs[] = {
810         MSR_IA32_MISC_ENABLE,
811         MSR_IA32_MCG_STATUS,
812         MSR_IA32_MCG_CTL,
813 };
814
815 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
816 {
817         u64 old_efer = vcpu->arch.efer;
818
819         if (efer & efer_reserved_bits)
820                 return 1;
821
822         if (is_paging(vcpu)
823             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
824                 return 1;
825
826         if (efer & EFER_FFXSR) {
827                 struct kvm_cpuid_entry2 *feat;
828
829                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
830                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
831                         return 1;
832         }
833
834         if (efer & EFER_SVME) {
835                 struct kvm_cpuid_entry2 *feat;
836
837                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
838                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
839                         return 1;
840         }
841
842         efer &= ~EFER_LMA;
843         efer |= vcpu->arch.efer & EFER_LMA;
844
845         kvm_x86_ops->set_efer(vcpu, efer);
846
847         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
848
849         /* Update reserved bits */
850         if ((efer ^ old_efer) & EFER_NX)
851                 kvm_mmu_reset_context(vcpu);
852
853         return 0;
854 }
855
856 void kvm_enable_efer_bits(u64 mask)
857 {
858        efer_reserved_bits &= ~mask;
859 }
860 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
861
862
863 /*
864  * Writes msr value into into the appropriate "register".
865  * Returns 0 on success, non-0 otherwise.
866  * Assumes vcpu_load() was already called.
867  */
868 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
869 {
870         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
871 }
872
873 /*
874  * Adapt set_msr() to msr_io()'s calling convention
875  */
876 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
877 {
878         return kvm_set_msr(vcpu, index, *data);
879 }
880
881 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
882 {
883         int version;
884         int r;
885         struct pvclock_wall_clock wc;
886         struct timespec boot;
887
888         if (!wall_clock)
889                 return;
890
891         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
892         if (r)
893                 return;
894
895         if (version & 1)
896                 ++version;  /* first time write, random junk */
897
898         ++version;
899
900         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
901
902         /*
903          * The guest calculates current wall clock time by adding
904          * system time (updated by kvm_guest_time_update below) to the
905          * wall clock specified here.  guest system time equals host
906          * system time for us, thus we must fill in host boot time here.
907          */
908         getboottime(&boot);
909
910         wc.sec = boot.tv_sec;
911         wc.nsec = boot.tv_nsec;
912         wc.version = version;
913
914         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
915
916         version++;
917         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
918 }
919
920 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
921 {
922         uint32_t quotient, remainder;
923
924         /* Don't try to replace with do_div(), this one calculates
925          * "(dividend << 32) / divisor" */
926         __asm__ ( "divl %4"
927                   : "=a" (quotient), "=d" (remainder)
928                   : "0" (0), "1" (dividend), "r" (divisor) );
929         return quotient;
930 }
931
932 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
933                                s8 *pshift, u32 *pmultiplier)
934 {
935         uint64_t scaled64;
936         int32_t  shift = 0;
937         uint64_t tps64;
938         uint32_t tps32;
939
940         tps64 = base_khz * 1000LL;
941         scaled64 = scaled_khz * 1000LL;
942         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
943                 tps64 >>= 1;
944                 shift--;
945         }
946
947         tps32 = (uint32_t)tps64;
948         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
949                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
950                         scaled64 >>= 1;
951                 else
952                         tps32 <<= 1;
953                 shift++;
954         }
955
956         *pshift = shift;
957         *pmultiplier = div_frac(scaled64, tps32);
958
959         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
960                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
961 }
962
963 static inline u64 get_kernel_ns(void)
964 {
965         struct timespec ts;
966
967         WARN_ON(preemptible());
968         ktime_get_ts(&ts);
969         monotonic_to_bootbased(&ts);
970         return timespec_to_ns(&ts);
971 }
972
973 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
974 unsigned long max_tsc_khz;
975
976 static inline int kvm_tsc_changes_freq(void)
977 {
978         int cpu = get_cpu();
979         int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
980                   cpufreq_quick_get(cpu) != 0;
981         put_cpu();
982         return ret;
983 }
984
985 static inline u64 nsec_to_cycles(u64 nsec)
986 {
987         u64 ret;
988
989         WARN_ON(preemptible());
990         if (kvm_tsc_changes_freq())
991                 printk_once(KERN_WARNING
992                  "kvm: unreliable cycle conversion on adjustable rate TSC\n");
993         ret = nsec * __this_cpu_read(cpu_tsc_khz);
994         do_div(ret, USEC_PER_SEC);
995         return ret;
996 }
997
998 static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz)
999 {
1000         /* Compute a scale to convert nanoseconds in TSC cycles */
1001         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1002                            &kvm->arch.virtual_tsc_shift,
1003                            &kvm->arch.virtual_tsc_mult);
1004         kvm->arch.virtual_tsc_khz = this_tsc_khz;
1005 }
1006
1007 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1008 {
1009         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1010                                       vcpu->kvm->arch.virtual_tsc_mult,
1011                                       vcpu->kvm->arch.virtual_tsc_shift);
1012         tsc += vcpu->arch.last_tsc_write;
1013         return tsc;
1014 }
1015
1016 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1017 {
1018         struct kvm *kvm = vcpu->kvm;
1019         u64 offset, ns, elapsed;
1020         unsigned long flags;
1021         s64 sdiff;
1022
1023         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1024         offset = data - native_read_tsc();
1025         ns = get_kernel_ns();
1026         elapsed = ns - kvm->arch.last_tsc_nsec;
1027         sdiff = data - kvm->arch.last_tsc_write;
1028         if (sdiff < 0)
1029                 sdiff = -sdiff;
1030
1031         /*
1032          * Special case: close write to TSC within 5 seconds of
1033          * another CPU is interpreted as an attempt to synchronize
1034          * The 5 seconds is to accommodate host load / swapping as
1035          * well as any reset of TSC during the boot process.
1036          *
1037          * In that case, for a reliable TSC, we can match TSC offsets,
1038          * or make a best guest using elapsed value.
1039          */
1040         if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
1041             elapsed < 5ULL * NSEC_PER_SEC) {
1042                 if (!check_tsc_unstable()) {
1043                         offset = kvm->arch.last_tsc_offset;
1044                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1045                 } else {
1046                         u64 delta = nsec_to_cycles(elapsed);
1047                         offset += delta;
1048                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1049                 }
1050                 ns = kvm->arch.last_tsc_nsec;
1051         }
1052         kvm->arch.last_tsc_nsec = ns;
1053         kvm->arch.last_tsc_write = data;
1054         kvm->arch.last_tsc_offset = offset;
1055         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1056         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1057
1058         /* Reset of TSC must disable overshoot protection below */
1059         vcpu->arch.hv_clock.tsc_timestamp = 0;
1060         vcpu->arch.last_tsc_write = data;
1061         vcpu->arch.last_tsc_nsec = ns;
1062 }
1063 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1064
1065 static int kvm_guest_time_update(struct kvm_vcpu *v)
1066 {
1067         unsigned long flags;
1068         struct kvm_vcpu_arch *vcpu = &v->arch;
1069         void *shared_kaddr;
1070         unsigned long this_tsc_khz;
1071         s64 kernel_ns, max_kernel_ns;
1072         u64 tsc_timestamp;
1073
1074         /* Keep irq disabled to prevent changes to the clock */
1075         local_irq_save(flags);
1076         kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1077         kernel_ns = get_kernel_ns();
1078         this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1079
1080         if (unlikely(this_tsc_khz == 0)) {
1081                 local_irq_restore(flags);
1082                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1083                 return 1;
1084         }
1085
1086         /*
1087          * We may have to catch up the TSC to match elapsed wall clock
1088          * time for two reasons, even if kvmclock is used.
1089          *   1) CPU could have been running below the maximum TSC rate
1090          *   2) Broken TSC compensation resets the base at each VCPU
1091          *      entry to avoid unknown leaps of TSC even when running
1092          *      again on the same CPU.  This may cause apparent elapsed
1093          *      time to disappear, and the guest to stand still or run
1094          *      very slowly.
1095          */
1096         if (vcpu->tsc_catchup) {
1097                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1098                 if (tsc > tsc_timestamp) {
1099                         kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1100                         tsc_timestamp = tsc;
1101                 }
1102         }
1103
1104         local_irq_restore(flags);
1105
1106         if (!vcpu->time_page)
1107                 return 0;
1108
1109         /*
1110          * Time as measured by the TSC may go backwards when resetting the base
1111          * tsc_timestamp.  The reason for this is that the TSC resolution is
1112          * higher than the resolution of the other clock scales.  Thus, many
1113          * possible measurments of the TSC correspond to one measurement of any
1114          * other clock, and so a spread of values is possible.  This is not a
1115          * problem for the computation of the nanosecond clock; with TSC rates
1116          * around 1GHZ, there can only be a few cycles which correspond to one
1117          * nanosecond value, and any path through this code will inevitably
1118          * take longer than that.  However, with the kernel_ns value itself,
1119          * the precision may be much lower, down to HZ granularity.  If the
1120          * first sampling of TSC against kernel_ns ends in the low part of the
1121          * range, and the second in the high end of the range, we can get:
1122          *
1123          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1124          *
1125          * As the sampling errors potentially range in the thousands of cycles,
1126          * it is possible such a time value has already been observed by the
1127          * guest.  To protect against this, we must compute the system time as
1128          * observed by the guest and ensure the new system time is greater.
1129          */
1130         max_kernel_ns = 0;
1131         if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1132                 max_kernel_ns = vcpu->last_guest_tsc -
1133                                 vcpu->hv_clock.tsc_timestamp;
1134                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1135                                     vcpu->hv_clock.tsc_to_system_mul,
1136                                     vcpu->hv_clock.tsc_shift);
1137                 max_kernel_ns += vcpu->last_kernel_ns;
1138         }
1139
1140         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1141                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1142                                    &vcpu->hv_clock.tsc_shift,
1143                                    &vcpu->hv_clock.tsc_to_system_mul);
1144                 vcpu->hw_tsc_khz = this_tsc_khz;
1145         }
1146
1147         if (max_kernel_ns > kernel_ns)
1148                 kernel_ns = max_kernel_ns;
1149
1150         /* With all the info we got, fill in the values */
1151         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1152         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1153         vcpu->last_kernel_ns = kernel_ns;
1154         vcpu->last_guest_tsc = tsc_timestamp;
1155         vcpu->hv_clock.flags = 0;
1156
1157         /*
1158          * The interface expects us to write an even number signaling that the
1159          * update is finished. Since the guest won't see the intermediate
1160          * state, we just increase by 2 at the end.
1161          */
1162         vcpu->hv_clock.version += 2;
1163
1164         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1165
1166         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1167                sizeof(vcpu->hv_clock));
1168
1169         kunmap_atomic(shared_kaddr, KM_USER0);
1170
1171         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1172         return 0;
1173 }
1174
1175 static bool msr_mtrr_valid(unsigned msr)
1176 {
1177         switch (msr) {
1178         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1179         case MSR_MTRRfix64K_00000:
1180         case MSR_MTRRfix16K_80000:
1181         case MSR_MTRRfix16K_A0000:
1182         case MSR_MTRRfix4K_C0000:
1183         case MSR_MTRRfix4K_C8000:
1184         case MSR_MTRRfix4K_D0000:
1185         case MSR_MTRRfix4K_D8000:
1186         case MSR_MTRRfix4K_E0000:
1187         case MSR_MTRRfix4K_E8000:
1188         case MSR_MTRRfix4K_F0000:
1189         case MSR_MTRRfix4K_F8000:
1190         case MSR_MTRRdefType:
1191         case MSR_IA32_CR_PAT:
1192                 return true;
1193         case 0x2f8:
1194                 return true;
1195         }
1196         return false;
1197 }
1198
1199 static bool valid_pat_type(unsigned t)
1200 {
1201         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1202 }
1203
1204 static bool valid_mtrr_type(unsigned t)
1205 {
1206         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1207 }
1208
1209 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1210 {
1211         int i;
1212
1213         if (!msr_mtrr_valid(msr))
1214                 return false;
1215
1216         if (msr == MSR_IA32_CR_PAT) {
1217                 for (i = 0; i < 8; i++)
1218                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1219                                 return false;
1220                 return true;
1221         } else if (msr == MSR_MTRRdefType) {
1222                 if (data & ~0xcff)
1223                         return false;
1224                 return valid_mtrr_type(data & 0xff);
1225         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1226                 for (i = 0; i < 8 ; i++)
1227                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1228                                 return false;
1229                 return true;
1230         }
1231
1232         /* variable MTRRs */
1233         return valid_mtrr_type(data & 0xff);
1234 }
1235
1236 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1237 {
1238         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1239
1240         if (!mtrr_valid(vcpu, msr, data))
1241                 return 1;
1242
1243         if (msr == MSR_MTRRdefType) {
1244                 vcpu->arch.mtrr_state.def_type = data;
1245                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1246         } else if (msr == MSR_MTRRfix64K_00000)
1247                 p[0] = data;
1248         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1249                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1250         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1251                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1252         else if (msr == MSR_IA32_CR_PAT)
1253                 vcpu->arch.pat = data;
1254         else {  /* Variable MTRRs */
1255                 int idx, is_mtrr_mask;
1256                 u64 *pt;
1257
1258                 idx = (msr - 0x200) / 2;
1259                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1260                 if (!is_mtrr_mask)
1261                         pt =
1262                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1263                 else
1264                         pt =
1265                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1266                 *pt = data;
1267         }
1268
1269         kvm_mmu_reset_context(vcpu);
1270         return 0;
1271 }
1272
1273 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1274 {
1275         u64 mcg_cap = vcpu->arch.mcg_cap;
1276         unsigned bank_num = mcg_cap & 0xff;
1277
1278         switch (msr) {
1279         case MSR_IA32_MCG_STATUS:
1280                 vcpu->arch.mcg_status = data;
1281                 break;
1282         case MSR_IA32_MCG_CTL:
1283                 if (!(mcg_cap & MCG_CTL_P))
1284                         return 1;
1285                 if (data != 0 && data != ~(u64)0)
1286                         return -1;
1287                 vcpu->arch.mcg_ctl = data;
1288                 break;
1289         default:
1290                 if (msr >= MSR_IA32_MC0_CTL &&
1291                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1292                         u32 offset = msr - MSR_IA32_MC0_CTL;
1293                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1294                          * some Linux kernels though clear bit 10 in bank 4 to
1295                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1296                          * this to avoid an uncatched #GP in the guest
1297                          */
1298                         if ((offset & 0x3) == 0 &&
1299                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1300                                 return -1;
1301                         vcpu->arch.mce_banks[offset] = data;
1302                         break;
1303                 }
1304                 return 1;
1305         }
1306         return 0;
1307 }
1308
1309 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1310 {
1311         struct kvm *kvm = vcpu->kvm;
1312         int lm = is_long_mode(vcpu);
1313         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1314                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1315         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1316                 : kvm->arch.xen_hvm_config.blob_size_32;
1317         u32 page_num = data & ~PAGE_MASK;
1318         u64 page_addr = data & PAGE_MASK;
1319         u8 *page;
1320         int r;
1321
1322         r = -E2BIG;
1323         if (page_num >= blob_size)
1324                 goto out;
1325         r = -ENOMEM;
1326         page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1327         if (!page)
1328                 goto out;
1329         r = -EFAULT;
1330         if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1331                 goto out_free;
1332         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1333                 goto out_free;
1334         r = 0;
1335 out_free:
1336         kfree(page);
1337 out:
1338         return r;
1339 }
1340
1341 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1342 {
1343         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1344 }
1345
1346 static bool kvm_hv_msr_partition_wide(u32 msr)
1347 {
1348         bool r = false;
1349         switch (msr) {
1350         case HV_X64_MSR_GUEST_OS_ID:
1351         case HV_X64_MSR_HYPERCALL:
1352                 r = true;
1353                 break;
1354         }
1355
1356         return r;
1357 }
1358
1359 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1360 {
1361         struct kvm *kvm = vcpu->kvm;
1362
1363         switch (msr) {
1364         case HV_X64_MSR_GUEST_OS_ID:
1365                 kvm->arch.hv_guest_os_id = data;
1366                 /* setting guest os id to zero disables hypercall page */
1367                 if (!kvm->arch.hv_guest_os_id)
1368                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1369                 break;
1370         case HV_X64_MSR_HYPERCALL: {
1371                 u64 gfn;
1372                 unsigned long addr;
1373                 u8 instructions[4];
1374
1375                 /* if guest os id is not set hypercall should remain disabled */
1376                 if (!kvm->arch.hv_guest_os_id)
1377                         break;
1378                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1379                         kvm->arch.hv_hypercall = data;
1380                         break;
1381                 }
1382                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1383                 addr = gfn_to_hva(kvm, gfn);
1384                 if (kvm_is_error_hva(addr))
1385                         return 1;
1386                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1387                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1388                 if (copy_to_user((void __user *)addr, instructions, 4))
1389                         return 1;
1390                 kvm->arch.hv_hypercall = data;
1391                 break;
1392         }
1393         default:
1394                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1395                           "data 0x%llx\n", msr, data);
1396                 return 1;
1397         }
1398         return 0;
1399 }
1400
1401 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1402 {
1403         switch (msr) {
1404         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1405                 unsigned long addr;
1406
1407                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1408                         vcpu->arch.hv_vapic = data;
1409                         break;
1410                 }
1411                 addr = gfn_to_hva(vcpu->kvm, data >>
1412                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1413                 if (kvm_is_error_hva(addr))
1414                         return 1;
1415                 if (clear_user((void __user *)addr, PAGE_SIZE))
1416                         return 1;
1417                 vcpu->arch.hv_vapic = data;
1418                 break;
1419         }
1420         case HV_X64_MSR_EOI:
1421                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1422         case HV_X64_MSR_ICR:
1423                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1424         case HV_X64_MSR_TPR:
1425                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1426         default:
1427                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1428                           "data 0x%llx\n", msr, data);
1429                 return 1;
1430         }
1431
1432         return 0;
1433 }
1434
1435 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1436 {
1437         gpa_t gpa = data & ~0x3f;
1438
1439         /* Bits 2:5 are resrved, Should be zero */
1440         if (data & 0x3c)
1441                 return 1;
1442
1443         vcpu->arch.apf.msr_val = data;
1444
1445         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1446                 kvm_clear_async_pf_completion_queue(vcpu);
1447                 kvm_async_pf_hash_reset(vcpu);
1448                 return 0;
1449         }
1450
1451         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1452                 return 1;
1453
1454         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1455         kvm_async_pf_wakeup_all(vcpu);
1456         return 0;
1457 }
1458
1459 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1460 {
1461         if (vcpu->arch.time_page) {
1462                 kvm_release_page_dirty(vcpu->arch.time_page);
1463                 vcpu->arch.time_page = NULL;
1464         }
1465 }
1466
1467 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1468 {
1469         switch (msr) {
1470         case MSR_EFER:
1471                 return set_efer(vcpu, data);
1472         case MSR_K7_HWCR:
1473                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1474                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1475                 if (data != 0) {
1476                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1477                                 data);
1478                         return 1;
1479                 }
1480                 break;
1481         case MSR_FAM10H_MMIO_CONF_BASE:
1482                 if (data != 0) {
1483                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1484                                 "0x%llx\n", data);
1485                         return 1;
1486                 }
1487                 break;
1488         case MSR_AMD64_NB_CFG:
1489                 break;
1490         case MSR_IA32_DEBUGCTLMSR:
1491                 if (!data) {
1492                         /* We support the non-activated case already */
1493                         break;
1494                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1495                         /* Values other than LBR and BTF are vendor-specific,
1496                            thus reserved and should throw a #GP */
1497                         return 1;
1498                 }
1499                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1500                         __func__, data);
1501                 break;
1502         case MSR_IA32_UCODE_REV:
1503         case MSR_IA32_UCODE_WRITE:
1504         case MSR_VM_HSAVE_PA:
1505         case MSR_AMD64_PATCH_LOADER:
1506                 break;
1507         case 0x200 ... 0x2ff:
1508                 return set_msr_mtrr(vcpu, msr, data);
1509         case MSR_IA32_APICBASE:
1510                 kvm_set_apic_base(vcpu, data);
1511                 break;
1512         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1513                 return kvm_x2apic_msr_write(vcpu, msr, data);
1514         case MSR_IA32_MISC_ENABLE:
1515                 vcpu->arch.ia32_misc_enable_msr = data;
1516                 break;
1517         case MSR_KVM_WALL_CLOCK_NEW:
1518         case MSR_KVM_WALL_CLOCK:
1519                 vcpu->kvm->arch.wall_clock = data;
1520                 kvm_write_wall_clock(vcpu->kvm, data);
1521                 break;
1522         case MSR_KVM_SYSTEM_TIME_NEW:
1523         case MSR_KVM_SYSTEM_TIME: {
1524                 kvmclock_reset(vcpu);
1525
1526                 vcpu->arch.time = data;
1527                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1528
1529                 /* we verify if the enable bit is set... */
1530                 if (!(data & 1))
1531                         break;
1532
1533                 /* ...but clean it before doing the actual write */
1534                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1535
1536                 vcpu->arch.time_page =
1537                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1538
1539                 if (is_error_page(vcpu->arch.time_page)) {
1540                         kvm_release_page_clean(vcpu->arch.time_page);
1541                         vcpu->arch.time_page = NULL;
1542                 }
1543                 break;
1544         }
1545         case MSR_KVM_ASYNC_PF_EN:
1546                 if (kvm_pv_enable_async_pf(vcpu, data))
1547                         return 1;
1548                 break;
1549         case MSR_IA32_MCG_CTL:
1550         case MSR_IA32_MCG_STATUS:
1551         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1552                 return set_msr_mce(vcpu, msr, data);
1553
1554         /* Performance counters are not protected by a CPUID bit,
1555          * so we should check all of them in the generic path for the sake of
1556          * cross vendor migration.
1557          * Writing a zero into the event select MSRs disables them,
1558          * which we perfectly emulate ;-). Any other value should be at least
1559          * reported, some guests depend on them.
1560          */
1561         case MSR_P6_EVNTSEL0:
1562         case MSR_P6_EVNTSEL1:
1563         case MSR_K7_EVNTSEL0:
1564         case MSR_K7_EVNTSEL1:
1565         case MSR_K7_EVNTSEL2:
1566         case MSR_K7_EVNTSEL3:
1567                 if (data != 0)
1568                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1569                                 "0x%x data 0x%llx\n", msr, data);
1570                 break;
1571         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1572          * so we ignore writes to make it happy.
1573          */
1574         case MSR_P6_PERFCTR0:
1575         case MSR_P6_PERFCTR1:
1576         case MSR_K7_PERFCTR0:
1577         case MSR_K7_PERFCTR1:
1578         case MSR_K7_PERFCTR2:
1579         case MSR_K7_PERFCTR3:
1580                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1581                         "0x%x data 0x%llx\n", msr, data);
1582                 break;
1583         case MSR_K7_CLK_CTL:
1584                 /*
1585                  * Ignore all writes to this no longer documented MSR.
1586                  * Writes are only relevant for old K7 processors,
1587                  * all pre-dating SVM, but a recommended workaround from
1588                  * AMD for these chips. It is possible to speicify the
1589                  * affected processor models on the command line, hence
1590                  * the need to ignore the workaround.
1591                  */
1592                 break;
1593         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1594                 if (kvm_hv_msr_partition_wide(msr)) {
1595                         int r;
1596                         mutex_lock(&vcpu->kvm->lock);
1597                         r = set_msr_hyperv_pw(vcpu, msr, data);
1598                         mutex_unlock(&vcpu->kvm->lock);
1599                         return r;
1600                 } else
1601                         return set_msr_hyperv(vcpu, msr, data);
1602                 break;
1603         case MSR_IA32_BBL_CR_CTL3:
1604                 /* Drop writes to this legacy MSR -- see rdmsr
1605                  * counterpart for further detail.
1606                  */
1607                 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1608                 break;
1609         default:
1610                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1611                         return xen_hvm_config(vcpu, data);
1612                 if (!ignore_msrs) {
1613                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1614                                 msr, data);
1615                         return 1;
1616                 } else {
1617                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1618                                 msr, data);
1619                         break;
1620                 }
1621         }
1622         return 0;
1623 }
1624 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1625
1626
1627 /*
1628  * Reads an msr value (of 'msr_index') into 'pdata'.
1629  * Returns 0 on success, non-0 otherwise.
1630  * Assumes vcpu_load() was already called.
1631  */
1632 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1633 {
1634         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1635 }
1636
1637 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1638 {
1639         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1640
1641         if (!msr_mtrr_valid(msr))
1642                 return 1;
1643
1644         if (msr == MSR_MTRRdefType)
1645                 *pdata = vcpu->arch.mtrr_state.def_type +
1646                          (vcpu->arch.mtrr_state.enabled << 10);
1647         else if (msr == MSR_MTRRfix64K_00000)
1648                 *pdata = p[0];
1649         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1650                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1651         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1652                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1653         else if (msr == MSR_IA32_CR_PAT)
1654                 *pdata = vcpu->arch.pat;
1655         else {  /* Variable MTRRs */
1656                 int idx, is_mtrr_mask;
1657                 u64 *pt;
1658
1659                 idx = (msr - 0x200) / 2;
1660                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1661                 if (!is_mtrr_mask)
1662                         pt =
1663                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1664                 else
1665                         pt =
1666                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1667                 *pdata = *pt;
1668         }
1669
1670         return 0;
1671 }
1672
1673 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1674 {
1675         u64 data;
1676         u64 mcg_cap = vcpu->arch.mcg_cap;
1677         unsigned bank_num = mcg_cap & 0xff;
1678
1679         switch (msr) {
1680         case MSR_IA32_P5_MC_ADDR:
1681         case MSR_IA32_P5_MC_TYPE:
1682                 data = 0;
1683                 break;
1684         case MSR_IA32_MCG_CAP:
1685                 data = vcpu->arch.mcg_cap;
1686                 break;
1687         case MSR_IA32_MCG_CTL:
1688                 if (!(mcg_cap & MCG_CTL_P))
1689                         return 1;
1690                 data = vcpu->arch.mcg_ctl;
1691                 break;
1692         case MSR_IA32_MCG_STATUS:
1693                 data = vcpu->arch.mcg_status;
1694                 break;
1695         default:
1696                 if (msr >= MSR_IA32_MC0_CTL &&
1697                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1698                         u32 offset = msr - MSR_IA32_MC0_CTL;
1699                         data = vcpu->arch.mce_banks[offset];
1700                         break;
1701                 }
1702                 return 1;
1703         }
1704         *pdata = data;
1705         return 0;
1706 }
1707
1708 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1709 {
1710         u64 data = 0;
1711         struct kvm *kvm = vcpu->kvm;
1712
1713         switch (msr) {
1714         case HV_X64_MSR_GUEST_OS_ID:
1715                 data = kvm->arch.hv_guest_os_id;
1716                 break;
1717         case HV_X64_MSR_HYPERCALL:
1718                 data = kvm->arch.hv_hypercall;
1719                 break;
1720         default:
1721                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1722                 return 1;
1723         }
1724
1725         *pdata = data;
1726         return 0;
1727 }
1728
1729 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1730 {
1731         u64 data = 0;
1732
1733         switch (msr) {
1734         case HV_X64_MSR_VP_INDEX: {
1735                 int r;
1736                 struct kvm_vcpu *v;
1737                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1738                         if (v == vcpu)
1739                                 data = r;
1740                 break;
1741         }
1742         case HV_X64_MSR_EOI:
1743                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1744         case HV_X64_MSR_ICR:
1745                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1746         case HV_X64_MSR_TPR:
1747                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1748         default:
1749                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1750                 return 1;
1751         }
1752         *pdata = data;
1753         return 0;
1754 }
1755
1756 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1757 {
1758         u64 data;
1759
1760         switch (msr) {
1761         case MSR_IA32_PLATFORM_ID:
1762         case MSR_IA32_UCODE_REV:
1763         case MSR_IA32_EBL_CR_POWERON:
1764         case MSR_IA32_DEBUGCTLMSR:
1765         case MSR_IA32_LASTBRANCHFROMIP:
1766         case MSR_IA32_LASTBRANCHTOIP:
1767         case MSR_IA32_LASTINTFROMIP:
1768         case MSR_IA32_LASTINTTOIP:
1769         case MSR_K8_SYSCFG:
1770         case MSR_K7_HWCR:
1771         case MSR_VM_HSAVE_PA:
1772         case MSR_P6_PERFCTR0:
1773         case MSR_P6_PERFCTR1:
1774         case MSR_P6_EVNTSEL0:
1775         case MSR_P6_EVNTSEL1:
1776         case MSR_K7_EVNTSEL0:
1777         case MSR_K7_PERFCTR0:
1778         case MSR_K8_INT_PENDING_MSG:
1779         case MSR_AMD64_NB_CFG:
1780         case MSR_FAM10H_MMIO_CONF_BASE:
1781                 data = 0;
1782                 break;
1783         case MSR_MTRRcap:
1784                 data = 0x500 | KVM_NR_VAR_MTRR;
1785                 break;
1786         case 0x200 ... 0x2ff:
1787                 return get_msr_mtrr(vcpu, msr, pdata);
1788         case 0xcd: /* fsb frequency */
1789                 data = 3;
1790                 break;
1791                 /*
1792                  * MSR_EBC_FREQUENCY_ID
1793                  * Conservative value valid for even the basic CPU models.
1794                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1795                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1796                  * and 266MHz for model 3, or 4. Set Core Clock
1797                  * Frequency to System Bus Frequency Ratio to 1 (bits
1798                  * 31:24) even though these are only valid for CPU
1799                  * models > 2, however guests may end up dividing or
1800                  * multiplying by zero otherwise.
1801                  */
1802         case MSR_EBC_FREQUENCY_ID:
1803                 data = 1 << 24;
1804                 break;
1805         case MSR_IA32_APICBASE:
1806                 data = kvm_get_apic_base(vcpu);
1807                 break;
1808         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1809                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1810                 break;
1811         case MSR_IA32_MISC_ENABLE:
1812                 data = vcpu->arch.ia32_misc_enable_msr;
1813                 break;
1814         case MSR_IA32_PERF_STATUS:
1815                 /* TSC increment by tick */
1816                 data = 1000ULL;
1817                 /* CPU multiplier */
1818                 data |= (((uint64_t)4ULL) << 40);
1819                 break;
1820         case MSR_EFER:
1821                 data = vcpu->arch.efer;
1822                 break;
1823         case MSR_KVM_WALL_CLOCK:
1824         case MSR_KVM_WALL_CLOCK_NEW:
1825                 data = vcpu->kvm->arch.wall_clock;
1826                 break;
1827         case MSR_KVM_SYSTEM_TIME:
1828         case MSR_KVM_SYSTEM_TIME_NEW:
1829                 data = vcpu->arch.time;
1830                 break;
1831         case MSR_KVM_ASYNC_PF_EN:
1832                 data = vcpu->arch.apf.msr_val;
1833                 break;
1834         case MSR_IA32_P5_MC_ADDR:
1835         case MSR_IA32_P5_MC_TYPE:
1836         case MSR_IA32_MCG_CAP:
1837         case MSR_IA32_MCG_CTL:
1838         case MSR_IA32_MCG_STATUS:
1839         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1840                 return get_msr_mce(vcpu, msr, pdata);
1841         case MSR_K7_CLK_CTL:
1842                 /*
1843                  * Provide expected ramp-up count for K7. All other
1844                  * are set to zero, indicating minimum divisors for
1845                  * every field.
1846                  *
1847                  * This prevents guest kernels on AMD host with CPU
1848                  * type 6, model 8 and higher from exploding due to
1849                  * the rdmsr failing.
1850                  */
1851                 data = 0x20000000;
1852                 break;
1853         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1854                 if (kvm_hv_msr_partition_wide(msr)) {
1855                         int r;
1856                         mutex_lock(&vcpu->kvm->lock);
1857                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1858                         mutex_unlock(&vcpu->kvm->lock);
1859                         return r;
1860                 } else
1861                         return get_msr_hyperv(vcpu, msr, pdata);
1862                 break;
1863         case MSR_IA32_BBL_CR_CTL3:
1864                 /* This legacy MSR exists but isn't fully documented in current
1865                  * silicon.  It is however accessed by winxp in very narrow
1866                  * scenarios where it sets bit #19, itself documented as
1867                  * a "reserved" bit.  Best effort attempt to source coherent
1868                  * read data here should the balance of the register be
1869                  * interpreted by the guest:
1870                  *
1871                  * L2 cache control register 3: 64GB range, 256KB size,
1872                  * enabled, latency 0x1, configured
1873                  */
1874                 data = 0xbe702111;
1875                 break;
1876         default:
1877                 if (!ignore_msrs) {
1878                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1879                         return 1;
1880                 } else {
1881                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1882                         data = 0;
1883                 }
1884                 break;
1885         }
1886         *pdata = data;
1887         return 0;
1888 }
1889 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1890
1891 /*
1892  * Read or write a bunch of msrs. All parameters are kernel addresses.
1893  *
1894  * @return number of msrs set successfully.
1895  */
1896 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1897                     struct kvm_msr_entry *entries,
1898                     int (*do_msr)(struct kvm_vcpu *vcpu,
1899                                   unsigned index, u64 *data))
1900 {
1901         int i, idx;
1902
1903         idx = srcu_read_lock(&vcpu->kvm->srcu);
1904         for (i = 0; i < msrs->nmsrs; ++i)
1905                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1906                         break;
1907         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1908
1909         return i;
1910 }
1911
1912 /*
1913  * Read or write a bunch of msrs. Parameters are user addresses.
1914  *
1915  * @return number of msrs set successfully.
1916  */
1917 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1918                   int (*do_msr)(struct kvm_vcpu *vcpu,
1919                                 unsigned index, u64 *data),
1920                   int writeback)
1921 {
1922         struct kvm_msrs msrs;
1923         struct kvm_msr_entry *entries;
1924         int r, n;
1925         unsigned size;
1926
1927         r = -EFAULT;
1928         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1929                 goto out;
1930
1931         r = -E2BIG;
1932         if (msrs.nmsrs >= MAX_IO_MSRS)
1933                 goto out;
1934
1935         r = -ENOMEM;
1936         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1937         entries = kmalloc(size, GFP_KERNEL);
1938         if (!entries)
1939                 goto out;
1940
1941         r = -EFAULT;
1942         if (copy_from_user(entries, user_msrs->entries, size))
1943                 goto out_free;
1944
1945         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1946         if (r < 0)
1947                 goto out_free;
1948
1949         r = -EFAULT;
1950         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1951                 goto out_free;
1952
1953         r = n;
1954
1955 out_free:
1956         kfree(entries);
1957 out:
1958         return r;
1959 }
1960
1961 int kvm_dev_ioctl_check_extension(long ext)
1962 {
1963         int r;
1964
1965         switch (ext) {
1966         case KVM_CAP_IRQCHIP:
1967         case KVM_CAP_HLT:
1968         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1969         case KVM_CAP_SET_TSS_ADDR:
1970         case KVM_CAP_EXT_CPUID:
1971         case KVM_CAP_CLOCKSOURCE:
1972         case KVM_CAP_PIT:
1973         case KVM_CAP_NOP_IO_DELAY:
1974         case KVM_CAP_MP_STATE:
1975         case KVM_CAP_SYNC_MMU:
1976         case KVM_CAP_USER_NMI:
1977         case KVM_CAP_REINJECT_CONTROL:
1978         case KVM_CAP_IRQ_INJECT_STATUS:
1979         case KVM_CAP_ASSIGN_DEV_IRQ:
1980         case KVM_CAP_IRQFD:
1981         case KVM_CAP_IOEVENTFD:
1982         case KVM_CAP_PIT2:
1983         case KVM_CAP_PIT_STATE2:
1984         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1985         case KVM_CAP_XEN_HVM:
1986         case KVM_CAP_ADJUST_CLOCK:
1987         case KVM_CAP_VCPU_EVENTS:
1988         case KVM_CAP_HYPERV:
1989         case KVM_CAP_HYPERV_VAPIC:
1990         case KVM_CAP_HYPERV_SPIN:
1991         case KVM_CAP_PCI_SEGMENT:
1992         case KVM_CAP_DEBUGREGS:
1993         case KVM_CAP_X86_ROBUST_SINGLESTEP:
1994         case KVM_CAP_XSAVE:
1995         case KVM_CAP_ASYNC_PF:
1996                 r = 1;
1997                 break;
1998         case KVM_CAP_COALESCED_MMIO:
1999                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2000                 break;
2001         case KVM_CAP_VAPIC:
2002                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2003                 break;
2004         case KVM_CAP_NR_VCPUS:
2005                 r = KVM_MAX_VCPUS;
2006                 break;
2007         case KVM_CAP_NR_MEMSLOTS:
2008                 r = KVM_MEMORY_SLOTS;
2009                 break;
2010         case KVM_CAP_PV_MMU:    /* obsolete */
2011                 r = 0;
2012                 break;
2013         case KVM_CAP_IOMMU:
2014                 r = iommu_found();
2015                 break;
2016         case KVM_CAP_MCE:
2017                 r = KVM_MAX_MCE_BANKS;
2018                 break;
2019         case KVM_CAP_XCRS:
2020                 r = cpu_has_xsave;
2021                 break;
2022         default:
2023                 r = 0;
2024                 break;
2025         }
2026         return r;
2027
2028 }
2029
2030 long kvm_arch_dev_ioctl(struct file *filp,
2031                         unsigned int ioctl, unsigned long arg)
2032 {
2033         void __user *argp = (void __user *)arg;
2034         long r;
2035
2036         switch (ioctl) {
2037         case KVM_GET_MSR_INDEX_LIST: {
2038                 struct kvm_msr_list __user *user_msr_list = argp;
2039                 struct kvm_msr_list msr_list;
2040                 unsigned n;
2041
2042                 r = -EFAULT;
2043                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2044                         goto out;
2045                 n = msr_list.nmsrs;
2046                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2047                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2048                         goto out;
2049                 r = -E2BIG;
2050                 if (n < msr_list.nmsrs)
2051                         goto out;
2052                 r = -EFAULT;
2053                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2054                                  num_msrs_to_save * sizeof(u32)))
2055                         goto out;
2056                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2057                                  &emulated_msrs,
2058                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2059                         goto out;
2060                 r = 0;
2061                 break;
2062         }
2063         case KVM_GET_SUPPORTED_CPUID: {
2064                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2065                 struct kvm_cpuid2 cpuid;
2066
2067                 r = -EFAULT;
2068                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2069                         goto out;
2070                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2071                                                       cpuid_arg->entries);
2072                 if (r)
2073                         goto out;
2074
2075                 r = -EFAULT;
2076                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2077                         goto out;
2078                 r = 0;
2079                 break;
2080         }
2081         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2082                 u64 mce_cap;
2083
2084                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2085                 r = -EFAULT;
2086                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2087                         goto out;
2088                 r = 0;
2089                 break;
2090         }
2091         default:
2092                 r = -EINVAL;
2093         }
2094 out:
2095         return r;
2096 }
2097
2098 static void wbinvd_ipi(void *garbage)
2099 {
2100         wbinvd();
2101 }
2102
2103 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2104 {
2105         return vcpu->kvm->arch.iommu_domain &&
2106                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2107 }
2108
2109 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2110 {
2111         /* Address WBINVD may be executed by guest */
2112         if (need_emulate_wbinvd(vcpu)) {
2113                 if (kvm_x86_ops->has_wbinvd_exit())
2114                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2115                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2116                         smp_call_function_single(vcpu->cpu,
2117                                         wbinvd_ipi, NULL, 1);
2118         }
2119
2120         kvm_x86_ops->vcpu_load(vcpu, cpu);
2121         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2122                 /* Make sure TSC doesn't go backwards */
2123                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2124                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2125                 if (tsc_delta < 0)
2126                         mark_tsc_unstable("KVM discovered backwards TSC");
2127                 if (check_tsc_unstable()) {
2128                         kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2129                         vcpu->arch.tsc_catchup = 1;
2130                 }
2131                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2132                 if (vcpu->cpu != cpu)
2133                         kvm_migrate_timers(vcpu);
2134                 vcpu->cpu = cpu;
2135         }
2136 }
2137
2138 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2139 {
2140         kvm_x86_ops->vcpu_put(vcpu);
2141         kvm_put_guest_fpu(vcpu);
2142         vcpu->arch.last_host_tsc = native_read_tsc();
2143 }
2144
2145 static int is_efer_nx(void)
2146 {
2147         unsigned long long efer = 0;
2148
2149         rdmsrl_safe(MSR_EFER, &efer);
2150         return efer & EFER_NX;
2151 }
2152
2153 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2154 {
2155         int i;
2156         struct kvm_cpuid_entry2 *e, *entry;
2157
2158         entry = NULL;
2159         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2160                 e = &vcpu->arch.cpuid_entries[i];
2161                 if (e->function == 0x80000001) {
2162                         entry = e;
2163                         break;
2164                 }
2165         }
2166         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2167                 entry->edx &= ~(1 << 20);
2168                 printk(KERN_INFO "kvm: guest NX capability removed\n");
2169         }
2170 }
2171
2172 /* when an old userspace process fills a new kernel module */
2173 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2174                                     struct kvm_cpuid *cpuid,
2175                                     struct kvm_cpuid_entry __user *entries)
2176 {
2177         int r, i;
2178         struct kvm_cpuid_entry *cpuid_entries;
2179
2180         r = -E2BIG;
2181         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2182                 goto out;
2183         r = -ENOMEM;
2184         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2185         if (!cpuid_entries)
2186                 goto out;
2187         r = -EFAULT;
2188         if (copy_from_user(cpuid_entries, entries,
2189                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2190                 goto out_free;
2191         for (i = 0; i < cpuid->nent; i++) {
2192                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2193                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2194                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2195                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2196                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2197                 vcpu->arch.cpuid_entries[i].index = 0;
2198                 vcpu->arch.cpuid_entries[i].flags = 0;
2199                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2200                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2201                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2202         }
2203         vcpu->arch.cpuid_nent = cpuid->nent;
2204         cpuid_fix_nx_cap(vcpu);
2205         r = 0;
2206         kvm_apic_set_version(vcpu);
2207         kvm_x86_ops->cpuid_update(vcpu);
2208         update_cpuid(vcpu);
2209
2210 out_free:
2211         vfree(cpuid_entries);
2212 out:
2213         return r;
2214 }
2215
2216 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2217                                      struct kvm_cpuid2 *cpuid,
2218                                      struct kvm_cpuid_entry2 __user *entries)
2219 {
2220         int r;
2221
2222         r = -E2BIG;
2223         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2224                 goto out;
2225         r = -EFAULT;
2226         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2227                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2228                 goto out;
2229         vcpu->arch.cpuid_nent = cpuid->nent;
2230         kvm_apic_set_version(vcpu);
2231         kvm_x86_ops->cpuid_update(vcpu);
2232         update_cpuid(vcpu);
2233         return 0;
2234
2235 out:
2236         return r;
2237 }
2238
2239 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2240                                      struct kvm_cpuid2 *cpuid,
2241                                      struct kvm_cpuid_entry2 __user *entries)
2242 {
2243         int r;
2244
2245         r = -E2BIG;
2246         if (cpuid->nent < vcpu->arch.cpuid_nent)
2247                 goto out;
2248         r = -EFAULT;
2249         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2250                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2251                 goto out;
2252         return 0;
2253
2254 out:
2255         cpuid->nent = vcpu->arch.cpuid_nent;
2256         return r;
2257 }
2258
2259 static void cpuid_mask(u32 *word, int wordnum)
2260 {
2261         *word &= boot_cpu_data.x86_capability[wordnum];
2262 }
2263
2264 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2265                            u32 index)
2266 {
2267         entry->function = function;
2268         entry->index = index;
2269         cpuid_count(entry->function, entry->index,
2270                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2271         entry->flags = 0;
2272 }
2273
2274 #define F(x) bit(X86_FEATURE_##x)
2275
2276 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2277                          u32 index, int *nent, int maxnent)
2278 {
2279         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2280 #ifdef CONFIG_X86_64
2281         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2282                                 ? F(GBPAGES) : 0;
2283         unsigned f_lm = F(LM);
2284 #else
2285         unsigned f_gbpages = 0;
2286         unsigned f_lm = 0;
2287 #endif
2288         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2289
2290         /* cpuid 1.edx */
2291         const u32 kvm_supported_word0_x86_features =
2292                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2293                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2294                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2295                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2296                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2297                 0 /* Reserved, DS, ACPI */ | F(MMX) |
2298                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2299                 0 /* HTT, TM, Reserved, PBE */;
2300         /* cpuid 0x80000001.edx */
2301         const u32 kvm_supported_word1_x86_features =
2302                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2303                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2304                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2305                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2306                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2307                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2308                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2309                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2310         /* cpuid 1.ecx */
2311         const u32 kvm_supported_word4_x86_features =
2312                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2313                 0 /* DS-CPL, VMX, SMX, EST */ |
2314                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2315                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2316                 0 /* Reserved, DCA */ | F(XMM4_1) |
2317                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2318                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2319                 F(F16C);
2320         /* cpuid 0x80000001.ecx */
2321         const u32 kvm_supported_word6_x86_features =
2322                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2323                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2324                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2325                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2326
2327         /* all calls to cpuid_count() should be made on the same cpu */
2328         get_cpu();
2329         do_cpuid_1_ent(entry, function, index);
2330         ++*nent;
2331
2332         switch (function) {
2333         case 0:
2334                 entry->eax = min(entry->eax, (u32)0xd);
2335                 break;
2336         case 1:
2337                 entry->edx &= kvm_supported_word0_x86_features;
2338                 cpuid_mask(&entry->edx, 0);
2339                 entry->ecx &= kvm_supported_word4_x86_features;
2340                 cpuid_mask(&entry->ecx, 4);
2341                 /* we support x2apic emulation even if host does not support
2342                  * it since we emulate x2apic in software */
2343                 entry->ecx |= F(X2APIC);
2344                 break;
2345         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2346          * may return different values. This forces us to get_cpu() before
2347          * issuing the first command, and also to emulate this annoying behavior
2348          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2349         case 2: {
2350                 int t, times = entry->eax & 0xff;
2351
2352                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2353                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2354                 for (t = 1; t < times && *nent < maxnent; ++t) {
2355                         do_cpuid_1_ent(&entry[t], function, 0);
2356                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2357                         ++*nent;
2358                 }
2359                 break;
2360         }
2361         /* function 4 and 0xb have additional index. */
2362         case 4: {
2363                 int i, cache_type;
2364
2365                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2366                 /* read more entries until cache_type is zero */
2367                 for (i = 1; *nent < maxnent; ++i) {
2368                         cache_type = entry[i - 1].eax & 0x1f;
2369                         if (!cache_type)
2370                                 break;
2371                         do_cpuid_1_ent(&entry[i], function, i);
2372                         entry[i].flags |=
2373                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2374                         ++*nent;
2375                 }
2376                 break;
2377         }
2378         case 0xb: {
2379                 int i, level_type;
2380
2381                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2382                 /* read more entries until level_type is zero */
2383                 for (i = 1; *nent < maxnent; ++i) {
2384                         level_type = entry[i - 1].ecx & 0xff00;
2385                         if (!level_type)
2386                                 break;
2387                         do_cpuid_1_ent(&entry[i], function, i);
2388                         entry[i].flags |=
2389                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2390                         ++*nent;
2391                 }
2392                 break;
2393         }
2394         case 0xd: {
2395                 int i;
2396
2397                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2398                 for (i = 1; *nent < maxnent && i < 64; ++i) {
2399                         if (entry[i].eax == 0)
2400                                 continue;
2401                         do_cpuid_1_ent(&entry[i], function, i);
2402                         entry[i].flags |=
2403                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2404                         ++*nent;
2405                 }
2406                 break;
2407         }
2408         case KVM_CPUID_SIGNATURE: {
2409                 char signature[12] = "KVMKVMKVM\0\0";
2410                 u32 *sigptr = (u32 *)signature;
2411                 entry->eax = 0;
2412                 entry->ebx = sigptr[0];
2413                 entry->ecx = sigptr[1];
2414                 entry->edx = sigptr[2];
2415                 break;
2416         }
2417         case KVM_CPUID_FEATURES:
2418                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2419                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
2420                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
2421                              (1 << KVM_FEATURE_ASYNC_PF) |
2422                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2423                 entry->ebx = 0;
2424                 entry->ecx = 0;
2425                 entry->edx = 0;
2426                 break;
2427         case 0x80000000:
2428                 entry->eax = min(entry->eax, 0x8000001a);
2429                 break;
2430         case 0x80000001:
2431                 entry->edx &= kvm_supported_word1_x86_features;
2432                 cpuid_mask(&entry->edx, 1);
2433                 entry->ecx &= kvm_supported_word6_x86_features;
2434                 cpuid_mask(&entry->ecx, 6);
2435                 break;
2436         }
2437
2438         kvm_x86_ops->set_supported_cpuid(function, entry);
2439
2440         put_cpu();
2441 }
2442
2443 #undef F
2444
2445 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2446                                      struct kvm_cpuid_entry2 __user *entries)
2447 {
2448         struct kvm_cpuid_entry2 *cpuid_entries;
2449         int limit, nent = 0, r = -E2BIG;
2450         u32 func;
2451
2452         if (cpuid->nent < 1)
2453                 goto out;
2454         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2455                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2456         r = -ENOMEM;
2457         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2458         if (!cpuid_entries)
2459                 goto out;
2460
2461         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2462         limit = cpuid_entries[0].eax;
2463         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2464                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2465                              &nent, cpuid->nent);
2466         r = -E2BIG;
2467         if (nent >= cpuid->nent)
2468                 goto out_free;
2469
2470         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2471         limit = cpuid_entries[nent - 1].eax;
2472         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2473                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2474                              &nent, cpuid->nent);
2475
2476
2477
2478         r = -E2BIG;
2479         if (nent >= cpuid->nent)
2480                 goto out_free;
2481
2482         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2483                      cpuid->nent);
2484
2485         r = -E2BIG;
2486         if (nent >= cpuid->nent)
2487                 goto out_free;
2488
2489         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2490                      cpuid->nent);
2491
2492         r = -E2BIG;
2493         if (nent >= cpuid->nent)
2494                 goto out_free;
2495
2496         r = -EFAULT;
2497         if (copy_to_user(entries, cpuid_entries,
2498                          nent * sizeof(struct kvm_cpuid_entry2)))
2499                 goto out_free;
2500         cpuid->nent = nent;
2501         r = 0;
2502
2503 out_free:
2504         vfree(cpuid_entries);
2505 out:
2506         return r;
2507 }
2508
2509 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2510                                     struct kvm_lapic_state *s)
2511 {
2512         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2513
2514         return 0;
2515 }
2516
2517 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2518                                     struct kvm_lapic_state *s)
2519 {
2520         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2521         kvm_apic_post_state_restore(vcpu);
2522         update_cr8_intercept(vcpu);
2523
2524         return 0;
2525 }
2526
2527 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2528                                     struct kvm_interrupt *irq)
2529 {
2530         if (irq->irq < 0 || irq->irq >= 256)
2531                 return -EINVAL;
2532         if (irqchip_in_kernel(vcpu->kvm))
2533                 return -ENXIO;
2534
2535         kvm_queue_interrupt(vcpu, irq->irq, false);
2536         kvm_make_request(KVM_REQ_EVENT, vcpu);
2537
2538         return 0;
2539 }
2540
2541 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2542 {
2543         kvm_inject_nmi(vcpu);
2544
2545         return 0;
2546 }
2547
2548 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2549                                            struct kvm_tpr_access_ctl *tac)
2550 {
2551         if (tac->flags)
2552                 return -EINVAL;
2553         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2554         return 0;
2555 }
2556
2557 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2558                                         u64 mcg_cap)
2559 {
2560         int r;
2561         unsigned bank_num = mcg_cap & 0xff, bank;
2562
2563         r = -EINVAL;
2564         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2565                 goto out;
2566         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2567                 goto out;
2568         r = 0;
2569         vcpu->arch.mcg_cap = mcg_cap;
2570         /* Init IA32_MCG_CTL to all 1s */
2571         if (mcg_cap & MCG_CTL_P)
2572                 vcpu->arch.mcg_ctl = ~(u64)0;
2573         /* Init IA32_MCi_CTL to all 1s */
2574         for (bank = 0; bank < bank_num; bank++)
2575                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2576 out:
2577         return r;
2578 }
2579
2580 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2581                                       struct kvm_x86_mce *mce)
2582 {
2583         u64 mcg_cap = vcpu->arch.mcg_cap;
2584         unsigned bank_num = mcg_cap & 0xff;
2585         u64 *banks = vcpu->arch.mce_banks;
2586
2587         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2588                 return -EINVAL;
2589         /*
2590          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2591          * reporting is disabled
2592          */
2593         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2594             vcpu->arch.mcg_ctl != ~(u64)0)
2595                 return 0;
2596         banks += 4 * mce->bank;
2597         /*
2598          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2599          * reporting is disabled for the bank
2600          */
2601         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2602                 return 0;
2603         if (mce->status & MCI_STATUS_UC) {
2604                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2605                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2606                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2607                         return 0;
2608                 }
2609                 if (banks[1] & MCI_STATUS_VAL)
2610                         mce->status |= MCI_STATUS_OVER;
2611                 banks[2] = mce->addr;
2612                 banks[3] = mce->misc;
2613                 vcpu->arch.mcg_status = mce->mcg_status;
2614                 banks[1] = mce->status;
2615                 kvm_queue_exception(vcpu, MC_VECTOR);
2616         } else if (!(banks[1] & MCI_STATUS_VAL)
2617                    || !(banks[1] & MCI_STATUS_UC)) {
2618                 if (banks[1] & MCI_STATUS_VAL)
2619                         mce->status |= MCI_STATUS_OVER;
2620                 banks[2] = mce->addr;
2621                 banks[3] = mce->misc;
2622                 banks[1] = mce->status;
2623         } else
2624                 banks[1] |= MCI_STATUS_OVER;
2625         return 0;
2626 }
2627
2628 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2629                                                struct kvm_vcpu_events *events)
2630 {
2631         events->exception.injected =
2632                 vcpu->arch.exception.pending &&
2633                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2634         events->exception.nr = vcpu->arch.exception.nr;
2635         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2636         events->exception.pad = 0;
2637         events->exception.error_code = vcpu->arch.exception.error_code;
2638
2639         events->interrupt.injected =
2640                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2641         events->interrupt.nr = vcpu->arch.interrupt.nr;
2642         events->interrupt.soft = 0;
2643         events->interrupt.shadow =
2644                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2645                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2646
2647         events->nmi.injected = vcpu->arch.nmi_injected;
2648         events->nmi.pending = vcpu->arch.nmi_pending;
2649         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2650         events->nmi.pad = 0;
2651
2652         events->sipi_vector = vcpu->arch.sipi_vector;
2653
2654         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2655                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2656                          | KVM_VCPUEVENT_VALID_SHADOW);
2657         memset(&events->reserved, 0, sizeof(events->reserved));
2658 }
2659
2660 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2661                                               struct kvm_vcpu_events *events)
2662 {
2663         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2664                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2665                               | KVM_VCPUEVENT_VALID_SHADOW))
2666                 return -EINVAL;
2667
2668         vcpu->arch.exception.pending = events->exception.injected;
2669         vcpu->arch.exception.nr = events->exception.nr;
2670         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2671         vcpu->arch.exception.error_code = events->exception.error_code;
2672
2673         vcpu->arch.interrupt.pending = events->interrupt.injected;
2674         vcpu->arch.interrupt.nr = events->interrupt.nr;
2675         vcpu->arch.interrupt.soft = events->interrupt.soft;
2676         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2677                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2678                                                   events->interrupt.shadow);
2679
2680         vcpu->arch.nmi_injected = events->nmi.injected;
2681         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2682                 vcpu->arch.nmi_pending = events->nmi.pending;
2683         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2684
2685         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2686                 vcpu->arch.sipi_vector = events->sipi_vector;
2687
2688         kvm_make_request(KVM_REQ_EVENT, vcpu);
2689
2690         return 0;
2691 }
2692
2693 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2694                                              struct kvm_debugregs *dbgregs)
2695 {
2696         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2697         dbgregs->dr6 = vcpu->arch.dr6;
2698         dbgregs->dr7 = vcpu->arch.dr7;
2699         dbgregs->flags = 0;
2700         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2701 }
2702
2703 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2704                                             struct kvm_debugregs *dbgregs)
2705 {
2706         if (dbgregs->flags)
2707                 return -EINVAL;
2708
2709         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2710         vcpu->arch.dr6 = dbgregs->dr6;
2711         vcpu->arch.dr7 = dbgregs->dr7;
2712
2713         return 0;
2714 }
2715
2716 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2717                                          struct kvm_xsave *guest_xsave)
2718 {
2719         if (cpu_has_xsave)
2720                 memcpy(guest_xsave->region,
2721                         &vcpu->arch.guest_fpu.state->xsave,
2722                         xstate_size);
2723         else {
2724                 memcpy(guest_xsave->region,
2725                         &vcpu->arch.guest_fpu.state->fxsave,
2726                         sizeof(struct i387_fxsave_struct));
2727                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2728                         XSTATE_FPSSE;
2729         }
2730 }
2731
2732 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2733                                         struct kvm_xsave *guest_xsave)
2734 {
2735         u64 xstate_bv =
2736                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2737
2738         if (cpu_has_xsave)
2739                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2740                         guest_xsave->region, xstate_size);
2741         else {
2742                 if (xstate_bv & ~XSTATE_FPSSE)
2743                         return -EINVAL;
2744                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2745                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2746         }
2747         return 0;
2748 }
2749
2750 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2751                                         struct kvm_xcrs *guest_xcrs)
2752 {
2753         if (!cpu_has_xsave) {
2754                 guest_xcrs->nr_xcrs = 0;
2755                 return;
2756         }
2757
2758         guest_xcrs->nr_xcrs = 1;
2759         guest_xcrs->flags = 0;
2760         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2761         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2762 }
2763
2764 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2765                                        struct kvm_xcrs *guest_xcrs)
2766 {
2767         int i, r = 0;
2768
2769         if (!cpu_has_xsave)
2770                 return -EINVAL;
2771
2772         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2773                 return -EINVAL;
2774
2775         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2776                 /* Only support XCR0 currently */
2777                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2778                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2779                                 guest_xcrs->xcrs[0].value);
2780                         break;
2781                 }
2782         if (r)
2783                 r = -EINVAL;
2784         return r;
2785 }
2786
2787 long kvm_arch_vcpu_ioctl(struct file *filp,
2788                          unsigned int ioctl, unsigned long arg)
2789 {
2790         struct kvm_vcpu *vcpu = filp->private_data;
2791         void __user *argp = (void __user *)arg;
2792         int r;
2793         union {
2794                 struct kvm_lapic_state *lapic;
2795                 struct kvm_xsave *xsave;
2796                 struct kvm_xcrs *xcrs;
2797                 void *buffer;
2798         } u;
2799
2800         u.buffer = NULL;
2801         switch (ioctl) {
2802         case KVM_GET_LAPIC: {
2803                 r = -EINVAL;
2804                 if (!vcpu->arch.apic)
2805                         goto out;
2806                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2807
2808                 r = -ENOMEM;
2809                 if (!u.lapic)
2810                         goto out;
2811                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2812                 if (r)
2813                         goto out;
2814                 r = -EFAULT;
2815                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2816                         goto out;
2817                 r = 0;
2818                 break;
2819         }
2820         case KVM_SET_LAPIC: {
2821                 r = -EINVAL;
2822                 if (!vcpu->arch.apic)
2823                         goto out;
2824                 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2825                 r = -ENOMEM;
2826                 if (!u.lapic)
2827                         goto out;
2828                 r = -EFAULT;
2829                 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2830                         goto out;
2831                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2832                 if (r)
2833                         goto out;
2834                 r = 0;
2835                 break;
2836         }
2837         case KVM_INTERRUPT: {
2838                 struct kvm_interrupt irq;
2839
2840                 r = -EFAULT;
2841                 if (copy_from_user(&irq, argp, sizeof irq))
2842                         goto out;
2843                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2844                 if (r)
2845                         goto out;
2846                 r = 0;
2847                 break;
2848         }
2849         case KVM_NMI: {
2850                 r = kvm_vcpu_ioctl_nmi(vcpu);
2851                 if (r)
2852                         goto out;
2853                 r = 0;
2854                 break;
2855         }
2856         case KVM_SET_CPUID: {
2857                 struct kvm_cpuid __user *cpuid_arg = argp;
2858                 struct kvm_cpuid cpuid;
2859
2860                 r = -EFAULT;
2861                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2862                         goto out;
2863                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2864                 if (r)
2865                         goto out;
2866                 break;
2867         }
2868         case KVM_SET_CPUID2: {
2869                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2870                 struct kvm_cpuid2 cpuid;
2871
2872                 r = -EFAULT;
2873                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2874                         goto out;
2875                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2876                                               cpuid_arg->entries);
2877                 if (r)
2878                         goto out;
2879                 break;
2880         }
2881         case KVM_GET_CPUID2: {
2882                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2883                 struct kvm_cpuid2 cpuid;
2884
2885                 r = -EFAULT;
2886                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2887                         goto out;
2888                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2889                                               cpuid_arg->entries);
2890                 if (r)
2891                         goto out;
2892                 r = -EFAULT;
2893                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2894                         goto out;
2895                 r = 0;
2896                 break;
2897         }
2898         case KVM_GET_MSRS:
2899                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2900                 break;
2901         case KVM_SET_MSRS:
2902                 r = msr_io(vcpu, argp, do_set_msr, 0);
2903                 break;
2904         case KVM_TPR_ACCESS_REPORTING: {
2905                 struct kvm_tpr_access_ctl tac;
2906
2907                 r = -EFAULT;
2908                 if (copy_from_user(&tac, argp, sizeof tac))
2909                         goto out;
2910                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2911                 if (r)
2912                         goto out;
2913                 r = -EFAULT;
2914                 if (copy_to_user(argp, &tac, sizeof tac))
2915                         goto out;
2916                 r = 0;
2917                 break;
2918         };
2919         case KVM_SET_VAPIC_ADDR: {
2920                 struct kvm_vapic_addr va;
2921
2922                 r = -EINVAL;
2923                 if (!irqchip_in_kernel(vcpu->kvm))
2924                         goto out;
2925                 r = -EFAULT;
2926                 if (copy_from_user(&va, argp, sizeof va))
2927                         goto out;
2928                 r = 0;
2929                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2930                 break;
2931         }
2932         case KVM_X86_SETUP_MCE: {
2933                 u64 mcg_cap;
2934
2935                 r = -EFAULT;
2936                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2937                         goto out;
2938                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2939                 break;
2940         }
2941         case KVM_X86_SET_MCE: {
2942                 struct kvm_x86_mce mce;
2943
2944                 r = -EFAULT;
2945                 if (copy_from_user(&mce, argp, sizeof mce))
2946                         goto out;
2947                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2948                 break;
2949         }
2950         case KVM_GET_VCPU_EVENTS: {
2951                 struct kvm_vcpu_events events;
2952
2953                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2954
2955                 r = -EFAULT;
2956                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2957                         break;
2958                 r = 0;
2959                 break;
2960         }
2961         case KVM_SET_VCPU_EVENTS: {
2962                 struct kvm_vcpu_events events;
2963
2964                 r = -EFAULT;
2965                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2966                         break;
2967
2968                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2969                 break;
2970         }
2971         case KVM_GET_DEBUGREGS: {
2972                 struct kvm_debugregs dbgregs;
2973
2974                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2975
2976                 r = -EFAULT;
2977                 if (copy_to_user(argp, &dbgregs,
2978                                  sizeof(struct kvm_debugregs)))
2979                         break;
2980                 r = 0;
2981                 break;
2982         }
2983         case KVM_SET_DEBUGREGS: {
2984                 struct kvm_debugregs dbgregs;
2985
2986                 r = -EFAULT;
2987                 if (copy_from_user(&dbgregs, argp,
2988                                    sizeof(struct kvm_debugregs)))
2989                         break;
2990
2991                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2992                 break;
2993         }
2994         case KVM_GET_XSAVE: {
2995                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2996                 r = -ENOMEM;
2997                 if (!u.xsave)
2998                         break;
2999
3000                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3001
3002                 r = -EFAULT;
3003                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3004                         break;
3005                 r = 0;
3006                 break;
3007         }
3008         case KVM_SET_XSAVE: {
3009                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3010                 r = -ENOMEM;
3011                 if (!u.xsave)
3012                         break;
3013
3014                 r = -EFAULT;
3015                 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
3016                         break;
3017
3018                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3019                 break;
3020         }
3021         case KVM_GET_XCRS: {
3022                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3023                 r = -ENOMEM;
3024                 if (!u.xcrs)
3025                         break;
3026
3027                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3028
3029                 r = -EFAULT;
3030                 if (copy_to_user(argp, u.xcrs,
3031                                  sizeof(struct kvm_xcrs)))
3032                         break;
3033                 r = 0;
3034                 break;
3035         }
3036         case KVM_SET_XCRS: {
3037                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3038                 r = -ENOMEM;
3039                 if (!u.xcrs)
3040                         break;
3041
3042                 r = -EFAULT;
3043                 if (copy_from_user(u.xcrs, argp,
3044                                    sizeof(struct kvm_xcrs)))
3045                         break;
3046
3047                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3048                 break;
3049         }
3050         default:
3051                 r = -EINVAL;
3052         }
3053 out:
3054         kfree(u.buffer);
3055         return r;
3056 }
3057
3058 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3059 {
3060         int ret;
3061
3062         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3063                 return -1;
3064         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3065         return ret;
3066 }
3067
3068 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3069                                               u64 ident_addr)
3070 {
3071         kvm->arch.ept_identity_map_addr = ident_addr;
3072         return 0;
3073 }
3074
3075 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3076                                           u32 kvm_nr_mmu_pages)
3077 {
3078         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3079                 return -EINVAL;
3080
3081         mutex_lock(&kvm->slots_lock);
3082         spin_lock(&kvm->mmu_lock);
3083
3084         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3085         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3086
3087         spin_unlock(&kvm->mmu_lock);
3088         mutex_unlock(&kvm->slots_lock);
3089         return 0;
3090 }
3091
3092 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3093 {
3094         return kvm->arch.n_max_mmu_pages;
3095 }
3096
3097 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3098 {
3099         int r;
3100
3101         r = 0;
3102         switch (chip->chip_id) {
3103         case KVM_IRQCHIP_PIC_MASTER:
3104                 memcpy(&chip->chip.pic,
3105                         &pic_irqchip(kvm)->pics[0],
3106                         sizeof(struct kvm_pic_state));
3107                 break;
3108         case KVM_IRQCHIP_PIC_SLAVE:
3109                 memcpy(&chip->chip.pic,
3110                         &pic_irqchip(kvm)->pics[1],
3111                         sizeof(struct kvm_pic_state));
3112                 break;
3113         case KVM_IRQCHIP_IOAPIC:
3114                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3115                 break;
3116         default:
3117                 r = -EINVAL;
3118                 break;
3119         }
3120         return r;
3121 }
3122
3123 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3124 {
3125         int r;
3126
3127         r = 0;
3128         switch (chip->chip_id) {
3129         case KVM_IRQCHIP_PIC_MASTER:
3130                 spin_lock(&pic_irqchip(kvm)->lock);
3131                 memcpy(&pic_irqchip(kvm)->pics[0],
3132                         &chip->chip.pic,
3133                         sizeof(struct kvm_pic_state));
3134                 spin_unlock(&pic_irqchip(kvm)->lock);
3135                 break;
3136         case KVM_IRQCHIP_PIC_SLAVE:
3137                 spin_lock(&pic_irqchip(kvm)->lock);
3138                 memcpy(&pic_irqchip(kvm)->pics[1],
3139                         &chip->chip.pic,
3140                         sizeof(struct kvm_pic_state));
3141                 spin_unlock(&pic_irqchip(kvm)->lock);
3142                 break;
3143         case KVM_IRQCHIP_IOAPIC:
3144                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3145                 break;
3146         default:
3147                 r = -EINVAL;
3148                 break;
3149         }
3150         kvm_pic_update_irq(pic_irqchip(kvm));
3151         return r;
3152 }
3153
3154 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3155 {
3156         int r = 0;
3157
3158         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3159         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3160         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3161         return r;
3162 }
3163
3164 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3165 {
3166         int r = 0;
3167
3168         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3169         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3170         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3171         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3172         return r;
3173 }
3174
3175 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3176 {
3177         int r = 0;
3178
3179         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3180         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3181                 sizeof(ps->channels));
3182         ps->flags = kvm->arch.vpit->pit_state.flags;
3183         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3184         memset(&ps->reserved, 0, sizeof(ps->reserved));
3185         return r;
3186 }
3187
3188 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3189 {
3190         int r = 0, start = 0;
3191         u32 prev_legacy, cur_legacy;
3192         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3193         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3194         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3195         if (!prev_legacy && cur_legacy)
3196                 start = 1;
3197         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3198                sizeof(kvm->arch.vpit->pit_state.channels));
3199         kvm->arch.vpit->pit_state.flags = ps->flags;
3200         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3201         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3202         return r;
3203 }
3204
3205 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3206                                  struct kvm_reinject_control *control)
3207 {
3208         if (!kvm->arch.vpit)
3209                 return -ENXIO;
3210         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3211         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3212         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3213         return 0;
3214 }
3215
3216 /*
3217  * Get (and clear) the dirty memory log for a memory slot.
3218  */
3219 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3220                                       struct kvm_dirty_log *log)
3221 {
3222         int r, i;
3223         struct kvm_memory_slot *memslot;
3224         unsigned long n;
3225         unsigned long is_dirty = 0;
3226
3227         mutex_lock(&kvm->slots_lock);
3228
3229         r = -EINVAL;
3230         if (log->slot >= KVM_MEMORY_SLOTS)
3231                 goto out;
3232
3233         memslot = &kvm->memslots->memslots[log->slot];
3234         r = -ENOENT;
3235         if (!memslot->dirty_bitmap)
3236                 goto out;
3237
3238         n = kvm_dirty_bitmap_bytes(memslot);
3239
3240         for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3241                 is_dirty = memslot->dirty_bitmap[i];
3242
3243         /* If nothing is dirty, don't bother messing with page tables. */
3244         if (is_dirty) {
3245                 struct kvm_memslots *slots, *old_slots;
3246                 unsigned long *dirty_bitmap;
3247
3248                 dirty_bitmap = memslot->dirty_bitmap_head;
3249                 if (memslot->dirty_bitmap == dirty_bitmap)
3250                         dirty_bitmap += n / sizeof(long);
3251                 memset(dirty_bitmap, 0, n);
3252
3253                 r = -ENOMEM;
3254                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3255                 if (!slots)
3256                         goto out;
3257                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3258                 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3259                 slots->generation++;
3260
3261                 old_slots = kvm->memslots;
3262                 rcu_assign_pointer(kvm->memslots, slots);
3263                 synchronize_srcu_expedited(&kvm->srcu);
3264                 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3265                 kfree(old_slots);
3266
3267                 spin_lock(&kvm->mmu_lock);
3268                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3269                 spin_unlock(&kvm->mmu_lock);
3270
3271                 r = -EFAULT;
3272                 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3273                         goto out;
3274         } else {
3275                 r = -EFAULT;
3276                 if (clear_user(log->dirty_bitmap, n))
3277                         goto out;
3278         }
3279
3280         r = 0;
3281 out:
3282         mutex_unlock(&kvm->slots_lock);
3283         return r;
3284 }
3285
3286 long kvm_arch_vm_ioctl(struct file *filp,
3287                        unsigned int ioctl, unsigned long arg)
3288 {
3289         struct kvm *kvm = filp->private_data;
3290         void __user *argp = (void __user *)arg;
3291         int r = -ENOTTY;
3292         /*
3293          * This union makes it completely explicit to gcc-3.x
3294          * that these two variables' stack usage should be
3295          * combined, not added together.
3296          */
3297         union {
3298                 struct kvm_pit_state ps;
3299                 struct kvm_pit_state2 ps2;
3300                 struct kvm_pit_config pit_config;
3301         } u;
3302
3303         switch (ioctl) {
3304         case KVM_SET_TSS_ADDR:
3305                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3306                 if (r < 0)
3307                         goto out;
3308                 break;
3309         case KVM_SET_IDENTITY_MAP_ADDR: {
3310                 u64 ident_addr;
3311
3312                 r = -EFAULT;
3313                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3314                         goto out;
3315                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3316                 if (r < 0)
3317                         goto out;
3318                 break;
3319         }
3320         case KVM_SET_NR_MMU_PAGES:
3321                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3322                 if (r)
3323                         goto out;
3324                 break;
3325         case KVM_GET_NR_MMU_PAGES:
3326                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3327                 break;
3328         case KVM_CREATE_IRQCHIP: {
3329                 struct kvm_pic *vpic;
3330
3331                 mutex_lock(&kvm->lock);
3332                 r = -EEXIST;
3333                 if (kvm->arch.vpic)
3334                         goto create_irqchip_unlock;
3335                 r = -ENOMEM;
3336                 vpic = kvm_create_pic(kvm);
3337                 if (vpic) {
3338                         r = kvm_ioapic_init(kvm);
3339                         if (r) {
3340                                 mutex_lock(&kvm->slots_lock);
3341                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3342                                                           &vpic->dev);
3343                                 mutex_unlock(&kvm->slots_lock);
3344                                 kfree(vpic);
3345                                 goto create_irqchip_unlock;
3346                         }
3347                 } else
3348                         goto create_irqchip_unlock;
3349                 smp_wmb();
3350                 kvm->arch.vpic = vpic;
3351                 smp_wmb();
3352                 r = kvm_setup_default_irq_routing(kvm);
3353                 if (r) {
3354                         mutex_lock(&kvm->slots_lock);
3355                         mutex_lock(&kvm->irq_lock);
3356                         kvm_ioapic_destroy(kvm);
3357                         kvm_destroy_pic(kvm);
3358                         mutex_unlock(&kvm->irq_lock);
3359                         mutex_unlock(&kvm->slots_lock);
3360                 }
3361         create_irqchip_unlock:
3362                 mutex_unlock(&kvm->lock);
3363                 break;
3364         }
3365         case KVM_CREATE_PIT:
3366                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3367                 goto create_pit;
3368         case KVM_CREATE_PIT2:
3369                 r = -EFAULT;
3370                 if (copy_from_user(&u.pit_config, argp,
3371                                    sizeof(struct kvm_pit_config)))
3372                         goto out;
3373         create_pit:
3374                 mutex_lock(&kvm->slots_lock);
3375                 r = -EEXIST;
3376                 if (kvm->arch.vpit)
3377                         goto create_pit_unlock;
3378                 r = -ENOMEM;
3379                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3380                 if (kvm->arch.vpit)
3381                         r = 0;
3382         create_pit_unlock:
3383                 mutex_unlock(&kvm->slots_lock);
3384                 break;
3385         case KVM_IRQ_LINE_STATUS:
3386         case KVM_IRQ_LINE: {
3387                 struct kvm_irq_level irq_event;
3388
3389                 r = -EFAULT;
3390                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3391                         goto out;
3392                 r = -ENXIO;
3393                 if (irqchip_in_kernel(kvm)) {
3394                         __s32 status;
3395                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3396                                         irq_event.irq, irq_event.level);
3397                         if (ioctl == KVM_IRQ_LINE_STATUS) {
3398                                 r = -EFAULT;
3399                                 irq_event.status = status;
3400                                 if (copy_to_user(argp, &irq_event,
3401                                                         sizeof irq_event))
3402                                         goto out;
3403                         }
3404                         r = 0;
3405                 }
3406                 break;
3407         }
3408         case KVM_GET_IRQCHIP: {
3409                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3410                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3411
3412                 r = -ENOMEM;
3413                 if (!chip)
3414                         goto out;
3415                 r = -EFAULT;
3416                 if (copy_from_user(chip, argp, sizeof *chip))
3417                         goto get_irqchip_out;
3418                 r = -ENXIO;
3419                 if (!irqchip_in_kernel(kvm))
3420                         goto get_irqchip_out;
3421                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3422                 if (r)
3423                         goto get_irqchip_out;
3424                 r = -EFAULT;
3425                 if (copy_to_user(argp, chip, sizeof *chip))
3426                         goto get_irqchip_out;
3427                 r = 0;
3428         get_irqchip_out:
3429                 kfree(chip);
3430                 if (r)
3431                         goto out;
3432                 break;
3433         }
3434         case KVM_SET_IRQCHIP: {
3435                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3436                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3437
3438                 r = -ENOMEM;
3439                 if (!chip)
3440                         goto out;
3441                 r = -EFAULT;
3442                 if (copy_from_user(chip, argp, sizeof *chip))
3443                         goto set_irqchip_out;
3444                 r = -ENXIO;
3445                 if (!irqchip_in_kernel(kvm))
3446                         goto set_irqchip_out;
3447                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3448                 if (r)
3449                         goto set_irqchip_out;
3450                 r = 0;
3451         set_irqchip_out:
3452                 kfree(chip);
3453                 if (r)
3454                         goto out;
3455                 break;
3456         }
3457         case KVM_GET_PIT: {
3458                 r = -EFAULT;
3459                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3460                         goto out;
3461                 r = -ENXIO;
3462                 if (!kvm->arch.vpit)
3463                         goto out;
3464                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3465                 if (r)
3466                         goto out;
3467                 r = -EFAULT;
3468                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3469                         goto out;
3470                 r = 0;
3471                 break;
3472         }
3473         case KVM_SET_PIT: {
3474                 r = -EFAULT;
3475                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3476                         goto out;
3477                 r = -ENXIO;
3478                 if (!kvm->arch.vpit)
3479                         goto out;
3480                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3481                 if (r)
3482                         goto out;
3483                 r = 0;
3484                 break;
3485         }
3486         case KVM_GET_PIT2: {
3487                 r = -ENXIO;
3488                 if (!kvm->arch.vpit)
3489                         goto out;
3490                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3491                 if (r)
3492                         goto out;
3493                 r = -EFAULT;
3494                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3495                         goto out;
3496                 r = 0;
3497                 break;
3498         }
3499         case KVM_SET_PIT2: {
3500                 r = -EFAULT;
3501                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3502                         goto out;
3503                 r = -ENXIO;
3504                 if (!kvm->arch.vpit)
3505                         goto out;
3506                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3507                 if (r)
3508                         goto out;
3509                 r = 0;
3510                 break;
3511         }
3512         case KVM_REINJECT_CONTROL: {
3513                 struct kvm_reinject_control control;
3514                 r =  -EFAULT;
3515                 if (copy_from_user(&control, argp, sizeof(control)))
3516                         goto out;
3517                 r = kvm_vm_ioctl_reinject(kvm, &control);
3518                 if (r)
3519                         goto out;
3520                 r = 0;
3521                 break;
3522         }
3523         case KVM_XEN_HVM_CONFIG: {
3524                 r = -EFAULT;
3525                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3526                                    sizeof(struct kvm_xen_hvm_config)))
3527                         goto out;
3528                 r = -EINVAL;
3529                 if (kvm->arch.xen_hvm_config.flags)
3530                         goto out;
3531                 r = 0;
3532                 break;
3533         }
3534         case KVM_SET_CLOCK: {
3535                 struct kvm_clock_data user_ns;
3536                 u64 now_ns;
3537                 s64 delta;
3538
3539                 r = -EFAULT;
3540                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3541                         goto out;
3542
3543                 r = -EINVAL;
3544                 if (user_ns.flags)
3545                         goto out;
3546
3547                 r = 0;
3548                 local_irq_disable();
3549                 now_ns = get_kernel_ns();
3550                 delta = user_ns.clock - now_ns;
3551                 local_irq_enable();
3552                 kvm->arch.kvmclock_offset = delta;
3553                 break;
3554         }
3555         case KVM_GET_CLOCK: {
3556                 struct kvm_clock_data user_ns;
3557                 u64 now_ns;
3558
3559                 local_irq_disable();
3560                 now_ns = get_kernel_ns();
3561                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3562                 local_irq_enable();
3563                 user_ns.flags = 0;
3564                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3565
3566                 r = -EFAULT;
3567                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3568                         goto out;
3569                 r = 0;
3570                 break;
3571         }
3572
3573         default:
3574                 ;
3575         }
3576 out:
3577         return r;
3578 }
3579
3580 static void kvm_init_msr_list(void)
3581 {
3582         u32 dummy[2];
3583         unsigned i, j;
3584
3585         /* skip the first msrs in the list. KVM-specific */
3586         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3587                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3588                         continue;
3589                 if (j < i)
3590                         msrs_to_save[j] = msrs_to_save[i];
3591                 j++;
3592         }
3593         num_msrs_to_save = j;
3594 }
3595
3596 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3597                            const void *v)
3598 {
3599         int handled = 0;
3600         int n;
3601
3602         do {
3603                 n = min(len, 8);
3604                 if (!(vcpu->arch.apic &&
3605                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3606                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3607                         break;
3608                 handled += n;
3609                 addr += n;
3610                 len -= n;
3611                 v += n;
3612         } while (len);
3613
3614         return handled;
3615 }
3616
3617 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3618 {
3619         int handled = 0;
3620         int n;
3621
3622         do {
3623                 n = min(len, 8);
3624                 if (!(vcpu->arch.apic &&
3625                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3626                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3627                         break;
3628                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3629                 handled += n;
3630                 addr += n;
3631                 len -= n;
3632                 v += n;
3633         } while (len);
3634
3635         return handled;
3636 }
3637
3638 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3639                         struct kvm_segment *var, int seg)
3640 {
3641         kvm_x86_ops->set_segment(vcpu, var, seg);
3642 }
3643
3644 void kvm_get_segment(struct kvm_vcpu *vcpu,
3645                      struct kvm_segment *var, int seg)
3646 {
3647         kvm_x86_ops->get_segment(vcpu, var, seg);
3648 }
3649
3650 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3651 {
3652         return gpa;
3653 }
3654
3655 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3656 {
3657         gpa_t t_gpa;
3658         struct x86_exception exception;
3659
3660         BUG_ON(!mmu_is_nested(vcpu));
3661
3662         /* NPT walks are always user-walks */
3663         access |= PFERR_USER_MASK;
3664         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3665
3666         return t_gpa;
3667 }
3668
3669 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3670                               struct x86_exception *exception)
3671 {
3672         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3673         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3674 }
3675
3676  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3677                                 struct x86_exception *exception)
3678 {
3679         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3680         access |= PFERR_FETCH_MASK;
3681         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3682 }
3683
3684 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3685                                struct x86_exception *exception)
3686 {
3687         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3688         access |= PFERR_WRITE_MASK;
3689         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3690 }
3691
3692 /* uses this to access any guest's mapped memory without checking CPL */
3693 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3694                                 struct x86_exception *exception)
3695 {
3696         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3697 }
3698
3699 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3700                                       struct kvm_vcpu *vcpu, u32 access,
3701                                       struct x86_exception *exception)
3702 {
3703         void *data = val;
3704         int r = X86EMUL_CONTINUE;
3705
3706         while (bytes) {
3707                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3708                                                             exception);
3709                 unsigned offset = addr & (PAGE_SIZE-1);
3710                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3711                 int ret;
3712
3713                 if (gpa == UNMAPPED_GVA)
3714                         return X86EMUL_PROPAGATE_FAULT;
3715                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3716                 if (ret < 0) {
3717                         r = X86EMUL_IO_NEEDED;
3718                         goto out;
3719                 }
3720
3721                 bytes -= toread;
3722                 data += toread;
3723                 addr += toread;
3724         }
3725 out:
3726         return r;
3727 }
3728
3729 /* used for instruction fetching */
3730 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3731                                 struct kvm_vcpu *vcpu,
3732                                 struct x86_exception *exception)
3733 {
3734         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3735         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3736                                           access | PFERR_FETCH_MASK,
3737                                           exception);
3738 }
3739
3740 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3741                                struct kvm_vcpu *vcpu,
3742                                struct x86_exception *exception)
3743 {
3744         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3745         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3746                                           exception);
3747 }
3748
3749 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3750                                       struct kvm_vcpu *vcpu,
3751                                       struct x86_exception *exception)
3752 {
3753         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3754 }
3755
3756 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3757                                        unsigned int bytes,
3758                                        struct kvm_vcpu *vcpu,
3759                                        struct x86_exception *exception)
3760 {
3761         void *data = val;
3762         int r = X86EMUL_CONTINUE;
3763
3764         while (bytes) {
3765                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3766                                                              PFERR_WRITE_MASK,
3767                                                              exception);
3768                 unsigned offset = addr & (PAGE_SIZE-1);
3769                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3770                 int ret;
3771
3772                 if (gpa == UNMAPPED_GVA)
3773                         return X86EMUL_PROPAGATE_FAULT;
3774                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3775                 if (ret < 0) {
3776                         r = X86EMUL_IO_NEEDED;
3777                         goto out;
3778                 }
3779
3780                 bytes -= towrite;
3781                 data += towrite;
3782                 addr += towrite;
3783         }
3784 out:
3785         return r;
3786 }
3787
3788 static int emulator_read_emulated(unsigned long addr,
3789                                   void *val,
3790                                   unsigned int bytes,
3791                                   struct x86_exception *exception,
3792                                   struct kvm_vcpu *vcpu)
3793 {
3794         gpa_t                 gpa;
3795         int handled;
3796
3797         if (vcpu->mmio_read_completed) {
3798                 memcpy(val, vcpu->mmio_data, bytes);
3799                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3800                                vcpu->mmio_phys_addr, *(u64 *)val);
3801                 vcpu->mmio_read_completed = 0;
3802                 return X86EMUL_CONTINUE;
3803         }
3804
3805         gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, exception);
3806
3807         if (gpa == UNMAPPED_GVA)
3808                 return X86EMUL_PROPAGATE_FAULT;
3809
3810         /* For APIC access vmexit */
3811         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3812                 goto mmio;
3813
3814         if (kvm_read_guest_virt(addr, val, bytes, vcpu, exception)
3815             == X86EMUL_CONTINUE)
3816                 return X86EMUL_CONTINUE;
3817
3818 mmio:
3819         /*
3820          * Is this MMIO handled locally?
3821          */
3822         handled = vcpu_mmio_read(vcpu, gpa, bytes, val);
3823
3824         if (handled == bytes)
3825                 return X86EMUL_CONTINUE;
3826
3827         gpa += handled;
3828         bytes -= handled;
3829         val += handled;
3830
3831         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3832
3833         vcpu->mmio_needed = 1;
3834         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3835         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3836         vcpu->mmio_size = bytes;
3837         vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
3838         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3839         vcpu->mmio_index = 0;
3840
3841         return X86EMUL_IO_NEEDED;
3842 }
3843
3844 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3845                         const void *val, int bytes)
3846 {
3847         int ret;
3848
3849         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3850         if (ret < 0)
3851                 return 0;
3852         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3853         return 1;
3854 }
3855
3856 static int emulator_write_emulated_onepage(unsigned long addr,
3857                                            const void *val,
3858                                            unsigned int bytes,
3859                                            struct x86_exception *exception,
3860                                            struct kvm_vcpu *vcpu)
3861 {
3862         gpa_t                 gpa;
3863         int handled;
3864
3865         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, exception);
3866
3867         if (gpa == UNMAPPED_GVA)
3868                 return X86EMUL_PROPAGATE_FAULT;
3869
3870         /* For APIC access vmexit */
3871         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3872                 goto mmio;
3873
3874         if (emulator_write_phys(vcpu, gpa, val, bytes))
3875                 return X86EMUL_CONTINUE;
3876
3877 mmio:
3878         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3879         /*
3880          * Is this MMIO handled locally?
3881          */
3882         handled = vcpu_mmio_write(vcpu, gpa, bytes, val);
3883         if (handled == bytes)
3884                 return X86EMUL_CONTINUE;
3885
3886         gpa += handled;
3887         bytes -= handled;
3888         val += handled;
3889
3890         vcpu->mmio_needed = 1;
3891         memcpy(vcpu->mmio_data, val, bytes);
3892         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3893         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3894         vcpu->mmio_size = bytes;
3895         vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
3896         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3897         memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8);
3898         vcpu->mmio_index = 0;
3899
3900         return X86EMUL_CONTINUE;
3901 }
3902
3903 int emulator_write_emulated(unsigned long addr,
3904                             const void *val,
3905                             unsigned int bytes,
3906                             struct x86_exception *exception,
3907                             struct kvm_vcpu *vcpu)
3908 {
3909         /* Crossing a page boundary? */
3910         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3911                 int rc, now;
3912
3913                 now = -addr & ~PAGE_MASK;
3914                 rc = emulator_write_emulated_onepage(addr, val, now, exception,
3915                                                      vcpu);
3916                 if (rc != X86EMUL_CONTINUE)
3917                         return rc;
3918                 addr += now;
3919                 val += now;
3920                 bytes -= now;
3921         }
3922         return emulator_write_emulated_onepage(addr, val, bytes, exception,
3923                                                vcpu);
3924 }
3925
3926 #define CMPXCHG_TYPE(t, ptr, old, new) \
3927         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3928
3929 #ifdef CONFIG_X86_64
3930 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3931 #else
3932 #  define CMPXCHG64(ptr, old, new) \
3933         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3934 #endif
3935
3936 static int emulator_cmpxchg_emulated(unsigned long addr,
3937                                      const void *old,
3938                                      const void *new,
3939                                      unsigned int bytes,
3940                                      struct x86_exception *exception,
3941                                      struct kvm_vcpu *vcpu)
3942 {
3943         gpa_t gpa;
3944         struct page *page;
3945         char *kaddr;
3946         bool exchanged;
3947
3948         /* guests cmpxchg8b have to be emulated atomically */
3949         if (bytes > 8 || (bytes & (bytes - 1)))
3950                 goto emul_write;
3951
3952         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3953
3954         if (gpa == UNMAPPED_GVA ||
3955             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3956                 goto emul_write;
3957
3958         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3959                 goto emul_write;
3960
3961         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3962         if (is_error_page(page)) {
3963                 kvm_release_page_clean(page);
3964                 goto emul_write;
3965         }
3966
3967         kaddr = kmap_atomic(page, KM_USER0);
3968         kaddr += offset_in_page(gpa);
3969         switch (bytes) {
3970         case 1:
3971                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3972                 break;
3973         case 2:
3974                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3975                 break;
3976         case 4:
3977                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3978                 break;
3979         case 8:
3980                 exchanged = CMPXCHG64(kaddr, old, new);
3981                 break;
3982         default:
3983                 BUG();
3984         }
3985         kunmap_atomic(kaddr, KM_USER0);
3986         kvm_release_page_dirty(page);
3987
3988         if (!exchanged)
3989                 return X86EMUL_CMPXCHG_FAILED;
3990
3991         kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3992
3993         return X86EMUL_CONTINUE;
3994
3995 emul_write:
3996         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3997
3998         return emulator_write_emulated(addr, new, bytes, exception, vcpu);
3999 }
4000
4001 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4002 {
4003         /* TODO: String I/O for in kernel device */
4004         int r;
4005
4006         if (vcpu->arch.pio.in)
4007                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4008                                     vcpu->arch.pio.size, pd);
4009         else
4010                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4011                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4012                                      pd);
4013         return r;
4014 }
4015
4016
4017 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
4018                              unsigned int count, struct kvm_vcpu *vcpu)
4019 {
4020         if (vcpu->arch.pio.count)
4021                 goto data_avail;
4022
4023         trace_kvm_pio(0, port, size, count);
4024
4025         vcpu->arch.pio.port = port;
4026         vcpu->arch.pio.in = 1;
4027         vcpu->arch.pio.count  = count;
4028         vcpu->arch.pio.size = size;
4029
4030         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4031         data_avail:
4032                 memcpy(val, vcpu->arch.pio_data, size * count);
4033                 vcpu->arch.pio.count = 0;
4034                 return 1;
4035         }
4036
4037         vcpu->run->exit_reason = KVM_EXIT_IO;
4038         vcpu->run->io.direction = KVM_EXIT_IO_IN;
4039         vcpu->run->io.size = size;
4040         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4041         vcpu->run->io.count = count;
4042         vcpu->run->io.port = port;
4043
4044         return 0;
4045 }
4046
4047 static int emulator_pio_out_emulated(int size, unsigned short port,
4048                               const void *val, unsigned int count,
4049                               struct kvm_vcpu *vcpu)
4050 {
4051         trace_kvm_pio(1, port, size, count);
4052
4053         vcpu->arch.pio.port = port;
4054         vcpu->arch.pio.in = 0;
4055         vcpu->arch.pio.count = count;
4056         vcpu->arch.pio.size = size;
4057
4058         memcpy(vcpu->arch.pio_data, val, size * count);
4059
4060         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4061                 vcpu->arch.pio.count = 0;
4062                 return 1;
4063         }
4064
4065         vcpu->run->exit_reason = KVM_EXIT_IO;
4066         vcpu->run->io.direction = KVM_EXIT_IO_OUT;
4067         vcpu->run->io.size = size;
4068         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4069         vcpu->run->io.count = count;
4070         vcpu->run->io.port = port;
4071
4072         return 0;
4073 }
4074
4075 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4076 {
4077         return kvm_x86_ops->get_segment_base(vcpu, seg);
4078 }
4079
4080 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
4081 {
4082         kvm_mmu_invlpg(vcpu, address);
4083         return X86EMUL_CONTINUE;
4084 }
4085
4086 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4087 {
4088         if (!need_emulate_wbinvd(vcpu))
4089                 return X86EMUL_CONTINUE;
4090
4091         if (kvm_x86_ops->has_wbinvd_exit()) {
4092                 int cpu = get_cpu();
4093
4094                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4095                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4096                                 wbinvd_ipi, NULL, 1);
4097                 put_cpu();
4098                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4099         } else
4100                 wbinvd();
4101         return X86EMUL_CONTINUE;
4102 }
4103 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4104
4105 int emulate_clts(struct kvm_vcpu *vcpu)
4106 {
4107         kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4108         kvm_x86_ops->fpu_activate(vcpu);
4109         return X86EMUL_CONTINUE;
4110 }
4111
4112 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
4113 {
4114         return _kvm_get_dr(vcpu, dr, dest);
4115 }
4116
4117 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
4118 {
4119
4120         return __kvm_set_dr(vcpu, dr, value);
4121 }
4122
4123 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4124 {
4125         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4126 }
4127
4128 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
4129 {
4130         unsigned long value;
4131
4132         switch (cr) {
4133         case 0:
4134                 value = kvm_read_cr0(vcpu);
4135                 break;
4136         case 2:
4137                 value = vcpu->arch.cr2;
4138                 break;
4139         case 3:
4140                 value = kvm_read_cr3(vcpu);
4141                 break;
4142         case 4:
4143                 value = kvm_read_cr4(vcpu);
4144                 break;
4145         case 8:
4146                 value = kvm_get_cr8(vcpu);
4147                 break;
4148         default:
4149                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4150                 return 0;
4151         }
4152
4153         return value;
4154 }
4155
4156 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
4157 {
4158         int res = 0;
4159
4160         switch (cr) {
4161         case 0:
4162                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4163                 break;
4164         case 2:
4165                 vcpu->arch.cr2 = val;
4166                 break;
4167         case 3:
4168                 res = kvm_set_cr3(vcpu, val);
4169                 break;
4170         case 4:
4171                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4172                 break;
4173         case 8:
4174                 res = kvm_set_cr8(vcpu, val);
4175                 break;
4176         default:
4177                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4178                 res = -1;
4179         }
4180
4181         return res;
4182 }
4183
4184 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
4185 {
4186         return kvm_x86_ops->get_cpl(vcpu);
4187 }
4188
4189 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4190 {
4191         kvm_x86_ops->get_gdt(vcpu, dt);
4192 }
4193
4194 static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4195 {
4196         kvm_x86_ops->get_idt(vcpu, dt);
4197 }
4198
4199 static unsigned long emulator_get_cached_segment_base(int seg,
4200                                                       struct kvm_vcpu *vcpu)
4201 {
4202         return get_segment_base(vcpu, seg);
4203 }
4204
4205 static bool emulator_get_cached_descriptor(struct desc_struct *desc, u32 *base3,
4206                                            int seg, struct kvm_vcpu *vcpu)
4207 {
4208         struct kvm_segment var;
4209
4210         kvm_get_segment(vcpu, &var, seg);
4211
4212         if (var.unusable)
4213                 return false;
4214
4215         if (var.g)
4216                 var.limit >>= 12;
4217         set_desc_limit(desc, var.limit);
4218         set_desc_base(desc, (unsigned long)var.base);
4219 #ifdef CONFIG_X86_64
4220         if (base3)
4221                 *base3 = var.base >> 32;
4222 #endif
4223         desc->type = var.type;
4224         desc->s = var.s;
4225         desc->dpl = var.dpl;
4226         desc->p = var.present;
4227         desc->avl = var.avl;
4228         desc->l = var.l;
4229         desc->d = var.db;
4230         desc->g = var.g;
4231
4232         return true;
4233 }
4234
4235 static void emulator_set_cached_descriptor(struct desc_struct *desc, u32 base3,
4236                                            int seg, struct kvm_vcpu *vcpu)
4237 {
4238         struct kvm_segment var;
4239
4240         /* needed to preserve selector */
4241         kvm_get_segment(vcpu, &var, seg);
4242
4243         var.base = get_desc_base(desc);
4244 #ifdef CONFIG_X86_64
4245         var.base |= ((u64)base3) << 32;
4246 #endif
4247         var.limit = get_desc_limit(desc);
4248         if (desc->g)
4249                 var.limit = (var.limit << 12) | 0xfff;
4250         var.type = desc->type;
4251         var.present = desc->p;
4252         var.dpl = desc->dpl;
4253         var.db = desc->d;
4254         var.s = desc->s;
4255         var.l = desc->l;
4256         var.g = desc->g;
4257         var.avl = desc->avl;
4258         var.present = desc->p;
4259         var.unusable = !var.present;
4260         var.padding = 0;
4261
4262         kvm_set_segment(vcpu, &var, seg);
4263         return;
4264 }
4265
4266 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
4267 {
4268         struct kvm_segment kvm_seg;
4269
4270         kvm_get_segment(vcpu, &kvm_seg, seg);
4271         return kvm_seg.selector;
4272 }
4273
4274 static void emulator_set_segment_selector(u16 sel, int seg,
4275                                           struct kvm_vcpu *vcpu)
4276 {
4277         struct kvm_segment kvm_seg;
4278
4279         kvm_get_segment(vcpu, &kvm_seg, seg);
4280         kvm_seg.selector = sel;
4281         kvm_set_segment(vcpu, &kvm_seg, seg);
4282 }
4283
4284 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4285 {
4286         preempt_disable();
4287         kvm_load_guest_fpu(ctxt->vcpu);
4288         /*
4289          * CR0.TS may reference the host fpu state, not the guest fpu state,
4290          * so it may be clear at this point.
4291          */
4292         clts();
4293 }
4294
4295 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4296 {
4297         preempt_enable();
4298 }
4299
4300 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4301                               enum x86_intercept intercept,
4302                               enum x86_intercept_stage stage)
4303 {
4304         return X86EMUL_CONTINUE;
4305 }
4306
4307 static struct x86_emulate_ops emulate_ops = {
4308         .read_std            = kvm_read_guest_virt_system,
4309         .write_std           = kvm_write_guest_virt_system,
4310         .fetch               = kvm_fetch_guest_virt,
4311         .read_emulated       = emulator_read_emulated,
4312         .write_emulated      = emulator_write_emulated,
4313         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4314         .pio_in_emulated     = emulator_pio_in_emulated,
4315         .pio_out_emulated    = emulator_pio_out_emulated,
4316         .get_cached_descriptor = emulator_get_cached_descriptor,
4317         .set_cached_descriptor = emulator_set_cached_descriptor,
4318         .get_segment_selector = emulator_get_segment_selector,
4319         .set_segment_selector = emulator_set_segment_selector,
4320         .get_cached_segment_base = emulator_get_cached_segment_base,
4321         .get_gdt             = emulator_get_gdt,
4322         .get_idt             = emulator_get_idt,
4323         .get_cr              = emulator_get_cr,
4324         .set_cr              = emulator_set_cr,
4325         .cpl                 = emulator_get_cpl,
4326         .get_dr              = emulator_get_dr,
4327         .set_dr              = emulator_set_dr,
4328         .set_msr             = kvm_set_msr,
4329         .get_msr             = kvm_get_msr,
4330         .get_fpu             = emulator_get_fpu,
4331         .put_fpu             = emulator_put_fpu,
4332         .intercept           = emulator_intercept,
4333 };
4334
4335 static void cache_all_regs(struct kvm_vcpu *vcpu)
4336 {
4337         kvm_register_read(vcpu, VCPU_REGS_RAX);
4338         kvm_register_read(vcpu, VCPU_REGS_RSP);
4339         kvm_register_read(vcpu, VCPU_REGS_RIP);
4340         vcpu->arch.regs_dirty = ~0;
4341 }
4342
4343 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4344 {
4345         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4346         /*
4347          * an sti; sti; sequence only disable interrupts for the first
4348          * instruction. So, if the last instruction, be it emulated or
4349          * not, left the system with the INT_STI flag enabled, it
4350          * means that the last instruction is an sti. We should not
4351          * leave the flag on in this case. The same goes for mov ss
4352          */
4353         if (!(int_shadow & mask))
4354                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4355 }
4356
4357 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4358 {
4359         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4360         if (ctxt->exception.vector == PF_VECTOR)
4361                 kvm_propagate_fault(vcpu, &ctxt->exception);
4362         else if (ctxt->exception.error_code_valid)
4363                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4364                                       ctxt->exception.error_code);
4365         else
4366                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4367 }
4368
4369 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4370 {
4371         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4372         int cs_db, cs_l;
4373
4374         cache_all_regs(vcpu);
4375
4376         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4377
4378         vcpu->arch.emulate_ctxt.vcpu = vcpu;
4379         vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
4380         vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4381         vcpu->arch.emulate_ctxt.mode =
4382                 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4383                 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4384                 ? X86EMUL_MODE_VM86 : cs_l
4385                 ? X86EMUL_MODE_PROT64 : cs_db
4386                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4387         vcpu->arch.emulate_ctxt.guest_mode = is_guest_mode(vcpu);
4388         memset(c, 0, sizeof(struct decode_cache));
4389         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4390 }
4391
4392 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
4393 {
4394         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4395         int ret;
4396
4397         init_emulate_ctxt(vcpu);
4398
4399         vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
4400         vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
4401         vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
4402         ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
4403
4404         if (ret != X86EMUL_CONTINUE)
4405                 return EMULATE_FAIL;
4406
4407         vcpu->arch.emulate_ctxt.eip = c->eip;
4408         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4409         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4410         kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4411
4412         if (irq == NMI_VECTOR)
4413                 vcpu->arch.nmi_pending = false;
4414         else
4415                 vcpu->arch.interrupt.pending = false;
4416
4417         return EMULATE_DONE;
4418 }
4419 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4420
4421 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4422 {
4423         int r = EMULATE_DONE;
4424
4425         ++vcpu->stat.insn_emulation_fail;
4426         trace_kvm_emulate_insn_failed(vcpu);
4427         if (!is_guest_mode(vcpu)) {
4428                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4429                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4430                 vcpu->run->internal.ndata = 0;
4431                 r = EMULATE_FAIL;
4432         }
4433         kvm_queue_exception(vcpu, UD_VECTOR);
4434
4435         return r;
4436 }
4437
4438 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4439 {
4440         gpa_t gpa;
4441
4442         if (tdp_enabled)
4443                 return false;
4444
4445         /*
4446          * if emulation was due to access to shadowed page table
4447          * and it failed try to unshadow page and re-entetr the
4448          * guest to let CPU execute the instruction.
4449          */
4450         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4451                 return true;
4452
4453         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4454
4455         if (gpa == UNMAPPED_GVA)
4456                 return true; /* let cpu generate fault */
4457
4458         if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4459                 return true;
4460
4461         return false;
4462 }
4463
4464 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4465                             unsigned long cr2,
4466                             int emulation_type,
4467                             void *insn,
4468                             int insn_len)
4469 {
4470         int r;
4471         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4472
4473         kvm_clear_exception_queue(vcpu);
4474         vcpu->arch.mmio_fault_cr2 = cr2;
4475         /*
4476          * TODO: fix emulate.c to use guest_read/write_register
4477          * instead of direct ->regs accesses, can save hundred cycles
4478          * on Intel for instructions that don't read/change RSP, for
4479          * for example.
4480          */
4481         cache_all_regs(vcpu);
4482
4483         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4484                 init_emulate_ctxt(vcpu);
4485                 vcpu->arch.emulate_ctxt.interruptibility = 0;
4486                 vcpu->arch.emulate_ctxt.have_exception = false;
4487                 vcpu->arch.emulate_ctxt.perm_ok = false;
4488
4489                 vcpu->arch.emulate_ctxt.only_vendor_specific_insn
4490                         = emulation_type & EMULTYPE_TRAP_UD;
4491
4492                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, insn, insn_len);
4493
4494                 trace_kvm_emulate_insn_start(vcpu);
4495                 ++vcpu->stat.insn_emulation;
4496                 if (r)  {
4497                         if (emulation_type & EMULTYPE_TRAP_UD)
4498                                 return EMULATE_FAIL;
4499                         if (reexecute_instruction(vcpu, cr2))
4500                                 return EMULATE_DONE;
4501                         if (emulation_type & EMULTYPE_SKIP)
4502                                 return EMULATE_FAIL;
4503                         return handle_emulation_failure(vcpu);
4504                 }
4505         }
4506
4507         if (emulation_type & EMULTYPE_SKIP) {
4508                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4509                 return EMULATE_DONE;
4510         }
4511
4512         /* this is needed for vmware backdor interface to work since it
4513            changes registers values  during IO operation */
4514         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4515
4516 restart:
4517         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4518
4519         if (r == EMULATION_FAILED) {
4520                 if (reexecute_instruction(vcpu, cr2))
4521                         return EMULATE_DONE;
4522
4523                 return handle_emulation_failure(vcpu);
4524         }
4525
4526         if (vcpu->arch.emulate_ctxt.have_exception) {
4527                 inject_emulated_exception(vcpu);
4528                 r = EMULATE_DONE;
4529         } else if (vcpu->arch.pio.count) {
4530                 if (!vcpu->arch.pio.in)
4531                         vcpu->arch.pio.count = 0;
4532                 r = EMULATE_DO_MMIO;
4533         } else if (vcpu->mmio_needed)
4534                 r = EMULATE_DO_MMIO;
4535         else if (r == EMULATION_RESTART)
4536                 goto restart;
4537         else
4538                 r = EMULATE_DONE;
4539
4540         toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4541         kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4542         kvm_make_request(KVM_REQ_EVENT, vcpu);
4543         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4544         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4545
4546         return r;
4547 }
4548 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4549
4550 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4551 {
4552         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4553         int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4554         /* do not return to emulator after return from userspace */
4555         vcpu->arch.pio.count = 0;
4556         return ret;
4557 }
4558 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4559
4560 static void tsc_bad(void *info)
4561 {
4562         __this_cpu_write(cpu_tsc_khz, 0);
4563 }
4564
4565 static void tsc_khz_changed(void *data)
4566 {
4567         struct cpufreq_freqs *freq = data;
4568         unsigned long khz = 0;
4569
4570         if (data)
4571                 khz = freq->new;
4572         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4573                 khz = cpufreq_quick_get(raw_smp_processor_id());
4574         if (!khz)
4575                 khz = tsc_khz;
4576         __this_cpu_write(cpu_tsc_khz, khz);
4577 }
4578
4579 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4580                                      void *data)
4581 {
4582         struct cpufreq_freqs *freq = data;
4583         struct kvm *kvm;
4584         struct kvm_vcpu *vcpu;
4585         int i, send_ipi = 0;
4586
4587         /*
4588          * We allow guests to temporarily run on slowing clocks,
4589          * provided we notify them after, or to run on accelerating
4590          * clocks, provided we notify them before.  Thus time never
4591          * goes backwards.
4592          *
4593          * However, we have a problem.  We can't atomically update
4594          * the frequency of a given CPU from this function; it is
4595          * merely a notifier, which can be called from any CPU.
4596          * Changing the TSC frequency at arbitrary points in time
4597          * requires a recomputation of local variables related to
4598          * the TSC for each VCPU.  We must flag these local variables
4599          * to be updated and be sure the update takes place with the
4600          * new frequency before any guests proceed.
4601          *
4602          * Unfortunately, the combination of hotplug CPU and frequency
4603          * change creates an intractable locking scenario; the order
4604          * of when these callouts happen is undefined with respect to
4605          * CPU hotplug, and they can race with each other.  As such,
4606          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4607          * undefined; you can actually have a CPU frequency change take
4608          * place in between the computation of X and the setting of the
4609          * variable.  To protect against this problem, all updates of
4610          * the per_cpu tsc_khz variable are done in an interrupt
4611          * protected IPI, and all callers wishing to update the value
4612          * must wait for a synchronous IPI to complete (which is trivial
4613          * if the caller is on the CPU already).  This establishes the
4614          * necessary total order on variable updates.
4615          *
4616          * Note that because a guest time update may take place
4617          * anytime after the setting of the VCPU's request bit, the
4618          * correct TSC value must be set before the request.  However,
4619          * to ensure the update actually makes it to any guest which
4620          * starts running in hardware virtualization between the set
4621          * and the acquisition of the spinlock, we must also ping the
4622          * CPU after setting the request bit.
4623          *
4624          */
4625
4626         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4627                 return 0;
4628         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4629                 return 0;
4630
4631         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4632
4633         raw_spin_lock(&kvm_lock);
4634         list_for_each_entry(kvm, &vm_list, vm_list) {
4635                 kvm_for_each_vcpu(i, vcpu, kvm) {
4636                         if (vcpu->cpu != freq->cpu)
4637                                 continue;
4638                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4639                         if (vcpu->cpu != smp_processor_id())
4640                                 send_ipi = 1;
4641                 }
4642         }
4643         raw_spin_unlock(&kvm_lock);
4644
4645         if (freq->old < freq->new && send_ipi) {
4646                 /*
4647                  * We upscale the frequency.  Must make the guest
4648                  * doesn't see old kvmclock values while running with
4649                  * the new frequency, otherwise we risk the guest sees
4650                  * time go backwards.
4651                  *
4652                  * In case we update the frequency for another cpu
4653                  * (which might be in guest context) send an interrupt
4654                  * to kick the cpu out of guest context.  Next time
4655                  * guest context is entered kvmclock will be updated,
4656                  * so the guest will not see stale values.
4657                  */
4658                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4659         }
4660         return 0;
4661 }
4662
4663 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4664         .notifier_call  = kvmclock_cpufreq_notifier
4665 };
4666
4667 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4668                                         unsigned long action, void *hcpu)
4669 {
4670         unsigned int cpu = (unsigned long)hcpu;
4671
4672         switch (action) {
4673                 case CPU_ONLINE:
4674                 case CPU_DOWN_FAILED:
4675                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4676                         break;
4677                 case CPU_DOWN_PREPARE:
4678                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
4679                         break;
4680         }
4681         return NOTIFY_OK;
4682 }
4683
4684 static struct notifier_block kvmclock_cpu_notifier_block = {
4685         .notifier_call  = kvmclock_cpu_notifier,
4686         .priority = -INT_MAX
4687 };
4688
4689 static void kvm_timer_init(void)
4690 {
4691         int cpu;
4692
4693         max_tsc_khz = tsc_khz;
4694         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4695         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4696 #ifdef CONFIG_CPU_FREQ
4697                 struct cpufreq_policy policy;
4698                 memset(&policy, 0, sizeof(policy));
4699                 cpu = get_cpu();
4700                 cpufreq_get_policy(&policy, cpu);
4701                 if (policy.cpuinfo.max_freq)
4702                         max_tsc_khz = policy.cpuinfo.max_freq;
4703                 put_cpu();
4704 #endif
4705                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4706                                           CPUFREQ_TRANSITION_NOTIFIER);
4707         }
4708         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4709         for_each_online_cpu(cpu)
4710                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4711 }
4712
4713 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4714
4715 static int kvm_is_in_guest(void)
4716 {
4717         return percpu_read(current_vcpu) != NULL;
4718 }
4719
4720 static int kvm_is_user_mode(void)
4721 {
4722         int user_mode = 3;
4723
4724         if (percpu_read(current_vcpu))
4725                 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4726
4727         return user_mode != 0;
4728 }
4729
4730 static unsigned long kvm_get_guest_ip(void)
4731 {
4732         unsigned long ip = 0;
4733
4734         if (percpu_read(current_vcpu))
4735                 ip = kvm_rip_read(percpu_read(current_vcpu));
4736
4737         return ip;
4738 }
4739
4740 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4741         .is_in_guest            = kvm_is_in_guest,
4742         .is_user_mode           = kvm_is_user_mode,
4743         .get_guest_ip           = kvm_get_guest_ip,
4744 };
4745
4746 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4747 {
4748         percpu_write(current_vcpu, vcpu);
4749 }
4750 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4751
4752 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4753 {
4754         percpu_write(current_vcpu, NULL);
4755 }
4756 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4757
4758 int kvm_arch_init(void *opaque)
4759 {
4760         int r;
4761         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4762
4763         if (kvm_x86_ops) {
4764                 printk(KERN_ERR "kvm: already loaded the other module\n");
4765                 r = -EEXIST;
4766                 goto out;
4767         }
4768
4769         if (!ops->cpu_has_kvm_support()) {
4770                 printk(KERN_ERR "kvm: no hardware support\n");
4771                 r = -EOPNOTSUPP;
4772                 goto out;
4773         }
4774         if (ops->disabled_by_bios()) {
4775                 printk(KERN_ERR "kvm: disabled by bios\n");
4776                 r = -EOPNOTSUPP;
4777                 goto out;
4778         }
4779
4780         r = kvm_mmu_module_init();
4781         if (r)
4782                 goto out;
4783
4784         kvm_init_msr_list();
4785
4786         kvm_x86_ops = ops;
4787         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4788         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4789                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
4790
4791         kvm_timer_init();
4792
4793         perf_register_guest_info_callbacks(&kvm_guest_cbs);
4794
4795         if (cpu_has_xsave)
4796                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4797
4798         return 0;
4799
4800 out:
4801         return r;
4802 }
4803
4804 void kvm_arch_exit(void)
4805 {
4806         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4807
4808         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4809                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4810                                             CPUFREQ_TRANSITION_NOTIFIER);
4811         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4812         kvm_x86_ops = NULL;
4813         kvm_mmu_module_exit();
4814 }
4815
4816 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4817 {
4818         ++vcpu->stat.halt_exits;
4819         if (irqchip_in_kernel(vcpu->kvm)) {
4820                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4821                 return 1;
4822         } else {
4823                 vcpu->run->exit_reason = KVM_EXIT_HLT;
4824                 return 0;
4825         }
4826 }
4827 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4828
4829 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4830                            unsigned long a1)
4831 {
4832         if (is_long_mode(vcpu))
4833                 return a0;
4834         else
4835                 return a0 | ((gpa_t)a1 << 32);
4836 }
4837
4838 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4839 {
4840         u64 param, ingpa, outgpa, ret;
4841         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4842         bool fast, longmode;
4843         int cs_db, cs_l;
4844
4845         /*
4846          * hypercall generates UD from non zero cpl and real mode
4847          * per HYPER-V spec
4848          */
4849         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4850                 kvm_queue_exception(vcpu, UD_VECTOR);
4851                 return 0;
4852         }
4853
4854         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4855         longmode = is_long_mode(vcpu) && cs_l == 1;
4856
4857         if (!longmode) {
4858                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4859                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4860                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4861                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4862                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4863                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4864         }
4865 #ifdef CONFIG_X86_64
4866         else {
4867                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4868                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4869                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4870         }
4871 #endif
4872
4873         code = param & 0xffff;
4874         fast = (param >> 16) & 0x1;
4875         rep_cnt = (param >> 32) & 0xfff;
4876         rep_idx = (param >> 48) & 0xfff;
4877
4878         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4879
4880         switch (code) {
4881         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4882                 kvm_vcpu_on_spin(vcpu);
4883                 break;
4884         default:
4885                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4886                 break;
4887         }
4888
4889         ret = res | (((u64)rep_done & 0xfff) << 32);
4890         if (longmode) {
4891                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4892         } else {
4893                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4894                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4895         }
4896
4897         return 1;
4898 }
4899
4900 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4901 {
4902         unsigned long nr, a0, a1, a2, a3, ret;
4903         int r = 1;
4904
4905         if (kvm_hv_hypercall_enabled(vcpu->kvm))
4906                 return kvm_hv_hypercall(vcpu);
4907
4908         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4909         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4910         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4911         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4912         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4913
4914         trace_kvm_hypercall(nr, a0, a1, a2, a3);
4915
4916         if (!is_long_mode(vcpu)) {
4917                 nr &= 0xFFFFFFFF;
4918                 a0 &= 0xFFFFFFFF;
4919                 a1 &= 0xFFFFFFFF;
4920                 a2 &= 0xFFFFFFFF;
4921                 a3 &= 0xFFFFFFFF;
4922         }
4923
4924         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4925                 ret = -KVM_EPERM;
4926                 goto out;
4927         }
4928
4929         switch (nr) {
4930         case KVM_HC_VAPIC_POLL_IRQ:
4931                 ret = 0;
4932                 break;
4933         case KVM_HC_MMU_OP:
4934                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4935                 break;
4936         default:
4937                 ret = -KVM_ENOSYS;
4938                 break;
4939         }
4940 out:
4941         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4942         ++vcpu->stat.hypercalls;
4943         return r;
4944 }
4945 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4946
4947 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4948 {
4949         char instruction[3];
4950         unsigned long rip = kvm_rip_read(vcpu);
4951
4952         /*
4953          * Blow out the MMU to ensure that no other VCPU has an active mapping
4954          * to ensure that the updated hypercall appears atomically across all
4955          * VCPUs.
4956          */
4957         kvm_mmu_zap_all(vcpu->kvm);
4958
4959         kvm_x86_ops->patch_hypercall(vcpu, instruction);
4960
4961         return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4962 }
4963
4964 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4965 {
4966         struct desc_ptr dt = { limit, base };
4967
4968         kvm_x86_ops->set_gdt(vcpu, &dt);
4969 }
4970
4971 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4972 {
4973         struct desc_ptr dt = { limit, base };
4974
4975         kvm_x86_ops->set_idt(vcpu, &dt);
4976 }
4977
4978 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4979 {
4980         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4981         int j, nent = vcpu->arch.cpuid_nent;
4982
4983         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4984         /* when no next entry is found, the current entry[i] is reselected */
4985         for (j = i + 1; ; j = (j + 1) % nent) {
4986                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4987                 if (ej->function == e->function) {
4988                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4989                         return j;
4990                 }
4991         }
4992         return 0; /* silence gcc, even though control never reaches here */
4993 }
4994
4995 /* find an entry with matching function, matching index (if needed), and that
4996  * should be read next (if it's stateful) */
4997 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4998         u32 function, u32 index)
4999 {
5000         if (e->function != function)
5001                 return 0;
5002         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
5003                 return 0;
5004         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
5005             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
5006                 return 0;
5007         return 1;
5008 }
5009
5010 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
5011                                               u32 function, u32 index)
5012 {
5013         int i;
5014         struct kvm_cpuid_entry2 *best = NULL;
5015
5016         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
5017                 struct kvm_cpuid_entry2 *e;
5018
5019                 e = &vcpu->arch.cpuid_entries[i];
5020                 if (is_matching_cpuid_entry(e, function, index)) {
5021                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
5022                                 move_to_next_stateful_cpuid_entry(vcpu, i);
5023                         best = e;
5024                         break;
5025                 }
5026         }
5027         return best;
5028 }
5029 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
5030
5031 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
5032 {
5033         struct kvm_cpuid_entry2 *best;
5034
5035         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
5036         if (!best || best->eax < 0x80000008)
5037                 goto not_found;
5038         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
5039         if (best)
5040                 return best->eax & 0xff;
5041 not_found:
5042         return 36;
5043 }
5044
5045 /*
5046  * If no match is found, check whether we exceed the vCPU's limit
5047  * and return the content of the highest valid _standard_ leaf instead.
5048  * This is to satisfy the CPUID specification.
5049  */
5050 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
5051                                                   u32 function, u32 index)
5052 {
5053         struct kvm_cpuid_entry2 *maxlevel;
5054
5055         maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
5056         if (!maxlevel || maxlevel->eax >= function)
5057                 return NULL;
5058         if (function & 0x80000000) {
5059                 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
5060                 if (!maxlevel)
5061                         return NULL;
5062         }
5063         return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
5064 }
5065
5066 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
5067 {
5068         u32 function, index;
5069         struct kvm_cpuid_entry2 *best;
5070
5071         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
5072         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5073         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
5074         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
5075         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
5076         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
5077         best = kvm_find_cpuid_entry(vcpu, function, index);
5078
5079         if (!best)
5080                 best = check_cpuid_limit(vcpu, function, index);
5081
5082         if (best) {
5083                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
5084                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
5085                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
5086                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
5087         }
5088         kvm_x86_ops->skip_emulated_instruction(vcpu);
5089         trace_kvm_cpuid(function,
5090                         kvm_register_read(vcpu, VCPU_REGS_RAX),
5091                         kvm_register_read(vcpu, VCPU_REGS_RBX),
5092                         kvm_register_read(vcpu, VCPU_REGS_RCX),
5093                         kvm_register_read(vcpu, VCPU_REGS_RDX));
5094 }
5095 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
5096
5097 /*
5098  * Check if userspace requested an interrupt window, and that the
5099  * interrupt window is open.
5100  *
5101  * No need to exit to userspace if we already have an interrupt queued.
5102  */
5103 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5104 {
5105         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5106                 vcpu->run->request_interrupt_window &&
5107                 kvm_arch_interrupt_allowed(vcpu));
5108 }
5109
5110 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5111 {
5112         struct kvm_run *kvm_run = vcpu->run;
5113
5114         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5115         kvm_run->cr8 = kvm_get_cr8(vcpu);
5116         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5117         if (irqchip_in_kernel(vcpu->kvm))
5118                 kvm_run->ready_for_interrupt_injection = 1;
5119         else
5120                 kvm_run->ready_for_interrupt_injection =
5121                         kvm_arch_interrupt_allowed(vcpu) &&
5122                         !kvm_cpu_has_interrupt(vcpu) &&
5123                         !kvm_event_needs_reinjection(vcpu);
5124 }
5125
5126 static void vapic_enter(struct kvm_vcpu *vcpu)
5127 {
5128         struct kvm_lapic *apic = vcpu->arch.apic;
5129         struct page *page;
5130
5131         if (!apic || !apic->vapic_addr)
5132                 return;
5133
5134         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5135
5136         vcpu->arch.apic->vapic_page = page;
5137 }
5138
5139 static void vapic_exit(struct kvm_vcpu *vcpu)
5140 {
5141         struct kvm_lapic *apic = vcpu->arch.apic;
5142         int idx;
5143
5144         if (!apic || !apic->vapic_addr)
5145                 return;
5146
5147         idx = srcu_read_lock(&vcpu->kvm->srcu);
5148         kvm_release_page_dirty(apic->vapic_page);
5149         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5150         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5151 }
5152
5153 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5154 {
5155         int max_irr, tpr;
5156
5157         if (!kvm_x86_ops->update_cr8_intercept)
5158                 return;
5159
5160         if (!vcpu->arch.apic)
5161                 return;
5162
5163         if (!vcpu->arch.apic->vapic_addr)
5164                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5165         else
5166                 max_irr = -1;
5167
5168         if (max_irr != -1)
5169                 max_irr >>= 4;
5170
5171         tpr = kvm_lapic_get_cr8(vcpu);
5172
5173         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5174 }
5175
5176 static void inject_pending_event(struct kvm_vcpu *vcpu)
5177 {
5178         /* try to reinject previous events if any */
5179         if (vcpu->arch.exception.pending) {
5180                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5181                                         vcpu->arch.exception.has_error_code,
5182                                         vcpu->arch.exception.error_code);
5183                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5184                                           vcpu->arch.exception.has_error_code,
5185                                           vcpu->arch.exception.error_code,
5186                                           vcpu->arch.exception.reinject);
5187                 return;
5188         }
5189
5190         if (vcpu->arch.nmi_injected) {
5191                 kvm_x86_ops->set_nmi(vcpu);
5192                 return;
5193         }
5194
5195         if (vcpu->arch.interrupt.pending) {
5196                 kvm_x86_ops->set_irq(vcpu);
5197                 return;
5198         }
5199
5200         /* try to inject new event if pending */
5201         if (vcpu->arch.nmi_pending) {
5202                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5203                         vcpu->arch.nmi_pending = false;
5204                         vcpu->arch.nmi_injected = true;
5205                         kvm_x86_ops->set_nmi(vcpu);
5206                 }
5207         } else if (kvm_cpu_has_interrupt(vcpu)) {
5208                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5209                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5210                                             false);
5211                         kvm_x86_ops->set_irq(vcpu);
5212                 }
5213         }
5214 }
5215
5216 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5217 {
5218         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5219                         !vcpu->guest_xcr0_loaded) {
5220                 /* kvm_set_xcr() also depends on this */
5221                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5222                 vcpu->guest_xcr0_loaded = 1;
5223         }
5224 }
5225
5226 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5227 {
5228         if (vcpu->guest_xcr0_loaded) {
5229                 if (vcpu->arch.xcr0 != host_xcr0)
5230                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5231                 vcpu->guest_xcr0_loaded = 0;
5232         }
5233 }
5234
5235 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5236 {
5237         int r;
5238         bool nmi_pending;
5239         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5240                 vcpu->run->request_interrupt_window;
5241
5242         if (vcpu->requests) {
5243                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5244                         kvm_mmu_unload(vcpu);
5245                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5246                         __kvm_migrate_timers(vcpu);
5247                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5248                         r = kvm_guest_time_update(vcpu);
5249                         if (unlikely(r))
5250                                 goto out;
5251                 }
5252                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5253                         kvm_mmu_sync_roots(vcpu);
5254                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5255                         kvm_x86_ops->tlb_flush(vcpu);
5256                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5257                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5258                         r = 0;
5259                         goto out;
5260                 }
5261                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5262                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5263                         r = 0;
5264                         goto out;
5265                 }
5266                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5267                         vcpu->fpu_active = 0;
5268                         kvm_x86_ops->fpu_deactivate(vcpu);
5269                 }
5270                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5271                         /* Page is swapped out. Do synthetic halt */
5272                         vcpu->arch.apf.halted = true;
5273                         r = 1;
5274                         goto out;
5275                 }
5276         }
5277
5278         r = kvm_mmu_reload(vcpu);
5279         if (unlikely(r))
5280                 goto out;
5281
5282         /*
5283          * An NMI can be injected between local nmi_pending read and
5284          * vcpu->arch.nmi_pending read inside inject_pending_event().
5285          * But in that case, KVM_REQ_EVENT will be set, which makes
5286          * the race described above benign.
5287          */
5288         nmi_pending = ACCESS_ONCE(vcpu->arch.nmi_pending);
5289
5290         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5291                 inject_pending_event(vcpu);
5292
5293                 /* enable NMI/IRQ window open exits if needed */
5294                 if (nmi_pending)
5295                         kvm_x86_ops->enable_nmi_window(vcpu);
5296                 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5297                         kvm_x86_ops->enable_irq_window(vcpu);
5298
5299                 if (kvm_lapic_enabled(vcpu)) {
5300                         update_cr8_intercept(vcpu);
5301                         kvm_lapic_sync_to_vapic(vcpu);
5302                 }
5303         }
5304
5305         preempt_disable();
5306
5307         kvm_x86_ops->prepare_guest_switch(vcpu);
5308         if (vcpu->fpu_active)
5309                 kvm_load_guest_fpu(vcpu);
5310         kvm_load_guest_xcr0(vcpu);
5311
5312         vcpu->mode = IN_GUEST_MODE;
5313
5314         /* We should set ->mode before check ->requests,
5315          * see the comment in make_all_cpus_request.
5316          */
5317         smp_mb();
5318
5319         local_irq_disable();
5320
5321         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5322             || need_resched() || signal_pending(current)) {
5323                 vcpu->mode = OUTSIDE_GUEST_MODE;
5324                 smp_wmb();
5325                 local_irq_enable();
5326                 preempt_enable();
5327                 kvm_x86_ops->cancel_injection(vcpu);
5328                 r = 1;
5329                 goto out;
5330         }
5331
5332         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5333
5334         kvm_guest_enter();
5335
5336         if (unlikely(vcpu->arch.switch_db_regs)) {
5337                 set_debugreg(0, 7);
5338                 set_debugreg(vcpu->arch.eff_db[0], 0);
5339                 set_debugreg(vcpu->arch.eff_db[1], 1);
5340                 set_debugreg(vcpu->arch.eff_db[2], 2);
5341                 set_debugreg(vcpu->arch.eff_db[3], 3);
5342         }
5343
5344         trace_kvm_entry(vcpu->vcpu_id);
5345         kvm_x86_ops->run(vcpu);
5346
5347         /*
5348          * If the guest has used debug registers, at least dr7
5349          * will be disabled while returning to the host.
5350          * If we don't have active breakpoints in the host, we don't
5351          * care about the messed up debug address registers. But if
5352          * we have some of them active, restore the old state.
5353          */
5354         if (hw_breakpoint_active())
5355                 hw_breakpoint_restore();
5356
5357         kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5358
5359         vcpu->mode = OUTSIDE_GUEST_MODE;
5360         smp_wmb();
5361         local_irq_enable();
5362
5363         ++vcpu->stat.exits;
5364
5365         /*
5366          * We must have an instruction between local_irq_enable() and
5367          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5368          * the interrupt shadow.  The stat.exits increment will do nicely.
5369          * But we need to prevent reordering, hence this barrier():
5370          */
5371         barrier();
5372
5373         kvm_guest_exit();
5374
5375         preempt_enable();
5376
5377         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5378
5379         /*
5380          * Profile KVM exit RIPs:
5381          */
5382         if (unlikely(prof_on == KVM_PROFILING)) {
5383                 unsigned long rip = kvm_rip_read(vcpu);
5384                 profile_hit(KVM_PROFILING, (void *)rip);
5385         }
5386
5387
5388         kvm_lapic_sync_from_vapic(vcpu);
5389
5390         r = kvm_x86_ops->handle_exit(vcpu);
5391 out:
5392         return r;
5393 }
5394
5395
5396 static int __vcpu_run(struct kvm_vcpu *vcpu)
5397 {
5398         int r;
5399         struct kvm *kvm = vcpu->kvm;
5400
5401         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5402                 pr_debug("vcpu %d received sipi with vector # %x\n",
5403                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5404                 kvm_lapic_reset(vcpu);
5405                 r = kvm_arch_vcpu_reset(vcpu);
5406                 if (r)
5407                         return r;
5408                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5409         }
5410
5411         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5412         vapic_enter(vcpu);
5413
5414         r = 1;
5415         while (r > 0) {
5416                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5417                     !vcpu->arch.apf.halted)
5418                         r = vcpu_enter_guest(vcpu);
5419                 else {
5420                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5421                         kvm_vcpu_block(vcpu);
5422                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5423                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5424                         {
5425                                 switch(vcpu->arch.mp_state) {
5426                                 case KVM_MP_STATE_HALTED:
5427                                         vcpu->arch.mp_state =
5428                                                 KVM_MP_STATE_RUNNABLE;
5429                                 case KVM_MP_STATE_RUNNABLE:
5430                                         vcpu->arch.apf.halted = false;
5431                                         break;
5432                                 case KVM_MP_STATE_SIPI_RECEIVED:
5433                                 default:
5434                                         r = -EINTR;
5435                                         break;
5436                                 }
5437                         }
5438                 }
5439
5440                 if (r <= 0)
5441                         break;
5442
5443                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5444                 if (kvm_cpu_has_pending_timer(vcpu))
5445                         kvm_inject_pending_timer_irqs(vcpu);
5446
5447                 if (dm_request_for_irq_injection(vcpu)) {
5448                         r = -EINTR;
5449                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5450                         ++vcpu->stat.request_irq_exits;
5451                 }
5452
5453                 kvm_check_async_pf_completion(vcpu);
5454
5455                 if (signal_pending(current)) {
5456                         r = -EINTR;
5457                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5458                         ++vcpu->stat.signal_exits;
5459                 }
5460                 if (need_resched()) {
5461                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5462                         kvm_resched(vcpu);
5463                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5464                 }
5465         }
5466
5467         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5468
5469         vapic_exit(vcpu);
5470
5471         return r;
5472 }
5473
5474 static int complete_mmio(struct kvm_vcpu *vcpu)
5475 {
5476         struct kvm_run *run = vcpu->run;
5477         int r;
5478
5479         if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5480                 return 1;
5481
5482         if (vcpu->mmio_needed) {
5483                 vcpu->mmio_needed = 0;
5484                 if (!vcpu->mmio_is_write)
5485                         memcpy(vcpu->mmio_data, run->mmio.data, 8);
5486                 vcpu->mmio_index += 8;
5487                 if (vcpu->mmio_index < vcpu->mmio_size) {
5488                         run->exit_reason = KVM_EXIT_MMIO;
5489                         run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index;
5490                         memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8);
5491                         run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8);
5492                         run->mmio.is_write = vcpu->mmio_is_write;
5493                         vcpu->mmio_needed = 1;
5494                         return 0;
5495                 }
5496                 if (vcpu->mmio_is_write)
5497                         return 1;
5498                 vcpu->mmio_read_completed = 1;
5499         }
5500         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5501         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5502         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5503         if (r != EMULATE_DONE)
5504                 return 0;
5505         return 1;
5506 }
5507
5508 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5509 {
5510         int r;
5511         sigset_t sigsaved;
5512
5513         if (!tsk_used_math(current) && init_fpu(current))
5514                 return -ENOMEM;
5515
5516         if (vcpu->sigset_active)
5517                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5518
5519         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5520                 kvm_vcpu_block(vcpu);
5521                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5522                 r = -EAGAIN;
5523                 goto out;
5524         }
5525
5526         /* re-sync apic's tpr */
5527         if (!irqchip_in_kernel(vcpu->kvm)) {
5528                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5529                         r = -EINVAL;
5530                         goto out;
5531                 }
5532         }
5533
5534         r = complete_mmio(vcpu);
5535         if (r <= 0)
5536                 goto out;
5537
5538         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5539                 kvm_register_write(vcpu, VCPU_REGS_RAX,
5540                                      kvm_run->hypercall.ret);
5541
5542         r = __vcpu_run(vcpu);
5543
5544 out:
5545         post_kvm_run_save(vcpu);
5546         if (vcpu->sigset_active)
5547                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5548
5549         return r;
5550 }
5551
5552 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5553 {
5554         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5555         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5556         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5557         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5558         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5559         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5560         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5561         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5562 #ifdef CONFIG_X86_64
5563         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5564         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5565         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5566         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5567         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5568         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5569         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5570         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5571 #endif
5572
5573         regs->rip = kvm_rip_read(vcpu);
5574         regs->rflags = kvm_get_rflags(vcpu);
5575
5576         return 0;
5577 }
5578
5579 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5580 {
5581         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5582         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5583         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5584         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5585         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5586         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5587         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5588         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5589 #ifdef CONFIG_X86_64
5590         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5591         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5592         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5593         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5594         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5595         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5596         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5597         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5598 #endif
5599
5600         kvm_rip_write(vcpu, regs->rip);
5601         kvm_set_rflags(vcpu, regs->rflags);
5602
5603         vcpu->arch.exception.pending = false;
5604
5605         kvm_make_request(KVM_REQ_EVENT, vcpu);
5606
5607         return 0;
5608 }
5609
5610 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5611 {
5612         struct kvm_segment cs;
5613
5614         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5615         *db = cs.db;
5616         *l = cs.l;
5617 }
5618 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5619
5620 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5621                                   struct kvm_sregs *sregs)
5622 {
5623         struct desc_ptr dt;
5624
5625         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5626         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5627         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5628         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5629         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5630         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5631
5632         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5633         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5634
5635         kvm_x86_ops->get_idt(vcpu, &dt);
5636         sregs->idt.limit = dt.size;
5637         sregs->idt.base = dt.address;
5638         kvm_x86_ops->get_gdt(vcpu, &dt);
5639         sregs->gdt.limit = dt.size;
5640         sregs->gdt.base = dt.address;
5641
5642         sregs->cr0 = kvm_read_cr0(vcpu);
5643         sregs->cr2 = vcpu->arch.cr2;
5644         sregs->cr3 = kvm_read_cr3(vcpu);
5645         sregs->cr4 = kvm_read_cr4(vcpu);
5646         sregs->cr8 = kvm_get_cr8(vcpu);
5647         sregs->efer = vcpu->arch.efer;
5648         sregs->apic_base = kvm_get_apic_base(vcpu);
5649
5650         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5651
5652         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5653                 set_bit(vcpu->arch.interrupt.nr,
5654                         (unsigned long *)sregs->interrupt_bitmap);
5655
5656         return 0;
5657 }
5658
5659 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5660                                     struct kvm_mp_state *mp_state)
5661 {
5662         mp_state->mp_state = vcpu->arch.mp_state;
5663         return 0;
5664 }
5665
5666 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5667                                     struct kvm_mp_state *mp_state)
5668 {
5669         vcpu->arch.mp_state = mp_state->mp_state;
5670         kvm_make_request(KVM_REQ_EVENT, vcpu);
5671         return 0;
5672 }
5673
5674 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5675                     bool has_error_code, u32 error_code)
5676 {
5677         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5678         int ret;
5679
5680         init_emulate_ctxt(vcpu);
5681
5682         ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5683                                    tss_selector, reason, has_error_code,
5684                                    error_code);
5685
5686         if (ret)
5687                 return EMULATE_FAIL;
5688
5689         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5690         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5691         kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5692         kvm_make_request(KVM_REQ_EVENT, vcpu);
5693         return EMULATE_DONE;
5694 }
5695 EXPORT_SYMBOL_GPL(kvm_task_switch);
5696
5697 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5698                                   struct kvm_sregs *sregs)
5699 {
5700         int mmu_reset_needed = 0;
5701         int pending_vec, max_bits, idx;
5702         struct desc_ptr dt;
5703
5704         dt.size = sregs->idt.limit;
5705         dt.address = sregs->idt.base;
5706         kvm_x86_ops->set_idt(vcpu, &dt);
5707         dt.size = sregs->gdt.limit;
5708         dt.address = sregs->gdt.base;
5709         kvm_x86_ops->set_gdt(vcpu, &dt);
5710
5711         vcpu->arch.cr2 = sregs->cr2;
5712         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5713         vcpu->arch.cr3 = sregs->cr3;
5714         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5715
5716         kvm_set_cr8(vcpu, sregs->cr8);
5717
5718         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5719         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5720         kvm_set_apic_base(vcpu, sregs->apic_base);
5721
5722         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5723         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5724         vcpu->arch.cr0 = sregs->cr0;
5725
5726         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5727         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5728         if (sregs->cr4 & X86_CR4_OSXSAVE)
5729                 update_cpuid(vcpu);
5730
5731         idx = srcu_read_lock(&vcpu->kvm->srcu);
5732         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5733                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5734                 mmu_reset_needed = 1;
5735         }
5736         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5737
5738         if (mmu_reset_needed)
5739                 kvm_mmu_reset_context(vcpu);
5740
5741         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5742         pending_vec = find_first_bit(
5743                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5744         if (pending_vec < max_bits) {
5745                 kvm_queue_interrupt(vcpu, pending_vec, false);
5746                 pr_debug("Set back pending irq %d\n", pending_vec);
5747         }
5748
5749         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5750         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5751         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5752         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5753         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5754         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5755
5756         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5757         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5758
5759         update_cr8_intercept(vcpu);
5760
5761         /* Older userspace won't unhalt the vcpu on reset. */
5762         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5763             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5764             !is_protmode(vcpu))
5765                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5766
5767         kvm_make_request(KVM_REQ_EVENT, vcpu);
5768
5769         return 0;
5770 }
5771
5772 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5773                                         struct kvm_guest_debug *dbg)
5774 {
5775         unsigned long rflags;
5776         int i, r;
5777
5778         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5779                 r = -EBUSY;
5780                 if (vcpu->arch.exception.pending)
5781                         goto out;
5782                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5783                         kvm_queue_exception(vcpu, DB_VECTOR);
5784                 else
5785                         kvm_queue_exception(vcpu, BP_VECTOR);
5786         }
5787
5788         /*
5789          * Read rflags as long as potentially injected trace flags are still
5790          * filtered out.
5791          */
5792         rflags = kvm_get_rflags(vcpu);
5793
5794         vcpu->guest_debug = dbg->control;
5795         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5796                 vcpu->guest_debug = 0;
5797
5798         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5799                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5800                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5801                 vcpu->arch.switch_db_regs =
5802                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5803         } else {
5804                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5805                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5806                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5807         }
5808
5809         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5810                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5811                         get_segment_base(vcpu, VCPU_SREG_CS);
5812
5813         /*
5814          * Trigger an rflags update that will inject or remove the trace
5815          * flags.
5816          */
5817         kvm_set_rflags(vcpu, rflags);
5818
5819         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5820
5821         r = 0;
5822
5823 out:
5824
5825         return r;
5826 }
5827
5828 /*
5829  * Translate a guest virtual address to a guest physical address.
5830  */
5831 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5832                                     struct kvm_translation *tr)
5833 {
5834         unsigned long vaddr = tr->linear_address;
5835         gpa_t gpa;
5836         int idx;
5837
5838         idx = srcu_read_lock(&vcpu->kvm->srcu);
5839         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5840         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5841         tr->physical_address = gpa;
5842         tr->valid = gpa != UNMAPPED_GVA;
5843         tr->writeable = 1;
5844         tr->usermode = 0;
5845
5846         return 0;
5847 }
5848
5849 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5850 {
5851         struct i387_fxsave_struct *fxsave =
5852                         &vcpu->arch.guest_fpu.state->fxsave;
5853
5854         memcpy(fpu->fpr, fxsave->st_space, 128);
5855         fpu->fcw = fxsave->cwd;
5856         fpu->fsw = fxsave->swd;
5857         fpu->ftwx = fxsave->twd;
5858         fpu->last_opcode = fxsave->fop;
5859         fpu->last_ip = fxsave->rip;
5860         fpu->last_dp = fxsave->rdp;
5861         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5862
5863         return 0;
5864 }
5865
5866 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5867 {
5868         struct i387_fxsave_struct *fxsave =
5869                         &vcpu->arch.guest_fpu.state->fxsave;
5870
5871         memcpy(fxsave->st_space, fpu->fpr, 128);
5872         fxsave->cwd = fpu->fcw;
5873         fxsave->swd = fpu->fsw;
5874         fxsave->twd = fpu->ftwx;
5875         fxsave->fop = fpu->last_opcode;
5876         fxsave->rip = fpu->last_ip;
5877         fxsave->rdp = fpu->last_dp;
5878         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5879
5880         return 0;
5881 }
5882
5883 int fx_init(struct kvm_vcpu *vcpu)
5884 {
5885         int err;
5886
5887         err = fpu_alloc(&vcpu->arch.guest_fpu);
5888         if (err)
5889                 return err;
5890
5891         fpu_finit(&vcpu->arch.guest_fpu);
5892
5893         /*
5894          * Ensure guest xcr0 is valid for loading
5895          */
5896         vcpu->arch.xcr0 = XSTATE_FP;
5897
5898         vcpu->arch.cr0 |= X86_CR0_ET;
5899
5900         return 0;
5901 }
5902 EXPORT_SYMBOL_GPL(fx_init);
5903
5904 static void fx_free(struct kvm_vcpu *vcpu)
5905 {
5906         fpu_free(&vcpu->arch.guest_fpu);
5907 }
5908
5909 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5910 {
5911         if (vcpu->guest_fpu_loaded)
5912                 return;
5913
5914         /*
5915          * Restore all possible states in the guest,
5916          * and assume host would use all available bits.
5917          * Guest xcr0 would be loaded later.
5918          */
5919         kvm_put_guest_xcr0(vcpu);
5920         vcpu->guest_fpu_loaded = 1;
5921         unlazy_fpu(current);
5922         fpu_restore_checking(&vcpu->arch.guest_fpu);
5923         trace_kvm_fpu(1);
5924 }
5925
5926 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5927 {
5928         kvm_put_guest_xcr0(vcpu);
5929
5930         if (!vcpu->guest_fpu_loaded)
5931                 return;
5932
5933         vcpu->guest_fpu_loaded = 0;
5934         fpu_save_init(&vcpu->arch.guest_fpu);
5935         ++vcpu->stat.fpu_reload;
5936         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5937         trace_kvm_fpu(0);
5938 }
5939
5940 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5941 {
5942         kvmclock_reset(vcpu);
5943
5944         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5945         fx_free(vcpu);
5946         kvm_x86_ops->vcpu_free(vcpu);
5947 }
5948
5949 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5950                                                 unsigned int id)
5951 {
5952         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5953                 printk_once(KERN_WARNING
5954                 "kvm: SMP vm created on host with unstable TSC; "
5955                 "guest TSC will not be reliable\n");
5956         return kvm_x86_ops->vcpu_create(kvm, id);
5957 }
5958
5959 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5960 {
5961         int r;
5962
5963         vcpu->arch.mtrr_state.have_fixed = 1;
5964         vcpu_load(vcpu);
5965         r = kvm_arch_vcpu_reset(vcpu);
5966         if (r == 0)
5967                 r = kvm_mmu_setup(vcpu);
5968         vcpu_put(vcpu);
5969         if (r < 0)
5970                 goto free_vcpu;
5971
5972         return 0;
5973 free_vcpu:
5974         kvm_x86_ops->vcpu_free(vcpu);
5975         return r;
5976 }
5977
5978 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5979 {
5980         vcpu->arch.apf.msr_val = 0;
5981
5982         vcpu_load(vcpu);
5983         kvm_mmu_unload(vcpu);
5984         vcpu_put(vcpu);
5985
5986         fx_free(vcpu);
5987         kvm_x86_ops->vcpu_free(vcpu);
5988 }
5989
5990 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5991 {
5992         vcpu->arch.nmi_pending = false;
5993         vcpu->arch.nmi_injected = false;
5994
5995         vcpu->arch.switch_db_regs = 0;
5996         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5997         vcpu->arch.dr6 = DR6_FIXED_1;
5998         vcpu->arch.dr7 = DR7_FIXED_1;
5999
6000         kvm_make_request(KVM_REQ_EVENT, vcpu);
6001         vcpu->arch.apf.msr_val = 0;
6002
6003         kvmclock_reset(vcpu);
6004
6005         kvm_clear_async_pf_completion_queue(vcpu);
6006         kvm_async_pf_hash_reset(vcpu);
6007         vcpu->arch.apf.halted = false;
6008
6009         return kvm_x86_ops->vcpu_reset(vcpu);
6010 }
6011
6012 int kvm_arch_hardware_enable(void *garbage)
6013 {
6014         struct kvm *kvm;
6015         struct kvm_vcpu *vcpu;
6016         int i;
6017
6018         kvm_shared_msr_cpu_online();
6019         list_for_each_entry(kvm, &vm_list, vm_list)
6020                 kvm_for_each_vcpu(i, vcpu, kvm)
6021                         if (vcpu->cpu == smp_processor_id())
6022                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6023         return kvm_x86_ops->hardware_enable(garbage);
6024 }
6025
6026 void kvm_arch_hardware_disable(void *garbage)
6027 {
6028         kvm_x86_ops->hardware_disable(garbage);
6029         drop_user_return_notifiers(garbage);
6030 }
6031
6032 int kvm_arch_hardware_setup(void)
6033 {
6034         return kvm_x86_ops->hardware_setup();
6035 }
6036
6037 void kvm_arch_hardware_unsetup(void)
6038 {
6039         kvm_x86_ops->hardware_unsetup();
6040 }
6041
6042 void kvm_arch_check_processor_compat(void *rtn)
6043 {
6044         kvm_x86_ops->check_processor_compatibility(rtn);
6045 }
6046
6047 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6048 {
6049         struct page *page;
6050         struct kvm *kvm;
6051         int r;
6052
6053         BUG_ON(vcpu->kvm == NULL);
6054         kvm = vcpu->kvm;
6055
6056         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6057         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
6058         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
6059         vcpu->arch.mmu.translate_gpa = translate_gpa;
6060         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6061         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6062                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6063         else
6064                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6065
6066         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6067         if (!page) {
6068                 r = -ENOMEM;
6069                 goto fail;
6070         }
6071         vcpu->arch.pio_data = page_address(page);
6072
6073         if (!kvm->arch.virtual_tsc_khz)
6074                 kvm_arch_set_tsc_khz(kvm, max_tsc_khz);
6075
6076         r = kvm_mmu_create(vcpu);
6077         if (r < 0)
6078                 goto fail_free_pio_data;
6079
6080         if (irqchip_in_kernel(kvm)) {
6081                 r = kvm_create_lapic(vcpu);
6082                 if (r < 0)
6083                         goto fail_mmu_destroy;
6084         }
6085
6086         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6087                                        GFP_KERNEL);
6088         if (!vcpu->arch.mce_banks) {
6089                 r = -ENOMEM;
6090                 goto fail_free_lapic;
6091         }
6092         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6093
6094         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6095                 goto fail_free_mce_banks;
6096
6097         kvm_async_pf_hash_reset(vcpu);
6098
6099         return 0;
6100 fail_free_mce_banks:
6101         kfree(vcpu->arch.mce_banks);
6102 fail_free_lapic:
6103         kvm_free_lapic(vcpu);
6104 fail_mmu_destroy:
6105         kvm_mmu_destroy(vcpu);
6106 fail_free_pio_data:
6107         free_page((unsigned long)vcpu->arch.pio_data);
6108 fail:
6109         return r;
6110 }
6111
6112 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6113 {
6114         int idx;
6115
6116         kfree(vcpu->arch.mce_banks);
6117         kvm_free_lapic(vcpu);
6118         idx = srcu_read_lock(&vcpu->kvm->srcu);
6119         kvm_mmu_destroy(vcpu);
6120         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6121         free_page((unsigned long)vcpu->arch.pio_data);
6122 }
6123
6124 int kvm_arch_init_vm(struct kvm *kvm)
6125 {
6126         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6127         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6128
6129         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6130         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6131
6132         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6133
6134         return 0;
6135 }
6136
6137 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6138 {
6139         vcpu_load(vcpu);
6140         kvm_mmu_unload(vcpu);
6141         vcpu_put(vcpu);
6142 }
6143
6144 static void kvm_free_vcpus(struct kvm *kvm)
6145 {
6146         unsigned int i;
6147         struct kvm_vcpu *vcpu;
6148
6149         /*
6150          * Unpin any mmu pages first.
6151          */
6152         kvm_for_each_vcpu(i, vcpu, kvm) {
6153                 kvm_clear_async_pf_completion_queue(vcpu);
6154                 kvm_unload_vcpu_mmu(vcpu);
6155         }
6156         kvm_for_each_vcpu(i, vcpu, kvm)
6157                 kvm_arch_vcpu_free(vcpu);
6158
6159         mutex_lock(&kvm->lock);
6160         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6161                 kvm->vcpus[i] = NULL;
6162
6163         atomic_set(&kvm->online_vcpus, 0);
6164         mutex_unlock(&kvm->lock);
6165 }
6166
6167 void kvm_arch_sync_events(struct kvm *kvm)
6168 {
6169         kvm_free_all_assigned_devices(kvm);
6170         kvm_free_pit(kvm);
6171 }
6172
6173 void kvm_arch_destroy_vm(struct kvm *kvm)
6174 {
6175         kvm_iommu_unmap_guest(kvm);
6176         kfree(kvm->arch.vpic);
6177         kfree(kvm->arch.vioapic);
6178         kvm_free_vcpus(kvm);
6179         if (kvm->arch.apic_access_page)
6180                 put_page(kvm->arch.apic_access_page);
6181         if (kvm->arch.ept_identity_pagetable)
6182                 put_page(kvm->arch.ept_identity_pagetable);
6183 }
6184
6185 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6186                                 struct kvm_memory_slot *memslot,
6187                                 struct kvm_memory_slot old,
6188                                 struct kvm_userspace_memory_region *mem,
6189                                 int user_alloc)
6190 {
6191         int npages = memslot->npages;
6192         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6193
6194         /* Prevent internal slot pages from being moved by fork()/COW. */
6195         if (memslot->id >= KVM_MEMORY_SLOTS)
6196                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6197
6198         /*To keep backward compatibility with older userspace,
6199          *x86 needs to hanlde !user_alloc case.
6200          */
6201         if (!user_alloc) {
6202                 if (npages && !old.rmap) {
6203                         unsigned long userspace_addr;
6204
6205                         down_write(&current->mm->mmap_sem);
6206                         userspace_addr = do_mmap(NULL, 0,
6207                                                  npages * PAGE_SIZE,
6208                                                  PROT_READ | PROT_WRITE,
6209                                                  map_flags,
6210                                                  0);
6211                         up_write(&current->mm->mmap_sem);
6212
6213                         if (IS_ERR((void *)userspace_addr))
6214                                 return PTR_ERR((void *)userspace_addr);
6215
6216                         memslot->userspace_addr = userspace_addr;
6217                 }
6218         }
6219
6220
6221         return 0;
6222 }
6223
6224 void kvm_arch_commit_memory_region(struct kvm *kvm,
6225                                 struct kvm_userspace_memory_region *mem,
6226                                 struct kvm_memory_slot old,
6227                                 int user_alloc)
6228 {
6229
6230         int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6231
6232         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6233                 int ret;
6234
6235                 down_write(&current->mm->mmap_sem);
6236                 ret = do_munmap(current->mm, old.userspace_addr,
6237                                 old.npages * PAGE_SIZE);
6238                 up_write(&current->mm->mmap_sem);
6239                 if (ret < 0)
6240                         printk(KERN_WARNING
6241                                "kvm_vm_ioctl_set_memory_region: "
6242                                "failed to munmap memory\n");
6243         }