]> nv-tegra.nvidia Code Review - linux-3.10.git/blob - arch/x86/kvm/svm.c
KVM: SVM: Move guest register save out of interrupts disabled section
[linux-3.10.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34 #include <asm/kvm_para.h>
35
36 #include <asm/virtext.h>
37 #include "trace.h"
38
39 #define __ex(x) __kvm_handle_fault_on_reboot(x)
40
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
43
44 #define IOPM_ALLOC_ORDER 2
45 #define MSRPM_ALLOC_ORDER 1
46
47 #define SEG_TYPE_LDT 2
48 #define SEG_TYPE_BUSY_TSS16 3
49
50 #define SVM_FEATURE_NPT            (1 <<  0)
51 #define SVM_FEATURE_LBRV           (1 <<  1)
52 #define SVM_FEATURE_SVML           (1 <<  2)
53 #define SVM_FEATURE_NRIP           (1 <<  3)
54 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
55
56 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
57 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
58 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
59
60 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
61
62 static bool erratum_383_found __read_mostly;
63
64 static const u32 host_save_user_msrs[] = {
65 #ifdef CONFIG_X86_64
66         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
67         MSR_FS_BASE,
68 #endif
69         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
70 };
71
72 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
73
74 struct kvm_vcpu;
75
76 struct nested_state {
77         struct vmcb *hsave;
78         u64 hsave_msr;
79         u64 vm_cr_msr;
80         u64 vmcb;
81
82         /* These are the merged vectors */
83         u32 *msrpm;
84
85         /* gpa pointers to the real vectors */
86         u64 vmcb_msrpm;
87         u64 vmcb_iopm;
88
89         /* A VMEXIT is required but not yet emulated */
90         bool exit_required;
91
92         /*
93          * If we vmexit during an instruction emulation we need this to restore
94          * the l1 guest rip after the emulation
95          */
96         unsigned long vmexit_rip;
97         unsigned long vmexit_rsp;
98         unsigned long vmexit_rax;
99
100         /* cache for intercepts of the guest */
101         u16 intercept_cr_read;
102         u16 intercept_cr_write;
103         u16 intercept_dr_read;
104         u16 intercept_dr_write;
105         u32 intercept_exceptions;
106         u64 intercept;
107
108         /* Nested Paging related state */
109         u64 nested_cr3;
110 };
111
112 #define MSRPM_OFFSETS   16
113 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
114
115 struct vcpu_svm {
116         struct kvm_vcpu vcpu;
117         struct vmcb *vmcb;
118         unsigned long vmcb_pa;
119         struct svm_cpu_data *svm_data;
120         uint64_t asid_generation;
121         uint64_t sysenter_esp;
122         uint64_t sysenter_eip;
123
124         u64 next_rip;
125
126         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
127         u64 host_gs_base;
128
129         u32 *msrpm;
130
131         struct nested_state nested;
132
133         bool nmi_singlestep;
134
135         unsigned int3_injected;
136         unsigned long int3_rip;
137         u32 apf_reason;
138 };
139
140 #define MSR_INVALID                     0xffffffffU
141
142 static struct svm_direct_access_msrs {
143         u32 index;   /* Index of the MSR */
144         bool always; /* True if intercept is always on */
145 } direct_access_msrs[] = {
146         { .index = MSR_STAR,                            .always = true  },
147         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
148 #ifdef CONFIG_X86_64
149         { .index = MSR_GS_BASE,                         .always = true  },
150         { .index = MSR_FS_BASE,                         .always = true  },
151         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
152         { .index = MSR_LSTAR,                           .always = true  },
153         { .index = MSR_CSTAR,                           .always = true  },
154         { .index = MSR_SYSCALL_MASK,                    .always = true  },
155 #endif
156         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
157         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
158         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
159         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
160         { .index = MSR_INVALID,                         .always = false },
161 };
162
163 /* enable NPT for AMD64 and X86 with PAE */
164 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
165 static bool npt_enabled = true;
166 #else
167 static bool npt_enabled;
168 #endif
169 static int npt = 1;
170
171 module_param(npt, int, S_IRUGO);
172
173 static int nested = 1;
174 module_param(nested, int, S_IRUGO);
175
176 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
177 static void svm_complete_interrupts(struct vcpu_svm *svm);
178
179 static int nested_svm_exit_handled(struct vcpu_svm *svm);
180 static int nested_svm_intercept(struct vcpu_svm *svm);
181 static int nested_svm_vmexit(struct vcpu_svm *svm);
182 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
183                                       bool has_error_code, u32 error_code);
184
185 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
186 {
187         return container_of(vcpu, struct vcpu_svm, vcpu);
188 }
189
190 static inline bool is_nested(struct vcpu_svm *svm)
191 {
192         return svm->nested.vmcb;
193 }
194
195 static inline void enable_gif(struct vcpu_svm *svm)
196 {
197         svm->vcpu.arch.hflags |= HF_GIF_MASK;
198 }
199
200 static inline void disable_gif(struct vcpu_svm *svm)
201 {
202         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
203 }
204
205 static inline bool gif_set(struct vcpu_svm *svm)
206 {
207         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
208 }
209
210 static unsigned long iopm_base;
211
212 struct kvm_ldttss_desc {
213         u16 limit0;
214         u16 base0;
215         unsigned base1:8, type:5, dpl:2, p:1;
216         unsigned limit1:4, zero0:3, g:1, base2:8;
217         u32 base3;
218         u32 zero1;
219 } __attribute__((packed));
220
221 struct svm_cpu_data {
222         int cpu;
223
224         u64 asid_generation;
225         u32 max_asid;
226         u32 next_asid;
227         struct kvm_ldttss_desc *tss_desc;
228
229         struct page *save_area;
230 };
231
232 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
233 static uint32_t svm_features;
234
235 struct svm_init_data {
236         int cpu;
237         int r;
238 };
239
240 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
241
242 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
243 #define MSRS_RANGE_SIZE 2048
244 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
245
246 static u32 svm_msrpm_offset(u32 msr)
247 {
248         u32 offset;
249         int i;
250
251         for (i = 0; i < NUM_MSR_MAPS; i++) {
252                 if (msr < msrpm_ranges[i] ||
253                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
254                         continue;
255
256                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
257                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
258
259                 /* Now we have the u8 offset - but need the u32 offset */
260                 return offset / 4;
261         }
262
263         /* MSR not in any range */
264         return MSR_INVALID;
265 }
266
267 #define MAX_INST_SIZE 15
268
269 static inline u32 svm_has(u32 feat)
270 {
271         return svm_features & feat;
272 }
273
274 static inline void clgi(void)
275 {
276         asm volatile (__ex(SVM_CLGI));
277 }
278
279 static inline void stgi(void)
280 {
281         asm volatile (__ex(SVM_STGI));
282 }
283
284 static inline void invlpga(unsigned long addr, u32 asid)
285 {
286         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
287 }
288
289 static inline void force_new_asid(struct kvm_vcpu *vcpu)
290 {
291         to_svm(vcpu)->asid_generation--;
292 }
293
294 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
295 {
296         force_new_asid(vcpu);
297 }
298
299 static int get_npt_level(void)
300 {
301 #ifdef CONFIG_X86_64
302         return PT64_ROOT_LEVEL;
303 #else
304         return PT32E_ROOT_LEVEL;
305 #endif
306 }
307
308 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
309 {
310         vcpu->arch.efer = efer;
311         if (!npt_enabled && !(efer & EFER_LMA))
312                 efer &= ~EFER_LME;
313
314         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
315 }
316
317 static int is_external_interrupt(u32 info)
318 {
319         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
320         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
321 }
322
323 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
324 {
325         struct vcpu_svm *svm = to_svm(vcpu);
326         u32 ret = 0;
327
328         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
329                 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
330         return ret & mask;
331 }
332
333 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
334 {
335         struct vcpu_svm *svm = to_svm(vcpu);
336
337         if (mask == 0)
338                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
339         else
340                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
341
342 }
343
344 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
345 {
346         struct vcpu_svm *svm = to_svm(vcpu);
347
348         if (svm->vmcb->control.next_rip != 0)
349                 svm->next_rip = svm->vmcb->control.next_rip;
350
351         if (!svm->next_rip) {
352                 if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
353                                 EMULATE_DONE)
354                         printk(KERN_DEBUG "%s: NOP\n", __func__);
355                 return;
356         }
357         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
358                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
359                        __func__, kvm_rip_read(vcpu), svm->next_rip);
360
361         kvm_rip_write(vcpu, svm->next_rip);
362         svm_set_interrupt_shadow(vcpu, 0);
363 }
364
365 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
366                                 bool has_error_code, u32 error_code,
367                                 bool reinject)
368 {
369         struct vcpu_svm *svm = to_svm(vcpu);
370
371         /*
372          * If we are within a nested VM we'd better #VMEXIT and let the guest
373          * handle the exception
374          */
375         if (!reinject &&
376             nested_svm_check_exception(svm, nr, has_error_code, error_code))
377                 return;
378
379         if (nr == BP_VECTOR && !svm_has(SVM_FEATURE_NRIP)) {
380                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
381
382                 /*
383                  * For guest debugging where we have to reinject #BP if some
384                  * INT3 is guest-owned:
385                  * Emulate nRIP by moving RIP forward. Will fail if injection
386                  * raises a fault that is not intercepted. Still better than
387                  * failing in all cases.
388                  */
389                 skip_emulated_instruction(&svm->vcpu);
390                 rip = kvm_rip_read(&svm->vcpu);
391                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
392                 svm->int3_injected = rip - old_rip;
393         }
394
395         svm->vmcb->control.event_inj = nr
396                 | SVM_EVTINJ_VALID
397                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
398                 | SVM_EVTINJ_TYPE_EXEPT;
399         svm->vmcb->control.event_inj_err = error_code;
400 }
401
402 static void svm_init_erratum_383(void)
403 {
404         u32 low, high;
405         int err;
406         u64 val;
407
408         if (!cpu_has_amd_erratum(amd_erratum_383))
409                 return;
410
411         /* Use _safe variants to not break nested virtualization */
412         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
413         if (err)
414                 return;
415
416         val |= (1ULL << 47);
417
418         low  = lower_32_bits(val);
419         high = upper_32_bits(val);
420
421         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
422
423         erratum_383_found = true;
424 }
425
426 static int has_svm(void)
427 {
428         const char *msg;
429
430         if (!cpu_has_svm(&msg)) {
431                 printk(KERN_INFO "has_svm: %s\n", msg);
432                 return 0;
433         }
434
435         return 1;
436 }
437
438 static void svm_hardware_disable(void *garbage)
439 {
440         cpu_svm_disable();
441 }
442
443 static int svm_hardware_enable(void *garbage)
444 {
445
446         struct svm_cpu_data *sd;
447         uint64_t efer;
448         struct desc_ptr gdt_descr;
449         struct desc_struct *gdt;
450         int me = raw_smp_processor_id();
451
452         rdmsrl(MSR_EFER, efer);
453         if (efer & EFER_SVME)
454                 return -EBUSY;
455
456         if (!has_svm()) {
457                 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
458                        me);
459                 return -EINVAL;
460         }
461         sd = per_cpu(svm_data, me);
462
463         if (!sd) {
464                 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
465                        me);
466                 return -EINVAL;
467         }
468
469         sd->asid_generation = 1;
470         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
471         sd->next_asid = sd->max_asid + 1;
472
473         native_store_gdt(&gdt_descr);
474         gdt = (struct desc_struct *)gdt_descr.address;
475         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
476
477         wrmsrl(MSR_EFER, efer | EFER_SVME);
478
479         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
480
481         svm_init_erratum_383();
482
483         return 0;
484 }
485
486 static void svm_cpu_uninit(int cpu)
487 {
488         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
489
490         if (!sd)
491                 return;
492
493         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
494         __free_page(sd->save_area);
495         kfree(sd);
496 }
497
498 static int svm_cpu_init(int cpu)
499 {
500         struct svm_cpu_data *sd;
501         int r;
502
503         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
504         if (!sd)
505                 return -ENOMEM;
506         sd->cpu = cpu;
507         sd->save_area = alloc_page(GFP_KERNEL);
508         r = -ENOMEM;
509         if (!sd->save_area)
510                 goto err_1;
511
512         per_cpu(svm_data, cpu) = sd;
513
514         return 0;
515
516 err_1:
517         kfree(sd);
518         return r;
519
520 }
521
522 static bool valid_msr_intercept(u32 index)
523 {
524         int i;
525
526         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
527                 if (direct_access_msrs[i].index == index)
528                         return true;
529
530         return false;
531 }
532
533 static void set_msr_interception(u32 *msrpm, unsigned msr,
534                                  int read, int write)
535 {
536         u8 bit_read, bit_write;
537         unsigned long tmp;
538         u32 offset;
539
540         /*
541          * If this warning triggers extend the direct_access_msrs list at the
542          * beginning of the file
543          */
544         WARN_ON(!valid_msr_intercept(msr));
545
546         offset    = svm_msrpm_offset(msr);
547         bit_read  = 2 * (msr & 0x0f);
548         bit_write = 2 * (msr & 0x0f) + 1;
549         tmp       = msrpm[offset];
550
551         BUG_ON(offset == MSR_INVALID);
552
553         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
554         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
555
556         msrpm[offset] = tmp;
557 }
558
559 static void svm_vcpu_init_msrpm(u32 *msrpm)
560 {
561         int i;
562
563         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
564
565         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
566                 if (!direct_access_msrs[i].always)
567                         continue;
568
569                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
570         }
571 }
572
573 static void add_msr_offset(u32 offset)
574 {
575         int i;
576
577         for (i = 0; i < MSRPM_OFFSETS; ++i) {
578
579                 /* Offset already in list? */
580                 if (msrpm_offsets[i] == offset)
581                         return;
582
583                 /* Slot used by another offset? */
584                 if (msrpm_offsets[i] != MSR_INVALID)
585                         continue;
586
587                 /* Add offset to list */
588                 msrpm_offsets[i] = offset;
589
590                 return;
591         }
592
593         /*
594          * If this BUG triggers the msrpm_offsets table has an overflow. Just
595          * increase MSRPM_OFFSETS in this case.
596          */
597         BUG();
598 }
599
600 static void init_msrpm_offsets(void)
601 {
602         int i;
603
604         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
605
606         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
607                 u32 offset;
608
609                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
610                 BUG_ON(offset == MSR_INVALID);
611
612                 add_msr_offset(offset);
613         }
614 }
615
616 static void svm_enable_lbrv(struct vcpu_svm *svm)
617 {
618         u32 *msrpm = svm->msrpm;
619
620         svm->vmcb->control.lbr_ctl = 1;
621         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
622         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
623         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
624         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
625 }
626
627 static void svm_disable_lbrv(struct vcpu_svm *svm)
628 {
629         u32 *msrpm = svm->msrpm;
630
631         svm->vmcb->control.lbr_ctl = 0;
632         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
633         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
634         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
635         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
636 }
637
638 static __init int svm_hardware_setup(void)
639 {
640         int cpu;
641         struct page *iopm_pages;
642         void *iopm_va;
643         int r;
644
645         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
646
647         if (!iopm_pages)
648                 return -ENOMEM;
649
650         iopm_va = page_address(iopm_pages);
651         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
652         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
653
654         init_msrpm_offsets();
655
656         if (boot_cpu_has(X86_FEATURE_NX))
657                 kvm_enable_efer_bits(EFER_NX);
658
659         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
660                 kvm_enable_efer_bits(EFER_FFXSR);
661
662         if (nested) {
663                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
664                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
665         }
666
667         for_each_possible_cpu(cpu) {
668                 r = svm_cpu_init(cpu);
669                 if (r)
670                         goto err;
671         }
672
673         svm_features = cpuid_edx(SVM_CPUID_FUNC);
674
675         if (!svm_has(SVM_FEATURE_NPT))
676                 npt_enabled = false;
677
678         if (npt_enabled && !npt) {
679                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
680                 npt_enabled = false;
681         }
682
683         if (npt_enabled) {
684                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
685                 kvm_enable_tdp();
686         } else
687                 kvm_disable_tdp();
688
689         return 0;
690
691 err:
692         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
693         iopm_base = 0;
694         return r;
695 }
696
697 static __exit void svm_hardware_unsetup(void)
698 {
699         int cpu;
700
701         for_each_possible_cpu(cpu)
702                 svm_cpu_uninit(cpu);
703
704         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
705         iopm_base = 0;
706 }
707
708 static void init_seg(struct vmcb_seg *seg)
709 {
710         seg->selector = 0;
711         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
712                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
713         seg->limit = 0xffff;
714         seg->base = 0;
715 }
716
717 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
718 {
719         seg->selector = 0;
720         seg->attrib = SVM_SELECTOR_P_MASK | type;
721         seg->limit = 0xffff;
722         seg->base = 0;
723 }
724
725 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
726 {
727         struct vcpu_svm *svm = to_svm(vcpu);
728         u64 g_tsc_offset = 0;
729
730         if (is_nested(svm)) {
731                 g_tsc_offset = svm->vmcb->control.tsc_offset -
732                                svm->nested.hsave->control.tsc_offset;
733                 svm->nested.hsave->control.tsc_offset = offset;
734         }
735
736         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
737 }
738
739 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
740 {
741         struct vcpu_svm *svm = to_svm(vcpu);
742
743         svm->vmcb->control.tsc_offset += adjustment;
744         if (is_nested(svm))
745                 svm->nested.hsave->control.tsc_offset += adjustment;
746 }
747
748 static void init_vmcb(struct vcpu_svm *svm)
749 {
750         struct vmcb_control_area *control = &svm->vmcb->control;
751         struct vmcb_save_area *save = &svm->vmcb->save;
752
753         svm->vcpu.fpu_active = 1;
754
755         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
756                                         INTERCEPT_CR3_MASK |
757                                         INTERCEPT_CR4_MASK;
758
759         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
760                                         INTERCEPT_CR3_MASK |
761                                         INTERCEPT_CR4_MASK |
762                                         INTERCEPT_CR8_MASK;
763
764         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
765                                         INTERCEPT_DR1_MASK |
766                                         INTERCEPT_DR2_MASK |
767                                         INTERCEPT_DR3_MASK |
768                                         INTERCEPT_DR4_MASK |
769                                         INTERCEPT_DR5_MASK |
770                                         INTERCEPT_DR6_MASK |
771                                         INTERCEPT_DR7_MASK;
772
773         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
774                                         INTERCEPT_DR1_MASK |
775                                         INTERCEPT_DR2_MASK |
776                                         INTERCEPT_DR3_MASK |
777                                         INTERCEPT_DR4_MASK |
778                                         INTERCEPT_DR5_MASK |
779                                         INTERCEPT_DR6_MASK |
780                                         INTERCEPT_DR7_MASK;
781
782         control->intercept_exceptions = (1 << PF_VECTOR) |
783                                         (1 << UD_VECTOR) |
784                                         (1 << MC_VECTOR);
785
786
787         control->intercept =    (1ULL << INTERCEPT_INTR) |
788                                 (1ULL << INTERCEPT_NMI) |
789                                 (1ULL << INTERCEPT_SMI) |
790                                 (1ULL << INTERCEPT_SELECTIVE_CR0) |
791                                 (1ULL << INTERCEPT_CPUID) |
792                                 (1ULL << INTERCEPT_INVD) |
793                                 (1ULL << INTERCEPT_HLT) |
794                                 (1ULL << INTERCEPT_INVLPG) |
795                                 (1ULL << INTERCEPT_INVLPGA) |
796                                 (1ULL << INTERCEPT_IOIO_PROT) |
797                                 (1ULL << INTERCEPT_MSR_PROT) |
798                                 (1ULL << INTERCEPT_TASK_SWITCH) |
799                                 (1ULL << INTERCEPT_SHUTDOWN) |
800                                 (1ULL << INTERCEPT_VMRUN) |
801                                 (1ULL << INTERCEPT_VMMCALL) |
802                                 (1ULL << INTERCEPT_VMLOAD) |
803                                 (1ULL << INTERCEPT_VMSAVE) |
804                                 (1ULL << INTERCEPT_STGI) |
805                                 (1ULL << INTERCEPT_CLGI) |
806                                 (1ULL << INTERCEPT_SKINIT) |
807                                 (1ULL << INTERCEPT_WBINVD) |
808                                 (1ULL << INTERCEPT_MONITOR) |
809                                 (1ULL << INTERCEPT_MWAIT);
810
811         control->iopm_base_pa = iopm_base;
812         control->msrpm_base_pa = __pa(svm->msrpm);
813         control->int_ctl = V_INTR_MASKING_MASK;
814
815         init_seg(&save->es);
816         init_seg(&save->ss);
817         init_seg(&save->ds);
818         init_seg(&save->fs);
819         init_seg(&save->gs);
820
821         save->cs.selector = 0xf000;
822         /* Executable/Readable Code Segment */
823         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
824                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
825         save->cs.limit = 0xffff;
826         /*
827          * cs.base should really be 0xffff0000, but vmx can't handle that, so
828          * be consistent with it.
829          *
830          * Replace when we have real mode working for vmx.
831          */
832         save->cs.base = 0xf0000;
833
834         save->gdtr.limit = 0xffff;
835         save->idtr.limit = 0xffff;
836
837         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
838         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
839
840         svm_set_efer(&svm->vcpu, 0);
841         save->dr6 = 0xffff0ff0;
842         save->dr7 = 0x400;
843         save->rflags = 2;
844         save->rip = 0x0000fff0;
845         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
846
847         /*
848          * This is the guest-visible cr0 value.
849          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
850          */
851         svm->vcpu.arch.cr0 = 0;
852         (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
853
854         save->cr4 = X86_CR4_PAE;
855         /* rdx = ?? */
856
857         if (npt_enabled) {
858                 /* Setup VMCB for Nested Paging */
859                 control->nested_ctl = 1;
860                 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
861                                         (1ULL << INTERCEPT_INVLPG));
862                 control->intercept_exceptions &= ~(1 << PF_VECTOR);
863                 control->intercept_cr_read &= ~INTERCEPT_CR3_MASK;
864                 control->intercept_cr_write &= ~INTERCEPT_CR3_MASK;
865                 save->g_pat = 0x0007040600070406ULL;
866                 save->cr3 = 0;
867                 save->cr4 = 0;
868         }
869         force_new_asid(&svm->vcpu);
870
871         svm->nested.vmcb = 0;
872         svm->vcpu.arch.hflags = 0;
873
874         if (svm_has(SVM_FEATURE_PAUSE_FILTER)) {
875                 control->pause_filter_count = 3000;
876                 control->intercept |= (1ULL << INTERCEPT_PAUSE);
877         }
878
879         enable_gif(svm);
880 }
881
882 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
883 {
884         struct vcpu_svm *svm = to_svm(vcpu);
885
886         init_vmcb(svm);
887
888         if (!kvm_vcpu_is_bsp(vcpu)) {
889                 kvm_rip_write(vcpu, 0);
890                 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
891                 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
892         }
893         vcpu->arch.regs_avail = ~0;
894         vcpu->arch.regs_dirty = ~0;
895
896         return 0;
897 }
898
899 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
900 {
901         struct vcpu_svm *svm;
902         struct page *page;
903         struct page *msrpm_pages;
904         struct page *hsave_page;
905         struct page *nested_msrpm_pages;
906         int err;
907
908         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
909         if (!svm) {
910                 err = -ENOMEM;
911                 goto out;
912         }
913
914         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
915         if (err)
916                 goto free_svm;
917
918         err = -ENOMEM;
919         page = alloc_page(GFP_KERNEL);
920         if (!page)
921                 goto uninit;
922
923         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
924         if (!msrpm_pages)
925                 goto free_page1;
926
927         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
928         if (!nested_msrpm_pages)
929                 goto free_page2;
930
931         hsave_page = alloc_page(GFP_KERNEL);
932         if (!hsave_page)
933                 goto free_page3;
934
935         svm->nested.hsave = page_address(hsave_page);
936
937         svm->msrpm = page_address(msrpm_pages);
938         svm_vcpu_init_msrpm(svm->msrpm);
939
940         svm->nested.msrpm = page_address(nested_msrpm_pages);
941         svm_vcpu_init_msrpm(svm->nested.msrpm);
942
943         svm->vmcb = page_address(page);
944         clear_page(svm->vmcb);
945         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
946         svm->asid_generation = 0;
947         init_vmcb(svm);
948         kvm_write_tsc(&svm->vcpu, 0);
949
950         err = fx_init(&svm->vcpu);
951         if (err)
952                 goto free_page4;
953
954         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
955         if (kvm_vcpu_is_bsp(&svm->vcpu))
956                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
957
958         return &svm->vcpu;
959
960 free_page4:
961         __free_page(hsave_page);
962 free_page3:
963         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
964 free_page2:
965         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
966 free_page1:
967         __free_page(page);
968 uninit:
969         kvm_vcpu_uninit(&svm->vcpu);
970 free_svm:
971         kmem_cache_free(kvm_vcpu_cache, svm);
972 out:
973         return ERR_PTR(err);
974 }
975
976 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
977 {
978         struct vcpu_svm *svm = to_svm(vcpu);
979
980         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
981         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
982         __free_page(virt_to_page(svm->nested.hsave));
983         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
984         kvm_vcpu_uninit(vcpu);
985         kmem_cache_free(kvm_vcpu_cache, svm);
986 }
987
988 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
989 {
990         struct vcpu_svm *svm = to_svm(vcpu);
991         int i;
992
993         if (unlikely(cpu != vcpu->cpu)) {
994                 svm->asid_generation = 0;
995         }
996
997         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
998                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
999 }
1000
1001 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1002 {
1003         struct vcpu_svm *svm = to_svm(vcpu);
1004         int i;
1005
1006         ++vcpu->stat.host_state_reload;
1007         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1008                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1009 }
1010
1011 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1012 {
1013         return to_svm(vcpu)->vmcb->save.rflags;
1014 }
1015
1016 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1017 {
1018         to_svm(vcpu)->vmcb->save.rflags = rflags;
1019 }
1020
1021 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1022 {
1023         switch (reg) {
1024         case VCPU_EXREG_PDPTR:
1025                 BUG_ON(!npt_enabled);
1026                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
1027                 break;
1028         default:
1029                 BUG();
1030         }
1031 }
1032
1033 static void svm_set_vintr(struct vcpu_svm *svm)
1034 {
1035         svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
1036 }
1037
1038 static void svm_clear_vintr(struct vcpu_svm *svm)
1039 {
1040         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1041 }
1042
1043 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1044 {
1045         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1046
1047         switch (seg) {
1048         case VCPU_SREG_CS: return &save->cs;
1049         case VCPU_SREG_DS: return &save->ds;
1050         case VCPU_SREG_ES: return &save->es;
1051         case VCPU_SREG_FS: return &save->fs;
1052         case VCPU_SREG_GS: return &save->gs;
1053         case VCPU_SREG_SS: return &save->ss;
1054         case VCPU_SREG_TR: return &save->tr;
1055         case VCPU_SREG_LDTR: return &save->ldtr;
1056         }
1057         BUG();
1058         return NULL;
1059 }
1060
1061 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1062 {
1063         struct vmcb_seg *s = svm_seg(vcpu, seg);
1064
1065         return s->base;
1066 }
1067
1068 static void svm_get_segment(struct kvm_vcpu *vcpu,
1069                             struct kvm_segment *var, int seg)
1070 {
1071         struct vmcb_seg *s = svm_seg(vcpu, seg);
1072
1073         var->base = s->base;
1074         var->limit = s->limit;
1075         var->selector = s->selector;
1076         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1077         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1078         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1079         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1080         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1081         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1082         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1083         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1084
1085         /*
1086          * AMD's VMCB does not have an explicit unusable field, so emulate it
1087          * for cross vendor migration purposes by "not present"
1088          */
1089         var->unusable = !var->present || (var->type == 0);
1090
1091         switch (seg) {
1092         case VCPU_SREG_CS:
1093                 /*
1094                  * SVM always stores 0 for the 'G' bit in the CS selector in
1095                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1096                  * Intel's VMENTRY has a check on the 'G' bit.
1097                  */
1098                 var->g = s->limit > 0xfffff;
1099                 break;
1100         case VCPU_SREG_TR:
1101                 /*
1102                  * Work around a bug where the busy flag in the tr selector
1103                  * isn't exposed
1104                  */
1105                 var->type |= 0x2;
1106                 break;
1107         case VCPU_SREG_DS:
1108         case VCPU_SREG_ES:
1109         case VCPU_SREG_FS:
1110         case VCPU_SREG_GS:
1111                 /*
1112                  * The accessed bit must always be set in the segment
1113                  * descriptor cache, although it can be cleared in the
1114                  * descriptor, the cached bit always remains at 1. Since
1115                  * Intel has a check on this, set it here to support
1116                  * cross-vendor migration.
1117                  */
1118                 if (!var->unusable)
1119                         var->type |= 0x1;
1120                 break;
1121         case VCPU_SREG_SS:
1122                 /*
1123                  * On AMD CPUs sometimes the DB bit in the segment
1124                  * descriptor is left as 1, although the whole segment has
1125                  * been made unusable. Clear it here to pass an Intel VMX
1126                  * entry check when cross vendor migrating.
1127                  */
1128                 if (var->unusable)
1129                         var->db = 0;
1130                 break;
1131         }
1132 }
1133
1134 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1135 {
1136         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1137
1138         return save->cpl;
1139 }
1140
1141 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1142 {
1143         struct vcpu_svm *svm = to_svm(vcpu);
1144
1145         dt->size = svm->vmcb->save.idtr.limit;
1146         dt->address = svm->vmcb->save.idtr.base;
1147 }
1148
1149 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1150 {
1151         struct vcpu_svm *svm = to_svm(vcpu);
1152
1153         svm->vmcb->save.idtr.limit = dt->size;
1154         svm->vmcb->save.idtr.base = dt->address ;
1155 }
1156
1157 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1158 {
1159         struct vcpu_svm *svm = to_svm(vcpu);
1160
1161         dt->size = svm->vmcb->save.gdtr.limit;
1162         dt->address = svm->vmcb->save.gdtr.base;
1163 }
1164
1165 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1166 {
1167         struct vcpu_svm *svm = to_svm(vcpu);
1168
1169         svm->vmcb->save.gdtr.limit = dt->size;
1170         svm->vmcb->save.gdtr.base = dt->address ;
1171 }
1172
1173 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1174 {
1175 }
1176
1177 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1178 {
1179 }
1180
1181 static void update_cr0_intercept(struct vcpu_svm *svm)
1182 {
1183         struct vmcb *vmcb = svm->vmcb;
1184         ulong gcr0 = svm->vcpu.arch.cr0;
1185         u64 *hcr0 = &svm->vmcb->save.cr0;
1186
1187         if (!svm->vcpu.fpu_active)
1188                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1189         else
1190                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1191                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1192
1193
1194         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1195                 vmcb->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
1196                 vmcb->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
1197                 if (is_nested(svm)) {
1198                         struct vmcb *hsave = svm->nested.hsave;
1199
1200                         hsave->control.intercept_cr_read  &= ~INTERCEPT_CR0_MASK;
1201                         hsave->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
1202                         vmcb->control.intercept_cr_read  |= svm->nested.intercept_cr_read;
1203                         vmcb->control.intercept_cr_write |= svm->nested.intercept_cr_write;
1204                 }
1205         } else {
1206                 svm->vmcb->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
1207                 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
1208                 if (is_nested(svm)) {
1209                         struct vmcb *hsave = svm->nested.hsave;
1210
1211                         hsave->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
1212                         hsave->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
1213                 }
1214         }
1215 }
1216
1217 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1218 {
1219         struct vcpu_svm *svm = to_svm(vcpu);
1220
1221         if (is_nested(svm)) {
1222                 /*
1223                  * We are here because we run in nested mode, the host kvm
1224                  * intercepts cr0 writes but the l1 hypervisor does not.
1225                  * But the L1 hypervisor may intercept selective cr0 writes.
1226                  * This needs to be checked here.
1227                  */
1228                 unsigned long old, new;
1229
1230                 /* Remove bits that would trigger a real cr0 write intercept */
1231                 old = vcpu->arch.cr0 & SVM_CR0_SELECTIVE_MASK;
1232                 new = cr0 & SVM_CR0_SELECTIVE_MASK;
1233
1234                 if (old == new) {
1235                         /* cr0 write with ts and mp unchanged */
1236                         svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
1237                         if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE) {
1238                                 svm->nested.vmexit_rip = kvm_rip_read(vcpu);
1239                                 svm->nested.vmexit_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
1240                                 svm->nested.vmexit_rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
1241                                 return;
1242                         }
1243                 }
1244         }
1245
1246 #ifdef CONFIG_X86_64
1247         if (vcpu->arch.efer & EFER_LME) {
1248                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1249                         vcpu->arch.efer |= EFER_LMA;
1250                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1251                 }
1252
1253                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1254                         vcpu->arch.efer &= ~EFER_LMA;
1255                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1256                 }
1257         }
1258 #endif
1259         vcpu->arch.cr0 = cr0;
1260
1261         if (!npt_enabled)
1262                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1263
1264         if (!vcpu->fpu_active)
1265                 cr0 |= X86_CR0_TS;
1266         /*
1267          * re-enable caching here because the QEMU bios
1268          * does not do it - this results in some delay at
1269          * reboot
1270          */
1271         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1272         svm->vmcb->save.cr0 = cr0;
1273         update_cr0_intercept(svm);
1274 }
1275
1276 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1277 {
1278         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1279         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1280
1281         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1282                 force_new_asid(vcpu);
1283
1284         vcpu->arch.cr4 = cr4;
1285         if (!npt_enabled)
1286                 cr4 |= X86_CR4_PAE;
1287         cr4 |= host_cr4_mce;
1288         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1289 }
1290
1291 static void svm_set_segment(struct kvm_vcpu *vcpu,
1292                             struct kvm_segment *var, int seg)
1293 {
1294         struct vcpu_svm *svm = to_svm(vcpu);
1295         struct vmcb_seg *s = svm_seg(vcpu, seg);
1296
1297         s->base = var->base;
1298         s->limit = var->limit;
1299         s->selector = var->selector;
1300         if (var->unusable)
1301                 s->attrib = 0;
1302         else {
1303                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1304                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1305                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1306                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1307                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1308                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1309                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1310                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1311         }
1312         if (seg == VCPU_SREG_CS)
1313                 svm->vmcb->save.cpl
1314                         = (svm->vmcb->save.cs.attrib
1315                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
1316
1317 }
1318
1319 static void update_db_intercept(struct kvm_vcpu *vcpu)
1320 {
1321         struct vcpu_svm *svm = to_svm(vcpu);
1322
1323         svm->vmcb->control.intercept_exceptions &=
1324                 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
1325
1326         if (svm->nmi_singlestep)
1327                 svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
1328
1329         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1330                 if (vcpu->guest_debug &
1331                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1332                         svm->vmcb->control.intercept_exceptions |=
1333                                 1 << DB_VECTOR;
1334                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1335                         svm->vmcb->control.intercept_exceptions |=
1336                                 1 << BP_VECTOR;
1337         } else
1338                 vcpu->guest_debug = 0;
1339 }
1340
1341 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1342 {
1343         struct vcpu_svm *svm = to_svm(vcpu);
1344
1345         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1346                 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1347         else
1348                 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1349
1350         update_db_intercept(vcpu);
1351 }
1352
1353 static void load_host_msrs(struct kvm_vcpu *vcpu)
1354 {
1355 #ifdef CONFIG_X86_64
1356         wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1357 #endif
1358 }
1359
1360 static void save_host_msrs(struct kvm_vcpu *vcpu)
1361 {
1362 #ifdef CONFIG_X86_64
1363         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1364 #endif
1365 }
1366
1367 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1368 {
1369         if (sd->next_asid > sd->max_asid) {
1370                 ++sd->asid_generation;
1371                 sd->next_asid = 1;
1372                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1373         }
1374
1375         svm->asid_generation = sd->asid_generation;
1376         svm->vmcb->control.asid = sd->next_asid++;
1377 }
1378
1379 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1380 {
1381         struct vcpu_svm *svm = to_svm(vcpu);
1382
1383         svm->vmcb->save.dr7 = value;
1384 }
1385
1386 static int pf_interception(struct vcpu_svm *svm)
1387 {
1388         u64 fault_address = svm->vmcb->control.exit_info_2;
1389         u32 error_code;
1390         int r = 1;
1391
1392         switch (svm->apf_reason) {
1393         default:
1394                 error_code = svm->vmcb->control.exit_info_1;
1395
1396                 trace_kvm_page_fault(fault_address, error_code);
1397                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1398                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1399                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1400                 break;
1401         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1402                 svm->apf_reason = 0;
1403                 local_irq_disable();
1404                 kvm_async_pf_task_wait(fault_address);
1405                 local_irq_enable();
1406                 break;
1407         case KVM_PV_REASON_PAGE_READY:
1408                 svm->apf_reason = 0;
1409                 local_irq_disable();
1410                 kvm_async_pf_task_wake(fault_address);
1411                 local_irq_enable();
1412                 break;
1413         }
1414         return r;
1415 }
1416
1417 static int db_interception(struct vcpu_svm *svm)
1418 {
1419         struct kvm_run *kvm_run = svm->vcpu.run;
1420
1421         if (!(svm->vcpu.guest_debug &
1422               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1423                 !svm->nmi_singlestep) {
1424                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1425                 return 1;
1426         }
1427
1428         if (svm->nmi_singlestep) {
1429                 svm->nmi_singlestep = false;
1430                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1431                         svm->vmcb->save.rflags &=
1432                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1433                 update_db_intercept(&svm->vcpu);
1434         }
1435
1436         if (svm->vcpu.guest_debug &
1437             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1438                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1439                 kvm_run->debug.arch.pc =
1440                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1441                 kvm_run->debug.arch.exception = DB_VECTOR;
1442                 return 0;
1443         }
1444
1445         return 1;
1446 }
1447
1448 static int bp_interception(struct vcpu_svm *svm)
1449 {
1450         struct kvm_run *kvm_run = svm->vcpu.run;
1451
1452         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1453         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1454         kvm_run->debug.arch.exception = BP_VECTOR;
1455         return 0;
1456 }
1457
1458 static int ud_interception(struct vcpu_svm *svm)
1459 {
1460         int er;
1461
1462         er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
1463         if (er != EMULATE_DONE)
1464                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1465         return 1;
1466 }
1467
1468 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1469 {
1470         struct vcpu_svm *svm = to_svm(vcpu);
1471         u32 excp;
1472
1473         if (is_nested(svm)) {
1474                 u32 h_excp, n_excp;
1475
1476                 h_excp  = svm->nested.hsave->control.intercept_exceptions;
1477                 n_excp  = svm->nested.intercept_exceptions;
1478                 h_excp &= ~(1 << NM_VECTOR);
1479                 excp    = h_excp | n_excp;
1480         } else {
1481                 excp  = svm->vmcb->control.intercept_exceptions;
1482                 excp &= ~(1 << NM_VECTOR);
1483         }
1484
1485         svm->vmcb->control.intercept_exceptions = excp;
1486
1487         svm->vcpu.fpu_active = 1;
1488         update_cr0_intercept(svm);
1489 }
1490
1491 static int nm_interception(struct vcpu_svm *svm)
1492 {
1493         svm_fpu_activate(&svm->vcpu);
1494         return 1;
1495 }
1496
1497 static bool is_erratum_383(void)
1498 {
1499         int err, i;
1500         u64 value;
1501
1502         if (!erratum_383_found)
1503                 return false;
1504
1505         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1506         if (err)
1507                 return false;
1508
1509         /* Bit 62 may or may not be set for this mce */
1510         value &= ~(1ULL << 62);
1511
1512         if (value != 0xb600000000010015ULL)
1513                 return false;
1514
1515         /* Clear MCi_STATUS registers */
1516         for (i = 0; i < 6; ++i)
1517                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1518
1519         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1520         if (!err) {
1521                 u32 low, high;
1522
1523                 value &= ~(1ULL << 2);
1524                 low    = lower_32_bits(value);
1525                 high   = upper_32_bits(value);
1526
1527                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1528         }
1529
1530         /* Flush tlb to evict multi-match entries */
1531         __flush_tlb_all();
1532
1533         return true;
1534 }
1535
1536 static void svm_handle_mce(struct vcpu_svm *svm)
1537 {
1538         if (is_erratum_383()) {
1539                 /*
1540                  * Erratum 383 triggered. Guest state is corrupt so kill the
1541                  * guest.
1542                  */
1543                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1544
1545                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1546
1547                 return;
1548         }
1549
1550         /*
1551          * On an #MC intercept the MCE handler is not called automatically in
1552          * the host. So do it by hand here.
1553          */
1554         asm volatile (
1555                 "int $0x12\n");
1556         /* not sure if we ever come back to this point */
1557
1558         return;
1559 }
1560
1561 static int mc_interception(struct vcpu_svm *svm)
1562 {
1563         return 1;
1564 }
1565
1566 static int shutdown_interception(struct vcpu_svm *svm)
1567 {
1568         struct kvm_run *kvm_run = svm->vcpu.run;
1569
1570         /*
1571          * VMCB is undefined after a SHUTDOWN intercept
1572          * so reinitialize it.
1573          */
1574         clear_page(svm->vmcb);
1575         init_vmcb(svm);
1576
1577         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1578         return 0;
1579 }
1580
1581 static int io_interception(struct vcpu_svm *svm)
1582 {
1583         struct kvm_vcpu *vcpu = &svm->vcpu;
1584         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1585         int size, in, string;
1586         unsigned port;
1587
1588         ++svm->vcpu.stat.io_exits;
1589         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1590         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1591         if (string || in)
1592                 return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
1593
1594         port = io_info >> 16;
1595         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1596         svm->next_rip = svm->vmcb->control.exit_info_2;
1597         skip_emulated_instruction(&svm->vcpu);
1598
1599         return kvm_fast_pio_out(vcpu, size, port);
1600 }
1601
1602 static int nmi_interception(struct vcpu_svm *svm)
1603 {
1604         return 1;
1605 }
1606
1607 static int intr_interception(struct vcpu_svm *svm)
1608 {
1609         ++svm->vcpu.stat.irq_exits;
1610         return 1;
1611 }
1612
1613 static int nop_on_interception(struct vcpu_svm *svm)
1614 {
1615         return 1;
1616 }
1617
1618 static int halt_interception(struct vcpu_svm *svm)
1619 {
1620         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1621         skip_emulated_instruction(&svm->vcpu);
1622         return kvm_emulate_halt(&svm->vcpu);
1623 }
1624
1625 static int vmmcall_interception(struct vcpu_svm *svm)
1626 {
1627         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1628         skip_emulated_instruction(&svm->vcpu);
1629         kvm_emulate_hypercall(&svm->vcpu);
1630         return 1;
1631 }
1632
1633 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1634 {
1635         struct vcpu_svm *svm = to_svm(vcpu);
1636
1637         return svm->nested.nested_cr3;
1638 }
1639
1640 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1641                                    unsigned long root)
1642 {
1643         struct vcpu_svm *svm = to_svm(vcpu);
1644
1645         svm->vmcb->control.nested_cr3 = root;
1646         force_new_asid(vcpu);
1647 }
1648
1649 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu)
1650 {
1651         struct vcpu_svm *svm = to_svm(vcpu);
1652
1653         svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1654         svm->vmcb->control.exit_code_hi = 0;
1655         svm->vmcb->control.exit_info_1 = vcpu->arch.fault.error_code;
1656         svm->vmcb->control.exit_info_2 = vcpu->arch.fault.address;
1657
1658         nested_svm_vmexit(svm);
1659 }
1660
1661 static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1662 {
1663         int r;
1664
1665         r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1666
1667         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
1668         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
1669         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1670         vcpu->arch.mmu.shadow_root_level = get_npt_level();
1671         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
1672
1673         return r;
1674 }
1675
1676 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1677 {
1678         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1679 }
1680
1681 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1682 {
1683         if (!(svm->vcpu.arch.efer & EFER_SVME)
1684             || !is_paging(&svm->vcpu)) {
1685                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1686                 return 1;
1687         }
1688
1689         if (svm->vmcb->save.cpl) {
1690                 kvm_inject_gp(&svm->vcpu, 0);
1691                 return 1;
1692         }
1693
1694        return 0;
1695 }
1696
1697 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1698                                       bool has_error_code, u32 error_code)
1699 {
1700         int vmexit;
1701
1702         if (!is_nested(svm))
1703                 return 0;
1704
1705         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1706         svm->vmcb->control.exit_code_hi = 0;
1707         svm->vmcb->control.exit_info_1 = error_code;
1708         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1709
1710         vmexit = nested_svm_intercept(svm);
1711         if (vmexit == NESTED_EXIT_DONE)
1712                 svm->nested.exit_required = true;
1713
1714         return vmexit;
1715 }
1716
1717 /* This function returns true if it is save to enable the irq window */
1718 static inline bool nested_svm_intr(struct vcpu_svm *svm)
1719 {
1720         if (!is_nested(svm))
1721                 return true;
1722
1723         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1724                 return true;
1725
1726         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1727                 return false;
1728
1729         /*
1730          * if vmexit was already requested (by intercepted exception
1731          * for instance) do not overwrite it with "external interrupt"
1732          * vmexit.
1733          */
1734         if (svm->nested.exit_required)
1735                 return false;
1736
1737         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
1738         svm->vmcb->control.exit_info_1 = 0;
1739         svm->vmcb->control.exit_info_2 = 0;
1740
1741         if (svm->nested.intercept & 1ULL) {
1742                 /*
1743                  * The #vmexit can't be emulated here directly because this
1744                  * code path runs with irqs and preemtion disabled. A
1745                  * #vmexit emulation might sleep. Only signal request for
1746                  * the #vmexit here.
1747                  */
1748                 svm->nested.exit_required = true;
1749                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1750                 return false;
1751         }
1752
1753         return true;
1754 }
1755
1756 /* This function returns true if it is save to enable the nmi window */
1757 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
1758 {
1759         if (!is_nested(svm))
1760                 return true;
1761
1762         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
1763                 return true;
1764
1765         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
1766         svm->nested.exit_required = true;
1767
1768         return false;
1769 }
1770
1771 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
1772 {
1773         struct page *page;
1774
1775         might_sleep();
1776
1777         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1778         if (is_error_page(page))
1779                 goto error;
1780
1781         *_page = page;
1782
1783         return kmap(page);
1784
1785 error:
1786         kvm_release_page_clean(page);
1787         kvm_inject_gp(&svm->vcpu, 0);
1788
1789         return NULL;
1790 }
1791
1792 static void nested_svm_unmap(struct page *page)
1793 {
1794         kunmap(page);
1795         kvm_release_page_dirty(page);
1796 }
1797
1798 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
1799 {
1800         unsigned port;
1801         u8 val, bit;
1802         u64 gpa;
1803
1804         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
1805                 return NESTED_EXIT_HOST;
1806
1807         port = svm->vmcb->control.exit_info_1 >> 16;
1808         gpa  = svm->nested.vmcb_iopm + (port / 8);
1809         bit  = port % 8;
1810         val  = 0;
1811
1812         if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
1813                 val &= (1 << bit);
1814
1815         return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1816 }
1817
1818 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1819 {
1820         u32 offset, msr, value;
1821         int write, mask;
1822
1823         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1824                 return NESTED_EXIT_HOST;
1825
1826         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1827         offset = svm_msrpm_offset(msr);
1828         write  = svm->vmcb->control.exit_info_1 & 1;
1829         mask   = 1 << ((2 * (msr & 0xf)) + write);
1830
1831         if (offset == MSR_INVALID)
1832                 return NESTED_EXIT_DONE;
1833
1834         /* Offset is in 32 bit units but need in 8 bit units */
1835         offset *= 4;
1836
1837         if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
1838                 return NESTED_EXIT_DONE;
1839
1840         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1841 }
1842
1843 static int nested_svm_exit_special(struct vcpu_svm *svm)
1844 {
1845         u32 exit_code = svm->vmcb->control.exit_code;
1846
1847         switch (exit_code) {
1848         case SVM_EXIT_INTR:
1849         case SVM_EXIT_NMI:
1850         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
1851                 return NESTED_EXIT_HOST;
1852         case SVM_EXIT_NPF:
1853                 /* For now we are always handling NPFs when using them */
1854                 if (npt_enabled)
1855                         return NESTED_EXIT_HOST;
1856                 break;
1857         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1858                 /* When we're shadowing, trap PFs, but not async PF */
1859                 if (!npt_enabled && svm->apf_reason == 0)
1860                         return NESTED_EXIT_HOST;
1861                 break;
1862         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
1863                 nm_interception(svm);
1864                 break;
1865         default:
1866                 break;
1867         }
1868
1869         return NESTED_EXIT_CONTINUE;
1870 }
1871
1872 /*
1873  * If this function returns true, this #vmexit was already handled
1874  */
1875 static int nested_svm_intercept(struct vcpu_svm *svm)
1876 {
1877         u32 exit_code = svm->vmcb->control.exit_code;
1878         int vmexit = NESTED_EXIT_HOST;
1879
1880         switch (exit_code) {
1881         case SVM_EXIT_MSR:
1882                 vmexit = nested_svm_exit_handled_msr(svm);
1883                 break;
1884         case SVM_EXIT_IOIO:
1885                 vmexit = nested_svm_intercept_ioio(svm);
1886                 break;
1887         case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
1888                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
1889                 if (svm->nested.intercept_cr_read & cr_bits)
1890                         vmexit = NESTED_EXIT_DONE;
1891                 break;
1892         }
1893         case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
1894                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
1895                 if (svm->nested.intercept_cr_write & cr_bits)
1896                         vmexit = NESTED_EXIT_DONE;
1897                 break;
1898         }
1899         case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
1900                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
1901                 if (svm->nested.intercept_dr_read & dr_bits)
1902                         vmexit = NESTED_EXIT_DONE;
1903                 break;
1904         }
1905         case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
1906                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
1907                 if (svm->nested.intercept_dr_write & dr_bits)
1908                         vmexit = NESTED_EXIT_DONE;
1909                 break;
1910         }
1911         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1912                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1913                 if (svm->nested.intercept_exceptions & excp_bits)
1914                         vmexit = NESTED_EXIT_DONE;
1915                 /* async page fault always cause vmexit */
1916                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
1917                          svm->apf_reason != 0)
1918                         vmexit = NESTED_EXIT_DONE;
1919                 break;
1920         }
1921         case SVM_EXIT_ERR: {
1922                 vmexit = NESTED_EXIT_DONE;
1923                 break;
1924         }
1925         default: {
1926                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1927                 if (svm->nested.intercept & exit_bits)
1928                         vmexit = NESTED_EXIT_DONE;
1929         }
1930         }
1931
1932         return vmexit;
1933 }
1934
1935 static int nested_svm_exit_handled(struct vcpu_svm *svm)
1936 {
1937         int vmexit;
1938
1939         vmexit = nested_svm_intercept(svm);
1940
1941         if (vmexit == NESTED_EXIT_DONE)
1942                 nested_svm_vmexit(svm);
1943
1944         return vmexit;
1945 }
1946
1947 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
1948 {
1949         struct vmcb_control_area *dst  = &dst_vmcb->control;
1950         struct vmcb_control_area *from = &from_vmcb->control;
1951
1952         dst->intercept_cr_read    = from->intercept_cr_read;
1953         dst->intercept_cr_write   = from->intercept_cr_write;
1954         dst->intercept_dr_read    = from->intercept_dr_read;
1955         dst->intercept_dr_write   = from->intercept_dr_write;
1956         dst->intercept_exceptions = from->intercept_exceptions;
1957         dst->intercept            = from->intercept;
1958         dst->iopm_base_pa         = from->iopm_base_pa;
1959         dst->msrpm_base_pa        = from->msrpm_base_pa;
1960         dst->tsc_offset           = from->tsc_offset;
1961         dst->asid                 = from->asid;
1962         dst->tlb_ctl              = from->tlb_ctl;
1963         dst->int_ctl              = from->int_ctl;
1964         dst->int_vector           = from->int_vector;
1965         dst->int_state            = from->int_state;
1966         dst->exit_code            = from->exit_code;
1967         dst->exit_code_hi         = from->exit_code_hi;
1968         dst->exit_info_1          = from->exit_info_1;
1969         dst->exit_info_2          = from->exit_info_2;
1970         dst->exit_int_info        = from->exit_int_info;
1971         dst->exit_int_info_err    = from->exit_int_info_err;
1972         dst->nested_ctl           = from->nested_ctl;
1973         dst->event_inj            = from->event_inj;
1974         dst->event_inj_err        = from->event_inj_err;
1975         dst->nested_cr3           = from->nested_cr3;
1976         dst->lbr_ctl              = from->lbr_ctl;
1977 }
1978
1979 static int nested_svm_vmexit(struct vcpu_svm *svm)
1980 {
1981         struct vmcb *nested_vmcb;
1982         struct vmcb *hsave = svm->nested.hsave;
1983         struct vmcb *vmcb = svm->vmcb;
1984         struct page *page;
1985
1986         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
1987                                        vmcb->control.exit_info_1,
1988                                        vmcb->control.exit_info_2,
1989                                        vmcb->control.exit_int_info,
1990                                        vmcb->control.exit_int_info_err);
1991
1992         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
1993         if (!nested_vmcb)
1994                 return 1;
1995
1996         /* Exit nested SVM mode */
1997         svm->nested.vmcb = 0;
1998
1999         /* Give the current vmcb to the guest */
2000         disable_gif(svm);
2001
2002         nested_vmcb->save.es     = vmcb->save.es;
2003         nested_vmcb->save.cs     = vmcb->save.cs;
2004         nested_vmcb->save.ss     = vmcb->save.ss;
2005         nested_vmcb->save.ds     = vmcb->save.ds;
2006         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2007         nested_vmcb->save.idtr   = vmcb->save.idtr;
2008         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2009         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2010         nested_vmcb->save.cr3    = svm->vcpu.arch.cr3;
2011         nested_vmcb->save.cr2    = vmcb->save.cr2;
2012         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2013         nested_vmcb->save.rflags = vmcb->save.rflags;
2014         nested_vmcb->save.rip    = vmcb->save.rip;
2015         nested_vmcb->save.rsp    = vmcb->save.rsp;
2016         nested_vmcb->save.rax    = vmcb->save.rax;
2017         nested_vmcb->save.dr7    = vmcb->save.dr7;
2018         nested_vmcb->save.dr6    = vmcb->save.dr6;
2019         nested_vmcb->save.cpl    = vmcb->save.cpl;
2020
2021         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2022         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2023         nested_vmcb->control.int_state         = vmcb->control.int_state;
2024         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2025         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2026         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2027         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2028         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2029         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2030         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2031
2032         /*
2033          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2034          * to make sure that we do not lose injected events. So check event_inj
2035          * here and copy it to exit_int_info if it is valid.
2036          * Exit_int_info and event_inj can't be both valid because the case
2037          * below only happens on a VMRUN instruction intercept which has
2038          * no valid exit_int_info set.
2039          */
2040         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2041                 struct vmcb_control_area *nc = &nested_vmcb->control;
2042
2043                 nc->exit_int_info     = vmcb->control.event_inj;
2044                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2045         }
2046
2047         nested_vmcb->control.tlb_ctl           = 0;
2048         nested_vmcb->control.event_inj         = 0;
2049         nested_vmcb->control.event_inj_err     = 0;
2050
2051         /* We always set V_INTR_MASKING and remember the old value in hflags */
2052         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2053                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2054
2055         /* Restore the original control entries */
2056         copy_vmcb_control_area(vmcb, hsave);
2057
2058         kvm_clear_exception_queue(&svm->vcpu);
2059         kvm_clear_interrupt_queue(&svm->vcpu);
2060
2061         svm->nested.nested_cr3 = 0;
2062
2063         /* Restore selected save entries */
2064         svm->vmcb->save.es = hsave->save.es;
2065         svm->vmcb->save.cs = hsave->save.cs;
2066         svm->vmcb->save.ss = hsave->save.ss;
2067         svm->vmcb->save.ds = hsave->save.ds;
2068         svm->vmcb->save.gdtr = hsave->save.gdtr;
2069         svm->vmcb->save.idtr = hsave->save.idtr;
2070         svm->vmcb->save.rflags = hsave->save.rflags;
2071         svm_set_efer(&svm->vcpu, hsave->save.efer);
2072         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2073         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2074         if (npt_enabled) {
2075                 svm->vmcb->save.cr3 = hsave->save.cr3;
2076                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2077         } else {
2078                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2079         }
2080         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2081         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2082         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2083         svm->vmcb->save.dr7 = 0;
2084         svm->vmcb->save.cpl = 0;
2085         svm->vmcb->control.exit_int_info = 0;
2086
2087         nested_svm_unmap(page);
2088
2089         nested_svm_uninit_mmu_context(&svm->vcpu);
2090         kvm_mmu_reset_context(&svm->vcpu);
2091         kvm_mmu_load(&svm->vcpu);
2092
2093         return 0;
2094 }
2095
2096 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2097 {
2098         /*
2099          * This function merges the msr permission bitmaps of kvm and the
2100          * nested vmcb. It is omptimized in that it only merges the parts where
2101          * the kvm msr permission bitmap may contain zero bits
2102          */
2103         int i;
2104
2105         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2106                 return true;
2107
2108         for (i = 0; i < MSRPM_OFFSETS; i++) {
2109                 u32 value, p;
2110                 u64 offset;
2111
2112                 if (msrpm_offsets[i] == 0xffffffff)
2113                         break;
2114
2115                 p      = msrpm_offsets[i];
2116                 offset = svm->nested.vmcb_msrpm + (p * 4);
2117
2118                 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2119                         return false;
2120
2121                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2122         }
2123
2124         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2125
2126         return true;
2127 }
2128
2129 static bool nested_vmcb_checks(struct vmcb *vmcb)
2130 {
2131         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2132                 return false;
2133
2134         if (vmcb->control.asid == 0)
2135                 return false;
2136
2137         if (vmcb->control.nested_ctl && !npt_enabled)
2138                 return false;
2139
2140         return true;
2141 }
2142
2143 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2144 {
2145         struct vmcb *nested_vmcb;
2146         struct vmcb *hsave = svm->nested.hsave;
2147         struct vmcb *vmcb = svm->vmcb;
2148         struct page *page;
2149         u64 vmcb_gpa;
2150
2151         vmcb_gpa = svm->vmcb->save.rax;
2152
2153         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2154         if (!nested_vmcb)
2155                 return false;
2156
2157         if (!nested_vmcb_checks(nested_vmcb)) {
2158                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2159                 nested_vmcb->control.exit_code_hi = 0;
2160                 nested_vmcb->control.exit_info_1  = 0;
2161                 nested_vmcb->control.exit_info_2  = 0;
2162
2163                 nested_svm_unmap(page);
2164
2165                 return false;
2166         }
2167
2168         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2169                                nested_vmcb->save.rip,
2170                                nested_vmcb->control.int_ctl,
2171                                nested_vmcb->control.event_inj,
2172                                nested_vmcb->control.nested_ctl);
2173
2174         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr_read,
2175                                     nested_vmcb->control.intercept_cr_write,
2176                                     nested_vmcb->control.intercept_exceptions,
2177                                     nested_vmcb->control.intercept);
2178
2179         /* Clear internal status */
2180         kvm_clear_exception_queue(&svm->vcpu);
2181         kvm_clear_interrupt_queue(&svm->vcpu);
2182
2183         /*
2184          * Save the old vmcb, so we don't need to pick what we save, but can
2185          * restore everything when a VMEXIT occurs
2186          */
2187         hsave->save.es     = vmcb->save.es;
2188         hsave->save.cs     = vmcb->save.cs;
2189         hsave->save.ss     = vmcb->save.ss;
2190         hsave->save.ds     = vmcb->save.ds;
2191         hsave->save.gdtr   = vmcb->save.gdtr;
2192         hsave->save.idtr   = vmcb->save.idtr;
2193         hsave->save.efer   = svm->vcpu.arch.efer;
2194         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2195         hsave->save.cr4    = svm->vcpu.arch.cr4;
2196         hsave->save.rflags = vmcb->save.rflags;
2197         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2198         hsave->save.rsp    = vmcb->save.rsp;
2199         hsave->save.rax    = vmcb->save.rax;
2200         if (npt_enabled)
2201                 hsave->save.cr3    = vmcb->save.cr3;
2202         else
2203                 hsave->save.cr3    = svm->vcpu.arch.cr3;
2204
2205         copy_vmcb_control_area(hsave, vmcb);
2206
2207         if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
2208                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2209         else
2210                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2211
2212         if (nested_vmcb->control.nested_ctl) {
2213                 kvm_mmu_unload(&svm->vcpu);
2214                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2215                 nested_svm_init_mmu_context(&svm->vcpu);
2216         }
2217
2218         /* Load the nested guest state */
2219         svm->vmcb->save.es = nested_vmcb->save.es;
2220         svm->vmcb->save.cs = nested_vmcb->save.cs;
2221         svm->vmcb->save.ss = nested_vmcb->save.ss;
2222         svm->vmcb->save.ds = nested_vmcb->save.ds;
2223         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2224         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2225         svm->vmcb->save.rflags = nested_vmcb->save.rflags;
2226         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2227         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2228         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2229         if (npt_enabled) {
2230                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2231                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2232         } else
2233                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2234
2235         /* Guest paging mode is active - reset mmu */
2236         kvm_mmu_reset_context(&svm->vcpu);
2237
2238         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2239         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2240         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2241         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2242
2243         /* In case we don't even reach vcpu_run, the fields are not updated */
2244         svm->vmcb->save.rax = nested_vmcb->save.rax;
2245         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2246         svm->vmcb->save.rip = nested_vmcb->save.rip;
2247         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2248         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2249         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2250
2251         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2252         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2253
2254         /* cache intercepts */
2255         svm->nested.intercept_cr_read    = nested_vmcb->control.intercept_cr_read;
2256         svm->nested.intercept_cr_write   = nested_vmcb->control.intercept_cr_write;
2257         svm->nested.intercept_dr_read    = nested_vmcb->control.intercept_dr_read;
2258         svm->nested.intercept_dr_write   = nested_vmcb->control.intercept_dr_write;
2259         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2260         svm->nested.intercept            = nested_vmcb->control.intercept;
2261
2262         force_new_asid(&svm->vcpu);
2263         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2264         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2265                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2266         else
2267                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2268
2269         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2270                 /* We only want the cr8 intercept bits of the guest */
2271                 svm->vmcb->control.intercept_cr_read &= ~INTERCEPT_CR8_MASK;
2272                 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2273         }
2274
2275         /* We don't want to see VMMCALLs from a nested guest */
2276         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMMCALL);
2277
2278         /*
2279          * We don't want a nested guest to be more powerful than the guest, so
2280          * all intercepts are ORed
2281          */
2282         svm->vmcb->control.intercept_cr_read |=
2283                 nested_vmcb->control.intercept_cr_read;
2284         svm->vmcb->control.intercept_cr_write |=
2285                 nested_vmcb->control.intercept_cr_write;
2286         svm->vmcb->control.intercept_dr_read |=
2287                 nested_vmcb->control.intercept_dr_read;
2288         svm->vmcb->control.intercept_dr_write |=
2289                 nested_vmcb->control.intercept_dr_write;
2290         svm->vmcb->control.intercept_exceptions |=
2291                 nested_vmcb->control.intercept_exceptions;
2292
2293         svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
2294
2295         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2296         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2297         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2298         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2299         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2300         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2301
2302         nested_svm_unmap(page);
2303
2304         /* nested_vmcb is our indicator if nested SVM is activated */
2305         svm->nested.vmcb = vmcb_gpa;
2306
2307         enable_gif(svm);
2308
2309         return true;
2310 }
2311
2312 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2313 {
2314         to_vmcb->save.fs = from_vmcb->save.fs;
2315         to_vmcb->save.gs = from_vmcb->save.gs;
2316         to_vmcb->save.tr = from_vmcb->save.tr;
2317         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2318         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2319         to_vmcb->save.star = from_vmcb->save.star;
2320         to_vmcb->save.lstar = from_vmcb->save.lstar;
2321         to_vmcb->save.cstar = from_vmcb->save.cstar;
2322         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2323         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2324         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2325         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2326 }
2327
2328 static int vmload_interception(struct vcpu_svm *svm)
2329 {
2330         struct vmcb *nested_vmcb;
2331         struct page *page;
2332
2333         if (nested_svm_check_permissions(svm))
2334                 return 1;
2335
2336         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2337         skip_emulated_instruction(&svm->vcpu);
2338
2339         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2340         if (!nested_vmcb)
2341                 return 1;
2342
2343         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2344         nested_svm_unmap(page);
2345
2346         return 1;
2347 }
2348
2349 static int vmsave_interception(struct vcpu_svm *svm)
2350 {
2351         struct vmcb *nested_vmcb;
2352         struct page *page;
2353
2354         if (nested_svm_check_permissions(svm))
2355                 return 1;
2356
2357         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2358         skip_emulated_instruction(&svm->vcpu);
2359
2360         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2361         if (!nested_vmcb)
2362                 return 1;
2363
2364         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2365         nested_svm_unmap(page);
2366
2367         return 1;
2368 }
2369
2370 static int vmrun_interception(struct vcpu_svm *svm)
2371 {
2372         if (nested_svm_check_permissions(svm))
2373                 return 1;
2374
2375         /* Save rip after vmrun instruction */
2376         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2377
2378         if (!nested_svm_vmrun(svm))
2379                 return 1;
2380
2381         if (!nested_svm_vmrun_msrpm(svm))
2382                 goto failed;
2383
2384         return 1;
2385
2386 failed:
2387
2388         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2389         svm->vmcb->control.exit_code_hi = 0;
2390         svm->vmcb->control.exit_info_1  = 0;
2391         svm->vmcb->control.exit_info_2  = 0;
2392
2393         nested_svm_vmexit(svm);
2394
2395         return 1;
2396 }
2397
2398 static int stgi_interception(struct vcpu_svm *svm)
2399 {
2400         if (nested_svm_check_permissions(svm))
2401                 return 1;
2402
2403         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2404         skip_emulated_instruction(&svm->vcpu);
2405         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2406
2407         enable_gif(svm);
2408
2409         return 1;
2410 }
2411
2412 static int clgi_interception(struct vcpu_svm *svm)
2413 {
2414         if (nested_svm_check_permissions(svm))
2415                 return 1;
2416
2417         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2418         skip_emulated_instruction(&svm->vcpu);
2419
2420         disable_gif(svm);
2421
2422         /* After a CLGI no interrupts should come */
2423         svm_clear_vintr(svm);
2424         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2425
2426         return 1;
2427 }
2428
2429 static int invlpga_interception(struct vcpu_svm *svm)
2430 {
2431         struct kvm_vcpu *vcpu = &svm->vcpu;
2432
2433         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2434                           vcpu->arch.regs[VCPU_REGS_RAX]);
2435
2436         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2437         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2438
2439         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2440         skip_emulated_instruction(&svm->vcpu);
2441         return 1;
2442 }
2443
2444 static int skinit_interception(struct vcpu_svm *svm)
2445 {
2446         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2447
2448         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2449         return 1;
2450 }
2451
2452 static int invalid_op_interception(struct vcpu_svm *svm)
2453 {
2454         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2455         return 1;
2456 }
2457
2458 static int task_switch_interception(struct vcpu_svm *svm)
2459 {
2460         u16 tss_selector;
2461         int reason;
2462         int int_type = svm->vmcb->control.exit_int_info &
2463                 SVM_EXITINTINFO_TYPE_MASK;
2464         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2465         uint32_t type =
2466                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2467         uint32_t idt_v =
2468                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2469         bool has_error_code = false;
2470         u32 error_code = 0;
2471
2472         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2473
2474         if (svm->vmcb->control.exit_info_2 &
2475             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2476                 reason = TASK_SWITCH_IRET;
2477         else if (svm->vmcb->control.exit_info_2 &
2478                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2479                 reason = TASK_SWITCH_JMP;
2480         else if (idt_v)
2481                 reason = TASK_SWITCH_GATE;
2482         else
2483                 reason = TASK_SWITCH_CALL;
2484
2485         if (reason == TASK_SWITCH_GATE) {
2486                 switch (type) {
2487                 case SVM_EXITINTINFO_TYPE_NMI:
2488                         svm->vcpu.arch.nmi_injected = false;
2489                         break;
2490                 case SVM_EXITINTINFO_TYPE_EXEPT:
2491                         if (svm->vmcb->control.exit_info_2 &
2492                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2493                                 has_error_code = true;
2494                                 error_code =
2495                                         (u32)svm->vmcb->control.exit_info_2;
2496                         }
2497                         kvm_clear_exception_queue(&svm->vcpu);
2498                         break;
2499                 case SVM_EXITINTINFO_TYPE_INTR:
2500                         kvm_clear_interrupt_queue(&svm->vcpu);
2501                         break;
2502                 default:
2503                         break;
2504                 }
2505         }
2506
2507         if (reason != TASK_SWITCH_GATE ||
2508             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2509             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2510              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2511                 skip_emulated_instruction(&svm->vcpu);
2512
2513         if (kvm_task_switch(&svm->vcpu, tss_selector, reason,
2514                                 has_error_code, error_code) == EMULATE_FAIL) {
2515                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2516                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2517                 svm->vcpu.run->internal.ndata = 0;
2518                 return 0;
2519         }
2520         return 1;
2521 }
2522
2523 static int cpuid_interception(struct vcpu_svm *svm)
2524 {
2525         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2526         kvm_emulate_cpuid(&svm->vcpu);
2527         return 1;
2528 }
2529
2530 static int iret_interception(struct vcpu_svm *svm)
2531 {
2532         ++svm->vcpu.stat.nmi_window_exits;
2533         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
2534         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2535         return 1;
2536 }
2537
2538 static int invlpg_interception(struct vcpu_svm *svm)
2539 {
2540         return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
2541 }
2542
2543 static int emulate_on_interception(struct vcpu_svm *svm)
2544 {
2545         return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
2546 }
2547
2548 static int cr0_write_interception(struct vcpu_svm *svm)
2549 {
2550         struct kvm_vcpu *vcpu = &svm->vcpu;
2551         int r;
2552
2553         r = emulate_instruction(&svm->vcpu, 0, 0, 0);
2554
2555         if (svm->nested.vmexit_rip) {
2556                 kvm_register_write(vcpu, VCPU_REGS_RIP, svm->nested.vmexit_rip);
2557                 kvm_register_write(vcpu, VCPU_REGS_RSP, svm->nested.vmexit_rsp);
2558                 kvm_register_write(vcpu, VCPU_REGS_RAX, svm->nested.vmexit_rax);
2559                 svm->nested.vmexit_rip = 0;
2560         }
2561
2562         return r == EMULATE_DONE;
2563 }
2564
2565 static int cr8_write_interception(struct vcpu_svm *svm)
2566 {
2567         struct kvm_run *kvm_run = svm->vcpu.run;
2568
2569         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2570         /* instruction emulation calls kvm_set_cr8() */
2571         emulate_instruction(&svm->vcpu, 0, 0, 0);
2572         if (irqchip_in_kernel(svm->vcpu.kvm)) {
2573                 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2574                 return 1;
2575         }
2576         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2577                 return 1;
2578         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2579         return 0;
2580 }
2581
2582 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2583 {
2584         struct vcpu_svm *svm = to_svm(vcpu);
2585
2586         switch (ecx) {
2587         case MSR_IA32_TSC: {
2588                 u64 tsc_offset;
2589
2590                 if (is_nested(svm))
2591                         tsc_offset = svm->nested.hsave->control.tsc_offset;
2592                 else
2593                         tsc_offset = svm->vmcb->control.tsc_offset;
2594
2595                 *data = tsc_offset + native_read_tsc();
2596                 break;
2597         }
2598         case MSR_STAR:
2599                 *data = svm->vmcb->save.star;
2600                 break;
2601 #ifdef CONFIG_X86_64
2602         case MSR_LSTAR:
2603                 *data = svm->vmcb->save.lstar;
2604                 break;
2605         case MSR_CSTAR:
2606                 *data = svm->vmcb->save.cstar;
2607                 break;
2608         case MSR_KERNEL_GS_BASE:
2609                 *data = svm->vmcb->save.kernel_gs_base;
2610                 break;
2611         case MSR_SYSCALL_MASK:
2612                 *data = svm->vmcb->save.sfmask;
2613                 break;
2614 #endif
2615         case MSR_IA32_SYSENTER_CS:
2616                 *data = svm->vmcb->save.sysenter_cs;
2617                 break;
2618         case MSR_IA32_SYSENTER_EIP:
2619                 *data = svm->sysenter_eip;
2620                 break;
2621         case MSR_IA32_SYSENTER_ESP:
2622                 *data = svm->sysenter_esp;
2623                 break;
2624         /*
2625          * Nobody will change the following 5 values in the VMCB so we can
2626          * safely return them on rdmsr. They will always be 0 until LBRV is
2627          * implemented.
2628          */
2629         case MSR_IA32_DEBUGCTLMSR:
2630                 *data = svm->vmcb->save.dbgctl;
2631                 break;
2632         case MSR_IA32_LASTBRANCHFROMIP:
2633                 *data = svm->vmcb->save.br_from;
2634                 break;
2635         case MSR_IA32_LASTBRANCHTOIP:
2636                 *data = svm->vmcb->save.br_to;
2637                 break;
2638         case MSR_IA32_LASTINTFROMIP:
2639                 *data = svm->vmcb->save.last_excp_from;
2640                 break;
2641         case MSR_IA32_LASTINTTOIP:
2642                 *data = svm->vmcb->save.last_excp_to;
2643                 break;
2644         case MSR_VM_HSAVE_PA:
2645                 *data = svm->nested.hsave_msr;
2646                 break;
2647         case MSR_VM_CR:
2648                 *data = svm->nested.vm_cr_msr;
2649                 break;
2650         case MSR_IA32_UCODE_REV:
2651                 *data = 0x01000065;
2652                 break;
2653         default:
2654                 return kvm_get_msr_common(vcpu, ecx, data);
2655         }
2656         return 0;
2657 }
2658
2659 static int rdmsr_interception(struct vcpu_svm *svm)
2660 {
2661         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2662         u64 data;
2663
2664         if (svm_get_msr(&svm->vcpu, ecx, &data)) {
2665                 trace_kvm_msr_read_ex(ecx);
2666                 kvm_inject_gp(&svm->vcpu, 0);
2667         } else {
2668                 trace_kvm_msr_read(ecx, data);
2669
2670                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2671                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2672                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2673                 skip_emulated_instruction(&svm->vcpu);
2674         }
2675         return 1;
2676 }
2677
2678 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2679 {
2680         struct vcpu_svm *svm = to_svm(vcpu);
2681         int svm_dis, chg_mask;
2682
2683         if (data & ~SVM_VM_CR_VALID_MASK)
2684                 return 1;
2685
2686         chg_mask = SVM_VM_CR_VALID_MASK;
2687
2688         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2689                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2690
2691         svm->nested.vm_cr_msr &= ~chg_mask;
2692         svm->nested.vm_cr_msr |= (data & chg_mask);
2693
2694         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2695
2696         /* check for svm_disable while efer.svme is set */
2697         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2698                 return 1;
2699
2700         return 0;
2701 }
2702
2703 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2704 {
2705         struct vcpu_svm *svm = to_svm(vcpu);
2706
2707         switch (ecx) {
2708         case MSR_IA32_TSC:
2709                 kvm_write_tsc(vcpu, data);
2710                 break;
2711         case MSR_STAR:
2712                 svm->vmcb->save.star = data;
2713                 break;
2714 #ifdef CONFIG_X86_64
2715         case MSR_LSTAR:
2716                 svm->vmcb->save.lstar = data;
2717                 break;
2718         case MSR_CSTAR:
2719                 svm->vmcb->save.cstar = data;
2720                 break;
2721         case MSR_KERNEL_GS_BASE:
2722                 svm->vmcb->save.kernel_gs_base = data;
2723                 break;
2724         case MSR_SYSCALL_MASK:
2725                 svm->vmcb->save.sfmask = data;
2726                 break;
2727 #endif
2728         case MSR_IA32_SYSENTER_CS:
2729                 svm->vmcb->save.sysenter_cs = data;
2730                 break;
2731         case MSR_IA32_SYSENTER_EIP:
2732                 svm->sysenter_eip = data;
2733                 svm->vmcb->save.sysenter_eip = data;
2734                 break;
2735         case MSR_IA32_SYSENTER_ESP:
2736                 svm->sysenter_esp = data;
2737                 svm->vmcb->save.sysenter_esp = data;
2738                 break;
2739         case MSR_IA32_DEBUGCTLMSR:
2740                 if (!svm_has(SVM_FEATURE_LBRV)) {
2741                         pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2742                                         __func__, data);
2743                         break;
2744                 }
2745                 if (data & DEBUGCTL_RESERVED_BITS)
2746                         return 1;
2747
2748                 svm->vmcb->save.dbgctl = data;
2749                 if (data & (1ULL<<0))
2750                         svm_enable_lbrv(svm);
2751                 else
2752                         svm_disable_lbrv(svm);
2753                 break;
2754         case MSR_VM_HSAVE_PA:
2755                 svm->nested.hsave_msr = data;
2756                 break;
2757         case MSR_VM_CR:
2758                 return svm_set_vm_cr(vcpu, data);
2759         case MSR_VM_IGNNE:
2760                 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2761                 break;
2762         default:
2763                 return kvm_set_msr_common(vcpu, ecx, data);
2764         }
2765         return 0;
2766 }
2767
2768 static int wrmsr_interception(struct vcpu_svm *svm)
2769 {
2770         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2771         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2772                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2773
2774
2775         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2776         if (svm_set_msr(&svm->vcpu, ecx, data)) {
2777                 trace_kvm_msr_write_ex(ecx, data);
2778                 kvm_inject_gp(&svm->vcpu, 0);
2779         } else {
2780                 trace_kvm_msr_write(ecx, data);
2781                 skip_emulated_instruction(&svm->vcpu);
2782         }
2783         return 1;
2784 }
2785
2786 static int msr_interception(struct vcpu_svm *svm)
2787 {
2788         if (svm->vmcb->control.exit_info_1)
2789                 return wrmsr_interception(svm);
2790         else
2791                 return rdmsr_interception(svm);
2792 }
2793
2794 static int interrupt_window_interception(struct vcpu_svm *svm)
2795 {
2796         struct kvm_run *kvm_run = svm->vcpu.run;
2797
2798         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2799         svm_clear_vintr(svm);
2800         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2801         /*
2802          * If the user space waits to inject interrupts, exit as soon as
2803          * possible
2804          */
2805         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2806             kvm_run->request_interrupt_window &&
2807             !kvm_cpu_has_interrupt(&svm->vcpu)) {
2808                 ++svm->vcpu.stat.irq_window_exits;
2809                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2810                 return 0;
2811         }
2812
2813         return 1;
2814 }
2815
2816 static int pause_interception(struct vcpu_svm *svm)
2817 {
2818         kvm_vcpu_on_spin(&(svm->vcpu));
2819         return 1;
2820 }
2821
2822 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
2823         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
2824         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
2825         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
2826         [SVM_EXIT_READ_CR8]                     = emulate_on_interception,
2827         [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
2828         [SVM_EXIT_WRITE_CR0]                    = cr0_write_interception,
2829         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
2830         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
2831         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
2832         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
2833         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
2834         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
2835         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
2836         [SVM_EXIT_READ_DR4]                     = emulate_on_interception,
2837         [SVM_EXIT_READ_DR5]                     = emulate_on_interception,
2838         [SVM_EXIT_READ_DR6]                     = emulate_on_interception,
2839         [SVM_EXIT_READ_DR7]                     = emulate_on_interception,
2840         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
2841         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
2842         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
2843         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
2844         [SVM_EXIT_WRITE_DR4]                    = emulate_on_interception,
2845         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
2846         [SVM_EXIT_WRITE_DR6]                    = emulate_on_interception,
2847         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
2848         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
2849         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
2850         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
2851         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
2852         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
2853         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
2854         [SVM_EXIT_INTR]                         = intr_interception,
2855         [SVM_EXIT_NMI]                          = nmi_interception,
2856         [SVM_EXIT_SMI]                          = nop_on_interception,
2857         [SVM_EXIT_INIT]                         = nop_on_interception,
2858         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
2859         [SVM_EXIT_CPUID]                        = cpuid_interception,
2860         [SVM_EXIT_IRET]                         = iret_interception,
2861         [SVM_EXIT_INVD]                         = emulate_on_interception,
2862         [SVM_EXIT_PAUSE]                        = pause_interception,
2863         [SVM_EXIT_HLT]                          = halt_interception,
2864         [SVM_EXIT_INVLPG]                       = invlpg_interception,
2865         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
2866         [SVM_EXIT_IOIO]                         = io_interception,
2867         [SVM_EXIT_MSR]                          = msr_interception,
2868         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
2869         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
2870         [SVM_EXIT_VMRUN]                        = vmrun_interception,
2871         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
2872         [SVM_EXIT_VMLOAD]                       = vmload_interception,
2873         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
2874         [SVM_EXIT_STGI]                         = stgi_interception,
2875         [SVM_EXIT_CLGI]                         = clgi_interception,
2876         [SVM_EXIT_SKINIT]                       = skinit_interception,
2877         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
2878         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
2879         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
2880         [SVM_EXIT_NPF]                          = pf_interception,
2881 };
2882
2883 void dump_vmcb(struct kvm_vcpu *vcpu)
2884 {
2885         struct vcpu_svm *svm = to_svm(vcpu);
2886         struct vmcb_control_area *control = &svm->vmcb->control;
2887         struct vmcb_save_area *save = &svm->vmcb->save;
2888
2889         pr_err("VMCB Control Area:\n");
2890         pr_err("cr_read:            %04x\n", control->intercept_cr_read);
2891         pr_err("cr_write:           %04x\n", control->intercept_cr_write);
2892         pr_err("dr_read:            %04x\n", control->intercept_dr_read);
2893         pr_err("dr_write:           %04x\n", control->intercept_dr_write);
2894         pr_err("exceptions:         %08x\n", control->intercept_exceptions);
2895         pr_err("intercepts:         %016llx\n", control->intercept);
2896         pr_err("pause filter count: %d\n", control->pause_filter_count);
2897         pr_err("iopm_base_pa:       %016llx\n", control->iopm_base_pa);
2898         pr_err("msrpm_base_pa:      %016llx\n", control->msrpm_base_pa);
2899         pr_err("tsc_offset:         %016llx\n", control->tsc_offset);
2900         pr_err("asid:               %d\n", control->asid);
2901         pr_err("tlb_ctl:            %d\n", control->tlb_ctl);
2902         pr_err("int_ctl:            %08x\n", control->int_ctl);
2903         pr_err("int_vector:         %08x\n", control->int_vector);
2904         pr_err("int_state:          %08x\n", control->int_state);
2905         pr_err("exit_code:          %08x\n", control->exit_code);
2906         pr_err("exit_info1:         %016llx\n", control->exit_info_1);
2907         pr_err("exit_info2:         %016llx\n", control->exit_info_2);
2908         pr_err("exit_int_info:      %08x\n", control->exit_int_info);
2909         pr_err("exit_int_info_err:  %08x\n", control->exit_int_info_err);
2910         pr_err("nested_ctl:         %lld\n", control->nested_ctl);
2911         pr_err("nested_cr3:         %016llx\n", control->nested_cr3);
2912         pr_err("event_inj:          %08x\n", control->event_inj);
2913         pr_err("event_inj_err:      %08x\n", control->event_inj_err);
2914         pr_err("lbr_ctl:            %lld\n", control->lbr_ctl);
2915         pr_err("next_rip:           %016llx\n", control->next_rip);
2916         pr_err("VMCB State Save Area:\n");
2917         pr_err("es:   s: %04x a: %04x l: %08x b: %016llx\n",
2918                 save->es.selector, save->es.attrib,
2919                 save->es.limit, save->es.base);
2920         pr_err("cs:   s: %04x a: %04x l: %08x b: %016llx\n",
2921                 save->cs.selector, save->cs.attrib,
2922                 save->cs.limit, save->cs.base);
2923         pr_err("ss:   s: %04x a: %04x l: %08x b: %016llx\n",
2924                 save->ss.selector, save->ss.attrib,
2925                 save->ss.limit, save->ss.base);
2926         pr_err("ds:   s: %04x a: %04x l: %08x b: %016llx\n",
2927                 save->ds.selector, save->ds.attrib,
2928                 save->ds.limit, save->ds.base);
2929         pr_err("fs:   s: %04x a: %04x l: %08x b: %016llx\n",
2930                 save->fs.selector, save->fs.attrib,
2931                 save->fs.limit, save->fs.base);
2932         pr_err("gs:   s: %04x a: %04x l: %08x b: %016llx\n",
2933                 save->gs.selector, save->gs.attrib,
2934                 save->gs.limit, save->gs.base);
2935         pr_err("gdtr: s: %04x a: %04x l: %08x b: %016llx\n",
2936                 save->gdtr.selector, save->gdtr.attrib,
2937                 save->gdtr.limit, save->gdtr.base);
2938         pr_err("ldtr: s: %04x a: %04x l: %08x b: %016llx\n",
2939                 save->ldtr.selector, save->ldtr.attrib,
2940                 save->ldtr.limit, save->ldtr.base);
2941         pr_err("idtr: s: %04x a: %04x l: %08x b: %016llx\n",
2942                 save->idtr.selector, save->idtr.attrib,
2943                 save->idtr.limit, save->idtr.base);
2944         pr_err("tr:   s: %04x a: %04x l: %08x b: %016llx\n",
2945                 save->tr.selector, save->tr.attrib,
2946                 save->tr.limit, save->tr.base);
2947         pr_err("cpl:            %d                efer:         %016llx\n",
2948                 save->cpl, save->efer);
2949         pr_err("cr0:            %016llx cr2:          %016llx\n",
2950                 save->cr0, save->cr2);
2951         pr_err("cr3:            %016llx cr4:          %016llx\n",
2952                 save->cr3, save->cr4);
2953         pr_err("dr6:            %016llx dr7:          %016llx\n",
2954                 save->dr6, save->dr7);
2955         pr_err("rip:            %016llx rflags:       %016llx\n",
2956                 save->rip, save->rflags);
2957         pr_err("rsp:            %016llx rax:          %016llx\n",
2958                 save->rsp, save->rax);
2959         pr_err("star:           %016llx lstar:        %016llx\n",
2960                 save->star, save->lstar);
2961         pr_err("cstar:          %016llx sfmask:       %016llx\n",
2962                 save->cstar, save->sfmask);
2963         pr_err("kernel_gs_base: %016llx sysenter_cs:  %016llx\n",
2964                 save->kernel_gs_base, save->sysenter_cs);
2965         pr_err("sysenter_esp:   %016llx sysenter_eip: %016llx\n",
2966                 save->sysenter_esp, save->sysenter_eip);
2967         pr_err("gpat:           %016llx dbgctl:       %016llx\n",
2968                 save->g_pat, save->dbgctl);
2969         pr_err("br_from:        %016llx br_to:        %016llx\n",
2970                 save->br_from, save->br_to);
2971         pr_err("excp_from:      %016llx excp_to:      %016llx\n",
2972                 save->last_excp_from, save->last_excp_to);
2973
2974 }
2975
2976 static int handle_exit(struct kvm_vcpu *vcpu)
2977 {
2978         struct vcpu_svm *svm = to_svm(vcpu);
2979         struct kvm_run *kvm_run = vcpu->run;
2980         u32 exit_code = svm->vmcb->control.exit_code;
2981
2982         trace_kvm_exit(exit_code, vcpu);
2983
2984         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR0_MASK))
2985                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2986         if (npt_enabled)
2987                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2988
2989         if (unlikely(svm->nested.exit_required)) {
2990                 nested_svm_vmexit(svm);
2991                 svm->nested.exit_required = false;
2992
2993                 return 1;
2994         }
2995
2996         if (is_nested(svm)) {
2997                 int vmexit;
2998
2999                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3000                                         svm->vmcb->control.exit_info_1,
3001                                         svm->vmcb->control.exit_info_2,
3002                                         svm->vmcb->control.exit_int_info,
3003                                         svm->vmcb->control.exit_int_info_err);
3004
3005                 vmexit = nested_svm_exit_special(svm);
3006
3007                 if (vmexit == NESTED_EXIT_CONTINUE)
3008                         vmexit = nested_svm_exit_handled(svm);
3009
3010                 if (vmexit == NESTED_EXIT_DONE)
3011                         return 1;
3012         }
3013
3014         svm_complete_interrupts(svm);
3015
3016         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3017                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3018                 kvm_run->fail_entry.hardware_entry_failure_reason
3019                         = svm->vmcb->control.exit_code;
3020                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3021                 dump_vmcb(vcpu);
3022                 return 0;
3023         }
3024
3025         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3026             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3027             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3028             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3029                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
3030                        "exit_code 0x%x\n",
3031                        __func__, svm->vmcb->control.exit_int_info,
3032                        exit_code);
3033
3034         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3035             || !svm_exit_handlers[exit_code]) {
3036                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3037                 kvm_run->hw.hardware_exit_reason = exit_code;
3038                 return 0;
3039         }
3040
3041         return svm_exit_handlers[exit_code](svm);
3042 }
3043
3044 static void reload_tss(struct kvm_vcpu *vcpu)
3045 {
3046         int cpu = raw_smp_processor_id();
3047
3048         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3049         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3050         load_TR_desc();
3051 }
3052
3053 static void pre_svm_run(struct vcpu_svm *svm)
3054 {
3055         int cpu = raw_smp_processor_id();
3056
3057         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3058
3059         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3060         /* FIXME: handle wraparound of asid_generation */
3061         if (svm->asid_generation != sd->asid_generation)
3062                 new_asid(svm, sd);
3063 }
3064
3065 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3066 {
3067         struct vcpu_svm *svm = to_svm(vcpu);
3068
3069         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3070         vcpu->arch.hflags |= HF_NMI_MASK;
3071         svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
3072         ++vcpu->stat.nmi_injections;
3073 }
3074
3075 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3076 {
3077         struct vmcb_control_area *control;
3078
3079         control = &svm->vmcb->control;
3080         control->int_vector = irq;
3081         control->int_ctl &= ~V_INTR_PRIO_MASK;
3082         control->int_ctl |= V_IRQ_MASK |
3083                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3084 }
3085
3086 static void svm_set_irq(struct kvm_vcpu *vcpu)
3087 {
3088         struct vcpu_svm *svm = to_svm(vcpu);
3089
3090         BUG_ON(!(gif_set(svm)));
3091
3092         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3093         ++vcpu->stat.irq_injections;
3094
3095         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3096                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3097 }
3098
3099 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3100 {
3101         struct vcpu_svm *svm = to_svm(vcpu);
3102
3103         if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
3104                 return;
3105
3106         if (irr == -1)
3107                 return;
3108
3109         if (tpr >= irr)
3110                 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
3111 }
3112
3113 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3114 {
3115         struct vcpu_svm *svm = to_svm(vcpu);
3116         struct vmcb *vmcb = svm->vmcb;
3117         int ret;
3118         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3119               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3120         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3121
3122         return ret;
3123 }
3124
3125 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3126 {
3127         struct vcpu_svm *svm = to_svm(vcpu);
3128
3129         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3130 }
3131
3132 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3133 {
3134         struct vcpu_svm *svm = to_svm(vcpu);
3135
3136         if (masked) {
3137                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3138                 svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
3139         } else {
3140                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3141                 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
3142         }
3143 }
3144
3145 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3146 {
3147         struct vcpu_svm *svm = to_svm(vcpu);
3148         struct vmcb *vmcb = svm->vmcb;
3149         int ret;
3150
3151         if (!gif_set(svm) ||
3152              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3153                 return 0;
3154
3155         ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
3156
3157         if (is_nested(svm))
3158                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3159
3160         return ret;
3161 }
3162
3163 static void enable_irq_window(struct kvm_vcpu *vcpu)
3164 {
3165         struct vcpu_svm *svm = to_svm(vcpu);
3166
3167         /*
3168          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3169          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3170          * get that intercept, this function will be called again though and
3171          * we'll get the vintr intercept.
3172          */
3173         if (gif_set(svm) && nested_svm_intr(svm)) {
3174                 svm_set_vintr(svm);
3175                 svm_inject_irq(svm, 0x0);
3176         }
3177 }
3178
3179 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3180 {
3181         struct vcpu_svm *svm = to_svm(vcpu);
3182
3183         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3184             == HF_NMI_MASK)
3185                 return; /* IRET will cause a vm exit */
3186
3187         /*
3188          * Something prevents NMI from been injected. Single step over possible
3189          * problem (IRET or exception injection or interrupt shadow)
3190          */
3191         svm->nmi_singlestep = true;
3192         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3193         update_db_intercept(vcpu);
3194 }
3195
3196 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3197 {
3198         return 0;
3199 }
3200
3201 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3202 {
3203         force_new_asid(vcpu);
3204 }
3205
3206 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3207 {
3208 }
3209
3210 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3211 {
3212         struct vcpu_svm *svm = to_svm(vcpu);
3213
3214         if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
3215                 return;
3216
3217         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
3218                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3219                 kvm_set_cr8(vcpu, cr8);
3220         }
3221 }
3222
3223 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3224 {
3225         struct vcpu_svm *svm = to_svm(vcpu);
3226         u64 cr8;
3227
3228         if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
3229                 return;
3230
3231         cr8 = kvm_get_cr8(vcpu);
3232         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3233         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3234 }
3235
3236 static void svm_complete_interrupts(struct vcpu_svm *svm)
3237 {
3238         u8 vector;
3239         int type;
3240         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3241         unsigned int3_injected = svm->int3_injected;
3242
3243         svm->int3_injected = 0;
3244
3245         if (svm->vcpu.arch.hflags & HF_IRET_MASK) {
3246                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3247                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3248         }
3249
3250         svm->vcpu.arch.nmi_injected = false;
3251         kvm_clear_exception_queue(&svm->vcpu);
3252         kvm_clear_interrupt_queue(&svm->vcpu);
3253
3254         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3255                 return;
3256
3257         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3258
3259         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3260         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3261
3262         switch (type) {
3263         case SVM_EXITINTINFO_TYPE_NMI:
3264                 svm->vcpu.arch.nmi_injected = true;
3265                 break;
3266         case SVM_EXITINTINFO_TYPE_EXEPT:
3267                 /*
3268                  * In case of software exceptions, do not reinject the vector,
3269                  * but re-execute the instruction instead. Rewind RIP first
3270                  * if we emulated INT3 before.
3271                  */
3272                 if (kvm_exception_is_soft(vector)) {
3273                         if (vector == BP_VECTOR && int3_injected &&
3274                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3275                                 kvm_rip_write(&svm->vcpu,
3276                                               kvm_rip_read(&svm->vcpu) -
3277                                               int3_injected);
3278                         break;
3279                 }
3280                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3281                         u32 err = svm->vmcb->control.exit_int_info_err;
3282                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3283
3284                 } else
3285                         kvm_requeue_exception(&svm->vcpu, vector);
3286                 break;
3287         case SVM_EXITINTINFO_TYPE_INTR:
3288                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3289                 break;
3290         default:
3291                 break;
3292         }
3293 }
3294
3295 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3296 {
3297         struct vcpu_svm *svm = to_svm(vcpu);
3298         struct vmcb_control_area *control = &svm->vmcb->control;
3299
3300         control->exit_int_info = control->event_inj;
3301         control->exit_int_info_err = control->event_inj_err;
3302         control->event_inj = 0;
3303         svm_complete_interrupts(svm);
3304 }
3305
3306 #ifdef CONFIG_X86_64
3307 #define R "r"
3308 #else
3309 #define R "e"
3310 #endif
3311
3312 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3313 {
3314         struct vcpu_svm *svm = to_svm(vcpu);
3315         u16 fs_selector;
3316         u16 gs_selector;
3317         u16 ldt_selector;
3318
3319         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3320         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3321         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3322
3323         /*
3324          * A vmexit emulation is required before the vcpu can be executed
3325          * again.
3326          */
3327         if (unlikely(svm->nested.exit_required))
3328                 return;
3329
3330         pre_svm_run(svm);
3331
3332         sync_lapic_to_cr8(vcpu);
3333
3334         save_host_msrs(vcpu);
3335         savesegment(fs, fs_selector);
3336         savesegment(gs, gs_selector);
3337         ldt_selector = kvm_read_ldt();
3338         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3339
3340         clgi();
3341
3342         local_irq_enable();
3343
3344         asm volatile (
3345                 "push %%"R"bp; \n\t"
3346                 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
3347                 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
3348                 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
3349                 "mov %c[rsi](%[svm]), %%"R"si \n\t"
3350                 "mov %c[rdi](%[svm]), %%"R"di \n\t"
3351                 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
3352 #ifdef CONFIG_X86_64
3353                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3354                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3355                 "mov %c[r10](%[svm]), %%r10 \n\t"
3356                 "mov %c[r11](%[svm]), %%r11 \n\t"
3357                 "mov %c[r12](%[svm]), %%r12 \n\t"
3358                 "mov %c[r13](%[svm]), %%r13 \n\t"
3359                 "mov %c[r14](%[svm]), %%r14 \n\t"
3360                 "mov %c[r15](%[svm]), %%r15 \n\t"
3361 #endif
3362
3363                 /* Enter guest mode */
3364                 "push %%"R"ax \n\t"
3365                 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
3366                 __ex(SVM_VMLOAD) "\n\t"
3367                 __ex(SVM_VMRUN) "\n\t"
3368                 __ex(SVM_VMSAVE) "\n\t"
3369                 "pop %%"R"ax \n\t"
3370
3371                 /* Save guest registers, load host registers */
3372                 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
3373                 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
3374                 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
3375                 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
3376                 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
3377                 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
3378 #ifdef CONFIG_X86_64
3379                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3380                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3381                 "mov %%r10, %c[r10](%[svm]) \n\t"
3382                 "mov %%r11, %c[r11](%[svm]) \n\t"
3383                 "mov %%r12, %c[r12](%[svm]) \n\t"
3384                 "mov %%r13, %c[r13](%[svm]) \n\t"
3385                 "mov %%r14, %c[r14](%[svm]) \n\t"
3386                 "mov %%r15, %c[r15](%[svm]) \n\t"
3387 #endif
3388                 "pop %%"R"bp"
3389                 :
3390                 : [svm]"a"(svm),
3391                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3392                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3393                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3394                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3395                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3396                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3397                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3398 #ifdef CONFIG_X86_64
3399                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3400                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3401                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3402                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3403                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3404                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3405                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3406                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3407 #endif
3408                 : "cc", "memory"
3409                 , R"bx", R"cx", R"dx", R"si", R"di"
3410 #ifdef CONFIG_X86_64
3411                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3412 #endif
3413                 );
3414
3415         load_host_msrs(vcpu);
3416         kvm_load_ldt(ldt_selector);
3417         loadsegment(fs, fs_selector);
3418 #ifdef CONFIG_X86_64
3419         load_gs_index(gs_selector);
3420         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
3421 #else
3422         loadsegment(gs, gs_selector);
3423 #endif
3424
3425         reload_tss(vcpu);
3426
3427         local_irq_disable();
3428
3429         stgi();
3430
3431         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3432         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3433         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3434         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3435
3436         sync_cr8_to_lapic(vcpu);
3437
3438         svm->next_rip = 0;
3439
3440         /* if exit due to PF check for async PF */
3441         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3442                 svm->apf_reason = kvm_read_and_reset_pf_reason();
3443
3444         if (npt_enabled) {
3445                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3446                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3447         }
3448
3449         /*
3450          * We need to handle MC intercepts here before the vcpu has a chance to
3451          * change the physical cpu
3452          */
3453         if (unlikely(svm->vmcb->control.exit_code ==
3454                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3455                 svm_handle_mce(svm);
3456 }
3457
3458 #undef R
3459
3460 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3461 {
3462         struct vcpu_svm *svm = to_svm(vcpu);
3463
3464         svm->vmcb->save.cr3 = root;
3465         force_new_asid(vcpu);
3466 }
3467
3468 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3469 {
3470         struct vcpu_svm *svm = to_svm(vcpu);
3471
3472         svm->vmcb->control.nested_cr3 = root;
3473
3474         /* Also sync guest cr3 here in case we live migrate */
3475         svm->vmcb->save.cr3 = vcpu->arch.cr3;
3476
3477         force_new_asid(vcpu);
3478 }
3479
3480 static int is_disabled(void)
3481 {
3482         u64 vm_cr;
3483
3484         rdmsrl(MSR_VM_CR, vm_cr);
3485         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3486                 return 1;
3487
3488         return 0;
3489 }
3490
3491 static void
3492 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3493 {
3494         /*
3495          * Patch in the VMMCALL instruction:
3496          */
3497         hypercall[0] = 0x0f;
3498         hypercall[1] = 0x01;
3499         hypercall[2] = 0xd9;
3500 }
3501
3502 static void svm_check_processor_compat(void *rtn)
3503 {
3504         *(int *)rtn = 0;
3505 }
3506
3507 static bool svm_cpu_has_accelerated_tpr(void)
3508 {
3509         return false;
3510 }
3511
3512 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3513 {
3514         return 0;
3515 }
3516
3517 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3518 {
3519 }
3520
3521 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
3522 {
3523         switch (func) {
3524         case 0x00000001:
3525                 /* Mask out xsave bit as long as it is not supported by SVM */
3526                 entry->ecx &= ~(bit(X86_FEATURE_XSAVE));
3527                 break;
3528         case 0x80000001:
3529                 if (nested)
3530                         entry->ecx |= (1 << 2); /* Set SVM bit */
3531                 break;
3532         case 0x8000000A:
3533                 entry->eax = 1; /* SVM revision 1 */
3534                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
3535                                    ASID emulation to nested SVM */
3536                 entry->ecx = 0; /* Reserved */
3537                 entry->edx = 0; /* Per default do not support any
3538                                    additional features */
3539
3540                 /* Support next_rip if host supports it */
3541                 if (svm_has(SVM_FEATURE_NRIP))
3542                         entry->edx |= SVM_FEATURE_NRIP;
3543
3544                 /* Support NPT for the guest if enabled */
3545                 if (npt_enabled)
3546                         entry->edx |= SVM_FEATURE_NPT;
3547
3548                 break;
3549         }
3550 }
3551
3552 static const struct trace_print_flags svm_exit_reasons_str[] = {
3553         { SVM_EXIT_READ_CR0,                    "read_cr0" },
3554         { SVM_EXIT_READ_CR3,                    "read_cr3" },
3555         { SVM_EXIT_READ_CR4,                    "read_cr4" },
3556         { SVM_EXIT_READ_CR8,                    "read_cr8" },
3557         { SVM_EXIT_WRITE_CR0,                   "write_cr0" },
3558         { SVM_EXIT_WRITE_CR3,                   "write_cr3" },
3559         { SVM_EXIT_WRITE_CR4,                   "write_cr4" },
3560         { SVM_EXIT_WRITE_CR8,                   "write_cr8" },
3561         { SVM_EXIT_READ_DR0,                    "read_dr0" },
3562         { SVM_EXIT_READ_DR1,                    "read_dr1" },
3563         { SVM_EXIT_READ_DR2,                    "read_dr2" },
3564         { SVM_EXIT_READ_DR3,                    "read_dr3" },
3565         { SVM_EXIT_WRITE_DR0,                   "write_dr0" },
3566         { SVM_EXIT_WRITE_DR1,                   "write_dr1" },
3567         { SVM_EXIT_WRITE_DR2,                   "write_dr2" },
3568         { SVM_EXIT_WRITE_DR3,                   "write_dr3" },
3569         { SVM_EXIT_WRITE_DR5,                   "write_dr5" },
3570         { SVM_EXIT_WRITE_DR7,                   "write_dr7" },
3571         { SVM_EXIT_EXCP_BASE + DB_VECTOR,       "DB excp" },
3572         { SVM_EXIT_EXCP_BASE + BP_VECTOR,       "BP excp" },
3573         { SVM_EXIT_EXCP_BASE + UD_VECTOR,       "UD excp" },
3574         { SVM_EXIT_EXCP_BASE + PF_VECTOR,       "PF excp" },
3575         { SVM_EXIT_EXCP_BASE + NM_VECTOR,       "NM excp" },
3576         { SVM_EXIT_EXCP_BASE + MC_VECTOR,       "MC excp" },
3577         { SVM_EXIT_INTR,                        "interrupt" },
3578         { SVM_EXIT_NMI,                         "nmi" },
3579         { SVM_EXIT_SMI,                         "smi" },
3580         { SVM_EXIT_INIT,                        "init" },
3581         { SVM_EXIT_VINTR,                       "vintr" },
3582         { SVM_EXIT_CPUID,                       "cpuid" },
3583         { SVM_EXIT_INVD,                        "invd" },
3584         { SVM_EXIT_HLT,                         "hlt" },
3585         { SVM_EXIT_INVLPG,                      "invlpg" },
3586         { SVM_EXIT_INVLPGA,                     "invlpga" },
3587         { SVM_EXIT_IOIO,                        "io" },
3588         { SVM_EXIT_MSR,                         "msr" },
3589         { SVM_EXIT_TASK_SWITCH,                 "task_switch" },
3590         { SVM_EXIT_SHUTDOWN,                    "shutdown" },
3591         { SVM_EXIT_VMRUN,                       "vmrun" },
3592         { SVM_EXIT_VMMCALL,                     "hypercall" },
3593         { SVM_EXIT_VMLOAD,                      "vmload" },
3594         { SVM_EXIT_VMSAVE,                      "vmsave" },
3595         { SVM_EXIT_STGI,                        "stgi" },
3596         { SVM_EXIT_CLGI,                        "clgi" },
3597         { SVM_EXIT_SKINIT,                      "skinit" },
3598         { SVM_EXIT_WBINVD,                      "wbinvd" },
3599         { SVM_EXIT_MONITOR,                     "monitor" },
3600         { SVM_EXIT_MWAIT,                       "mwait" },
3601         { SVM_EXIT_NPF,                         "npf" },
3602         { -1, NULL }
3603 };
3604
3605 static int svm_get_lpage_level(void)
3606 {
3607         return PT_PDPE_LEVEL;
3608 }
3609
3610 static bool svm_rdtscp_supported(void)
3611 {
3612         return false;
3613 }
3614
3615 static bool svm_has_wbinvd_exit(void)
3616 {
3617         return true;
3618 }
3619
3620 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
3621 {
3622         struct vcpu_svm *svm = to_svm(vcpu);
3623
3624         svm->vmcb->control.intercept_exceptions |= 1 << NM_VECTOR;
3625         if (is_nested(svm))
3626                 svm->nested.hsave->control.intercept_exceptions |= 1 << NM_VECTOR;
3627         update_cr0_intercept(svm);
3628 }
3629
3630 static struct kvm_x86_ops svm_x86_ops = {
3631         .cpu_has_kvm_support = has_svm,
3632         .disabled_by_bios = is_disabled,
3633         .hardware_setup = svm_hardware_setup,
3634         .hardware_unsetup = svm_hardware_unsetup,
3635         .check_processor_compatibility = svm_check_processor_compat,
3636         .hardware_enable = svm_hardware_enable,
3637         .hardware_disable = svm_hardware_disable,
3638         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
3639
3640         .vcpu_create = svm_create_vcpu,
3641         .vcpu_free = svm_free_vcpu,
3642         .vcpu_reset = svm_vcpu_reset,
3643
3644         .prepare_guest_switch = svm_prepare_guest_switch,
3645         .vcpu_load = svm_vcpu_load,
3646         .vcpu_put = svm_vcpu_put,
3647
3648         .set_guest_debug = svm_guest_debug,
3649         .get_msr = svm_get_msr,
3650         .set_msr = svm_set_msr,
3651         .get_segment_base = svm_get_segment_base,
3652         .get_segment = svm_get_segment,
3653         .set_segment = svm_set_segment,
3654         .get_cpl = svm_get_cpl,
3655         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
3656         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
3657         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
3658         .set_cr0 = svm_set_cr0,
3659         .set_cr3 = svm_set_cr3,
3660         .set_cr4 = svm_set_cr4,
3661         .set_efer = svm_set_efer,
3662         .get_idt = svm_get_idt,
3663         .set_idt = svm_set_idt,
3664         .get_gdt = svm_get_gdt,
3665         .set_gdt = svm_set_gdt,
3666         .set_dr7 = svm_set_dr7,
3667         .cache_reg = svm_cache_reg,
3668         .get_rflags = svm_get_rflags,
3669         .set_rflags = svm_set_rflags,
3670         .fpu_activate = svm_fpu_activate,
3671         .fpu_deactivate = svm_fpu_deactivate,
3672
3673         .tlb_flush = svm_flush_tlb,
3674
3675         .run = svm_vcpu_run,
3676         .handle_exit = handle_exit,
3677         .skip_emulated_instruction = skip_emulated_instruction,
3678         .set_interrupt_shadow = svm_set_interrupt_shadow,
3679         .get_interrupt_shadow = svm_get_interrupt_shadow,
3680         .patch_hypercall = svm_patch_hypercall,
3681         .set_irq = svm_set_irq,
3682         .set_nmi = svm_inject_nmi,
3683         .queue_exception = svm_queue_exception,
3684         .cancel_injection = svm_cancel_injection,
3685         .interrupt_allowed = svm_interrupt_allowed,
3686         .nmi_allowed = svm_nmi_allowed,
3687         .get_nmi_mask = svm_get_nmi_mask,
3688         .set_nmi_mask = svm_set_nmi_mask,
3689         .enable_nmi_window = enable_nmi_window,
3690         .enable_irq_window = enable_irq_window,
3691         .update_cr8_intercept = update_cr8_intercept,
3692
3693         .set_tss_addr = svm_set_tss_addr,
3694         .get_tdp_level = get_npt_level,
3695         .get_mt_mask = svm_get_mt_mask,
3696
3697         .exit_reasons_str = svm_exit_reasons_str,
3698         .get_lpage_level = svm_get_lpage_level,
3699
3700         .cpuid_update = svm_cpuid_update,
3701
3702         .rdtscp_supported = svm_rdtscp_supported,
3703
3704         .set_supported_cpuid = svm_set_supported_cpuid,
3705
3706         .has_wbinvd_exit = svm_has_wbinvd_exit,
3707
3708         .write_tsc_offset = svm_write_tsc_offset,
3709         .adjust_tsc_offset = svm_adjust_tsc_offset,
3710
3711         .set_tdp_cr3 = set_tdp_cr3,
3712 };
3713
3714 static int __init svm_init(void)
3715 {
3716         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
3717                         __alignof__(struct vcpu_svm), THIS_MODULE);
3718 }
3719
3720 static void __exit svm_exit(void)
3721 {
3722         kvm_exit();
3723 }
3724
3725 module_init(svm_init)
3726 module_exit(svm_exit)