76f54461f7cb83a13a0ec8e76add8968532a1eae
[linux-3.10.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96
97 bool kvm_has_tsc_control;
98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
99 u32  kvm_max_guest_tsc_khz;
100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
101
102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
103 static u32 tsc_tolerance_ppm = 250;
104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
105
106 #define KVM_NR_SHARED_MSRS 16
107
108 struct kvm_shared_msrs_global {
109         int nr;
110         u32 msrs[KVM_NR_SHARED_MSRS];
111 };
112
113 struct kvm_shared_msrs {
114         struct user_return_notifier urn;
115         bool registered;
116         struct kvm_shared_msr_values {
117                 u64 host;
118                 u64 curr;
119         } values[KVM_NR_SHARED_MSRS];
120 };
121
122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
123 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
124
125 struct kvm_stats_debugfs_item debugfs_entries[] = {
126         { "pf_fixed", VCPU_STAT(pf_fixed) },
127         { "pf_guest", VCPU_STAT(pf_guest) },
128         { "tlb_flush", VCPU_STAT(tlb_flush) },
129         { "invlpg", VCPU_STAT(invlpg) },
130         { "exits", VCPU_STAT(exits) },
131         { "io_exits", VCPU_STAT(io_exits) },
132         { "mmio_exits", VCPU_STAT(mmio_exits) },
133         { "signal_exits", VCPU_STAT(signal_exits) },
134         { "irq_window", VCPU_STAT(irq_window_exits) },
135         { "nmi_window", VCPU_STAT(nmi_window_exits) },
136         { "halt_exits", VCPU_STAT(halt_exits) },
137         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
138         { "hypercalls", VCPU_STAT(hypercalls) },
139         { "request_irq", VCPU_STAT(request_irq_exits) },
140         { "irq_exits", VCPU_STAT(irq_exits) },
141         { "host_state_reload", VCPU_STAT(host_state_reload) },
142         { "efer_reload", VCPU_STAT(efer_reload) },
143         { "fpu_reload", VCPU_STAT(fpu_reload) },
144         { "insn_emulation", VCPU_STAT(insn_emulation) },
145         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
146         { "irq_injections", VCPU_STAT(irq_injections) },
147         { "nmi_injections", VCPU_STAT(nmi_injections) },
148         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
149         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
150         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
151         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
152         { "mmu_flooded", VM_STAT(mmu_flooded) },
153         { "mmu_recycled", VM_STAT(mmu_recycled) },
154         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
155         { "mmu_unsync", VM_STAT(mmu_unsync) },
156         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
157         { "largepages", VM_STAT(lpages) },
158         { NULL }
159 };
160
161 u64 __read_mostly host_xcr0;
162
163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
164
165 static int kvm_vcpu_reset(struct kvm_vcpu *vcpu);
166
167 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
168 {
169         int i;
170         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
171                 vcpu->arch.apf.gfns[i] = ~0;
172 }
173
174 static void kvm_on_user_return(struct user_return_notifier *urn)
175 {
176         unsigned slot;
177         struct kvm_shared_msrs *locals
178                 = container_of(urn, struct kvm_shared_msrs, urn);
179         struct kvm_shared_msr_values *values;
180
181         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
182                 values = &locals->values[slot];
183                 if (values->host != values->curr) {
184                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
185                         values->curr = values->host;
186                 }
187         }
188         locals->registered = false;
189         user_return_notifier_unregister(urn);
190 }
191
192 static void shared_msr_update(unsigned slot, u32 msr)
193 {
194         struct kvm_shared_msrs *smsr;
195         u64 value;
196
197         smsr = &__get_cpu_var(shared_msrs);
198         /* only read, and nobody should modify it at this time,
199          * so don't need lock */
200         if (slot >= shared_msrs_global.nr) {
201                 printk(KERN_ERR "kvm: invalid MSR slot!");
202                 return;
203         }
204         rdmsrl_safe(msr, &value);
205         smsr->values[slot].host = value;
206         smsr->values[slot].curr = value;
207 }
208
209 void kvm_define_shared_msr(unsigned slot, u32 msr)
210 {
211         if (slot >= shared_msrs_global.nr)
212                 shared_msrs_global.nr = slot + 1;
213         shared_msrs_global.msrs[slot] = msr;
214         /* we need ensured the shared_msr_global have been updated */
215         smp_wmb();
216 }
217 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
218
219 static void kvm_shared_msr_cpu_online(void)
220 {
221         unsigned i;
222
223         for (i = 0; i < shared_msrs_global.nr; ++i)
224                 shared_msr_update(i, shared_msrs_global.msrs[i]);
225 }
226
227 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
228 {
229         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
230
231         if (((value ^ smsr->values[slot].curr) & mask) == 0)
232                 return;
233         smsr->values[slot].curr = value;
234         wrmsrl(shared_msrs_global.msrs[slot], value);
235         if (!smsr->registered) {
236                 smsr->urn.on_user_return = kvm_on_user_return;
237                 user_return_notifier_register(&smsr->urn);
238                 smsr->registered = true;
239         }
240 }
241 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
242
243 static void drop_user_return_notifiers(void *ignore)
244 {
245         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
246
247         if (smsr->registered)
248                 kvm_on_user_return(&smsr->urn);
249 }
250
251 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
252 {
253         return vcpu->arch.apic_base;
254 }
255 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
256
257 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
258 {
259         /* TODO: reserve bits check */
260         kvm_lapic_set_base(vcpu, data);
261 }
262 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
263
264 #define EXCPT_BENIGN            0
265 #define EXCPT_CONTRIBUTORY      1
266 #define EXCPT_PF                2
267
268 static int exception_class(int vector)
269 {
270         switch (vector) {
271         case PF_VECTOR:
272                 return EXCPT_PF;
273         case DE_VECTOR:
274         case TS_VECTOR:
275         case NP_VECTOR:
276         case SS_VECTOR:
277         case GP_VECTOR:
278                 return EXCPT_CONTRIBUTORY;
279         default:
280                 break;
281         }
282         return EXCPT_BENIGN;
283 }
284
285 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
286                 unsigned nr, bool has_error, u32 error_code,
287                 bool reinject)
288 {
289         u32 prev_nr;
290         int class1, class2;
291
292         kvm_make_request(KVM_REQ_EVENT, vcpu);
293
294         if (!vcpu->arch.exception.pending) {
295         queue:
296                 vcpu->arch.exception.pending = true;
297                 vcpu->arch.exception.has_error_code = has_error;
298                 vcpu->arch.exception.nr = nr;
299                 vcpu->arch.exception.error_code = error_code;
300                 vcpu->arch.exception.reinject = reinject;
301                 return;
302         }
303
304         /* to check exception */
305         prev_nr = vcpu->arch.exception.nr;
306         if (prev_nr == DF_VECTOR) {
307                 /* triple fault -> shutdown */
308                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
309                 return;
310         }
311         class1 = exception_class(prev_nr);
312         class2 = exception_class(nr);
313         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
314                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
315                 /* generate double fault per SDM Table 5-5 */
316                 vcpu->arch.exception.pending = true;
317                 vcpu->arch.exception.has_error_code = true;
318                 vcpu->arch.exception.nr = DF_VECTOR;
319                 vcpu->arch.exception.error_code = 0;
320         } else
321                 /* replace previous exception with a new one in a hope
322                    that instruction re-execution will regenerate lost
323                    exception */
324                 goto queue;
325 }
326
327 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
328 {
329         kvm_multiple_exception(vcpu, nr, false, 0, false);
330 }
331 EXPORT_SYMBOL_GPL(kvm_queue_exception);
332
333 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
334 {
335         kvm_multiple_exception(vcpu, nr, false, 0, true);
336 }
337 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
338
339 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
340 {
341         if (err)
342                 kvm_inject_gp(vcpu, 0);
343         else
344                 kvm_x86_ops->skip_emulated_instruction(vcpu);
345 }
346 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
347
348 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
349 {
350         ++vcpu->stat.pf_guest;
351         vcpu->arch.cr2 = fault->address;
352         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
353 }
354 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
355
356 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
357 {
358         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
359                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
360         else
361                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
362 }
363
364 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
365 {
366         atomic_inc(&vcpu->arch.nmi_queued);
367         kvm_make_request(KVM_REQ_NMI, vcpu);
368 }
369 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
370
371 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
372 {
373         kvm_multiple_exception(vcpu, nr, true, error_code, false);
374 }
375 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
376
377 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
378 {
379         kvm_multiple_exception(vcpu, nr, true, error_code, true);
380 }
381 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
382
383 /*
384  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
385  * a #GP and return false.
386  */
387 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
388 {
389         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
390                 return true;
391         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
392         return false;
393 }
394 EXPORT_SYMBOL_GPL(kvm_require_cpl);
395
396 /*
397  * This function will be used to read from the physical memory of the currently
398  * running guest. The difference to kvm_read_guest_page is that this function
399  * can read from guest physical or from the guest's guest physical memory.
400  */
401 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
402                             gfn_t ngfn, void *data, int offset, int len,
403                             u32 access)
404 {
405         gfn_t real_gfn;
406         gpa_t ngpa;
407
408         ngpa     = gfn_to_gpa(ngfn);
409         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
410         if (real_gfn == UNMAPPED_GVA)
411                 return -EFAULT;
412
413         real_gfn = gpa_to_gfn(real_gfn);
414
415         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
416 }
417 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
418
419 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
420                                void *data, int offset, int len, u32 access)
421 {
422         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
423                                        data, offset, len, access);
424 }
425
426 /*
427  * Load the pae pdptrs.  Return true is they are all valid.
428  */
429 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
430 {
431         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
432         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
433         int i;
434         int ret;
435         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
436
437         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
438                                       offset * sizeof(u64), sizeof(pdpte),
439                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
440         if (ret < 0) {
441                 ret = 0;
442                 goto out;
443         }
444         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
445                 if (is_present_gpte(pdpte[i]) &&
446                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
447                         ret = 0;
448                         goto out;
449                 }
450         }
451         ret = 1;
452
453         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
454         __set_bit(VCPU_EXREG_PDPTR,
455                   (unsigned long *)&vcpu->arch.regs_avail);
456         __set_bit(VCPU_EXREG_PDPTR,
457                   (unsigned long *)&vcpu->arch.regs_dirty);
458 out:
459
460         return ret;
461 }
462 EXPORT_SYMBOL_GPL(load_pdptrs);
463
464 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
465 {
466         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
467         bool changed = true;
468         int offset;
469         gfn_t gfn;
470         int r;
471
472         if (is_long_mode(vcpu) || !is_pae(vcpu))
473                 return false;
474
475         if (!test_bit(VCPU_EXREG_PDPTR,
476                       (unsigned long *)&vcpu->arch.regs_avail))
477                 return true;
478
479         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
480         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
481         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
482                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
483         if (r < 0)
484                 goto out;
485         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
486 out:
487
488         return changed;
489 }
490
491 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
492 {
493         unsigned long old_cr0 = kvm_read_cr0(vcpu);
494         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
495                                     X86_CR0_CD | X86_CR0_NW;
496
497         cr0 |= X86_CR0_ET;
498
499 #ifdef CONFIG_X86_64
500         if (cr0 & 0xffffffff00000000UL)
501                 return 1;
502 #endif
503
504         cr0 &= ~CR0_RESERVED_BITS;
505
506         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
507                 return 1;
508
509         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
510                 return 1;
511
512         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
513 #ifdef CONFIG_X86_64
514                 if ((vcpu->arch.efer & EFER_LME)) {
515                         int cs_db, cs_l;
516
517                         if (!is_pae(vcpu))
518                                 return 1;
519                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
520                         if (cs_l)
521                                 return 1;
522                 } else
523 #endif
524                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
525                                                  kvm_read_cr3(vcpu)))
526                         return 1;
527         }
528
529         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
530                 return 1;
531
532         kvm_x86_ops->set_cr0(vcpu, cr0);
533
534         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
535                 kvm_clear_async_pf_completion_queue(vcpu);
536                 kvm_async_pf_hash_reset(vcpu);
537         }
538
539         if ((cr0 ^ old_cr0) & update_bits)
540                 kvm_mmu_reset_context(vcpu);
541         return 0;
542 }
543 EXPORT_SYMBOL_GPL(kvm_set_cr0);
544
545 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
546 {
547         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
548 }
549 EXPORT_SYMBOL_GPL(kvm_lmsw);
550
551 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
552 {
553         u64 xcr0;
554
555         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
556         if (index != XCR_XFEATURE_ENABLED_MASK)
557                 return 1;
558         xcr0 = xcr;
559         if (kvm_x86_ops->get_cpl(vcpu) != 0)
560                 return 1;
561         if (!(xcr0 & XSTATE_FP))
562                 return 1;
563         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
564                 return 1;
565         if (xcr0 & ~host_xcr0)
566                 return 1;
567         vcpu->arch.xcr0 = xcr0;
568         vcpu->guest_xcr0_loaded = 0;
569         return 0;
570 }
571
572 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
573 {
574         if (__kvm_set_xcr(vcpu, index, xcr)) {
575                 kvm_inject_gp(vcpu, 0);
576                 return 1;
577         }
578         return 0;
579 }
580 EXPORT_SYMBOL_GPL(kvm_set_xcr);
581
582 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
583 {
584         unsigned long old_cr4 = kvm_read_cr4(vcpu);
585         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
586                                    X86_CR4_PAE | X86_CR4_SMEP;
587         if (cr4 & CR4_RESERVED_BITS)
588                 return 1;
589
590         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
591                 return 1;
592
593         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
594                 return 1;
595
596         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
597                 return 1;
598
599         if (is_long_mode(vcpu)) {
600                 if (!(cr4 & X86_CR4_PAE))
601                         return 1;
602         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
603                    && ((cr4 ^ old_cr4) & pdptr_bits)
604                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
605                                    kvm_read_cr3(vcpu)))
606                 return 1;
607
608         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
609                 if (!guest_cpuid_has_pcid(vcpu))
610                         return 1;
611
612                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
613                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
614                         return 1;
615         }
616
617         if (kvm_x86_ops->set_cr4(vcpu, cr4))
618                 return 1;
619
620         if (((cr4 ^ old_cr4) & pdptr_bits) ||
621             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
622                 kvm_mmu_reset_context(vcpu);
623
624         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
625                 kvm_update_cpuid(vcpu);
626
627         return 0;
628 }
629 EXPORT_SYMBOL_GPL(kvm_set_cr4);
630
631 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
632 {
633         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
634                 kvm_mmu_sync_roots(vcpu);
635                 kvm_mmu_flush_tlb(vcpu);
636                 return 0;
637         }
638
639         if (is_long_mode(vcpu)) {
640                 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
641                         if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
642                                 return 1;
643                 } else
644                         if (cr3 & CR3_L_MODE_RESERVED_BITS)
645                                 return 1;
646         } else {
647                 if (is_pae(vcpu)) {
648                         if (cr3 & CR3_PAE_RESERVED_BITS)
649                                 return 1;
650                         if (is_paging(vcpu) &&
651                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
652                                 return 1;
653                 }
654                 /*
655                  * We don't check reserved bits in nonpae mode, because
656                  * this isn't enforced, and VMware depends on this.
657                  */
658         }
659
660         /*
661          * Does the new cr3 value map to physical memory? (Note, we
662          * catch an invalid cr3 even in real-mode, because it would
663          * cause trouble later on when we turn on paging anyway.)
664          *
665          * A real CPU would silently accept an invalid cr3 and would
666          * attempt to use it - with largely undefined (and often hard
667          * to debug) behavior on the guest side.
668          */
669         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
670                 return 1;
671         vcpu->arch.cr3 = cr3;
672         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
673         vcpu->arch.mmu.new_cr3(vcpu);
674         return 0;
675 }
676 EXPORT_SYMBOL_GPL(kvm_set_cr3);
677
678 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
679 {
680         if (cr8 & CR8_RESERVED_BITS)
681                 return 1;
682         if (irqchip_in_kernel(vcpu->kvm))
683                 kvm_lapic_set_tpr(vcpu, cr8);
684         else
685                 vcpu->arch.cr8 = cr8;
686         return 0;
687 }
688 EXPORT_SYMBOL_GPL(kvm_set_cr8);
689
690 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
691 {
692         if (irqchip_in_kernel(vcpu->kvm))
693                 return kvm_lapic_get_cr8(vcpu);
694         else
695                 return vcpu->arch.cr8;
696 }
697 EXPORT_SYMBOL_GPL(kvm_get_cr8);
698
699 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
700 {
701         unsigned long dr7;
702
703         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
704                 dr7 = vcpu->arch.guest_debug_dr7;
705         else
706                 dr7 = vcpu->arch.dr7;
707         kvm_x86_ops->set_dr7(vcpu, dr7);
708         vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
709 }
710
711 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
712 {
713         switch (dr) {
714         case 0 ... 3:
715                 vcpu->arch.db[dr] = val;
716                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
717                         vcpu->arch.eff_db[dr] = val;
718                 break;
719         case 4:
720                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
721                         return 1; /* #UD */
722                 /* fall through */
723         case 6:
724                 if (val & 0xffffffff00000000ULL)
725                         return -1; /* #GP */
726                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
727                 break;
728         case 5:
729                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
730                         return 1; /* #UD */
731                 /* fall through */
732         default: /* 7 */
733                 if (val & 0xffffffff00000000ULL)
734                         return -1; /* #GP */
735                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
736                 kvm_update_dr7(vcpu);
737                 break;
738         }
739
740         return 0;
741 }
742
743 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
744 {
745         int res;
746
747         res = __kvm_set_dr(vcpu, dr, val);
748         if (res > 0)
749                 kvm_queue_exception(vcpu, UD_VECTOR);
750         else if (res < 0)
751                 kvm_inject_gp(vcpu, 0);
752
753         return res;
754 }
755 EXPORT_SYMBOL_GPL(kvm_set_dr);
756
757 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
758 {
759         switch (dr) {
760         case 0 ... 3:
761                 *val = vcpu->arch.db[dr];
762                 break;
763         case 4:
764                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
765                         return 1;
766                 /* fall through */
767         case 6:
768                 *val = vcpu->arch.dr6;
769                 break;
770         case 5:
771                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
772                         return 1;
773                 /* fall through */
774         default: /* 7 */
775                 *val = vcpu->arch.dr7;
776                 break;
777         }
778
779         return 0;
780 }
781
782 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
783 {
784         if (_kvm_get_dr(vcpu, dr, val)) {
785                 kvm_queue_exception(vcpu, UD_VECTOR);
786                 return 1;
787         }
788         return 0;
789 }
790 EXPORT_SYMBOL_GPL(kvm_get_dr);
791
792 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
793 {
794         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
795         u64 data;
796         int err;
797
798         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
799         if (err)
800                 return err;
801         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
802         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
803         return err;
804 }
805 EXPORT_SYMBOL_GPL(kvm_rdpmc);
806
807 /*
808  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
809  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
810  *
811  * This list is modified at module load time to reflect the
812  * capabilities of the host cpu. This capabilities test skips MSRs that are
813  * kvm-specific. Those are put in the beginning of the list.
814  */
815
816 #define KVM_SAVE_MSRS_BEGIN     10
817 static u32 msrs_to_save[] = {
818         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
819         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
820         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
821         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
822         MSR_KVM_PV_EOI_EN,
823         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
824         MSR_STAR,
825 #ifdef CONFIG_X86_64
826         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
827 #endif
828         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
829 };
830
831 static unsigned num_msrs_to_save;
832
833 static const u32 emulated_msrs[] = {
834         MSR_IA32_TSC_ADJUST,
835         MSR_IA32_TSCDEADLINE,
836         MSR_IA32_MISC_ENABLE,
837         MSR_IA32_MCG_STATUS,
838         MSR_IA32_MCG_CTL,
839 };
840
841 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
842 {
843         u64 old_efer = vcpu->arch.efer;
844
845         if (efer & efer_reserved_bits)
846                 return 1;
847
848         if (is_paging(vcpu)
849             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
850                 return 1;
851
852         if (efer & EFER_FFXSR) {
853                 struct kvm_cpuid_entry2 *feat;
854
855                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
856                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
857                         return 1;
858         }
859
860         if (efer & EFER_SVME) {
861                 struct kvm_cpuid_entry2 *feat;
862
863                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
864                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
865                         return 1;
866         }
867
868         efer &= ~EFER_LMA;
869         efer |= vcpu->arch.efer & EFER_LMA;
870
871         kvm_x86_ops->set_efer(vcpu, efer);
872
873         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
874
875         /* Update reserved bits */
876         if ((efer ^ old_efer) & EFER_NX)
877                 kvm_mmu_reset_context(vcpu);
878
879         return 0;
880 }
881
882 void kvm_enable_efer_bits(u64 mask)
883 {
884        efer_reserved_bits &= ~mask;
885 }
886 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
887
888
889 /*
890  * Writes msr value into into the appropriate "register".
891  * Returns 0 on success, non-0 otherwise.
892  * Assumes vcpu_load() was already called.
893  */
894 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
895 {
896         return kvm_x86_ops->set_msr(vcpu, msr);
897 }
898
899 /*
900  * Adapt set_msr() to msr_io()'s calling convention
901  */
902 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
903 {
904         struct msr_data msr;
905
906         msr.data = *data;
907         msr.index = index;
908         msr.host_initiated = true;
909         return kvm_set_msr(vcpu, &msr);
910 }
911
912 #ifdef CONFIG_X86_64
913 struct pvclock_gtod_data {
914         seqcount_t      seq;
915
916         struct { /* extract of a clocksource struct */
917                 int vclock_mode;
918                 cycle_t cycle_last;
919                 cycle_t mask;
920                 u32     mult;
921                 u32     shift;
922         } clock;
923
924         /* open coded 'struct timespec' */
925         u64             monotonic_time_snsec;
926         time_t          monotonic_time_sec;
927 };
928
929 static struct pvclock_gtod_data pvclock_gtod_data;
930
931 static void update_pvclock_gtod(struct timekeeper *tk)
932 {
933         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
934
935         write_seqcount_begin(&vdata->seq);
936
937         /* copy pvclock gtod data */
938         vdata->clock.vclock_mode        = tk->clock->archdata.vclock_mode;
939         vdata->clock.cycle_last         = tk->clock->cycle_last;
940         vdata->clock.mask               = tk->clock->mask;
941         vdata->clock.mult               = tk->mult;
942         vdata->clock.shift              = tk->shift;
943
944         vdata->monotonic_time_sec       = tk->xtime_sec
945                                         + tk->wall_to_monotonic.tv_sec;
946         vdata->monotonic_time_snsec     = tk->xtime_nsec
947                                         + (tk->wall_to_monotonic.tv_nsec
948                                                 << tk->shift);
949         while (vdata->monotonic_time_snsec >=
950                                         (((u64)NSEC_PER_SEC) << tk->shift)) {
951                 vdata->monotonic_time_snsec -=
952                                         ((u64)NSEC_PER_SEC) << tk->shift;
953                 vdata->monotonic_time_sec++;
954         }
955
956         write_seqcount_end(&vdata->seq);
957 }
958 #endif
959
960
961 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
962 {
963         int version;
964         int r;
965         struct pvclock_wall_clock wc;
966         struct timespec boot;
967
968         if (!wall_clock)
969                 return;
970
971         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
972         if (r)
973                 return;
974
975         if (version & 1)
976                 ++version;  /* first time write, random junk */
977
978         ++version;
979
980         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
981
982         /*
983          * The guest calculates current wall clock time by adding
984          * system time (updated by kvm_guest_time_update below) to the
985          * wall clock specified here.  guest system time equals host
986          * system time for us, thus we must fill in host boot time here.
987          */
988         getboottime(&boot);
989
990         if (kvm->arch.kvmclock_offset) {
991                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
992                 boot = timespec_sub(boot, ts);
993         }
994         wc.sec = boot.tv_sec;
995         wc.nsec = boot.tv_nsec;
996         wc.version = version;
997
998         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
999
1000         version++;
1001         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1002 }
1003
1004 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1005 {
1006         uint32_t quotient, remainder;
1007
1008         /* Don't try to replace with do_div(), this one calculates
1009          * "(dividend << 32) / divisor" */
1010         __asm__ ( "divl %4"
1011                   : "=a" (quotient), "=d" (remainder)
1012                   : "0" (0), "1" (dividend), "r" (divisor) );
1013         return quotient;
1014 }
1015
1016 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1017                                s8 *pshift, u32 *pmultiplier)
1018 {
1019         uint64_t scaled64;
1020         int32_t  shift = 0;
1021         uint64_t tps64;
1022         uint32_t tps32;
1023
1024         tps64 = base_khz * 1000LL;
1025         scaled64 = scaled_khz * 1000LL;
1026         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1027                 tps64 >>= 1;
1028                 shift--;
1029         }
1030
1031         tps32 = (uint32_t)tps64;
1032         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1033                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1034                         scaled64 >>= 1;
1035                 else
1036                         tps32 <<= 1;
1037                 shift++;
1038         }
1039
1040         *pshift = shift;
1041         *pmultiplier = div_frac(scaled64, tps32);
1042
1043         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1044                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1045 }
1046
1047 static inline u64 get_kernel_ns(void)
1048 {
1049         struct timespec ts;
1050
1051         WARN_ON(preemptible());
1052         ktime_get_ts(&ts);
1053         monotonic_to_bootbased(&ts);
1054         return timespec_to_ns(&ts);
1055 }
1056
1057 #ifdef CONFIG_X86_64
1058 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1059 #endif
1060
1061 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1062 unsigned long max_tsc_khz;
1063
1064 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1065 {
1066         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1067                                    vcpu->arch.virtual_tsc_shift);
1068 }
1069
1070 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1071 {
1072         u64 v = (u64)khz * (1000000 + ppm);
1073         do_div(v, 1000000);
1074         return v;
1075 }
1076
1077 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1078 {
1079         u32 thresh_lo, thresh_hi;
1080         int use_scaling = 0;
1081
1082         /* Compute a scale to convert nanoseconds in TSC cycles */
1083         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1084                            &vcpu->arch.virtual_tsc_shift,
1085                            &vcpu->arch.virtual_tsc_mult);
1086         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1087
1088         /*
1089          * Compute the variation in TSC rate which is acceptable
1090          * within the range of tolerance and decide if the
1091          * rate being applied is within that bounds of the hardware
1092          * rate.  If so, no scaling or compensation need be done.
1093          */
1094         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1095         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1096         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1097                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1098                 use_scaling = 1;
1099         }
1100         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1101 }
1102
1103 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1104 {
1105         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1106                                       vcpu->arch.virtual_tsc_mult,
1107                                       vcpu->arch.virtual_tsc_shift);
1108         tsc += vcpu->arch.this_tsc_write;
1109         return tsc;
1110 }
1111
1112 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1113 {
1114 #ifdef CONFIG_X86_64
1115         bool vcpus_matched;
1116         bool do_request = false;
1117         struct kvm_arch *ka = &vcpu->kvm->arch;
1118         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1119
1120         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1121                          atomic_read(&vcpu->kvm->online_vcpus));
1122
1123         if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1124                 if (!ka->use_master_clock)
1125                         do_request = 1;
1126
1127         if (!vcpus_matched && ka->use_master_clock)
1128                         do_request = 1;
1129
1130         if (do_request)
1131                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1132
1133         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1134                             atomic_read(&vcpu->kvm->online_vcpus),
1135                             ka->use_master_clock, gtod->clock.vclock_mode);
1136 #endif
1137 }
1138
1139 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1140 {
1141         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1142         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1143 }
1144
1145 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1146 {
1147         struct kvm *kvm = vcpu->kvm;
1148         u64 offset, ns, elapsed;
1149         unsigned long flags;
1150         s64 usdiff;
1151         bool matched;
1152         u64 data = msr->data;
1153
1154         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1155         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1156         ns = get_kernel_ns();
1157         elapsed = ns - kvm->arch.last_tsc_nsec;
1158
1159         /* n.b - signed multiplication and division required */
1160         usdiff = data - kvm->arch.last_tsc_write;
1161 #ifdef CONFIG_X86_64
1162         usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1163 #else
1164         /* do_div() only does unsigned */
1165         asm("idivl %2; xor %%edx, %%edx"
1166             : "=A"(usdiff)
1167             : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1168 #endif
1169         do_div(elapsed, 1000);
1170         usdiff -= elapsed;
1171         if (usdiff < 0)
1172                 usdiff = -usdiff;
1173
1174         /*
1175          * Special case: TSC write with a small delta (1 second) of virtual
1176          * cycle time against real time is interpreted as an attempt to
1177          * synchronize the CPU.
1178          *
1179          * For a reliable TSC, we can match TSC offsets, and for an unstable
1180          * TSC, we add elapsed time in this computation.  We could let the
1181          * compensation code attempt to catch up if we fall behind, but
1182          * it's better to try to match offsets from the beginning.
1183          */
1184         if (usdiff < USEC_PER_SEC &&
1185             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1186                 if (!check_tsc_unstable()) {
1187                         offset = kvm->arch.cur_tsc_offset;
1188                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1189                 } else {
1190                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1191                         data += delta;
1192                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1193                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1194                 }
1195                 matched = true;
1196         } else {
1197                 /*
1198                  * We split periods of matched TSC writes into generations.
1199                  * For each generation, we track the original measured
1200                  * nanosecond time, offset, and write, so if TSCs are in
1201                  * sync, we can match exact offset, and if not, we can match
1202                  * exact software computation in compute_guest_tsc()
1203                  *
1204                  * These values are tracked in kvm->arch.cur_xxx variables.
1205                  */
1206                 kvm->arch.cur_tsc_generation++;
1207                 kvm->arch.cur_tsc_nsec = ns;
1208                 kvm->arch.cur_tsc_write = data;
1209                 kvm->arch.cur_tsc_offset = offset;
1210                 matched = false;
1211                 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1212                          kvm->arch.cur_tsc_generation, data);
1213         }
1214
1215         /*
1216          * We also track th most recent recorded KHZ, write and time to
1217          * allow the matching interval to be extended at each write.
1218          */
1219         kvm->arch.last_tsc_nsec = ns;
1220         kvm->arch.last_tsc_write = data;
1221         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1222
1223         /* Reset of TSC must disable overshoot protection below */
1224         vcpu->arch.hv_clock.tsc_timestamp = 0;
1225         vcpu->arch.last_guest_tsc = data;
1226
1227         /* Keep track of which generation this VCPU has synchronized to */
1228         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1229         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1230         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1231
1232         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1233                 update_ia32_tsc_adjust_msr(vcpu, offset);
1234         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1235         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1236
1237         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1238         if (matched)
1239                 kvm->arch.nr_vcpus_matched_tsc++;
1240         else
1241                 kvm->arch.nr_vcpus_matched_tsc = 0;
1242
1243         kvm_track_tsc_matching(vcpu);
1244         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1245 }
1246
1247 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1248
1249 #ifdef CONFIG_X86_64
1250
1251 static cycle_t read_tsc(void)
1252 {
1253         cycle_t ret;
1254         u64 last;
1255
1256         /*
1257          * Empirically, a fence (of type that depends on the CPU)
1258          * before rdtsc is enough to ensure that rdtsc is ordered
1259          * with respect to loads.  The various CPU manuals are unclear
1260          * as to whether rdtsc can be reordered with later loads,
1261          * but no one has ever seen it happen.
1262          */
1263         rdtsc_barrier();
1264         ret = (cycle_t)vget_cycles();
1265
1266         last = pvclock_gtod_data.clock.cycle_last;
1267
1268         if (likely(ret >= last))
1269                 return ret;
1270
1271         /*
1272          * GCC likes to generate cmov here, but this branch is extremely
1273          * predictable (it's just a funciton of time and the likely is
1274          * very likely) and there's a data dependence, so force GCC
1275          * to generate a branch instead.  I don't barrier() because
1276          * we don't actually need a barrier, and if this function
1277          * ever gets inlined it will generate worse code.
1278          */
1279         asm volatile ("");
1280         return last;
1281 }
1282
1283 static inline u64 vgettsc(cycle_t *cycle_now)
1284 {
1285         long v;
1286         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1287
1288         *cycle_now = read_tsc();
1289
1290         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1291         return v * gtod->clock.mult;
1292 }
1293
1294 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1295 {
1296         unsigned long seq;
1297         u64 ns;
1298         int mode;
1299         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1300
1301         ts->tv_nsec = 0;
1302         do {
1303                 seq = read_seqcount_begin(&gtod->seq);
1304                 mode = gtod->clock.vclock_mode;
1305                 ts->tv_sec = gtod->monotonic_time_sec;
1306                 ns = gtod->monotonic_time_snsec;
1307                 ns += vgettsc(cycle_now);
1308                 ns >>= gtod->clock.shift;
1309         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1310         timespec_add_ns(ts, ns);
1311
1312         return mode;
1313 }
1314
1315 /* returns true if host is using tsc clocksource */
1316 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1317 {
1318         struct timespec ts;
1319
1320         /* checked again under seqlock below */
1321         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1322                 return false;
1323
1324         if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1325                 return false;
1326
1327         monotonic_to_bootbased(&ts);
1328         *kernel_ns = timespec_to_ns(&ts);
1329
1330         return true;
1331 }
1332 #endif
1333
1334 /*
1335  *
1336  * Assuming a stable TSC across physical CPUS, and a stable TSC
1337  * across virtual CPUs, the following condition is possible.
1338  * Each numbered line represents an event visible to both
1339  * CPUs at the next numbered event.
1340  *
1341  * "timespecX" represents host monotonic time. "tscX" represents
1342  * RDTSC value.
1343  *
1344  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1345  *
1346  * 1.  read timespec0,tsc0
1347  * 2.                                   | timespec1 = timespec0 + N
1348  *                                      | tsc1 = tsc0 + M
1349  * 3. transition to guest               | transition to guest
1350  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1351  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1352  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1353  *
1354  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1355  *
1356  *      - ret0 < ret1
1357  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1358  *              ...
1359  *      - 0 < N - M => M < N
1360  *
1361  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1362  * always the case (the difference between two distinct xtime instances
1363  * might be smaller then the difference between corresponding TSC reads,
1364  * when updating guest vcpus pvclock areas).
1365  *
1366  * To avoid that problem, do not allow visibility of distinct
1367  * system_timestamp/tsc_timestamp values simultaneously: use a master
1368  * copy of host monotonic time values. Update that master copy
1369  * in lockstep.
1370  *
1371  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1372  *
1373  */
1374
1375 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1376 {
1377 #ifdef CONFIG_X86_64
1378         struct kvm_arch *ka = &kvm->arch;
1379         int vclock_mode;
1380         bool host_tsc_clocksource, vcpus_matched;
1381
1382         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1383                         atomic_read(&kvm->online_vcpus));
1384
1385         /*
1386          * If the host uses TSC clock, then passthrough TSC as stable
1387          * to the guest.
1388          */
1389         host_tsc_clocksource = kvm_get_time_and_clockread(
1390                                         &ka->master_kernel_ns,
1391                                         &ka->master_cycle_now);
1392
1393         ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1394
1395         if (ka->use_master_clock)
1396                 atomic_set(&kvm_guest_has_master_clock, 1);
1397
1398         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1399         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1400                                         vcpus_matched);
1401 #endif
1402 }
1403
1404 static int kvm_guest_time_update(struct kvm_vcpu *v)
1405 {
1406         unsigned long flags, this_tsc_khz;
1407         struct kvm_vcpu_arch *vcpu = &v->arch;
1408         struct kvm_arch *ka = &v->kvm->arch;
1409         void *shared_kaddr;
1410         s64 kernel_ns, max_kernel_ns;
1411         u64 tsc_timestamp, host_tsc;
1412         struct pvclock_vcpu_time_info *guest_hv_clock;
1413         u8 pvclock_flags;
1414         bool use_master_clock;
1415
1416         kernel_ns = 0;
1417         host_tsc = 0;
1418
1419         /* Keep irq disabled to prevent changes to the clock */
1420         local_irq_save(flags);
1421         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1422         if (unlikely(this_tsc_khz == 0)) {
1423                 local_irq_restore(flags);
1424                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1425                 return 1;
1426         }
1427
1428         /*
1429          * If the host uses TSC clock, then passthrough TSC as stable
1430          * to the guest.
1431          */
1432         spin_lock(&ka->pvclock_gtod_sync_lock);
1433         use_master_clock = ka->use_master_clock;
1434         if (use_master_clock) {
1435                 host_tsc = ka->master_cycle_now;
1436                 kernel_ns = ka->master_kernel_ns;
1437         }
1438         spin_unlock(&ka->pvclock_gtod_sync_lock);
1439         if (!use_master_clock) {
1440                 host_tsc = native_read_tsc();
1441                 kernel_ns = get_kernel_ns();
1442         }
1443
1444         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1445
1446         /*
1447          * We may have to catch up the TSC to match elapsed wall clock
1448          * time for two reasons, even if kvmclock is used.
1449          *   1) CPU could have been running below the maximum TSC rate
1450          *   2) Broken TSC compensation resets the base at each VCPU
1451          *      entry to avoid unknown leaps of TSC even when running
1452          *      again on the same CPU.  This may cause apparent elapsed
1453          *      time to disappear, and the guest to stand still or run
1454          *      very slowly.
1455          */
1456         if (vcpu->tsc_catchup) {
1457                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1458                 if (tsc > tsc_timestamp) {
1459                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1460                         tsc_timestamp = tsc;
1461                 }
1462         }
1463
1464         local_irq_restore(flags);
1465
1466         if (!vcpu->time_page)
1467                 return 0;
1468
1469         /*
1470          * Time as measured by the TSC may go backwards when resetting the base
1471          * tsc_timestamp.  The reason for this is that the TSC resolution is
1472          * higher than the resolution of the other clock scales.  Thus, many
1473          * possible measurments of the TSC correspond to one measurement of any
1474          * other clock, and so a spread of values is possible.  This is not a
1475          * problem for the computation of the nanosecond clock; with TSC rates
1476          * around 1GHZ, there can only be a few cycles which correspond to one
1477          * nanosecond value, and any path through this code will inevitably
1478          * take longer than that.  However, with the kernel_ns value itself,
1479          * the precision may be much lower, down to HZ granularity.  If the
1480          * first sampling of TSC against kernel_ns ends in the low part of the
1481          * range, and the second in the high end of the range, we can get:
1482          *
1483          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1484          *
1485          * As the sampling errors potentially range in the thousands of cycles,
1486          * it is possible such a time value has already been observed by the
1487          * guest.  To protect against this, we must compute the system time as
1488          * observed by the guest and ensure the new system time is greater.
1489          */
1490         max_kernel_ns = 0;
1491         if (vcpu->hv_clock.tsc_timestamp) {
1492                 max_kernel_ns = vcpu->last_guest_tsc -
1493                                 vcpu->hv_clock.tsc_timestamp;
1494                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1495                                     vcpu->hv_clock.tsc_to_system_mul,
1496                                     vcpu->hv_clock.tsc_shift);
1497                 max_kernel_ns += vcpu->last_kernel_ns;
1498         }
1499
1500         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1501                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1502                                    &vcpu->hv_clock.tsc_shift,
1503                                    &vcpu->hv_clock.tsc_to_system_mul);
1504                 vcpu->hw_tsc_khz = this_tsc_khz;
1505         }
1506
1507         /* with a master <monotonic time, tsc value> tuple,
1508          * pvclock clock reads always increase at the (scaled) rate
1509          * of guest TSC - no need to deal with sampling errors.
1510          */
1511         if (!use_master_clock) {
1512                 if (max_kernel_ns > kernel_ns)
1513                         kernel_ns = max_kernel_ns;
1514         }
1515         /* With all the info we got, fill in the values */
1516         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1517         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1518         vcpu->last_kernel_ns = kernel_ns;
1519         vcpu->last_guest_tsc = tsc_timestamp;
1520
1521         /*
1522          * The interface expects us to write an even number signaling that the
1523          * update is finished. Since the guest won't see the intermediate
1524          * state, we just increase by 2 at the end.
1525          */
1526         vcpu->hv_clock.version += 2;
1527
1528         shared_kaddr = kmap_atomic(vcpu->time_page);
1529
1530         guest_hv_clock = shared_kaddr + vcpu->time_offset;
1531
1532         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1533         pvclock_flags = (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
1534
1535         if (vcpu->pvclock_set_guest_stopped_request) {
1536                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1537                 vcpu->pvclock_set_guest_stopped_request = false;
1538         }
1539
1540         /* If the host uses TSC clocksource, then it is stable */
1541         if (use_master_clock)
1542                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1543
1544         vcpu->hv_clock.flags = pvclock_flags;
1545
1546         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1547                sizeof(vcpu->hv_clock));
1548
1549         kunmap_atomic(shared_kaddr);
1550
1551         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1552         return 0;
1553 }
1554
1555 static bool msr_mtrr_valid(unsigned msr)
1556 {
1557         switch (msr) {
1558         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1559         case MSR_MTRRfix64K_00000:
1560         case MSR_MTRRfix16K_80000:
1561         case MSR_MTRRfix16K_A0000:
1562         case MSR_MTRRfix4K_C0000:
1563         case MSR_MTRRfix4K_C8000:
1564         case MSR_MTRRfix4K_D0000:
1565         case MSR_MTRRfix4K_D8000:
1566         case MSR_MTRRfix4K_E0000:
1567         case MSR_MTRRfix4K_E8000:
1568         case MSR_MTRRfix4K_F0000:
1569         case MSR_MTRRfix4K_F8000:
1570         case MSR_MTRRdefType:
1571         case MSR_IA32_CR_PAT:
1572                 return true;
1573         case 0x2f8:
1574                 return true;
1575         }
1576         return false;
1577 }
1578
1579 static bool valid_pat_type(unsigned t)
1580 {
1581         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1582 }
1583
1584 static bool valid_mtrr_type(unsigned t)
1585 {
1586         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1587 }
1588
1589 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1590 {
1591         int i;
1592
1593         if (!msr_mtrr_valid(msr))
1594                 return false;
1595
1596         if (msr == MSR_IA32_CR_PAT) {
1597                 for (i = 0; i < 8; i++)
1598                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1599                                 return false;
1600                 return true;
1601         } else if (msr == MSR_MTRRdefType) {
1602                 if (data & ~0xcff)
1603                         return false;
1604                 return valid_mtrr_type(data & 0xff);
1605         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1606                 for (i = 0; i < 8 ; i++)
1607                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1608                                 return false;
1609                 return true;
1610         }
1611
1612         /* variable MTRRs */
1613         return valid_mtrr_type(data & 0xff);
1614 }
1615
1616 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1617 {
1618         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1619
1620         if (!mtrr_valid(vcpu, msr, data))
1621                 return 1;
1622
1623         if (msr == MSR_MTRRdefType) {
1624                 vcpu->arch.mtrr_state.def_type = data;
1625                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1626         } else if (msr == MSR_MTRRfix64K_00000)
1627                 p[0] = data;
1628         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1629                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1630         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1631                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1632         else if (msr == MSR_IA32_CR_PAT)
1633                 vcpu->arch.pat = data;
1634         else {  /* Variable MTRRs */
1635                 int idx, is_mtrr_mask;
1636                 u64 *pt;
1637
1638                 idx = (msr - 0x200) / 2;
1639                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1640                 if (!is_mtrr_mask)
1641                         pt =
1642                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1643                 else
1644                         pt =
1645                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1646                 *pt = data;
1647         }
1648
1649         kvm_mmu_reset_context(vcpu);
1650         return 0;
1651 }
1652
1653 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1654 {
1655         u64 mcg_cap = vcpu->arch.mcg_cap;
1656         unsigned bank_num = mcg_cap & 0xff;
1657
1658         switch (msr) {
1659         case MSR_IA32_MCG_STATUS:
1660                 vcpu->arch.mcg_status = data;
1661                 break;
1662         case MSR_IA32_MCG_CTL:
1663                 if (!(mcg_cap & MCG_CTL_P))
1664                         return 1;
1665                 if (data != 0 && data != ~(u64)0)
1666                         return -1;
1667                 vcpu->arch.mcg_ctl = data;
1668                 break;
1669         default:
1670                 if (msr >= MSR_IA32_MC0_CTL &&
1671                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1672                         u32 offset = msr - MSR_IA32_MC0_CTL;
1673                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1674                          * some Linux kernels though clear bit 10 in bank 4 to
1675                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1676                          * this to avoid an uncatched #GP in the guest
1677                          */
1678                         if ((offset & 0x3) == 0 &&
1679                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1680                                 return -1;
1681                         vcpu->arch.mce_banks[offset] = data;
1682                         break;
1683                 }
1684                 return 1;
1685         }
1686         return 0;
1687 }
1688
1689 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1690 {
1691         struct kvm *kvm = vcpu->kvm;
1692         int lm = is_long_mode(vcpu);
1693         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1694                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1695         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1696                 : kvm->arch.xen_hvm_config.blob_size_32;
1697         u32 page_num = data & ~PAGE_MASK;
1698         u64 page_addr = data & PAGE_MASK;
1699         u8 *page;
1700         int r;
1701
1702         r = -E2BIG;
1703         if (page_num >= blob_size)
1704                 goto out;
1705         r = -ENOMEM;
1706         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1707         if (IS_ERR(page)) {
1708                 r = PTR_ERR(page);
1709                 goto out;
1710         }
1711         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1712                 goto out_free;
1713         r = 0;
1714 out_free:
1715         kfree(page);
1716 out:
1717         return r;
1718 }
1719
1720 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1721 {
1722         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1723 }
1724
1725 static bool kvm_hv_msr_partition_wide(u32 msr)
1726 {
1727         bool r = false;
1728         switch (msr) {
1729         case HV_X64_MSR_GUEST_OS_ID:
1730         case HV_X64_MSR_HYPERCALL:
1731                 r = true;
1732                 break;
1733         }
1734
1735         return r;
1736 }
1737
1738 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1739 {
1740         struct kvm *kvm = vcpu->kvm;
1741
1742         switch (msr) {
1743         case HV_X64_MSR_GUEST_OS_ID:
1744                 kvm->arch.hv_guest_os_id = data;
1745                 /* setting guest os id to zero disables hypercall page */
1746                 if (!kvm->arch.hv_guest_os_id)
1747                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1748                 break;
1749         case HV_X64_MSR_HYPERCALL: {
1750                 u64 gfn;
1751                 unsigned long addr;
1752                 u8 instructions[4];
1753
1754                 /* if guest os id is not set hypercall should remain disabled */
1755                 if (!kvm->arch.hv_guest_os_id)
1756                         break;
1757                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1758                         kvm->arch.hv_hypercall = data;
1759                         break;
1760                 }
1761                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1762                 addr = gfn_to_hva(kvm, gfn);
1763                 if (kvm_is_error_hva(addr))
1764                         return 1;
1765                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1766                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1767                 if (__copy_to_user((void __user *)addr, instructions, 4))
1768                         return 1;
1769                 kvm->arch.hv_hypercall = data;
1770                 break;
1771         }
1772         default:
1773                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1774                             "data 0x%llx\n", msr, data);
1775                 return 1;
1776         }
1777         return 0;
1778 }
1779
1780 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1781 {
1782         switch (msr) {
1783         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1784                 unsigned long addr;
1785
1786                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1787                         vcpu->arch.hv_vapic = data;
1788                         break;
1789                 }
1790                 addr = gfn_to_hva(vcpu->kvm, data >>
1791                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1792                 if (kvm_is_error_hva(addr))
1793                         return 1;
1794                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1795                         return 1;
1796                 vcpu->arch.hv_vapic = data;
1797                 break;
1798         }
1799         case HV_X64_MSR_EOI:
1800                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1801         case HV_X64_MSR_ICR:
1802                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1803         case HV_X64_MSR_TPR:
1804                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1805         default:
1806                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1807                             "data 0x%llx\n", msr, data);
1808                 return 1;
1809         }
1810
1811         return 0;
1812 }
1813
1814 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1815 {
1816         gpa_t gpa = data & ~0x3f;
1817
1818         /* Bits 2:5 are reserved, Should be zero */
1819         if (data & 0x3c)
1820                 return 1;
1821
1822         vcpu->arch.apf.msr_val = data;
1823
1824         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1825                 kvm_clear_async_pf_completion_queue(vcpu);
1826                 kvm_async_pf_hash_reset(vcpu);
1827                 return 0;
1828         }
1829
1830         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1831                 return 1;
1832
1833         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1834         kvm_async_pf_wakeup_all(vcpu);
1835         return 0;
1836 }
1837
1838 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1839 {
1840         if (vcpu->arch.time_page) {
1841                 kvm_release_page_dirty(vcpu->arch.time_page);
1842                 vcpu->arch.time_page = NULL;
1843         }
1844 }
1845
1846 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1847 {
1848         u64 delta;
1849
1850         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1851                 return;
1852
1853         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1854         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1855         vcpu->arch.st.accum_steal = delta;
1856 }
1857
1858 static void record_steal_time(struct kvm_vcpu *vcpu)
1859 {
1860         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1861                 return;
1862
1863         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1864                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1865                 return;
1866
1867         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1868         vcpu->arch.st.steal.version += 2;
1869         vcpu->arch.st.accum_steal = 0;
1870
1871         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1872                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1873 }
1874
1875 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1876 {
1877         bool pr = false;
1878         u32 msr = msr_info->index;
1879         u64 data = msr_info->data;
1880
1881         switch (msr) {
1882         case MSR_EFER:
1883                 return set_efer(vcpu, data);
1884         case MSR_K7_HWCR:
1885                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1886                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1887                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
1888                 if (data != 0) {
1889                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1890                                     data);
1891                         return 1;
1892                 }
1893                 break;
1894         case MSR_FAM10H_MMIO_CONF_BASE:
1895                 if (data != 0) {
1896                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1897                                     "0x%llx\n", data);
1898                         return 1;
1899                 }
1900                 break;
1901         case MSR_AMD64_NB_CFG:
1902                 break;
1903         case MSR_IA32_DEBUGCTLMSR:
1904                 if (!data) {
1905                         /* We support the non-activated case already */
1906                         break;
1907                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1908                         /* Values other than LBR and BTF are vendor-specific,
1909                            thus reserved and should throw a #GP */
1910                         return 1;
1911                 }
1912                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1913                             __func__, data);
1914                 break;
1915         case MSR_IA32_UCODE_REV:
1916         case MSR_IA32_UCODE_WRITE:
1917         case MSR_VM_HSAVE_PA:
1918         case MSR_AMD64_PATCH_LOADER:
1919                 break;
1920         case 0x200 ... 0x2ff:
1921                 return set_msr_mtrr(vcpu, msr, data);
1922         case MSR_IA32_APICBASE:
1923                 kvm_set_apic_base(vcpu, data);
1924                 break;
1925         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1926                 return kvm_x2apic_msr_write(vcpu, msr, data);
1927         case MSR_IA32_TSCDEADLINE:
1928                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1929                 break;
1930         case MSR_IA32_TSC_ADJUST:
1931                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
1932                         if (!msr_info->host_initiated) {
1933                                 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1934                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
1935                         }
1936                         vcpu->arch.ia32_tsc_adjust_msr = data;
1937                 }
1938                 break;
1939         case MSR_IA32_MISC_ENABLE:
1940                 vcpu->arch.ia32_misc_enable_msr = data;
1941                 break;
1942         case MSR_KVM_WALL_CLOCK_NEW:
1943         case MSR_KVM_WALL_CLOCK:
1944                 vcpu->kvm->arch.wall_clock = data;
1945                 kvm_write_wall_clock(vcpu->kvm, data);
1946                 break;
1947         case MSR_KVM_SYSTEM_TIME_NEW:
1948         case MSR_KVM_SYSTEM_TIME: {
1949                 kvmclock_reset(vcpu);
1950
1951                 vcpu->arch.time = data;
1952                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1953
1954                 /* we verify if the enable bit is set... */
1955                 if (!(data & 1))
1956                         break;
1957
1958                 /* ...but clean it before doing the actual write */
1959                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1960
1961                 vcpu->arch.time_page =
1962                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1963
1964                 if (is_error_page(vcpu->arch.time_page))
1965                         vcpu->arch.time_page = NULL;
1966
1967                 break;
1968         }
1969         case MSR_KVM_ASYNC_PF_EN:
1970                 if (kvm_pv_enable_async_pf(vcpu, data))
1971                         return 1;
1972                 break;
1973         case MSR_KVM_STEAL_TIME:
1974
1975                 if (unlikely(!sched_info_on()))
1976                         return 1;
1977
1978                 if (data & KVM_STEAL_RESERVED_MASK)
1979                         return 1;
1980
1981                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1982                                                         data & KVM_STEAL_VALID_BITS))
1983                         return 1;
1984
1985                 vcpu->arch.st.msr_val = data;
1986
1987                 if (!(data & KVM_MSR_ENABLED))
1988                         break;
1989
1990                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1991
1992                 preempt_disable();
1993                 accumulate_steal_time(vcpu);
1994                 preempt_enable();
1995
1996                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1997
1998                 break;
1999         case MSR_KVM_PV_EOI_EN:
2000                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2001                         return 1;
2002                 break;
2003
2004         case MSR_IA32_MCG_CTL:
2005         case MSR_IA32_MCG_STATUS:
2006         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2007                 return set_msr_mce(vcpu, msr, data);
2008
2009         /* Performance counters are not protected by a CPUID bit,
2010          * so we should check all of them in the generic path for the sake of
2011          * cross vendor migration.
2012          * Writing a zero into the event select MSRs disables them,
2013          * which we perfectly emulate ;-). Any other value should be at least
2014          * reported, some guests depend on them.
2015          */
2016         case MSR_K7_EVNTSEL0:
2017         case MSR_K7_EVNTSEL1:
2018         case MSR_K7_EVNTSEL2:
2019         case MSR_K7_EVNTSEL3:
2020                 if (data != 0)
2021                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2022                                     "0x%x data 0x%llx\n", msr, data);
2023                 break;
2024         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2025          * so we ignore writes to make it happy.
2026          */
2027         case MSR_K7_PERFCTR0:
2028         case MSR_K7_PERFCTR1:
2029         case MSR_K7_PERFCTR2:
2030         case MSR_K7_PERFCTR3:
2031                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2032                             "0x%x data 0x%llx\n", msr, data);
2033                 break;
2034         case MSR_P6_PERFCTR0:
2035         case MSR_P6_PERFCTR1:
2036                 pr = true;
2037         case MSR_P6_EVNTSEL0:
2038         case MSR_P6_EVNTSEL1:
2039                 if (kvm_pmu_msr(vcpu, msr))
2040                         return kvm_pmu_set_msr(vcpu, msr, data);
2041
2042                 if (pr || data != 0)
2043                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2044                                     "0x%x data 0x%llx\n", msr, data);
2045                 break;
2046         case MSR_K7_CLK_CTL:
2047                 /*
2048                  * Ignore all writes to this no longer documented MSR.
2049                  * Writes are only relevant for old K7 processors,
2050                  * all pre-dating SVM, but a recommended workaround from
2051                  * AMD for these chips. It is possible to specify the
2052                  * affected processor models on the command line, hence
2053                  * the need to ignore the workaround.
2054                  */
2055                 break;
2056         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2057                 if (kvm_hv_msr_partition_wide(msr)) {
2058                         int r;
2059                         mutex_lock(&vcpu->kvm->lock);
2060                         r = set_msr_hyperv_pw(vcpu, msr, data);
2061                         mutex_unlock(&vcpu->kvm->lock);
2062                         return r;
2063                 } else
2064                         return set_msr_hyperv(vcpu, msr, data);
2065                 break;
2066         case MSR_IA32_BBL_CR_CTL3:
2067                 /* Drop writes to this legacy MSR -- see rdmsr
2068                  * counterpart for further detail.
2069                  */
2070                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2071                 break;
2072         case MSR_AMD64_OSVW_ID_LENGTH:
2073                 if (!guest_cpuid_has_osvw(vcpu))
2074                         return 1;
2075                 vcpu->arch.osvw.length = data;
2076                 break;
2077         case MSR_AMD64_OSVW_STATUS:
2078                 if (!guest_cpuid_has_osvw(vcpu))
2079                         return 1;
2080                 vcpu->arch.osvw.status = data;
2081                 break;
2082         default:
2083                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2084                         return xen_hvm_config(vcpu, data);
2085                 if (kvm_pmu_msr(vcpu, msr))
2086                         return kvm_pmu_set_msr(vcpu, msr, data);
2087                 if (!ignore_msrs) {
2088                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2089                                     msr, data);
2090                         return 1;
2091                 } else {
2092                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2093                                     msr, data);
2094                         break;
2095                 }
2096         }
2097         return 0;
2098 }
2099 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2100
2101
2102 /*
2103  * Reads an msr value (of 'msr_index') into 'pdata'.
2104  * Returns 0 on success, non-0 otherwise.
2105  * Assumes vcpu_load() was already called.
2106  */
2107 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2108 {
2109         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2110 }
2111
2112 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2113 {
2114         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2115
2116         if (!msr_mtrr_valid(msr))
2117                 return 1;
2118
2119         if (msr == MSR_MTRRdefType)
2120                 *pdata = vcpu->arch.mtrr_state.def_type +
2121                          (vcpu->arch.mtrr_state.enabled << 10);
2122         else if (msr == MSR_MTRRfix64K_00000)
2123                 *pdata = p[0];
2124         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2125                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2126         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2127                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2128         else if (msr == MSR_IA32_CR_PAT)
2129                 *pdata = vcpu->arch.pat;
2130         else {  /* Variable MTRRs */
2131                 int idx, is_mtrr_mask;
2132                 u64 *pt;
2133
2134                 idx = (msr - 0x200) / 2;
2135                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2136                 if (!is_mtrr_mask)
2137                         pt =
2138                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2139                 else
2140                         pt =
2141                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2142                 *pdata = *pt;
2143         }
2144
2145         return 0;
2146 }
2147
2148 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2149 {
2150         u64 data;
2151         u64 mcg_cap = vcpu->arch.mcg_cap;
2152         unsigned bank_num = mcg_cap & 0xff;
2153
2154         switch (msr) {
2155         case MSR_IA32_P5_MC_ADDR:
2156         case MSR_IA32_P5_MC_TYPE:
2157                 data = 0;
2158                 break;
2159         case MSR_IA32_MCG_CAP:
2160                 data = vcpu->arch.mcg_cap;
2161                 break;
2162         case MSR_IA32_MCG_CTL:
2163                 if (!(mcg_cap & MCG_CTL_P))
2164                         return 1;
2165                 data = vcpu->arch.mcg_ctl;
2166                 break;
2167         case MSR_IA32_MCG_STATUS:
2168                 data = vcpu->arch.mcg_status;
2169                 break;
2170         default:
2171                 if (msr >= MSR_IA32_MC0_CTL &&
2172                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2173                         u32 offset = msr - MSR_IA32_MC0_CTL;
2174                         data = vcpu->arch.mce_banks[offset];
2175                         break;
2176                 }
2177                 return 1;
2178         }
2179         *pdata = data;
2180         return 0;
2181 }
2182
2183 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2184 {
2185         u64 data = 0;
2186         struct kvm *kvm = vcpu->kvm;
2187
2188         switch (msr) {
2189         case HV_X64_MSR_GUEST_OS_ID:
2190                 data = kvm->arch.hv_guest_os_id;
2191                 break;
2192         case HV_X64_MSR_HYPERCALL:
2193                 data = kvm->arch.hv_hypercall;
2194                 break;
2195         default:
2196                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2197                 return 1;
2198         }
2199
2200         *pdata = data;
2201         return 0;
2202 }
2203
2204 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2205 {
2206         u64 data = 0;
2207
2208         switch (msr) {
2209         case HV_X64_MSR_VP_INDEX: {
2210                 int r;
2211                 struct kvm_vcpu *v;
2212                 kvm_for_each_vcpu(r, v, vcpu->kvm)
2213                         if (v == vcpu)
2214                                 data = r;
2215                 break;
2216         }
2217         case HV_X64_MSR_EOI:
2218                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2219         case HV_X64_MSR_ICR:
2220                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2221         case HV_X64_MSR_TPR:
2222                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2223         case HV_X64_MSR_APIC_ASSIST_PAGE:
2224                 data = vcpu->arch.hv_vapic;
2225                 break;
2226         default:
2227                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2228                 return 1;
2229         }
2230         *pdata = data;
2231         return 0;
2232 }
2233
2234 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2235 {
2236         u64 data;
2237
2238         switch (msr) {
2239         case MSR_IA32_PLATFORM_ID:
2240         case MSR_IA32_EBL_CR_POWERON:
2241         case MSR_IA32_DEBUGCTLMSR:
2242         case MSR_IA32_LASTBRANCHFROMIP:
2243         case MSR_IA32_LASTBRANCHTOIP:
2244         case MSR_IA32_LASTINTFROMIP:
2245         case MSR_IA32_LASTINTTOIP:
2246         case MSR_K8_SYSCFG:
2247         case MSR_K7_HWCR:
2248         case MSR_VM_HSAVE_PA:
2249         case MSR_K7_EVNTSEL0:
2250         case MSR_K7_PERFCTR0:
2251         case MSR_K8_INT_PENDING_MSG:
2252         case MSR_AMD64_NB_CFG:
2253         case MSR_FAM10H_MMIO_CONF_BASE:
2254                 data = 0;
2255                 break;
2256         case MSR_P6_PERFCTR0:
2257         case MSR_P6_PERFCTR1:
2258         case MSR_P6_EVNTSEL0:
2259         case MSR_P6_EVNTSEL1:
2260                 if (kvm_pmu_msr(vcpu, msr))
2261                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2262                 data = 0;
2263                 break;
2264         case MSR_IA32_UCODE_REV:
2265                 data = 0x100000000ULL;
2266                 break;
2267         case MSR_MTRRcap:
2268                 data = 0x500 | KVM_NR_VAR_MTRR;
2269                 break;
2270         case 0x200 ... 0x2ff:
2271                 return get_msr_mtrr(vcpu, msr, pdata);
2272         case 0xcd: /* fsb frequency */
2273                 data = 3;
2274                 break;
2275                 /*
2276                  * MSR_EBC_FREQUENCY_ID
2277                  * Conservative value valid for even the basic CPU models.
2278                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2279                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2280                  * and 266MHz for model 3, or 4. Set Core Clock
2281                  * Frequency to System Bus Frequency Ratio to 1 (bits
2282                  * 31:24) even though these are only valid for CPU
2283                  * models > 2, however guests may end up dividing or
2284                  * multiplying by zero otherwise.
2285                  */
2286         case MSR_EBC_FREQUENCY_ID:
2287                 data = 1 << 24;
2288                 break;
2289         case MSR_IA32_APICBASE:
2290                 data = kvm_get_apic_base(vcpu);
2291                 break;
2292         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2293                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2294                 break;
2295         case MSR_IA32_TSCDEADLINE:
2296                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2297                 break;
2298         case MSR_IA32_TSC_ADJUST:
2299                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2300                 break;
2301         case MSR_IA32_MISC_ENABLE:
2302                 data = vcpu->arch.ia32_misc_enable_msr;
2303                 break;
2304         case MSR_IA32_PERF_STATUS:
2305                 /* TSC increment by tick */
2306                 data = 1000ULL;
2307                 /* CPU multiplier */
2308                 data |= (((uint64_t)4ULL) << 40);
2309                 break;
2310         case MSR_EFER:
2311                 data = vcpu->arch.efer;
2312                 break;
2313         case MSR_KVM_WALL_CLOCK:
2314         case MSR_KVM_WALL_CLOCK_NEW:
2315                 data = vcpu->kvm->arch.wall_clock;
2316                 break;
2317         case MSR_KVM_SYSTEM_TIME:
2318         case MSR_KVM_SYSTEM_TIME_NEW:
2319                 data = vcpu->arch.time;
2320                 break;
2321         case MSR_KVM_ASYNC_PF_EN:
2322                 data = vcpu->arch.apf.msr_val;
2323                 break;
2324         case MSR_KVM_STEAL_TIME:
2325                 data = vcpu->arch.st.msr_val;
2326                 break;
2327         case MSR_KVM_PV_EOI_EN:
2328                 data = vcpu->arch.pv_eoi.msr_val;
2329                 break;
2330         case MSR_IA32_P5_MC_ADDR:
2331         case MSR_IA32_P5_MC_TYPE:
2332         case MSR_IA32_MCG_CAP:
2333         case MSR_IA32_MCG_CTL:
2334         case MSR_IA32_MCG_STATUS:
2335         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2336                 return get_msr_mce(vcpu, msr, pdata);
2337         case MSR_K7_CLK_CTL:
2338                 /*
2339                  * Provide expected ramp-up count for K7. All other
2340                  * are set to zero, indicating minimum divisors for
2341                  * every field.
2342                  *
2343                  * This prevents guest kernels on AMD host with CPU
2344                  * type 6, model 8 and higher from exploding due to
2345                  * the rdmsr failing.
2346                  */
2347                 data = 0x20000000;
2348                 break;
2349         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2350                 if (kvm_hv_msr_partition_wide(msr)) {
2351                         int r;
2352                         mutex_lock(&vcpu->kvm->lock);
2353                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2354                         mutex_unlock(&vcpu->kvm->lock);
2355                         return r;
2356                 } else
2357                         return get_msr_hyperv(vcpu, msr, pdata);
2358                 break;
2359         case MSR_IA32_BBL_CR_CTL3:
2360                 /* This legacy MSR exists but isn't fully documented in current
2361                  * silicon.  It is however accessed by winxp in very narrow
2362                  * scenarios where it sets bit #19, itself documented as
2363                  * a "reserved" bit.  Best effort attempt to source coherent
2364                  * read data here should the balance of the register be
2365                  * interpreted by the guest:
2366                  *
2367                  * L2 cache control register 3: 64GB range, 256KB size,
2368                  * enabled, latency 0x1, configured
2369                  */
2370                 data = 0xbe702111;
2371                 break;
2372         case MSR_AMD64_OSVW_ID_LENGTH:
2373                 if (!guest_cpuid_has_osvw(vcpu))
2374                         return 1;
2375                 data = vcpu->arch.osvw.length;
2376                 break;
2377         case MSR_AMD64_OSVW_STATUS:
2378                 if (!guest_cpuid_has_osvw(vcpu))
2379                         return 1;
2380                 data = vcpu->arch.osvw.status;
2381                 break;
2382         default:
2383                 if (kvm_pmu_msr(vcpu, msr))
2384                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2385                 if (!ignore_msrs) {
2386                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2387                         return 1;
2388                 } else {
2389                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2390                         data = 0;
2391                 }
2392                 break;
2393         }
2394         *pdata = data;
2395         return 0;
2396 }
2397 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2398
2399 /*
2400  * Read or write a bunch of msrs. All parameters are kernel addresses.
2401  *
2402  * @return number of msrs set successfully.
2403  */
2404 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2405                     struct kvm_msr_entry *entries,
2406                     int (*do_msr)(struct kvm_vcpu *vcpu,
2407                                   unsigned index, u64 *data))
2408 {
2409         int i, idx;
2410
2411         idx = srcu_read_lock(&vcpu->kvm->srcu);
2412         for (i = 0; i < msrs->nmsrs; ++i)
2413                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2414                         break;
2415         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2416
2417         return i;
2418 }
2419
2420 /*
2421  * Read or write a bunch of msrs. Parameters are user addresses.
2422  *
2423  * @return number of msrs set successfully.
2424  */
2425 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2426                   int (*do_msr)(struct kvm_vcpu *vcpu,
2427                                 unsigned index, u64 *data),
2428                   int writeback)
2429 {
2430         struct kvm_msrs msrs;
2431         struct kvm_msr_entry *entries;
2432         int r, n;
2433         unsigned size;
2434
2435         r = -EFAULT;
2436         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2437                 goto out;
2438
2439         r = -E2BIG;
2440         if (msrs.nmsrs >= MAX_IO_MSRS)
2441                 goto out;
2442
2443         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2444         entries = memdup_user(user_msrs->entries, size);
2445         if (IS_ERR(entries)) {
2446                 r = PTR_ERR(entries);
2447                 goto out;
2448         }
2449
2450         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2451         if (r < 0)
2452                 goto out_free;
2453
2454         r = -EFAULT;
2455         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2456                 goto out_free;
2457
2458         r = n;
2459
2460 out_free:
2461         kfree(entries);
2462 out:
2463         return r;
2464 }
2465
2466 int kvm_dev_ioctl_check_extension(long ext)
2467 {
2468         int r;
2469
2470         switch (ext) {
2471         case KVM_CAP_IRQCHIP:
2472         case KVM_CAP_HLT:
2473         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2474         case KVM_CAP_SET_TSS_ADDR:
2475         case KVM_CAP_EXT_CPUID:
2476         case KVM_CAP_CLOCKSOURCE:
2477         case KVM_CAP_PIT:
2478         case KVM_CAP_NOP_IO_DELAY:
2479         case KVM_CAP_MP_STATE:
2480         case KVM_CAP_SYNC_MMU:
2481         case KVM_CAP_USER_NMI:
2482         case KVM_CAP_REINJECT_CONTROL:
2483         case KVM_CAP_IRQ_INJECT_STATUS:
2484         case KVM_CAP_ASSIGN_DEV_IRQ:
2485         case KVM_CAP_IRQFD:
2486         case KVM_CAP_IOEVENTFD:
2487         case KVM_CAP_PIT2:
2488         case KVM_CAP_PIT_STATE2:
2489         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2490         case KVM_CAP_XEN_HVM:
2491         case KVM_CAP_ADJUST_CLOCK:
2492         case KVM_CAP_VCPU_EVENTS:
2493         case KVM_CAP_HYPERV:
2494         case KVM_CAP_HYPERV_VAPIC:
2495         case KVM_CAP_HYPERV_SPIN:
2496         case KVM_CAP_PCI_SEGMENT:
2497         case KVM_CAP_DEBUGREGS:
2498         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2499         case KVM_CAP_XSAVE:
2500         case KVM_CAP_ASYNC_PF:
2501         case KVM_CAP_GET_TSC_KHZ:
2502         case KVM_CAP_PCI_2_3:
2503         case KVM_CAP_KVMCLOCK_CTRL:
2504         case KVM_CAP_READONLY_MEM:
2505         case KVM_CAP_IRQFD_RESAMPLE:
2506                 r = 1;
2507                 break;
2508         case KVM_CAP_COALESCED_MMIO:
2509                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2510                 break;
2511         case KVM_CAP_VAPIC:
2512                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2513                 break;
2514         case KVM_CAP_NR_VCPUS:
2515                 r = KVM_SOFT_MAX_VCPUS;
2516                 break;
2517         case KVM_CAP_MAX_VCPUS:
2518                 r = KVM_MAX_VCPUS;
2519                 break;
2520         case KVM_CAP_NR_MEMSLOTS:
2521                 r = KVM_MEMORY_SLOTS;
2522                 break;
2523         case KVM_CAP_PV_MMU:    /* obsolete */
2524                 r = 0;
2525                 break;
2526         case KVM_CAP_IOMMU:
2527                 r = iommu_present(&pci_bus_type);
2528                 break;
2529         case KVM_CAP_MCE:
2530                 r = KVM_MAX_MCE_BANKS;
2531                 break;
2532         case KVM_CAP_XCRS:
2533                 r = cpu_has_xsave;
2534                 break;
2535         case KVM_CAP_TSC_CONTROL:
2536                 r = kvm_has_tsc_control;
2537                 break;
2538         case KVM_CAP_TSC_DEADLINE_TIMER:
2539                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2540                 break;
2541         default:
2542                 r = 0;
2543                 break;
2544         }
2545         return r;
2546
2547 }
2548
2549 long kvm_arch_dev_ioctl(struct file *filp,
2550                         unsigned int ioctl, unsigned long arg)
2551 {
2552         void __user *argp = (void __user *)arg;
2553         long r;
2554
2555         switch (ioctl) {
2556         case KVM_GET_MSR_INDEX_LIST: {
2557                 struct kvm_msr_list __user *user_msr_list = argp;
2558                 struct kvm_msr_list msr_list;
2559                 unsigned n;
2560
2561                 r = -EFAULT;
2562                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2563                         goto out;
2564                 n = msr_list.nmsrs;
2565                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2566                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2567                         goto out;
2568                 r = -E2BIG;
2569                 if (n < msr_list.nmsrs)
2570                         goto out;
2571                 r = -EFAULT;
2572                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2573                                  num_msrs_to_save * sizeof(u32)))
2574                         goto out;
2575                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2576                                  &emulated_msrs,
2577                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2578                         goto out;
2579                 r = 0;
2580                 break;
2581         }
2582         case KVM_GET_SUPPORTED_CPUID: {
2583                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2584                 struct kvm_cpuid2 cpuid;
2585
2586                 r = -EFAULT;
2587                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2588                         goto out;
2589                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2590                                                       cpuid_arg->entries);
2591                 if (r)
2592                         goto out;
2593
2594                 r = -EFAULT;
2595                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2596                         goto out;
2597                 r = 0;
2598                 break;
2599         }
2600         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2601                 u64 mce_cap;
2602
2603                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2604                 r = -EFAULT;
2605                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2606                         goto out;
2607                 r = 0;
2608                 break;
2609         }
2610         default:
2611                 r = -EINVAL;
2612         }
2613 out:
2614         return r;
2615 }
2616
2617 static void wbinvd_ipi(void *garbage)
2618 {
2619         wbinvd();
2620 }
2621
2622 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2623 {
2624         return vcpu->kvm->arch.iommu_domain &&
2625                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2626 }
2627
2628 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2629 {
2630         /* Address WBINVD may be executed by guest */
2631         if (need_emulate_wbinvd(vcpu)) {
2632                 if (kvm_x86_ops->has_wbinvd_exit())
2633                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2634                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2635                         smp_call_function_single(vcpu->cpu,
2636                                         wbinvd_ipi, NULL, 1);
2637         }
2638
2639         kvm_x86_ops->vcpu_load(vcpu, cpu);
2640
2641         /* Apply any externally detected TSC adjustments (due to suspend) */
2642         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2643                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2644                 vcpu->arch.tsc_offset_adjustment = 0;
2645                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2646         }
2647
2648         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2649                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2650                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2651                 if (tsc_delta < 0)
2652                         mark_tsc_unstable("KVM discovered backwards TSC");
2653                 if (check_tsc_unstable()) {
2654                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2655                                                 vcpu->arch.last_guest_tsc);
2656                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2657                         vcpu->arch.tsc_catchup = 1;
2658                 }
2659                 /*
2660                  * On a host with synchronized TSC, there is no need to update
2661                  * kvmclock on vcpu->cpu migration
2662                  */
2663                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2664                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2665                 if (vcpu->cpu != cpu)
2666                         kvm_migrate_timers(vcpu);
2667                 vcpu->cpu = cpu;
2668         }
2669
2670         accumulate_steal_time(vcpu);
2671         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2672 }
2673
2674 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2675 {
2676         kvm_x86_ops->vcpu_put(vcpu);
2677         kvm_put_guest_fpu(vcpu);
2678         vcpu->arch.last_host_tsc = native_read_tsc();
2679 }
2680
2681 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2682                                     struct kvm_lapic_state *s)
2683 {
2684         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2685
2686         return 0;
2687 }
2688
2689 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2690                                     struct kvm_lapic_state *s)
2691 {
2692         kvm_apic_post_state_restore(vcpu, s);
2693         update_cr8_intercept(vcpu);
2694
2695         return 0;
2696 }
2697
2698 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2699                                     struct kvm_interrupt *irq)
2700 {
2701         if (irq->irq < 0 || irq->irq >= KVM_NR_INTERRUPTS)
2702                 return -EINVAL;
2703         if (irqchip_in_kernel(vcpu->kvm))
2704                 return -ENXIO;
2705
2706         kvm_queue_interrupt(vcpu, irq->irq, false);
2707         kvm_make_request(KVM_REQ_EVENT, vcpu);
2708
2709         return 0;
2710 }
2711
2712 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2713 {
2714         kvm_inject_nmi(vcpu);
2715
2716         return 0;
2717 }
2718
2719 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2720                                            struct kvm_tpr_access_ctl *tac)
2721 {
2722         if (tac->flags)
2723                 return -EINVAL;
2724         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2725         return 0;
2726 }
2727
2728 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2729                                         u64 mcg_cap)
2730 {
2731         int r;
2732         unsigned bank_num = mcg_cap & 0xff, bank;
2733
2734         r = -EINVAL;
2735         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2736                 goto out;
2737         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2738                 goto out;
2739         r = 0;
2740         vcpu->arch.mcg_cap = mcg_cap;
2741         /* Init IA32_MCG_CTL to all 1s */
2742         if (mcg_cap & MCG_CTL_P)
2743                 vcpu->arch.mcg_ctl = ~(u64)0;
2744         /* Init IA32_MCi_CTL to all 1s */
2745         for (bank = 0; bank < bank_num; bank++)
2746                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2747 out:
2748         return r;
2749 }
2750
2751 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2752                                       struct kvm_x86_mce *mce)
2753 {
2754         u64 mcg_cap = vcpu->arch.mcg_cap;
2755         unsigned bank_num = mcg_cap & 0xff;
2756         u64 *banks = vcpu->arch.mce_banks;
2757
2758         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2759                 return -EINVAL;
2760         /*
2761          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2762          * reporting is disabled
2763          */
2764         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2765             vcpu->arch.mcg_ctl != ~(u64)0)
2766                 return 0;
2767         banks += 4 * mce->bank;
2768         /*
2769          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2770          * reporting is disabled for the bank
2771          */
2772         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2773                 return 0;
2774         if (mce->status & MCI_STATUS_UC) {
2775                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2776                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2777                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2778                         return 0;
2779                 }
2780                 if (banks[1] & MCI_STATUS_VAL)
2781                         mce->status |= MCI_STATUS_OVER;
2782                 banks[2] = mce->addr;
2783                 banks[3] = mce->misc;
2784                 vcpu->arch.mcg_status = mce->mcg_status;
2785                 banks[1] = mce->status;
2786                 kvm_queue_exception(vcpu, MC_VECTOR);
2787         } else if (!(banks[1] & MCI_STATUS_VAL)
2788                    || !(banks[1] & MCI_STATUS_UC)) {
2789                 if (banks[1] & MCI_STATUS_VAL)
2790                         mce->status |= MCI_STATUS_OVER;
2791                 banks[2] = mce->addr;
2792                 banks[3] = mce->misc;
2793                 banks[1] = mce->status;
2794         } else
2795                 banks[1] |= MCI_STATUS_OVER;
2796         return 0;
2797 }
2798
2799 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2800                                                struct kvm_vcpu_events *events)
2801 {
2802         process_nmi(vcpu);
2803         events->exception.injected =
2804                 vcpu->arch.exception.pending &&
2805                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2806         events->exception.nr = vcpu->arch.exception.nr;
2807         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2808         events->exception.pad = 0;
2809         events->exception.error_code = vcpu->arch.exception.error_code;
2810
2811         events->interrupt.injected =
2812                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2813         events->interrupt.nr = vcpu->arch.interrupt.nr;
2814         events->interrupt.soft = 0;
2815         events->interrupt.shadow =
2816                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2817                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2818
2819         events->nmi.injected = vcpu->arch.nmi_injected;
2820         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2821         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2822         events->nmi.pad = 0;
2823
2824         events->sipi_vector = vcpu->arch.sipi_vector;
2825
2826         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2827                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2828                          | KVM_VCPUEVENT_VALID_SHADOW);
2829         memset(&events->reserved, 0, sizeof(events->reserved));
2830 }
2831
2832 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2833                                               struct kvm_vcpu_events *events)
2834 {
2835         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2836                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2837                               | KVM_VCPUEVENT_VALID_SHADOW))
2838                 return -EINVAL;
2839
2840         process_nmi(vcpu);
2841         vcpu->arch.exception.pending = events->exception.injected;
2842         vcpu->arch.exception.nr = events->exception.nr;
2843         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2844         vcpu->arch.exception.error_code = events->exception.error_code;
2845
2846         vcpu->arch.interrupt.pending = events->interrupt.injected;
2847         vcpu->arch.interrupt.nr = events->interrupt.nr;
2848         vcpu->arch.interrupt.soft = events->interrupt.soft;
2849         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2850                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2851                                                   events->interrupt.shadow);
2852
2853         vcpu->arch.nmi_injected = events->nmi.injected;
2854         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2855                 vcpu->arch.nmi_pending = events->nmi.pending;
2856         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2857
2858         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2859                 vcpu->arch.sipi_vector = events->sipi_vector;
2860
2861         kvm_make_request(KVM_REQ_EVENT, vcpu);
2862
2863         return 0;
2864 }
2865
2866 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2867                                              struct kvm_debugregs *dbgregs)
2868 {
2869         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2870         dbgregs->dr6 = vcpu->arch.dr6;
2871         dbgregs->dr7 = vcpu->arch.dr7;
2872         dbgregs->flags = 0;
2873         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2874 }
2875
2876 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2877                                             struct kvm_debugregs *dbgregs)
2878 {
2879         if (dbgregs->flags)
2880                 return -EINVAL;
2881
2882         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2883         vcpu->arch.dr6 = dbgregs->dr6;
2884         vcpu->arch.dr7 = dbgregs->dr7;
2885
2886         return 0;
2887 }
2888
2889 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2890                                          struct kvm_xsave *guest_xsave)
2891 {
2892         if (cpu_has_xsave)
2893                 memcpy(guest_xsave->region,
2894                         &vcpu->arch.guest_fpu.state->xsave,
2895                         xstate_size);
2896         else {
2897                 memcpy(guest_xsave->region,
2898                         &vcpu->arch.guest_fpu.state->fxsave,
2899                         sizeof(struct i387_fxsave_struct));
2900                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2901                         XSTATE_FPSSE;
2902         }
2903 }
2904
2905 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2906                                         struct kvm_xsave *guest_xsave)
2907 {
2908         u64 xstate_bv =
2909                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2910
2911         if (cpu_has_xsave)
2912                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2913                         guest_xsave->region, xstate_size);
2914         else {
2915                 if (xstate_bv & ~XSTATE_FPSSE)
2916                         return -EINVAL;
2917                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2918                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2919         }
2920         return 0;
2921 }
2922
2923 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2924                                         struct kvm_xcrs *guest_xcrs)
2925 {
2926         if (!cpu_has_xsave) {
2927                 guest_xcrs->nr_xcrs = 0;
2928                 return;
2929         }
2930
2931         guest_xcrs->nr_xcrs = 1;
2932         guest_xcrs->flags = 0;
2933         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2934         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2935 }
2936
2937 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2938                                        struct kvm_xcrs *guest_xcrs)
2939 {
2940         int i, r = 0;
2941
2942         if (!cpu_has_xsave)
2943                 return -EINVAL;
2944
2945         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2946                 return -EINVAL;
2947
2948         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2949                 /* Only support XCR0 currently */
2950                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2951                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2952                                 guest_xcrs->xcrs[0].value);
2953                         break;
2954                 }
2955         if (r)
2956                 r = -EINVAL;
2957         return r;
2958 }
2959
2960 /*
2961  * kvm_set_guest_paused() indicates to the guest kernel that it has been
2962  * stopped by the hypervisor.  This function will be called from the host only.
2963  * EINVAL is returned when the host attempts to set the flag for a guest that
2964  * does not support pv clocks.
2965  */
2966 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
2967 {
2968         if (!vcpu->arch.time_page)
2969                 return -EINVAL;
2970         vcpu->arch.pvclock_set_guest_stopped_request = true;
2971         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2972         return 0;
2973 }
2974
2975 long kvm_arch_vcpu_ioctl(struct file *filp,
2976                          unsigned int ioctl, unsigned long arg)
2977 {
2978         struct kvm_vcpu *vcpu = filp->private_data;
2979         void __user *argp = (void __user *)arg;
2980         int r;
2981         union {
2982                 struct kvm_lapic_state *lapic;
2983                 struct kvm_xsave *xsave;
2984                 struct kvm_xcrs *xcrs;
2985                 void *buffer;
2986         } u;
2987
2988         u.buffer = NULL;
2989         switch (ioctl) {
2990         case KVM_GET_LAPIC: {
2991                 r = -EINVAL;
2992                 if (!vcpu->arch.apic)
2993                         goto out;
2994                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2995
2996                 r = -ENOMEM;
2997                 if (!u.lapic)
2998                         goto out;
2999                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3000                 if (r)
3001                         goto out;
3002                 r = -EFAULT;
3003                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3004                         goto out;
3005                 r = 0;
3006                 break;
3007         }
3008         case KVM_SET_LAPIC: {
3009                 r = -EINVAL;
3010                 if (!vcpu->arch.apic)
3011                         goto out;
3012                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3013                 if (IS_ERR(u.lapic))
3014                         return PTR_ERR(u.lapic);
3015
3016                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3017                 break;
3018         }
3019         case KVM_INTERRUPT: {
3020                 struct kvm_interrupt irq;
3021
3022                 r = -EFAULT;
3023                 if (copy_from_user(&irq, argp, sizeof irq))
3024                         goto out;
3025                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3026                 break;
3027         }
3028         case KVM_NMI: {
3029                 r = kvm_vcpu_ioctl_nmi(vcpu);
3030                 break;
3031         }
3032         case KVM_SET_CPUID: {
3033                 struct kvm_cpuid __user *cpuid_arg = argp;
3034                 struct kvm_cpuid cpuid;
3035
3036                 r = -EFAULT;
3037                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3038                         goto out;
3039                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3040                 break;
3041         }
3042         case KVM_SET_CPUID2: {
3043                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3044                 struct kvm_cpuid2 cpuid;
3045
3046                 r = -EFAULT;
3047                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3048                         goto out;
3049                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3050                                               cpuid_arg->entries);
3051                 break;
3052         }
3053         case KVM_GET_CPUID2: {
3054                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3055                 struct kvm_cpuid2 cpuid;
3056
3057                 r = -EFAULT;
3058                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3059                         goto out;
3060                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3061                                               cpuid_arg->entries);
3062                 if (r)
3063                         goto out;
3064                 r = -EFAULT;
3065                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3066                         goto out;
3067                 r = 0;
3068                 break;
3069         }
3070         case KVM_GET_MSRS:
3071                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3072                 break;
3073         case KVM_SET_MSRS:
3074                 r = msr_io(vcpu, argp, do_set_msr, 0);
3075                 break;
3076         case KVM_TPR_ACCESS_REPORTING: {
3077                 struct kvm_tpr_access_ctl tac;
3078
3079                 r = -EFAULT;
3080                 if (copy_from_user(&tac, argp, sizeof tac))
3081                         goto out;
3082                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3083                 if (r)
3084                         goto out;
3085                 r = -EFAULT;
3086                 if (copy_to_user(argp, &tac, sizeof tac))
3087                         goto out;
3088                 r = 0;
3089                 break;
3090         };
3091         case KVM_SET_VAPIC_ADDR: {
3092                 struct kvm_vapic_addr va;
3093
3094                 r = -EINVAL;
3095                 if (!irqchip_in_kernel(vcpu->kvm))
3096                         goto out;
3097                 r = -EFAULT;
3098                 if (copy_from_user(&va, argp, sizeof va))
3099                         goto out;
3100                 r = 0;
3101                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3102                 break;
3103         }
3104         case KVM_X86_SETUP_MCE: {
3105                 u64 mcg_cap;
3106
3107                 r = -EFAULT;
3108                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3109                         goto out;
3110                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3111                 break;
3112         }
3113         case KVM_X86_SET_MCE: {
3114                 struct kvm_x86_mce mce;
3115
3116                 r = -EFAULT;
3117                 if (copy_from_user(&mce, argp, sizeof mce))
3118                         goto out;
3119                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3120                 break;
3121         }
3122         case KVM_GET_VCPU_EVENTS: {
3123                 struct kvm_vcpu_events events;
3124
3125                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3126
3127                 r = -EFAULT;
3128                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3129                         break;
3130                 r = 0;
3131                 break;
3132         }
3133         case KVM_SET_VCPU_EVENTS: {
3134                 struct kvm_vcpu_events events;
3135
3136                 r = -EFAULT;
3137                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3138                         break;
3139
3140                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3141                 break;
3142         }
3143         case KVM_GET_DEBUGREGS: {
3144                 struct kvm_debugregs dbgregs;
3145
3146                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3147
3148                 r = -EFAULT;
3149                 if (copy_to_user(argp, &dbgregs,
3150                                  sizeof(struct kvm_debugregs)))
3151                         break;
3152                 r = 0;
3153                 break;
3154         }
3155         case KVM_SET_DEBUGREGS: {
3156                 struct kvm_debugregs dbgregs;
3157
3158                 r = -EFAULT;
3159                 if (copy_from_user(&dbgregs, argp,
3160                                    sizeof(struct kvm_debugregs)))
3161                         break;
3162
3163                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3164                 break;
3165         }
3166         case KVM_GET_XSAVE: {
3167                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3168                 r = -ENOMEM;
3169                 if (!u.xsave)
3170                         break;
3171
3172                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3173
3174                 r = -EFAULT;
3175                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3176                         break;
3177                 r = 0;
3178                 break;
3179         }
3180         case KVM_SET_XSAVE: {
3181                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3182                 if (IS_ERR(u.xsave))
3183                         return PTR_ERR(u.xsave);
3184
3185                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3186                 break;
3187         }
3188         case KVM_GET_XCRS: {
3189                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3190                 r = -ENOMEM;
3191                 if (!u.xcrs)
3192                         break;
3193
3194                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3195
3196                 r = -EFAULT;
3197                 if (copy_to_user(argp, u.xcrs,
3198                                  sizeof(struct kvm_xcrs)))
3199                         break;
3200                 r = 0;
3201                 break;
3202         }
3203         case KVM_SET_XCRS: {
3204                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3205                 if (IS_ERR(u.xcrs))
3206                         return PTR_ERR(u.xcrs);
3207
3208                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3209                 break;
3210         }
3211         case KVM_SET_TSC_KHZ: {
3212                 u32 user_tsc_khz;
3213
3214                 r = -EINVAL;
3215                 user_tsc_khz = (u32)arg;
3216
3217                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3218                         goto out;
3219
3220                 if (user_tsc_khz == 0)
3221                         user_tsc_khz = tsc_khz;
3222
3223                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3224
3225                 r = 0;
3226                 goto out;
3227         }
3228         case KVM_GET_TSC_KHZ: {
3229                 r = vcpu->arch.virtual_tsc_khz;
3230                 goto out;
3231         }
3232         case KVM_KVMCLOCK_CTRL: {
3233                 r = kvm_set_guest_paused(vcpu);
3234                 goto out;
3235         }
3236         default:
3237                 r = -EINVAL;
3238         }
3239 out:
3240         kfree(u.buffer);
3241         return r;
3242 }
3243
3244 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3245 {
3246         return VM_FAULT_SIGBUS;
3247 }
3248
3249 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3250 {
3251         int ret;
3252
3253         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3254                 return -EINVAL;
3255         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3256         return ret;
3257 }
3258
3259 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3260                                               u64 ident_addr)
3261 {
3262         kvm->arch.ept_identity_map_addr = ident_addr;
3263         return 0;
3264 }
3265
3266 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3267                                           u32 kvm_nr_mmu_pages)
3268 {
3269         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3270                 return -EINVAL;
3271
3272         mutex_lock(&kvm->slots_lock);
3273         spin_lock(&kvm->mmu_lock);
3274
3275         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3276         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3277
3278         spin_unlock(&kvm->mmu_lock);
3279         mutex_unlock(&kvm->slots_lock);
3280         return 0;
3281 }
3282
3283 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3284 {
3285         return kvm->arch.n_max_mmu_pages;
3286 }
3287
3288 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3289 {
3290         int r;
3291
3292         r = 0;
3293         switch (chip->chip_id) {
3294         case KVM_IRQCHIP_PIC_MASTER:
3295                 memcpy(&chip->chip.pic,
3296                         &pic_irqchip(kvm)->pics[0],
3297                         sizeof(struct kvm_pic_state));
3298                 break;
3299         case KVM_IRQCHIP_PIC_SLAVE:
3300                 memcpy(&chip->chip.pic,
3301                         &pic_irqchip(kvm)->pics[1],
3302                         sizeof(struct kvm_pic_state));
3303                 break;
3304         case KVM_IRQCHIP_IOAPIC:
3305                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3306                 break;
3307         default:
3308                 r = -EINVAL;
3309                 break;
3310         }
3311         return r;
3312 }
3313
3314 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3315 {
3316         int r;
3317
3318         r = 0;
3319         switch (chip->chip_id) {
3320         case KVM_IRQCHIP_PIC_MASTER:
3321                 spin_lock(&pic_irqchip(kvm)->lock);
3322                 memcpy(&pic_irqchip(kvm)->pics[0],
3323                         &chip->chip.pic,
3324                         sizeof(struct kvm_pic_state));
3325                 spin_unlock(&pic_irqchip(kvm)->lock);
3326                 break;
3327         case KVM_IRQCHIP_PIC_SLAVE:
3328                 spin_lock(&pic_irqchip(kvm)->lock);
3329                 memcpy(&pic_irqchip(kvm)->pics[1],
3330                         &chip->chip.pic,
3331                         sizeof(struct kvm_pic_state));
3332                 spin_unlock(&pic_irqchip(kvm)->lock);
3333                 break;
3334         case KVM_IRQCHIP_IOAPIC:
3335                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3336                 break;
3337         default:
3338                 r = -EINVAL;
3339                 break;
3340         }
3341         kvm_pic_update_irq(pic_irqchip(kvm));
3342         return r;
3343 }
3344
3345 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3346 {
3347         int r = 0;
3348
3349         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3350         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3351         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3352         return r;
3353 }
3354
3355 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3356 {
3357         int r = 0;
3358
3359         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3360         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3361         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3362         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3363         return r;
3364 }
3365
3366 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3367 {
3368         int r = 0;
3369
3370         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3371         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3372                 sizeof(ps->channels));
3373         ps->flags = kvm->arch.vpit->pit_state.flags;
3374         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3375         memset(&ps->reserved, 0, sizeof(ps->reserved));
3376         return r;
3377 }
3378
3379 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3380 {
3381         int r = 0, start = 0;
3382         u32 prev_legacy, cur_legacy;
3383         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3384         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3385         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3386         if (!prev_legacy && cur_legacy)
3387                 start = 1;
3388         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3389                sizeof(kvm->arch.vpit->pit_state.channels));
3390         kvm->arch.vpit->pit_state.flags = ps->flags;
3391         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3392         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3393         return r;
3394 }
3395
3396 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3397                                  struct kvm_reinject_control *control)
3398 {
3399         if (!kvm->arch.vpit)
3400                 return -ENXIO;
3401         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3402         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3403         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3404         return 0;
3405 }
3406
3407 /**
3408  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3409  * @kvm: kvm instance
3410  * @log: slot id and address to which we copy the log
3411  *
3412  * We need to keep it in mind that VCPU threads can write to the bitmap
3413  * concurrently.  So, to avoid losing data, we keep the following order for
3414  * each bit:
3415  *
3416  *   1. Take a snapshot of the bit and clear it if needed.
3417  *   2. Write protect the corresponding page.
3418  *   3. Flush TLB's if needed.
3419  *   4. Copy the snapshot to the userspace.
3420  *
3421  * Between 2 and 3, the guest may write to the page using the remaining TLB
3422  * entry.  This is not a problem because the page will be reported dirty at
3423  * step 4 using the snapshot taken before and step 3 ensures that successive
3424  * writes will be logged for the next call.
3425  */
3426 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3427 {
3428         int r;
3429         struct kvm_memory_slot *memslot;
3430         unsigned long n, i;
3431         unsigned long *dirty_bitmap;
3432         unsigned long *dirty_bitmap_buffer;
3433         bool is_dirty = false;
3434
3435         mutex_lock(&kvm->slots_lock);
3436
3437         r = -EINVAL;
3438         if (log->slot >= KVM_MEMORY_SLOTS)
3439                 goto out;
3440
3441         memslot = id_to_memslot(kvm->memslots, log->slot);
3442
3443         dirty_bitmap = memslot->dirty_bitmap;
3444         r = -ENOENT;
3445         if (!dirty_bitmap)
3446                 goto out;
3447
3448         n = kvm_dirty_bitmap_bytes(memslot);
3449
3450         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3451         memset(dirty_bitmap_buffer, 0, n);
3452
3453         spin_lock(&kvm->mmu_lock);
3454
3455         for (i = 0; i < n / sizeof(long); i++) {
3456                 unsigned long mask;
3457                 gfn_t offset;
3458
3459                 if (!dirty_bitmap[i])
3460                         continue;
3461
3462                 is_dirty = true;
3463
3464                 mask = xchg(&dirty_bitmap[i], 0);
3465                 dirty_bitmap_buffer[i] = mask;
3466
3467                 offset = i * BITS_PER_LONG;
3468                 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3469         }
3470         if (is_dirty)
3471                 kvm_flush_remote_tlbs(kvm);
3472
3473         spin_unlock(&kvm->mmu_lock);
3474
3475         r = -EFAULT;
3476         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3477                 goto out;
3478
3479         r = 0;
3480 out:
3481         mutex_unlock(&kvm->slots_lock);
3482         return r;
3483 }
3484
3485 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event)
3486 {
3487         if (!irqchip_in_kernel(kvm))
3488                 return -ENXIO;
3489
3490         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3491                                         irq_event->irq, irq_event->level);
3492         return 0;
3493 }
3494
3495 long kvm_arch_vm_ioctl(struct file *filp,
3496                        unsigned int ioctl, unsigned long arg)
3497 {
3498         struct kvm *kvm = filp->private_data;
3499         void __user *argp = (void __user *)arg;
3500         int r = -ENOTTY;
3501         /*
3502          * This union makes it completely explicit to gcc-3.x
3503          * that these two variables' stack usage should be
3504          * combined, not added together.
3505          */
3506         union {
3507                 struct kvm_pit_state ps;
3508                 struct kvm_pit_state2 ps2;
3509                 struct kvm_pit_config pit_config;
3510         } u;
3511
3512         switch (ioctl) {
3513         case KVM_SET_TSS_ADDR:
3514                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3515                 break;
3516         case KVM_SET_IDENTITY_MAP_ADDR: {
3517                 u64 ident_addr;
3518
3519                 r = -EFAULT;
3520                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3521                         goto out;
3522                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3523                 break;
3524         }
3525         case KVM_SET_NR_MMU_PAGES:
3526                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3527                 break;
3528         case KVM_GET_NR_MMU_PAGES:
3529                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3530                 break;
3531         case KVM_CREATE_IRQCHIP: {
3532                 struct kvm_pic *vpic;
3533
3534                 mutex_lock(&kvm->lock);
3535                 r = -EEXIST;
3536                 if (kvm->arch.vpic)
3537                         goto create_irqchip_unlock;
3538                 r = -EINVAL;
3539                 if (atomic_read(&kvm->online_vcpus))
3540                         goto create_irqchip_unlock;
3541                 r = -ENOMEM;
3542                 vpic = kvm_create_pic(kvm);
3543                 if (vpic) {
3544                         r = kvm_ioapic_init(kvm);
3545                         if (r) {
3546                                 mutex_lock(&kvm->slots_lock);
3547                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3548                                                           &vpic->dev_master);
3549                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3550                                                           &vpic->dev_slave);
3551                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3552                                                           &vpic->dev_eclr);
3553                                 mutex_unlock(&kvm->slots_lock);
3554                                 kfree(vpic);
3555                                 goto create_irqchip_unlock;
3556                         }
3557                 } else
3558                         goto create_irqchip_unlock;
3559                 smp_wmb();
3560                 kvm->arch.vpic = vpic;
3561                 smp_wmb();
3562                 r = kvm_setup_default_irq_routing(kvm);
3563                 if (r) {
3564                         mutex_lock(&kvm->slots_lock);
3565                         mutex_lock(&kvm->irq_lock);
3566                         kvm_ioapic_destroy(kvm);
3567                         kvm_destroy_pic(kvm);
3568                         mutex_unlock(&kvm->irq_lock);
3569                         mutex_unlock(&kvm->slots_lock);
3570                 }
3571         create_irqchip_unlock:
3572                 mutex_unlock(&kvm->lock);
3573                 break;
3574         }
3575         case KVM_CREATE_PIT:
3576                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3577                 goto create_pit;
3578         case KVM_CREATE_PIT2:
3579                 r = -EFAULT;
3580                 if (copy_from_user(&u.pit_config, argp,
3581                                    sizeof(struct kvm_pit_config)))
3582                         goto out;
3583         create_pit:
3584                 mutex_lock(&kvm->slots_lock);
3585                 r = -EEXIST;
3586                 if (kvm->arch.vpit)
3587                         goto create_pit_unlock;
3588                 r = -ENOMEM;
3589                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3590                 if (kvm->arch.vpit)
3591                         r = 0;
3592         create_pit_unlock:
3593                 mutex_unlock(&kvm->slots_lock);
3594                 break;
3595         case KVM_GET_IRQCHIP: {
3596                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3597                 struct kvm_irqchip *chip;
3598
3599                 chip = memdup_user(argp, sizeof(*chip));
3600                 if (IS_ERR(chip)) {
3601                         r = PTR_ERR(chip);
3602                         goto out;
3603                 }
3604
3605                 r = -ENXIO;
3606                 if (!irqchip_in_kernel(kvm))
3607                         goto get_irqchip_out;
3608                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3609                 if (r)
3610                         goto get_irqchip_out;
3611                 r = -EFAULT;
3612                 if (copy_to_user(argp, chip, sizeof *chip))
3613                         goto get_irqchip_out;
3614                 r = 0;
3615         get_irqchip_out:
3616                 kfree(chip);
3617                 break;
3618         }
3619         case KVM_SET_IRQCHIP: {
3620                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3621                 struct kvm_irqchip *chip;
3622
3623                 chip = memdup_user(argp, sizeof(*chip));
3624                 if (IS_ERR(chip)) {
3625                         r = PTR_ERR(chip);
3626                         goto out;
3627                 }
3628
3629                 r = -ENXIO;
3630                 if (!irqchip_in_kernel(kvm))
3631                         goto set_irqchip_out;
3632                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3633                 if (r)
3634                         goto set_irqchip_out;
3635                 r = 0;
3636         set_irqchip_out:
3637                 kfree(chip);
3638                 break;
3639         }
3640         case KVM_GET_PIT: {
3641                 r = -EFAULT;
3642                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3643                         goto out;
3644                 r = -ENXIO;
3645                 if (!kvm->arch.vpit)
3646                         goto out;
3647                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3648                 if (r)
3649                         goto out;
3650                 r = -EFAULT;
3651                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3652                         goto out;
3653                 r = 0;
3654                 break;
3655         }
3656         case KVM_SET_PIT: {
3657                 r = -EFAULT;
3658                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3659                         goto out;
3660                 r = -ENXIO;
3661                 if (!kvm->arch.vpit)
3662                         goto out;
3663                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3664                 break;
3665         }
3666         case KVM_GET_PIT2: {
3667                 r = -ENXIO;
3668                 if (!kvm->arch.vpit)
3669                         goto out;
3670                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3671                 if (r)
3672                         goto out;
3673                 r = -EFAULT;
3674                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3675                         goto out;
3676                 r = 0;
3677                 break;
3678         }
3679         case KVM_SET_PIT2: {
3680                 r = -EFAULT;
3681                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3682                         goto out;
3683                 r = -ENXIO;
3684                 if (!kvm->arch.vpit)
3685                         goto out;
3686                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3687                 break;
3688         }
3689         case KVM_REINJECT_CONTROL: {
3690                 struct kvm_reinject_control control;
3691                 r =  -EFAULT;
3692                 if (copy_from_user(&control, argp, sizeof(control)))
3693                         goto out;
3694                 r = kvm_vm_ioctl_reinject(kvm, &control);
3695                 break;
3696         }
3697         case KVM_XEN_HVM_CONFIG: {
3698                 r = -EFAULT;
3699                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3700                                    sizeof(struct kvm_xen_hvm_config)))
3701                         goto out;
3702                 r = -EINVAL;
3703                 if (kvm->arch.xen_hvm_config.flags)
3704                         goto out;
3705                 r = 0;
3706                 break;
3707         }
3708         case KVM_SET_CLOCK: {
3709                 struct kvm_clock_data user_ns;
3710                 u64 now_ns;
3711                 s64 delta;
3712
3713                 r = -EFAULT;
3714                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3715                         goto out;
3716
3717                 r = -EINVAL;
3718                 if (user_ns.flags)
3719                         goto out;
3720
3721                 r = 0;
3722                 local_irq_disable();
3723                 now_ns = get_kernel_ns();
3724                 delta = user_ns.clock - now_ns;
3725                 local_irq_enable();
3726                 kvm->arch.kvmclock_offset = delta;
3727                 break;
3728         }
3729         case KVM_GET_CLOCK: {
3730                 struct kvm_clock_data user_ns;
3731                 u64 now_ns;
3732
3733                 local_irq_disable();
3734                 now_ns = get_kernel_ns();
3735                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3736                 local_irq_enable();
3737                 user_ns.flags = 0;
3738                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3739
3740                 r = -EFAULT;
3741                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3742                         goto out;
3743                 r = 0;
3744                 break;
3745         }
3746
3747         default:
3748                 ;
3749         }
3750 out:
3751         return r;
3752 }
3753
3754 static void kvm_init_msr_list(void)
3755 {
3756         u32 dummy[2];
3757         unsigned i, j;
3758
3759         /* skip the first msrs in the list. KVM-specific */
3760         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3761                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3762                         continue;
3763                 if (j < i)
3764                         msrs_to_save[j] = msrs_to_save[i];
3765                 j++;
3766         }
3767         num_msrs_to_save = j;
3768 }
3769
3770 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3771                            const void *v)
3772 {
3773         int handled = 0;
3774         int n;
3775
3776         do {
3777                 n = min(len, 8);
3778                 if (!(vcpu->arch.apic &&
3779                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3780                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3781                         break;
3782                 handled += n;
3783                 addr += n;
3784                 len -= n;
3785                 v += n;
3786         } while (len);
3787
3788         return handled;
3789 }
3790
3791 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3792 {
3793         int handled = 0;
3794         int n;
3795
3796         do {
3797                 n = min(len, 8);
3798                 if (!(vcpu->arch.apic &&
3799                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3800                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3801                         break;
3802                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3803                 handled += n;
3804                 addr += n;
3805                 len -= n;
3806                 v += n;
3807         } while (len);
3808
3809         return handled;
3810 }
3811
3812 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3813                         struct kvm_segment *var, int seg)
3814 {
3815         kvm_x86_ops->set_segment(vcpu, var, seg);
3816 }
3817
3818 void kvm_get_segment(struct kvm_vcpu *vcpu,
3819                      struct kvm_segment *var, int seg)
3820 {
3821         kvm_x86_ops->get_segment(vcpu, var, seg);
3822 }
3823
3824 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3825 {
3826         gpa_t t_gpa;
3827         struct x86_exception exception;
3828
3829         BUG_ON(!mmu_is_nested(vcpu));
3830
3831         /* NPT walks are always user-walks */
3832         access |= PFERR_USER_MASK;
3833         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3834
3835         return t_gpa;
3836 }
3837
3838 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3839                               struct x86_exception *exception)
3840 {
3841         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3842         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3843 }
3844
3845  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3846                                 struct x86_exception *exception)
3847 {
3848         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3849         access |= PFERR_FETCH_MASK;
3850         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3851 }
3852
3853 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3854                                struct x86_exception *exception)
3855 {
3856         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3857         access |= PFERR_WRITE_MASK;
3858         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3859 }
3860
3861 /* uses this to access any guest's mapped memory without checking CPL */
3862 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3863                                 struct x86_exception *exception)
3864 {
3865         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3866 }
3867
3868 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3869                                       struct kvm_vcpu *vcpu, u32 access,
3870                                       struct x86_exception *exception)
3871 {
3872         void *data = val;
3873         int r = X86EMUL_CONTINUE;
3874
3875         while (bytes) {
3876                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3877                                                             exception);
3878                 unsigned offset = addr & (PAGE_SIZE-1);
3879                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3880                 int ret;
3881
3882                 if (gpa == UNMAPPED_GVA)
3883                         return X86EMUL_PROPAGATE_FAULT;
3884                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3885                 if (ret < 0) {
3886                         r = X86EMUL_IO_NEEDED;
3887                         goto out;
3888                 }
3889
3890                 bytes -= toread;
3891                 data += toread;
3892                 addr += toread;
3893         }
3894 out:
3895         return r;
3896 }
3897
3898 /* used for instruction fetching */
3899 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3900                                 gva_t addr, void *val, unsigned int bytes,
3901                                 struct x86_exception *exception)
3902 {
3903         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3904         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3905
3906         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3907                                           access | PFERR_FETCH_MASK,
3908                                           exception);
3909 }
3910
3911 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3912                                gva_t addr, void *val, unsigned int bytes,
3913                                struct x86_exception *exception)
3914 {
3915         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3916         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3917
3918         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3919                                           exception);
3920 }
3921 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3922
3923 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3924                                       gva_t addr, void *val, unsigned int bytes,
3925                                       struct x86_exception *exception)
3926 {
3927         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3928         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3929 }
3930
3931 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3932                                        gva_t addr, void *val,
3933                                        unsigned int bytes,
3934                                        struct x86_exception *exception)
3935 {
3936         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3937         void *data = val;
3938         int r = X86EMUL_CONTINUE;
3939
3940         while (bytes) {
3941                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3942                                                              PFERR_WRITE_MASK,
3943                                                              exception);
3944                 unsigned offset = addr & (PAGE_SIZE-1);
3945                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3946                 int ret;
3947
3948                 if (gpa == UNMAPPED_GVA)
3949                         return X86EMUL_PROPAGATE_FAULT;
3950                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3951                 if (ret < 0) {
3952                         r = X86EMUL_IO_NEEDED;
3953                         goto out;
3954                 }
3955
3956                 bytes -= towrite;
3957                 data += towrite;
3958                 addr += towrite;
3959         }
3960 out:
3961         return r;
3962 }
3963 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3964
3965 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3966                                 gpa_t *gpa, struct x86_exception *exception,
3967                                 bool write)
3968 {
3969         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
3970                 | (write ? PFERR_WRITE_MASK : 0);
3971
3972         if (vcpu_match_mmio_gva(vcpu, gva)
3973             && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
3974                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3975                                         (gva & (PAGE_SIZE - 1));
3976                 trace_vcpu_match_mmio(gva, *gpa, write, false);
3977                 return 1;
3978         }
3979
3980         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3981
3982         if (*gpa == UNMAPPED_GVA)
3983                 return -1;
3984
3985         /* For APIC access vmexit */
3986         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3987                 return 1;
3988
3989         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3990                 trace_vcpu_match_mmio(gva, *gpa, write, true);
3991                 return 1;
3992         }
3993
3994         return 0;
3995 }
3996
3997 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3998                         const void *val, int bytes)
3999 {
4000         int ret;
4001
4002         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4003         if (ret < 0)
4004                 return 0;
4005         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4006         return 1;
4007 }
4008
4009 struct read_write_emulator_ops {
4010         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4011                                   int bytes);
4012         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4013                                   void *val, int bytes);
4014         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4015                                int bytes, void *val);
4016         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4017                                     void *val, int bytes);
4018         bool write;
4019 };
4020
4021 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4022 {
4023         if (vcpu->mmio_read_completed) {
4024                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4025                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4026                 vcpu->mmio_read_completed = 0;
4027                 return 1;
4028         }
4029
4030         return 0;
4031 }
4032
4033 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4034                         void *val, int bytes)
4035 {
4036         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4037 }
4038
4039 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4040                          void *val, int bytes)
4041 {
4042         return emulator_write_phys(vcpu, gpa, val, bytes);
4043 }
4044
4045 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4046 {
4047         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4048         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4049 }
4050
4051 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4052                           void *val, int bytes)
4053 {
4054         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4055         return X86EMUL_IO_NEEDED;
4056 }
4057
4058 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4059                            void *val, int bytes)
4060 {
4061         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4062
4063         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4064         return X86EMUL_CONTINUE;
4065 }
4066
4067 static const struct read_write_emulator_ops read_emultor = {
4068         .read_write_prepare = read_prepare,
4069         .read_write_emulate = read_emulate,
4070         .read_write_mmio = vcpu_mmio_read,
4071         .read_write_exit_mmio = read_exit_mmio,
4072 };
4073
4074 static const struct read_write_emulator_ops write_emultor = {
4075         .read_write_emulate = write_emulate,
4076         .read_write_mmio = write_mmio,
4077         .read_write_exit_mmio = write_exit_mmio,
4078         .write = true,
4079 };
4080
4081 static int emulator_read_write_onepage(unsigned long addr, void *val,
4082                                        unsigned int bytes,
4083                                        struct x86_exception *exception,
4084                                        struct kvm_vcpu *vcpu,
4085                                        const struct read_write_emulator_ops *ops)
4086 {
4087         gpa_t gpa;
4088         int handled, ret;
4089         bool write = ops->write;
4090         struct kvm_mmio_fragment *frag;
4091
4092         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4093
4094         if (ret < 0)
4095                 return X86EMUL_PROPAGATE_FAULT;
4096
4097         /* For APIC access vmexit */
4098         if (ret)
4099                 goto mmio;
4100
4101         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4102                 return X86EMUL_CONTINUE;
4103
4104 mmio:
4105         /*
4106          * Is this MMIO handled locally?
4107          */
4108         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4109         if (handled == bytes)
4110                 return X86EMUL_CONTINUE;
4111
4112         gpa += handled;
4113         bytes -= handled;
4114         val += handled;
4115
4116         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4117         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4118         frag->gpa = gpa;
4119         frag->data = val;
4120         frag->len = bytes;
4121         return X86EMUL_CONTINUE;
4122 }
4123
4124 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4125                         void *val, unsigned int bytes,
4126                         struct x86_exception *exception,
4127                         const struct read_write_emulator_ops *ops)
4128 {
4129         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4130         gpa_t gpa;
4131         int rc;
4132
4133         if (ops->read_write_prepare &&
4134                   ops->read_write_prepare(vcpu, val, bytes))
4135                 return X86EMUL_CONTINUE;
4136
4137         vcpu->mmio_nr_fragments = 0;
4138
4139         /* Crossing a page boundary? */
4140         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4141                 int now;
4142
4143                 now = -addr & ~PAGE_MASK;
4144                 rc = emulator_read_write_onepage(addr, val, now, exception,
4145                                                  vcpu, ops);
4146
4147                 if (rc != X86EMUL_CONTINUE)
4148                         return rc;
4149                 addr += now;
4150                 val += now;
4151                 bytes -= now;
4152         }
4153
4154         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4155                                          vcpu, ops);
4156         if (rc != X86EMUL_CONTINUE)
4157                 return rc;
4158
4159         if (!vcpu->mmio_nr_fragments)
4160                 return rc;
4161
4162         gpa = vcpu->mmio_fragments[0].gpa;
4163
4164         vcpu->mmio_needed = 1;
4165         vcpu->mmio_cur_fragment = 0;
4166
4167         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4168         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4169         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4170         vcpu->run->mmio.phys_addr = gpa;
4171
4172         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4173 }
4174
4175 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4176                                   unsigned long addr,
4177                                   void *val,
4178                                   unsigned int bytes,
4179                                   struct x86_exception *exception)
4180 {
4181         return emulator_read_write(ctxt, addr, val, bytes,
4182                                    exception, &read_emultor);
4183 }
4184
4185 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4186                             unsigned long addr,
4187                             const void *val,
4188                             unsigned int bytes,
4189                             struct x86_exception *exception)
4190 {
4191         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4192                                    exception, &write_emultor);
4193 }
4194
4195 #define CMPXCHG_TYPE(t, ptr, old, new) \
4196         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4197
4198 #ifdef CONFIG_X86_64
4199 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4200 #else
4201 #  define CMPXCHG64(ptr, old, new) \
4202         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4203 #endif
4204
4205 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4206                                      unsigned long addr,
4207                                      const void *old,
4208                                      const void *new,
4209                                      unsigned int bytes,
4210                                      struct x86_exception *exception)
4211 {
4212         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4213         gpa_t gpa;
4214         struct page *page;
4215         char *kaddr;
4216         bool exchanged;
4217
4218         /* guests cmpxchg8b have to be emulated atomically */
4219         if (bytes > 8 || (bytes & (bytes - 1)))
4220                 goto emul_write;
4221
4222         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4223
4224         if (gpa == UNMAPPED_GVA ||
4225             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4226                 goto emul_write;
4227
4228         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4229                 goto emul_write;
4230
4231         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4232         if (is_error_page(page))
4233                 goto emul_write;
4234
4235         kaddr = kmap_atomic(page);
4236         kaddr += offset_in_page(gpa);
4237         switch (bytes) {
4238         case 1:
4239                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4240                 break;
4241         case 2:
4242                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4243                 break;
4244         case 4:
4245                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4246                 break;
4247         case 8:
4248                 exchanged = CMPXCHG64(kaddr, old, new);
4249                 break;
4250         default:
4251                 BUG();
4252         }
4253         kunmap_atomic(kaddr);
4254         kvm_release_page_dirty(page);
4255
4256         if (!exchanged)
4257                 return X86EMUL_CMPXCHG_FAILED;
4258
4259         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4260
4261         return X86EMUL_CONTINUE;
4262
4263 emul_write:
4264         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4265
4266         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4267 }
4268
4269 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4270 {
4271         /* TODO: String I/O for in kernel device */
4272         int r;
4273
4274         if (vcpu->arch.pio.in)
4275                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4276                                     vcpu->arch.pio.size, pd);
4277         else
4278                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4279                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4280                                      pd);
4281         return r;
4282 }
4283
4284 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4285                                unsigned short port, void *val,
4286                                unsigned int count, bool in)
4287 {
4288         trace_kvm_pio(!in, port, size, count);
4289
4290         vcpu->arch.pio.port = port;
4291         vcpu->arch.pio.in = in;
4292         vcpu->arch.pio.count  = count;
4293         vcpu->arch.pio.size = size;
4294
4295         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4296                 vcpu->arch.pio.count = 0;
4297                 return 1;
4298         }
4299
4300         vcpu->run->exit_reason = KVM_EXIT_IO;
4301         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4302         vcpu->run->io.size = size;
4303         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4304         vcpu->run->io.count = count;
4305         vcpu->run->io.port = port;
4306
4307         return 0;
4308 }
4309
4310 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4311                                     int size, unsigned short port, void *val,
4312                                     unsigned int count)
4313 {
4314         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4315         int ret;
4316
4317         if (vcpu->arch.pio.count)
4318                 goto data_avail;
4319
4320         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4321         if (ret) {
4322 data_avail:
4323                 memcpy(val, vcpu->arch.pio_data, size * count);
4324                 vcpu->arch.pio.count = 0;
4325                 return 1;
4326         }
4327
4328         return 0;
4329 }
4330
4331 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4332                                      int size, unsigned short port,
4333                                      const void *val, unsigned int count)
4334 {
4335         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4336
4337         memcpy(vcpu->arch.pio_data, val, size * count);
4338         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4339 }
4340
4341 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4342 {
4343         return kvm_x86_ops->get_segment_base(vcpu, seg);
4344 }
4345
4346 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4347 {
4348         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4349 }
4350
4351 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4352 {
4353         if (!need_emulate_wbinvd(vcpu))
4354                 return X86EMUL_CONTINUE;
4355
4356         if (kvm_x86_ops->has_wbinvd_exit()) {
4357                 int cpu = get_cpu();
4358
4359                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4360                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4361                                 wbinvd_ipi, NULL, 1);
4362                 put_cpu();
4363                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4364         } else
4365                 wbinvd();
4366         return X86EMUL_CONTINUE;
4367 }
4368 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4369
4370 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4371 {
4372         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4373 }
4374
4375 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4376 {
4377         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4378 }
4379
4380 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4381 {
4382
4383         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4384 }
4385
4386 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4387 {
4388         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4389 }
4390
4391 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4392 {
4393         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4394         unsigned long value;
4395
4396         switch (cr) {
4397         case 0:
4398                 value = kvm_read_cr0(vcpu);
4399                 break;
4400         case 2:
4401                 value = vcpu->arch.cr2;
4402                 break;
4403         case 3:
4404                 value = kvm_read_cr3(vcpu);
4405                 break;
4406         case 4:
4407                 value = kvm_read_cr4(vcpu);
4408                 break;
4409         case 8:
4410                 value = kvm_get_cr8(vcpu);
4411                 break;
4412         default:
4413                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4414                 return 0;
4415         }
4416
4417         return value;
4418 }
4419
4420 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4421 {
4422         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4423         int res = 0;
4424
4425         switch (cr) {
4426         case 0:
4427                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4428                 break;
4429         case 2:
4430                 vcpu->arch.cr2 = val;
4431                 break;
4432         case 3:
4433                 res = kvm_set_cr3(vcpu, val);
4434                 break;
4435         case 4:
4436                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4437                 break;
4438         case 8:
4439                 res = kvm_set_cr8(vcpu, val);
4440                 break;
4441         default:
4442                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4443                 res = -1;
4444         }
4445
4446         return res;
4447 }
4448
4449 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4450 {
4451         kvm_set_rflags(emul_to_vcpu(ctxt), val);
4452 }
4453
4454 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4455 {
4456         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4457 }
4458
4459 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4460 {
4461         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4462 }
4463
4464 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4465 {
4466         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4467 }
4468
4469 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4470 {
4471         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4472 }
4473
4474 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4475 {
4476         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4477 }
4478
4479 static unsigned long emulator_get_cached_segment_base(
4480         struct x86_emulate_ctxt *ctxt, int seg)
4481 {
4482         return get_segment_base(emul_to_vcpu(ctxt), seg);
4483 }
4484
4485 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4486                                  struct desc_struct *desc, u32 *base3,
4487                                  int seg)
4488 {
4489         struct kvm_segment var;
4490
4491         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4492         *selector = var.selector;
4493
4494         if (var.unusable)
4495                 return false;
4496
4497         if (var.g)
4498                 var.limit >>= 12;
4499         set_desc_limit(desc, var.limit);
4500         set_desc_base(desc, (unsigned long)var.base);
4501 #ifdef CONFIG_X86_64
4502         if (base3)
4503                 *base3 = var.base >> 32;
4504 #endif
4505         desc->type = var.type;
4506         desc->s = var.s;
4507         desc->dpl = var.dpl;
4508         desc->p = var.present;
4509         desc->avl = var.avl;
4510         desc->l = var.l;
4511         desc->d = var.db;
4512         desc->g = var.g;
4513
4514         return true;
4515 }
4516
4517 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4518                                  struct desc_struct *desc, u32 base3,
4519                                  int seg)
4520 {
4521         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4522         struct kvm_segment var;
4523
4524         var.selector = selector;
4525         var.base = get_desc_base(desc);
4526 #ifdef CONFIG_X86_64
4527         var.base |= ((u64)base3) << 32;
4528 #endif
4529         var.limit = get_desc_limit(desc);
4530         if (desc->g)
4531                 var.limit = (var.limit << 12) | 0xfff;
4532         var.type = desc->type;
4533         var.present = desc->p;
4534         var.dpl = desc->dpl;
4535         var.db = desc->d;
4536         var.s = desc->s;
4537         var.l = desc->l;
4538         var.g = desc->g;
4539         var.avl = desc->avl;
4540         var.present = desc->p;
4541         var.unusable = !var.present;
4542         var.padding = 0;
4543
4544         kvm_set_segment(vcpu, &var, seg);
4545         return;
4546 }
4547
4548 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4549                             u32 msr_index, u64 *pdata)
4550 {
4551         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4552 }
4553
4554 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4555                             u32 msr_index, u64 data)
4556 {
4557         struct msr_data msr;
4558
4559         msr.data = data;
4560         msr.index = msr_index;
4561         msr.host_initiated = false;
4562         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4563 }
4564
4565 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4566                              u32 pmc, u64 *pdata)
4567 {
4568         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4569 }
4570
4571 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4572 {
4573         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4574 }
4575
4576 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4577 {
4578         preempt_disable();
4579         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4580         /*
4581          * CR0.TS may reference the host fpu state, not the guest fpu state,
4582          * so it may be clear at this point.
4583          */
4584         clts();
4585 }
4586
4587 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4588 {
4589         preempt_enable();
4590 }
4591
4592 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4593                               struct x86_instruction_info *info,
4594                               enum x86_intercept_stage stage)
4595 {
4596         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4597 }
4598
4599 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4600                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4601 {
4602         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4603 }
4604
4605 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4606 {
4607         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4608 }
4609
4610 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4611 {
4612         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4613 }
4614
4615 static const struct x86_emulate_ops emulate_ops = {
4616         .read_gpr            = emulator_read_gpr,
4617         .write_gpr           = emulator_write_gpr,
4618         .read_std            = kvm_read_guest_virt_system,
4619         .write_std           = kvm_write_guest_virt_system,
4620         .fetch               = kvm_fetch_guest_virt,
4621         .read_emulated       = emulator_read_emulated,
4622         .write_emulated      = emulator_write_emulated,
4623         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4624         .invlpg              = emulator_invlpg,
4625         .pio_in_emulated     = emulator_pio_in_emulated,
4626         .pio_out_emulated    = emulator_pio_out_emulated,
4627         .get_segment         = emulator_get_segment,
4628         .set_segment         = emulator_set_segment,
4629         .get_cached_segment_base = emulator_get_cached_segment_base,
4630         .get_gdt             = emulator_get_gdt,
4631         .get_idt             = emulator_get_idt,
4632         .set_gdt             = emulator_set_gdt,
4633         .set_idt             = emulator_set_idt,
4634         .get_cr              = emulator_get_cr,
4635         .set_cr              = emulator_set_cr,
4636         .set_rflags          = emulator_set_rflags,
4637         .cpl                 = emulator_get_cpl,
4638         .get_dr              = emulator_get_dr,
4639         .set_dr              = emulator_set_dr,
4640         .set_msr             = emulator_set_msr,
4641         .get_msr             = emulator_get_msr,
4642         .read_pmc            = emulator_read_pmc,
4643         .halt                = emulator_halt,
4644         .wbinvd              = emulator_wbinvd,
4645         .fix_hypercall       = emulator_fix_hypercall,
4646         .get_fpu             = emulator_get_fpu,
4647         .put_fpu             = emulator_put_fpu,
4648         .intercept           = emulator_intercept,
4649         .get_cpuid           = emulator_get_cpuid,
4650 };
4651
4652 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4653 {
4654         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4655         /*
4656          * an sti; sti; sequence only disable interrupts for the first
4657          * instruction. So, if the last instruction, be it emulated or
4658          * not, left the system with the INT_STI flag enabled, it
4659          * means that the last instruction is an sti. We should not
4660          * leave the flag on in this case. The same goes for mov ss
4661          */
4662         if (!(int_shadow & mask))
4663                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4664 }
4665
4666 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4667 {
4668         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4669         if (ctxt->exception.vector == PF_VECTOR)
4670                 kvm_propagate_fault(vcpu, &ctxt->exception);
4671         else if (ctxt->exception.error_code_valid)
4672                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4673                                       ctxt->exception.error_code);
4674         else
4675                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4676 }
4677
4678 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4679 {
4680         memset(&ctxt->twobyte, 0,
4681                (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4682
4683         ctxt->fetch.start = 0;
4684         ctxt->fetch.end = 0;
4685         ctxt->io_read.pos = 0;
4686         ctxt->io_read.end = 0;
4687         ctxt->mem_read.pos = 0;
4688         ctxt->mem_read.end = 0;
4689 }
4690
4691 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4692 {
4693         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4694         int cs_db, cs_l;
4695
4696         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4697
4698         ctxt->eflags = kvm_get_rflags(vcpu);
4699         ctxt->eip = kvm_rip_read(vcpu);
4700         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4701                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4702                      cs_l                               ? X86EMUL_MODE_PROT64 :
4703                      cs_db                              ? X86EMUL_MODE_PROT32 :
4704                                                           X86EMUL_MODE_PROT16;
4705         ctxt->guest_mode = is_guest_mode(vcpu);
4706
4707         init_decode_cache(ctxt);
4708         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4709 }
4710
4711 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4712 {
4713         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4714         int ret;
4715
4716         init_emulate_ctxt(vcpu);
4717
4718         ctxt->op_bytes = 2;
4719         ctxt->ad_bytes = 2;
4720         ctxt->_eip = ctxt->eip + inc_eip;
4721         ret = emulate_int_real(ctxt, irq);
4722
4723         if (ret != X86EMUL_CONTINUE)
4724                 return EMULATE_FAIL;
4725
4726         ctxt->eip = ctxt->_eip;
4727         kvm_rip_write(vcpu, ctxt->eip);
4728         kvm_set_rflags(vcpu, ctxt->eflags);
4729
4730         if (irq == NMI_VECTOR)
4731                 vcpu->arch.nmi_pending = 0;
4732         else
4733                 vcpu->arch.interrupt.pending = false;
4734
4735         return EMULATE_DONE;
4736 }
4737 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4738
4739 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4740 {
4741         int r = EMULATE_DONE;
4742
4743         ++vcpu->stat.insn_emulation_fail;
4744         trace_kvm_emulate_insn_failed(vcpu);
4745         if (!is_guest_mode(vcpu)) {
4746                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4747                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4748                 vcpu->run->internal.ndata = 0;
4749                 r = EMULATE_FAIL;
4750         }
4751         kvm_queue_exception(vcpu, UD_VECTOR);
4752
4753         return r;
4754 }
4755
4756 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4757 {
4758         gpa_t gpa;
4759         pfn_t pfn;
4760
4761         if (tdp_enabled)
4762                 return false;
4763
4764         /*
4765          * if emulation was due to access to shadowed page table
4766          * and it failed try to unshadow page and re-enter the
4767          * guest to let CPU execute the instruction.
4768          */
4769         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4770                 return true;
4771
4772         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4773
4774         if (gpa == UNMAPPED_GVA)
4775                 return true; /* let cpu generate fault */
4776
4777         /*
4778          * Do not retry the unhandleable instruction if it faults on the
4779          * readonly host memory, otherwise it will goto a infinite loop:
4780          * retry instruction -> write #PF -> emulation fail -> retry
4781          * instruction -> ...
4782          */
4783         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4784         if (!is_error_noslot_pfn(pfn)) {
4785                 kvm_release_pfn_clean(pfn);
4786                 return true;
4787         }
4788
4789         return false;
4790 }
4791
4792 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4793                               unsigned long cr2,  int emulation_type)
4794 {
4795         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4796         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4797
4798         last_retry_eip = vcpu->arch.last_retry_eip;
4799         last_retry_addr = vcpu->arch.last_retry_addr;
4800
4801         /*
4802          * If the emulation is caused by #PF and it is non-page_table
4803          * writing instruction, it means the VM-EXIT is caused by shadow
4804          * page protected, we can zap the shadow page and retry this
4805          * instruction directly.
4806          *
4807          * Note: if the guest uses a non-page-table modifying instruction
4808          * on the PDE that points to the instruction, then we will unmap
4809          * the instruction and go to an infinite loop. So, we cache the
4810          * last retried eip and the last fault address, if we meet the eip
4811          * and the address again, we can break out of the potential infinite
4812          * loop.
4813          */
4814         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4815
4816         if (!(emulation_type & EMULTYPE_RETRY))
4817                 return false;
4818
4819         if (x86_page_table_writing_insn(ctxt))
4820                 return false;
4821
4822         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4823                 return false;
4824
4825         vcpu->arch.last_retry_eip = ctxt->eip;
4826         vcpu->arch.last_retry_addr = cr2;
4827
4828         if (!vcpu->arch.mmu.direct_map)
4829                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4830
4831         kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4832
4833         return true;
4834 }
4835
4836 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4837 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4838
4839 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4840                             unsigned long cr2,
4841                             int emulation_type,
4842                             void *insn,
4843                             int insn_len)
4844 {
4845         int r;
4846         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4847         bool writeback = true;
4848
4849         kvm_clear_exception_queue(vcpu);
4850
4851         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4852                 init_emulate_ctxt(vcpu);
4853                 ctxt->interruptibility = 0;
4854                 ctxt->have_exception = false;
4855                 ctxt->perm_ok = false;
4856
4857                 ctxt->only_vendor_specific_insn
4858                         = emulation_type & EMULTYPE_TRAP_UD;
4859
4860                 r = x86_decode_insn(ctxt, insn, insn_len);
4861
4862                 trace_kvm_emulate_insn_start(vcpu);
4863                 ++vcpu->stat.insn_emulation;
4864                 if (r != EMULATION_OK)  {
4865                         if (emulation_type & EMULTYPE_TRAP_UD)
4866                                 return EMULATE_FAIL;
4867                         if (reexecute_instruction(vcpu, cr2))
4868                                 return EMULATE_DONE;
4869                         if (emulation_type & EMULTYPE_SKIP)
4870                                 return EMULATE_FAIL;
4871                         return handle_emulation_failure(vcpu);
4872                 }
4873         }
4874
4875         if (emulation_type & EMULTYPE_SKIP) {
4876                 kvm_rip_write(vcpu, ctxt->_eip);
4877                 return EMULATE_DONE;
4878         }
4879
4880         if (retry_instruction(ctxt, cr2, emulation_type))
4881                 return EMULATE_DONE;
4882
4883         /* this is needed for vmware backdoor interface to work since it
4884            changes registers values  during IO operation */
4885         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4886                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4887                 emulator_invalidate_register_cache(ctxt);
4888         }
4889
4890 restart:
4891         r = x86_emulate_insn(ctxt);
4892
4893         if (r == EMULATION_INTERCEPTED)
4894                 return EMULATE_DONE;
4895
4896         if (r == EMULATION_FAILED) {
4897                 if (reexecute_instruction(vcpu, cr2))
4898                         return EMULATE_DONE;
4899
4900                 return handle_emulation_failure(vcpu);
4901         }
4902
4903         if (ctxt->have_exception) {
4904                 inject_emulated_exception(vcpu);
4905                 r = EMULATE_DONE;
4906         } else if (vcpu->arch.pio.count) {
4907                 if (!vcpu->arch.pio.in)
4908                         vcpu->arch.pio.count = 0;
4909                 else {
4910                         writeback = false;
4911                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
4912                 }
4913                 r = EMULATE_DO_MMIO;
4914         } else if (vcpu->mmio_needed) {
4915                 if (!vcpu->mmio_is_write)
4916                         writeback = false;
4917                 r = EMULATE_DO_MMIO;
4918                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
4919         } else if (r == EMULATION_RESTART)
4920                 goto restart;
4921         else
4922                 r = EMULATE_DONE;
4923
4924         if (writeback) {
4925                 toggle_interruptibility(vcpu, ctxt->interruptibility);
4926                 kvm_set_rflags(vcpu, ctxt->eflags);
4927                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4928                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4929                 kvm_rip_write(vcpu, ctxt->eip);
4930         } else
4931                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4932
4933         return r;
4934 }
4935 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4936
4937 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4938 {
4939         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4940         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4941                                             size, port, &val, 1);
4942         /* do not return to emulator after return from userspace */
4943         vcpu->arch.pio.count = 0;
4944         return ret;
4945 }
4946 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4947
4948 static void tsc_bad(void *info)
4949 {
4950         __this_cpu_write(cpu_tsc_khz, 0);
4951 }
4952
4953 static void tsc_khz_changed(void *data)
4954 {
4955         struct cpufreq_freqs *freq = data;
4956         unsigned long khz = 0;
4957
4958         if (data)
4959                 khz = freq->new;
4960         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4961                 khz = cpufreq_quick_get(raw_smp_processor_id());
4962         if (!khz)
4963                 khz = tsc_khz;
4964         __this_cpu_write(cpu_tsc_khz, khz);
4965 }
4966
4967 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4968                                      void *data)
4969 {
4970         struct cpufreq_freqs *freq = data;
4971         struct kvm *kvm;
4972         struct kvm_vcpu *vcpu;
4973         int i, send_ipi = 0;
4974
4975         /*
4976          * We allow guests to temporarily run on slowing clocks,
4977          * provided we notify them after, or to run on accelerating
4978          * clocks, provided we notify them before.  Thus time never
4979          * goes backwards.
4980          *
4981          * However, we have a problem.  We can't atomically update
4982          * the frequency of a given CPU from this function; it is
4983          * merely a notifier, which can be called from any CPU.
4984          * Changing the TSC frequency at arbitrary points in time
4985          * requires a recomputation of local variables related to
4986          * the TSC for each VCPU.  We must flag these local variables
4987          * to be updated and be sure the update takes place with the
4988          * new frequency before any guests proceed.
4989          *
4990          * Unfortunately, the combination of hotplug CPU and frequency
4991          * change creates an intractable locking scenario; the order
4992          * of when these callouts happen is undefined with respect to
4993          * CPU hotplug, and they can race with each other.  As such,
4994          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4995          * undefined; you can actually have a CPU frequency change take
4996          * place in between the computation of X and the setting of the
4997          * variable.  To protect against this problem, all updates of
4998          * the per_cpu tsc_khz variable are done in an interrupt
4999          * protected IPI, and all callers wishing to update the value
5000          * must wait for a synchronous IPI to complete (which is trivial
5001          * if the caller is on the CPU already).  This establishes the
5002          * necessary total order on variable updates.
5003          *
5004          * Note that because a guest time update may take place
5005          * anytime after the setting of the VCPU's request bit, the
5006          * correct TSC value must be set before the request.  However,
5007          * to ensure the update actually makes it to any guest which
5008          * starts running in hardware virtualization between the set
5009          * and the acquisition of the spinlock, we must also ping the
5010          * CPU after setting the request bit.
5011          *
5012          */
5013
5014         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5015                 return 0;
5016         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5017                 return 0;
5018
5019         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5020
5021         raw_spin_lock(&kvm_lock);
5022         list_for_each_entry(kvm, &vm_list, vm_list) {
5023                 kvm_for_each_vcpu(i, vcpu, kvm) {
5024                         if (vcpu->cpu != freq->cpu)
5025                                 continue;
5026                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5027                         if (vcpu->cpu != smp_processor_id())
5028                                 send_ipi = 1;
5029                 }
5030         }
5031         raw_spin_unlock(&kvm_lock);
5032
5033         if (freq->old < freq->new && send_ipi) {
5034                 /*
5035                  * We upscale the frequency.  Must make the guest
5036                  * doesn't see old kvmclock values while running with
5037                  * the new frequency, otherwise we risk the guest sees
5038                  * time go backwards.
5039                  *
5040                  * In case we update the frequency for another cpu
5041                  * (which might be in guest context) send an interrupt
5042                  * to kick the cpu out of guest context.  Next time
5043                  * guest context is entered kvmclock will be updated,
5044                  * so the guest will not see stale values.
5045                  */
5046                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5047         }
5048         return 0;
5049 }
5050
5051 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5052         .notifier_call  = kvmclock_cpufreq_notifier
5053 };
5054
5055 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5056                                         unsigned long action, void *hcpu)
5057 {
5058         unsigned int cpu = (unsigned long)hcpu;
5059
5060         switch (action) {
5061                 case CPU_ONLINE:
5062                 case CPU_DOWN_FAILED:
5063                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5064                         break;
5065                 case CPU_DOWN_PREPARE:
5066                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5067                         break;
5068         }
5069         return NOTIFY_OK;
5070 }
5071
5072 static struct notifier_block kvmclock_cpu_notifier_block = {
5073         .notifier_call  = kvmclock_cpu_notifier,
5074         .priority = -INT_MAX
5075 };
5076
5077 static void kvm_timer_init(void)
5078 {
5079         int cpu;
5080
5081         max_tsc_khz = tsc_khz;
5082         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5083         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5084 #ifdef CONFIG_CPU_FREQ
5085                 struct cpufreq_policy policy;
5086                 memset(&policy, 0, sizeof(policy));
5087                 cpu = get_cpu();
5088                 cpufreq_get_policy(&policy, cpu);
5089                 if (policy.cpuinfo.max_freq)
5090                         max_tsc_khz = policy.cpuinfo.max_freq;
5091                 put_cpu();
5092 #endif
5093                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5094                                           CPUFREQ_TRANSITION_NOTIFIER);
5095         }
5096         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5097         for_each_online_cpu(cpu)
5098                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5099 }
5100
5101 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5102
5103 int kvm_is_in_guest(void)
5104 {
5105         return __this_cpu_read(current_vcpu) != NULL;
5106 }
5107
5108 static int kvm_is_user_mode(void)
5109 {
5110         int user_mode = 3;
5111
5112         if (__this_cpu_read(current_vcpu))
5113                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5114
5115         return user_mode != 0;
5116 }
5117
5118 static unsigned long kvm_get_guest_ip(void)
5119 {
5120         unsigned long ip = 0;
5121
5122         if (__this_cpu_read(current_vcpu))
5123                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5124
5125         return ip;
5126 }
5127
5128 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5129         .is_in_guest            = kvm_is_in_guest,
5130         .is_user_mode           = kvm_is_user_mode,
5131         .get_guest_ip           = kvm_get_guest_ip,
5132 };
5133
5134 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5135 {
5136         __this_cpu_write(current_vcpu, vcpu);
5137 }
5138 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5139
5140 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5141 {
5142         __this_cpu_write(current_vcpu, NULL);
5143 }
5144 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5145
5146 static void kvm_set_mmio_spte_mask(void)
5147 {
5148         u64 mask;
5149         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5150
5151         /*
5152          * Set the reserved bits and the present bit of an paging-structure
5153          * entry to generate page fault with PFER.RSV = 1.
5154          */
5155         mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
5156         mask |= 1ull;
5157
5158 #ifdef CONFIG_X86_64
5159         /*
5160          * If reserved bit is not supported, clear the present bit to disable
5161          * mmio page fault.
5162          */
5163         if (maxphyaddr == 52)
5164                 mask &= ~1ull;
5165 #endif
5166
5167         kvm_mmu_set_mmio_spte_mask(mask);
5168 }
5169
5170 #ifdef CONFIG_X86_64
5171 static void pvclock_gtod_update_fn(struct work_struct *work)
5172 {
5173         struct kvm *kvm;
5174
5175         struct kvm_vcpu *vcpu;
5176         int i;
5177
5178         raw_spin_lock(&kvm_lock);
5179         list_for_each_entry(kvm, &vm_list, vm_list)
5180                 kvm_for_each_vcpu(i, vcpu, kvm)
5181                         set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5182         atomic_set(&kvm_guest_has_master_clock, 0);
5183         raw_spin_unlock(&kvm_lock);
5184 }
5185
5186 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5187
5188 /*
5189  * Notification about pvclock gtod data update.
5190  */
5191 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5192                                void *priv)
5193 {
5194         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5195         struct timekeeper *tk = priv;
5196
5197         update_pvclock_gtod(tk);
5198
5199         /* disable master clock if host does not trust, or does not
5200          * use, TSC clocksource
5201          */
5202         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5203             atomic_read(&kvm_guest_has_master_clock) != 0)
5204                 queue_work(system_long_wq, &pvclock_gtod_work);
5205
5206         return 0;
5207 }
5208
5209 static struct notifier_block pvclock_gtod_notifier = {
5210         .notifier_call = pvclock_gtod_notify,
5211 };
5212 #endif
5213
5214 int kvm_arch_init(void *opaque)
5215 {
5216         int r;
5217         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
5218
5219         if (kvm_x86_ops) {
5220                 printk(KERN_ERR "kvm: already loaded the other module\n");
5221                 r = -EEXIST;
5222                 goto out;
5223         }
5224
5225         if (!ops->cpu_has_kvm_support()) {
5226                 printk(KERN_ERR "kvm: no hardware support\n");
5227                 r = -EOPNOTSUPP;
5228                 goto out;
5229         }
5230         if (ops->disabled_by_bios()) {
5231                 printk(KERN_ERR "kvm: disabled by bios\n");
5232                 r = -EOPNOTSUPP;
5233                 goto out;
5234         }
5235
5236         r = kvm_mmu_module_init();
5237         if (r)
5238                 goto out;
5239
5240         kvm_set_mmio_spte_mask();
5241         kvm_init_msr_list();
5242
5243         kvm_x86_ops = ops;
5244         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5245                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5246
5247         kvm_timer_init();
5248
5249         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5250
5251         if (cpu_has_xsave)
5252                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5253
5254         kvm_lapic_init();
5255 #ifdef CONFIG_X86_64
5256         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5257 #endif
5258
5259         return 0;
5260
5261 out:
5262         return r;
5263 }
5264
5265 void kvm_arch_exit(void)
5266 {
5267         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5268
5269         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5270                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5271                                             CPUFREQ_TRANSITION_NOTIFIER);
5272         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5273 #ifdef CONFIG_X86_64
5274         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5275 #endif
5276         kvm_x86_ops = NULL;
5277         kvm_mmu_module_exit();
5278 }
5279
5280 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5281 {
5282         ++vcpu->stat.halt_exits;
5283         if (irqchip_in_kernel(vcpu->kvm)) {
5284                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5285                 return 1;
5286         } else {
5287                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5288                 return 0;
5289         }
5290 }
5291 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5292
5293 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5294 {
5295         u64 param, ingpa, outgpa, ret;
5296         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5297         bool fast, longmode;
5298         int cs_db, cs_l;
5299
5300         /*
5301          * hypercall generates UD from non zero cpl and real mode
5302          * per HYPER-V spec
5303          */
5304         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5305                 kvm_queue_exception(vcpu, UD_VECTOR);
5306                 return 0;
5307         }
5308
5309         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5310         longmode = is_long_mode(vcpu) && cs_l == 1;
5311
5312         if (!longmode) {
5313                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5314                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5315                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5316                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5317                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5318                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5319         }
5320 #ifdef CONFIG_X86_64
5321         else {
5322                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5323                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5324                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5325         }
5326 #endif
5327
5328         code = param & 0xffff;
5329         fast = (param >> 16) & 0x1;
5330         rep_cnt = (param >> 32) & 0xfff;
5331         rep_idx = (param >> 48) & 0xfff;
5332
5333         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5334
5335         switch (code) {
5336         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5337                 kvm_vcpu_on_spin(vcpu);
5338                 break;
5339         default:
5340                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5341                 break;
5342         }
5343
5344         ret = res | (((u64)rep_done & 0xfff) << 32);
5345         if (longmode) {
5346                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5347         } else {
5348                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5349                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5350         }
5351
5352         return 1;
5353 }
5354
5355 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5356 {
5357         unsigned long nr, a0, a1, a2, a3, ret;
5358         int r = 1;
5359
5360         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5361                 return kvm_hv_hypercall(vcpu);
5362
5363         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5364         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5365         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5366         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5367         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5368
5369         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5370
5371         if (!is_long_mode(vcpu)) {
5372                 nr &= 0xFFFFFFFF;
5373                 a0 &= 0xFFFFFFFF;
5374                 a1 &= 0xFFFFFFFF;
5375                 a2 &= 0xFFFFFFFF;
5376                 a3 &= 0xFFFFFFFF;
5377         }
5378
5379         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5380                 ret = -KVM_EPERM;
5381                 goto out;
5382         }
5383
5384         switch (nr) {
5385         case KVM_HC_VAPIC_POLL_IRQ:
5386                 ret = 0;
5387                 break;
5388         default:
5389                 ret = -KVM_ENOSYS;
5390                 break;
5391         }
5392 out:
5393         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5394         ++vcpu->stat.hypercalls;
5395         return r;
5396 }
5397 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5398
5399 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5400 {
5401         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5402         char instruction[3];
5403         unsigned long rip = kvm_rip_read(vcpu);
5404
5405         /*
5406          * Blow out the MMU to ensure that no other VCPU has an active mapping
5407          * to ensure that the updated hypercall appears atomically across all
5408          * VCPUs.
5409          */
5410         kvm_mmu_zap_all(vcpu->kvm);
5411
5412         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5413
5414         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5415 }
5416
5417 /*
5418  * Check if userspace requested an interrupt window, and that the
5419  * interrupt window is open.
5420  *
5421  * No need to exit to userspace if we already have an interrupt queued.
5422  */
5423 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5424 {
5425         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5426                 vcpu->run->request_interrupt_window &&
5427                 kvm_arch_interrupt_allowed(vcpu));
5428 }
5429
5430 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5431 {
5432         struct kvm_run *kvm_run = vcpu->run;
5433
5434         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5435         kvm_run->cr8 = kvm_get_cr8(vcpu);
5436         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5437         if (irqchip_in_kernel(vcpu->kvm))
5438                 kvm_run->ready_for_interrupt_injection = 1;
5439         else
5440                 kvm_run->ready_for_interrupt_injection =
5441                         kvm_arch_interrupt_allowed(vcpu) &&
5442                         !kvm_cpu_has_interrupt(vcpu) &&
5443                         !kvm_event_needs_reinjection(vcpu);
5444 }
5445
5446 static int vapic_enter(struct kvm_vcpu *vcpu)
5447 {
5448         struct kvm_lapic *apic = vcpu->arch.apic;
5449         struct page *page;
5450
5451         if (!apic || !apic->vapic_addr)
5452                 return 0;
5453
5454         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5455         if (is_error_page(page))
5456                 return -EFAULT;
5457
5458         vcpu->arch.apic->vapic_page = page;
5459         return 0;
5460 }
5461
5462 static void vapic_exit(struct kvm_vcpu *vcpu)
5463 {
5464         struct kvm_lapic *apic = vcpu->arch.apic;
5465         int idx;
5466
5467         if (!apic || !apic->vapic_addr)
5468                 return;
5469
5470         idx = srcu_read_lock(&vcpu->kvm->srcu);
5471         kvm_release_page_dirty(apic->vapic_page);
5472         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5473         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5474 }
5475
5476 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5477 {
5478         int max_irr, tpr;
5479
5480         if (!kvm_x86_ops->update_cr8_intercept)
5481                 return;
5482
5483         if (!vcpu->arch.apic)
5484                 return;
5485
5486         if (!vcpu->arch.apic->vapic_addr)
5487                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5488         else
5489                 max_irr = -1;
5490
5491         if (max_irr != -1)
5492                 max_irr >>= 4;
5493
5494         tpr = kvm_lapic_get_cr8(vcpu);
5495
5496         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5497 }
5498
5499 static void inject_pending_event(struct kvm_vcpu *vcpu)
5500 {
5501         /* try to reinject previous events if any */
5502         if (vcpu->arch.exception.pending) {
5503                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5504                                         vcpu->arch.exception.has_error_code,
5505                                         vcpu->arch.exception.error_code);
5506                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5507                                           vcpu->arch.exception.has_error_code,
5508                                           vcpu->arch.exception.error_code,
5509                                           vcpu->arch.exception.reinject);
5510                 return;
5511         }
5512
5513         if (vcpu->arch.nmi_injected) {
5514                 kvm_x86_ops->set_nmi(vcpu);
5515                 return;
5516         }
5517
5518         if (vcpu->arch.interrupt.pending) {
5519                 kvm_x86_ops->set_irq(vcpu);
5520                 return;
5521         }
5522
5523         /* try to inject new event if pending */
5524         if (vcpu->arch.nmi_pending) {
5525                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5526                         --vcpu->arch.nmi_pending;
5527                         vcpu->arch.nmi_injected = true;
5528                         kvm_x86_ops->set_nmi(vcpu);
5529                 }
5530         } else if (kvm_cpu_has_interrupt(vcpu)) {
5531                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5532                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5533                                             false);
5534                         kvm_x86_ops->set_irq(vcpu);
5535                 }
5536         }
5537 }
5538
5539 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5540 {
5541         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5542                         !vcpu->guest_xcr0_loaded) {
5543                 /* kvm_set_xcr() also depends on this */
5544                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5545                 vcpu->guest_xcr0_loaded = 1;
5546         }
5547 }
5548
5549 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5550 {
5551         if (vcpu->guest_xcr0_loaded) {
5552                 if (vcpu->arch.xcr0 != host_xcr0)
5553                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5554                 vcpu->guest_xcr0_loaded = 0;
5555         }
5556 }
5557
5558 static void process_nmi(struct kvm_vcpu *vcpu)
5559 {
5560         unsigned limit = 2;
5561
5562         /*
5563          * x86 is limited to one NMI running, and one NMI pending after it.
5564          * If an NMI is already in progress, limit further NMIs to just one.
5565          * Otherwise, allow two (and we'll inject the first one immediately).
5566          */
5567         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5568                 limit = 1;
5569
5570         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5571         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5572         kvm_make_request(KVM_REQ_EVENT, vcpu);
5573 }
5574
5575 static void kvm_gen_update_masterclock(struct kvm *kvm)
5576 {
5577 #ifdef CONFIG_X86_64
5578         int i;
5579         struct kvm_vcpu *vcpu;
5580         struct kvm_arch *ka = &kvm->arch;
5581
5582         spin_lock(&ka->pvclock_gtod_sync_lock);
5583         kvm_make_mclock_inprogress_request(kvm);
5584         /* no guest entries from this point */
5585         pvclock_update_vm_gtod_copy(kvm);
5586
5587         kvm_for_each_vcpu(i, vcpu, kvm)
5588                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
5589
5590         /* guest entries allowed */
5591         kvm_for_each_vcpu(i, vcpu, kvm)
5592                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
5593
5594         spin_unlock(&ka->pvclock_gtod_sync_lock);
5595 #endif
5596 }
5597
5598 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5599 {
5600         int r;
5601         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5602                 vcpu->run->request_interrupt_window;
5603         bool req_immediate_exit = 0;
5604
5605         if (vcpu->requests) {
5606                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5607                         kvm_mmu_unload(vcpu);
5608                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5609                         __kvm_migrate_timers(vcpu);
5610                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5611                         kvm_gen_update_masterclock(vcpu->kvm);
5612                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5613                         r = kvm_guest_time_update(vcpu);
5614                         if (unlikely(r))
5615                                 goto out;
5616                 }
5617                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5618                         kvm_mmu_sync_roots(vcpu);
5619                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5620                         kvm_x86_ops->tlb_flush(vcpu);
5621                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5622                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5623                         r = 0;
5624                         goto out;
5625                 }
5626                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5627                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5628                         r = 0;
5629                         goto out;
5630                 }
5631                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5632                         vcpu->fpu_active = 0;
5633                         kvm_x86_ops->fpu_deactivate(vcpu);
5634                 }
5635                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5636                         /* Page is swapped out. Do synthetic halt */
5637                         vcpu->arch.apf.halted = true;
5638                         r = 1;
5639                         goto out;
5640                 }
5641                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5642                         record_steal_time(vcpu);
5643                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5644                         process_nmi(vcpu);
5645                 req_immediate_exit =
5646                         kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5647                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5648                         kvm_handle_pmu_event(vcpu);
5649                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5650                         kvm_deliver_pmi(vcpu);
5651         }
5652
5653         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5654                 inject_pending_event(vcpu);
5655
5656                 /* enable NMI/IRQ window open exits if needed */
5657                 if (vcpu->arch.nmi_pending)
5658                         kvm_x86_ops->enable_nmi_window(vcpu);
5659                 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5660                         kvm_x86_ops->enable_irq_window(vcpu);
5661
5662                 if (kvm_lapic_enabled(vcpu)) {
5663                         update_cr8_intercept(vcpu);
5664                         kvm_lapic_sync_to_vapic(vcpu);
5665                 }
5666         }
5667
5668         r = kvm_mmu_reload(vcpu);
5669         if (unlikely(r)) {
5670                 goto cancel_injection;
5671         }
5672
5673         preempt_disable();
5674
5675         kvm_x86_ops->prepare_guest_switch(vcpu);
5676         if (vcpu->fpu_active)
5677                 kvm_load_guest_fpu(vcpu);
5678         kvm_load_guest_xcr0(vcpu);
5679
5680         vcpu->mode = IN_GUEST_MODE;
5681
5682         /* We should set ->mode before check ->requests,
5683          * see the comment in make_all_cpus_request.
5684          */
5685         smp_mb();
5686
5687         local_irq_disable();
5688
5689         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5690             || need_resched() || signal_pending(current)) {
5691                 vcpu->mode = OUTSIDE_GUEST_MODE;
5692                 smp_wmb();
5693                 local_irq_enable();
5694                 preempt_enable();
5695                 r = 1;
5696                 goto cancel_injection;
5697         }
5698
5699         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5700
5701         if (req_immediate_exit)
5702                 smp_send_reschedule(vcpu->cpu);
5703
5704         kvm_guest_enter();
5705
5706         if (unlikely(vcpu->arch.switch_db_regs)) {
5707                 set_debugreg(0, 7);
5708                 set_debugreg(vcpu->arch.eff_db[0], 0);
5709                 set_debugreg(vcpu->arch.eff_db[1], 1);
5710                 set_debugreg(vcpu->arch.eff_db[2], 2);
5711                 set_debugreg(vcpu->arch.eff_db[3], 3);
5712         }
5713
5714         trace_kvm_entry(vcpu->vcpu_id);
5715         kvm_x86_ops->run(vcpu);
5716
5717         /*
5718          * If the guest has used debug registers, at least dr7
5719          * will be disabled while returning to the host.
5720          * If we don't have active breakpoints in the host, we don't
5721          * care about the messed up debug address registers. But if
5722          * we have some of them active, restore the old state.
5723          */
5724         if (hw_breakpoint_active())
5725                 hw_breakpoint_restore();
5726
5727         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5728                                                            native_read_tsc());
5729
5730         vcpu->mode = OUTSIDE_GUEST_MODE;
5731         smp_wmb();
5732         local_irq_enable();
5733
5734         ++vcpu->stat.exits;
5735
5736         /*
5737          * We must have an instruction between local_irq_enable() and
5738          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5739          * the interrupt shadow.  The stat.exits increment will do nicely.
5740          * But we need to prevent reordering, hence this barrier():
5741          */
5742         barrier();
5743
5744         kvm_guest_exit();
5745
5746         preempt_enable();
5747
5748         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5749
5750         /*
5751          * Profile KVM exit RIPs:
5752          */
5753         if (unlikely(prof_on == KVM_PROFILING)) {
5754                 unsigned long rip = kvm_rip_read(vcpu);
5755                 profile_hit(KVM_PROFILING, (void *)rip);
5756         }
5757
5758         if (unlikely(vcpu->arch.tsc_always_catchup))
5759                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5760
5761         if (vcpu->arch.apic_attention)
5762                 kvm_lapic_sync_from_vapic(vcpu);
5763
5764         r = kvm_x86_ops->handle_exit(vcpu);
5765         return r;
5766
5767 cancel_injection:
5768         kvm_x86_ops->cancel_injection(vcpu);
5769         if (unlikely(vcpu->arch.apic_attention))
5770                 kvm_lapic_sync_from_vapic(vcpu);
5771 out:
5772         return r;
5773 }
5774
5775
5776 static int __vcpu_run(struct kvm_vcpu *vcpu)
5777 {
5778         int r;
5779         struct kvm *kvm = vcpu->kvm;
5780
5781         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5782                 pr_debug("vcpu %d received sipi with vector # %x\n",
5783                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5784                 kvm_lapic_reset(vcpu);
5785                 r = kvm_vcpu_reset(vcpu);
5786                 if (r)
5787                         return r;
5788                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5789         }
5790
5791         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5792         r = vapic_enter(vcpu);
5793         if (r) {
5794                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5795                 return r;
5796         }
5797
5798         r = 1;
5799         while (r > 0) {
5800                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5801                     !vcpu->arch.apf.halted)
5802                         r = vcpu_enter_guest(vcpu);
5803                 else {
5804                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5805                         kvm_vcpu_block(vcpu);
5806                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5807                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5808                         {
5809                                 switch(vcpu->arch.mp_state) {
5810                                 case KVM_MP_STATE_HALTED:
5811                                         vcpu->arch.mp_state =
5812                                                 KVM_MP_STATE_RUNNABLE;
5813                                 case KVM_MP_STATE_RUNNABLE:
5814                                         vcpu->arch.apf.halted = false;
5815                                         break;
5816                                 case KVM_MP_STATE_SIPI_RECEIVED:
5817                                 default:
5818                                         r = -EINTR;
5819                                         break;
5820                                 }
5821                         }
5822                 }
5823
5824                 if (r <= 0)
5825                         break;
5826
5827                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5828                 if (kvm_cpu_has_pending_timer(vcpu))
5829                         kvm_inject_pending_timer_irqs(vcpu);
5830
5831                 if (dm_request_for_irq_injection(vcpu)) {
5832                         r = -EINTR;
5833                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5834                         ++vcpu->stat.request_irq_exits;
5835                 }
5836
5837                 kvm_check_async_pf_completion(vcpu);
5838
5839                 if (signal_pending(current)) {
5840                         r = -EINTR;
5841                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5842                         ++vcpu->stat.signal_exits;
5843                 }
5844                 if (need_resched()) {
5845                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5846                         kvm_resched(vcpu);
5847                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5848                 }
5849         }
5850
5851         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5852
5853         vapic_exit(vcpu);
5854
5855         return r;
5856 }
5857
5858 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
5859 {
5860         int r;
5861         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5862         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5863         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5864         if (r != EMULATE_DONE)
5865                 return 0;
5866         return 1;
5867 }
5868
5869 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
5870 {
5871         BUG_ON(!vcpu->arch.pio.count);
5872
5873         return complete_emulated_io(vcpu);
5874 }
5875
5876 /*
5877  * Implements the following, as a state machine:
5878  *
5879  * read:
5880  *   for each fragment
5881  *     for each mmio piece in the fragment
5882  *       write gpa, len
5883  *       exit
5884  *       copy data
5885  *   execute insn
5886  *
5887  * write:
5888  *   for each fragment
5889  *     for each mmio piece in the fragment
5890  *       write gpa, len
5891  *       copy data
5892  *       exit
5893  */
5894 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
5895 {
5896         struct kvm_run *run = vcpu->run;
5897         struct kvm_mmio_fragment *frag;
5898         unsigned len;
5899
5900         BUG_ON(!vcpu->mmio_needed);
5901
5902         /* Complete previous fragment */
5903         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
5904         len = min(8u, frag->len);
5905         if (!vcpu->mmio_is_write)
5906                 memcpy(frag->data, run->mmio.data, len);
5907
5908         if (frag->len <= 8) {
5909                 /* Switch to the next fragment. */
5910                 frag++;
5911                 vcpu->mmio_cur_fragment++;
5912         } else {
5913                 /* Go forward to the next mmio piece. */
5914                 frag->data += len;
5915                 frag->gpa += len;
5916                 frag->len -= len;
5917         }
5918
5919         if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
5920                 vcpu->mmio_needed = 0;
5921                 if (vcpu->mmio_is_write)
5922                         return 1;
5923                 vcpu->mmio_read_completed = 1;
5924                 return complete_emulated_io(vcpu);
5925         }
5926
5927         run->exit_reason = KVM_EXIT_MMIO;
5928         run->mmio.phys_addr = frag->gpa;
5929         if (vcpu->mmio_is_write)
5930                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
5931         run->mmio.len = min(8u, frag->len);
5932         run->mmio.is_write = vcpu->mmio_is_write;
5933         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5934         return 0;
5935 }
5936
5937
5938 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5939 {
5940         int r;
5941         sigset_t sigsaved;
5942
5943         if (!tsk_used_math(current) && init_fpu(current))
5944                 return -ENOMEM;
5945
5946         if (vcpu->sigset_active)
5947                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5948
5949         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5950                 kvm_vcpu_block(vcpu);
5951                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5952                 r = -EAGAIN;
5953                 goto out;
5954         }
5955
5956         /* re-sync apic's tpr */
5957         if (!irqchip_in_kernel(vcpu->kvm)) {
5958                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5959                         r = -EINVAL;
5960                         goto out;
5961                 }
5962         }
5963
5964         if (unlikely(vcpu->arch.complete_userspace_io)) {
5965                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
5966                 vcpu->arch.complete_userspace_io = NULL;
5967                 r = cui(vcpu);
5968                 if (r <= 0)
5969                         goto out;
5970         } else
5971                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
5972
5973         r = __vcpu_run(vcpu);
5974
5975 out:
5976         post_kvm_run_save(vcpu);
5977         if (vcpu->sigset_active)
5978                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5979
5980         return r;
5981 }
5982
5983 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5984 {
5985         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5986                 /*
5987                  * We are here if userspace calls get_regs() in the middle of
5988                  * instruction emulation. Registers state needs to be copied
5989                  * back from emulation context to vcpu. Userspace shouldn't do
5990                  * that usually, but some bad designed PV devices (vmware
5991                  * backdoor interface) need this to work
5992                  */
5993                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
5994                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5995         }
5996         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5997         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5998         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5999         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6000         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6001         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6002         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6003         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6004 #ifdef CONFIG_X86_64
6005         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6006         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6007         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6008         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6009         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6010         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6011         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6012         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6013 #endif
6014
6015         regs->rip = kvm_rip_read(vcpu);
6016         regs->rflags = kvm_get_rflags(vcpu);
6017
6018         return 0;
6019 }
6020
6021 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6022 {
6023         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6024         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6025
6026         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6027         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6028         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6029         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6030         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6031         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6032         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6033         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6034 #ifdef CONFIG_X86_64
6035         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6036         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6037         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6038         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6039         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6040         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6041         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6042         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6043 #endif
6044
6045         kvm_rip_write(vcpu, regs->rip);
6046         kvm_set_rflags(vcpu, regs->rflags);
6047
6048         vcpu->arch.exception.pending = false;
6049
6050         kvm_make_request(KVM_REQ_EVENT, vcpu);
6051
6052         return 0;
6053 }
6054
6055 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6056 {
6057         struct kvm_segment cs;
6058
6059         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6060         *db = cs.db;
6061         *l = cs.l;
6062 }
6063 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6064
6065 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6066                                   struct kvm_sregs *sregs)
6067 {
6068         struct desc_ptr dt;
6069
6070         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6071         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6072         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6073         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6074         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6075         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6076
6077         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6078         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6079
6080         kvm_x86_ops->get_idt(vcpu, &dt);
6081         sregs->idt.limit = dt.size;
6082         sregs->idt.base = dt.address;
6083         kvm_x86_ops->get_gdt(vcpu, &dt);
6084         sregs->gdt.limit = dt.size;
6085         sregs->gdt.base = dt.address;
6086
6087         sregs->cr0 = kvm_read_cr0(vcpu);
6088         sregs->cr2 = vcpu->arch.cr2;
6089         sregs->cr3 = kvm_read_cr3(vcpu);
6090         sregs->cr4 = kvm_read_cr4(vcpu);
6091         sregs->cr8 = kvm_get_cr8(vcpu);
6092         sregs->efer = vcpu->arch.efer;
6093         sregs->apic_base = kvm_get_apic_base(vcpu);
6094
6095         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6096
6097         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6098                 set_bit(vcpu->arch.interrupt.nr,
6099                         (unsigned long *)sregs->interrupt_bitmap);
6100
6101         return 0;
6102 }
6103
6104 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6105                                     struct kvm_mp_state *mp_state)
6106 {
6107         mp_state->mp_state = vcpu->arch.mp_state;
6108         return 0;
6109 }
6110
6111 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6112                                     struct kvm_mp_state *mp_state)
6113 {
6114         vcpu->arch.mp_state = mp_state->mp_state;
6115         kvm_make_request(KVM_REQ_EVENT, vcpu);
6116         return 0;
6117 }
6118
6119 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6120                     int reason, bool has_error_code, u32 error_code)
6121 {
6122         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6123         int ret;
6124
6125         init_emulate_ctxt(vcpu);
6126
6127         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6128                                    has_error_code, error_code);
6129
6130         if (ret)
6131                 return EMULATE_FAIL;
6132
6133         kvm_rip_write(vcpu, ctxt->eip);
6134         kvm_set_rflags(vcpu, ctxt->eflags);
6135         kvm_make_request(KVM_REQ_EVENT, vcpu);
6136         return EMULATE_DONE;
6137 }
6138 EXPORT_SYMBOL_GPL(kvm_task_switch);
6139
6140 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6141                                   struct kvm_sregs *sregs)
6142 {
6143         int mmu_reset_needed = 0;
6144         int pending_vec, max_bits, idx;
6145         struct desc_ptr dt;
6146
6147         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6148                 return -EINVAL;
6149
6150         dt.size = sregs->idt.limit;
6151         dt.address = sregs->idt.base;
6152         kvm_x86_ops->set_idt(vcpu, &dt);
6153         dt.size = sregs->gdt.limit;
6154         dt.address = sregs->gdt.base;
6155         kvm_x86_ops->set_gdt(vcpu, &dt);
6156
6157         vcpu->arch.cr2 = sregs->cr2;
6158         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6159         vcpu->arch.cr3 = sregs->cr3;
6160         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6161
6162         kvm_set_cr8(vcpu, sregs->cr8);
6163
6164         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6165         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6166         kvm_set_apic_base(vcpu, sregs->apic_base);
6167
6168         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6169         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6170         vcpu->arch.cr0 = sregs->cr0;
6171
6172         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6173         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6174         if (sregs->cr4 & X86_CR4_OSXSAVE)
6175                 kvm_update_cpuid(vcpu);
6176
6177         idx = srcu_read_lock(&vcpu->kvm->srcu);
6178         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6179                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6180                 mmu_reset_needed = 1;
6181         }
6182         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6183
6184         if (mmu_reset_needed)
6185                 kvm_mmu_reset_context(vcpu);
6186
6187         max_bits = KVM_NR_INTERRUPTS;
6188         pending_vec = find_first_bit(
6189                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6190         if (pending_vec < max_bits) {
6191                 kvm_queue_interrupt(vcpu, pending_vec, false);
6192                 pr_debug("Set back pending irq %d\n", pending_vec);
6193         }
6194
6195         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6196         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6197         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6198         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6199         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6200         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6201
6202         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6203         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6204
6205         update_cr8_intercept(vcpu);
6206
6207         /* Older userspace won't unhalt the vcpu on reset. */
6208         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6209             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6210             !is_protmode(vcpu))
6211                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6212
6213         kvm_make_request(KVM_REQ_EVENT, vcpu);
6214
6215         return 0;
6216 }
6217
6218 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6219                                         struct kvm_guest_debug *dbg)
6220 {
6221         unsigned long rflags;
6222         int i, r;
6223
6224         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6225                 r = -EBUSY;
6226                 if (vcpu->arch.exception.pending)
6227                         goto out;
6228                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6229                         kvm_queue_exception(vcpu, DB_VECTOR);
6230                 else
6231                         kvm_queue_exception(vcpu, BP_VECTOR);
6232         }
6233
6234         /*
6235          * Read rflags as long as potentially injected trace flags are still
6236          * filtered out.
6237          */
6238         rflags = kvm_get_rflags(vcpu);
6239
6240         vcpu->guest_debug = dbg->control;
6241         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6242                 vcpu->guest_debug = 0;
6243
6244         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6245                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6246                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6247                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6248         } else {
6249                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6250                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6251         }
6252         kvm_update_dr7(vcpu);
6253
6254         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6255                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6256                         get_segment_base(vcpu, VCPU_SREG_CS);
6257
6258         /*
6259          * Trigger an rflags update that will inject or remove the trace
6260          * flags.
6261          */
6262         kvm_set_rflags(vcpu, rflags);
6263
6264         kvm_x86_ops->update_db_bp_intercept(vcpu);
6265
6266         r = 0;
6267
6268 out:
6269
6270         return r;
6271 }
6272
6273 /*
6274  * Translate a guest virtual address to a guest physical address.
6275  */
6276 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6277                                     struct kvm_translation *tr)
6278 {
6279         unsigned long vaddr = tr->linear_address;
6280         gpa_t gpa;
6281         int idx;