module_param: make bool parameters really bool (arch)
[linux-3.10.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45  * When setting this variable to true it enables Two-Dimensional-Paging
46  * where the hardware walks 2 page tables:
47  * 1. the guest-virtual to guest-physical
48  * 2. while doing 1. it walks guest-physical to host-physical
49  * If the hardware supports that we don't need to do shadow paging.
50  */
51 bool tdp_enabled = false;
52
53 enum {
54         AUDIT_PRE_PAGE_FAULT,
55         AUDIT_POST_PAGE_FAULT,
56         AUDIT_PRE_PTE_WRITE,
57         AUDIT_POST_PTE_WRITE,
58         AUDIT_PRE_SYNC,
59         AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x)                                                       \
85         if (!(x)) {                                                     \
86                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
87                        __FILE__, __LINE__, #x);                         \
88         }
89 #endif
90
91 #define PTE_PREFETCH_NUM                8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 9
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112                                                 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126                                                 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133                                             * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136                         | PT64_NX_MASK)
137
138 #define PTE_LIST_EXT 4
139
140 #define ACC_EXEC_MASK    1
141 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
142 #define ACC_USER_MASK    PT_USER_MASK
143 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
144
145 #include <trace/events/kvm.h>
146
147 #define CREATE_TRACE_POINTS
148 #include "mmutrace.h"
149
150 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
151
152 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
153
154 struct pte_list_desc {
155         u64 *sptes[PTE_LIST_EXT];
156         struct pte_list_desc *more;
157 };
158
159 struct kvm_shadow_walk_iterator {
160         u64 addr;
161         hpa_t shadow_addr;
162         u64 *sptep;
163         int level;
164         unsigned index;
165 };
166
167 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
168         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
169              shadow_walk_okay(&(_walker));                      \
170              shadow_walk_next(&(_walker)))
171
172 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
173         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
174              shadow_walk_okay(&(_walker)) &&                            \
175                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
176              __shadow_walk_next(&(_walker), spte))
177
178 static struct kmem_cache *pte_list_desc_cache;
179 static struct kmem_cache *mmu_page_header_cache;
180 static struct percpu_counter kvm_total_used_mmu_pages;
181
182 static u64 __read_mostly shadow_nx_mask;
183 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
184 static u64 __read_mostly shadow_user_mask;
185 static u64 __read_mostly shadow_accessed_mask;
186 static u64 __read_mostly shadow_dirty_mask;
187 static u64 __read_mostly shadow_mmio_mask;
188
189 static void mmu_spte_set(u64 *sptep, u64 spte);
190
191 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
192 {
193         shadow_mmio_mask = mmio_mask;
194 }
195 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
196
197 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
198 {
199         access &= ACC_WRITE_MASK | ACC_USER_MASK;
200
201         trace_mark_mmio_spte(sptep, gfn, access);
202         mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
203 }
204
205 static bool is_mmio_spte(u64 spte)
206 {
207         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
208 }
209
210 static gfn_t get_mmio_spte_gfn(u64 spte)
211 {
212         return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
213 }
214
215 static unsigned get_mmio_spte_access(u64 spte)
216 {
217         return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
218 }
219
220 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
221 {
222         if (unlikely(is_noslot_pfn(pfn))) {
223                 mark_mmio_spte(sptep, gfn, access);
224                 return true;
225         }
226
227         return false;
228 }
229
230 static inline u64 rsvd_bits(int s, int e)
231 {
232         return ((1ULL << (e - s + 1)) - 1) << s;
233 }
234
235 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
236                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
237 {
238         shadow_user_mask = user_mask;
239         shadow_accessed_mask = accessed_mask;
240         shadow_dirty_mask = dirty_mask;
241         shadow_nx_mask = nx_mask;
242         shadow_x_mask = x_mask;
243 }
244 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
245
246 static int is_cpuid_PSE36(void)
247 {
248         return 1;
249 }
250
251 static int is_nx(struct kvm_vcpu *vcpu)
252 {
253         return vcpu->arch.efer & EFER_NX;
254 }
255
256 static int is_shadow_present_pte(u64 pte)
257 {
258         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
259 }
260
261 static int is_large_pte(u64 pte)
262 {
263         return pte & PT_PAGE_SIZE_MASK;
264 }
265
266 static int is_dirty_gpte(unsigned long pte)
267 {
268         return pte & PT_DIRTY_MASK;
269 }
270
271 static int is_rmap_spte(u64 pte)
272 {
273         return is_shadow_present_pte(pte);
274 }
275
276 static int is_last_spte(u64 pte, int level)
277 {
278         if (level == PT_PAGE_TABLE_LEVEL)
279                 return 1;
280         if (is_large_pte(pte))
281                 return 1;
282         return 0;
283 }
284
285 static pfn_t spte_to_pfn(u64 pte)
286 {
287         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
288 }
289
290 static gfn_t pse36_gfn_delta(u32 gpte)
291 {
292         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
293
294         return (gpte & PT32_DIR_PSE36_MASK) << shift;
295 }
296
297 #ifdef CONFIG_X86_64
298 static void __set_spte(u64 *sptep, u64 spte)
299 {
300         *sptep = spte;
301 }
302
303 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
304 {
305         *sptep = spte;
306 }
307
308 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
309 {
310         return xchg(sptep, spte);
311 }
312
313 static u64 __get_spte_lockless(u64 *sptep)
314 {
315         return ACCESS_ONCE(*sptep);
316 }
317
318 static bool __check_direct_spte_mmio_pf(u64 spte)
319 {
320         /* It is valid if the spte is zapped. */
321         return spte == 0ull;
322 }
323 #else
324 union split_spte {
325         struct {
326                 u32 spte_low;
327                 u32 spte_high;
328         };
329         u64 spte;
330 };
331
332 static void count_spte_clear(u64 *sptep, u64 spte)
333 {
334         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
335
336         if (is_shadow_present_pte(spte))
337                 return;
338
339         /* Ensure the spte is completely set before we increase the count */
340         smp_wmb();
341         sp->clear_spte_count++;
342 }
343
344 static void __set_spte(u64 *sptep, u64 spte)
345 {
346         union split_spte *ssptep, sspte;
347
348         ssptep = (union split_spte *)sptep;
349         sspte = (union split_spte)spte;
350
351         ssptep->spte_high = sspte.spte_high;
352
353         /*
354          * If we map the spte from nonpresent to present, We should store
355          * the high bits firstly, then set present bit, so cpu can not
356          * fetch this spte while we are setting the spte.
357          */
358         smp_wmb();
359
360         ssptep->spte_low = sspte.spte_low;
361 }
362
363 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
364 {
365         union split_spte *ssptep, sspte;
366
367         ssptep = (union split_spte *)sptep;
368         sspte = (union split_spte)spte;
369
370         ssptep->spte_low = sspte.spte_low;
371
372         /*
373          * If we map the spte from present to nonpresent, we should clear
374          * present bit firstly to avoid vcpu fetch the old high bits.
375          */
376         smp_wmb();
377
378         ssptep->spte_high = sspte.spte_high;
379         count_spte_clear(sptep, spte);
380 }
381
382 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
383 {
384         union split_spte *ssptep, sspte, orig;
385
386         ssptep = (union split_spte *)sptep;
387         sspte = (union split_spte)spte;
388
389         /* xchg acts as a barrier before the setting of the high bits */
390         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
391         orig.spte_high = ssptep->spte_high;
392         ssptep->spte_high = sspte.spte_high;
393         count_spte_clear(sptep, spte);
394
395         return orig.spte;
396 }
397
398 /*
399  * The idea using the light way get the spte on x86_32 guest is from
400  * gup_get_pte(arch/x86/mm/gup.c).
401  * The difference is we can not catch the spte tlb flush if we leave
402  * guest mode, so we emulate it by increase clear_spte_count when spte
403  * is cleared.
404  */
405 static u64 __get_spte_lockless(u64 *sptep)
406 {
407         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
408         union split_spte spte, *orig = (union split_spte *)sptep;
409         int count;
410
411 retry:
412         count = sp->clear_spte_count;
413         smp_rmb();
414
415         spte.spte_low = orig->spte_low;
416         smp_rmb();
417
418         spte.spte_high = orig->spte_high;
419         smp_rmb();
420
421         if (unlikely(spte.spte_low != orig->spte_low ||
422               count != sp->clear_spte_count))
423                 goto retry;
424
425         return spte.spte;
426 }
427
428 static bool __check_direct_spte_mmio_pf(u64 spte)
429 {
430         union split_spte sspte = (union split_spte)spte;
431         u32 high_mmio_mask = shadow_mmio_mask >> 32;
432
433         /* It is valid if the spte is zapped. */
434         if (spte == 0ull)
435                 return true;
436
437         /* It is valid if the spte is being zapped. */
438         if (sspte.spte_low == 0ull &&
439             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
440                 return true;
441
442         return false;
443 }
444 #endif
445
446 static bool spte_has_volatile_bits(u64 spte)
447 {
448         if (!shadow_accessed_mask)
449                 return false;
450
451         if (!is_shadow_present_pte(spte))
452                 return false;
453
454         if ((spte & shadow_accessed_mask) &&
455               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
456                 return false;
457
458         return true;
459 }
460
461 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
462 {
463         return (old_spte & bit_mask) && !(new_spte & bit_mask);
464 }
465
466 /* Rules for using mmu_spte_set:
467  * Set the sptep from nonpresent to present.
468  * Note: the sptep being assigned *must* be either not present
469  * or in a state where the hardware will not attempt to update
470  * the spte.
471  */
472 static void mmu_spte_set(u64 *sptep, u64 new_spte)
473 {
474         WARN_ON(is_shadow_present_pte(*sptep));
475         __set_spte(sptep, new_spte);
476 }
477
478 /* Rules for using mmu_spte_update:
479  * Update the state bits, it means the mapped pfn is not changged.
480  */
481 static void mmu_spte_update(u64 *sptep, u64 new_spte)
482 {
483         u64 mask, old_spte = *sptep;
484
485         WARN_ON(!is_rmap_spte(new_spte));
486
487         if (!is_shadow_present_pte(old_spte))
488                 return mmu_spte_set(sptep, new_spte);
489
490         new_spte |= old_spte & shadow_dirty_mask;
491
492         mask = shadow_accessed_mask;
493         if (is_writable_pte(old_spte))
494                 mask |= shadow_dirty_mask;
495
496         if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
497                 __update_clear_spte_fast(sptep, new_spte);
498         else
499                 old_spte = __update_clear_spte_slow(sptep, new_spte);
500
501         if (!shadow_accessed_mask)
502                 return;
503
504         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
505                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
506         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
507                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
508 }
509
510 /*
511  * Rules for using mmu_spte_clear_track_bits:
512  * It sets the sptep from present to nonpresent, and track the
513  * state bits, it is used to clear the last level sptep.
514  */
515 static int mmu_spte_clear_track_bits(u64 *sptep)
516 {
517         pfn_t pfn;
518         u64 old_spte = *sptep;
519
520         if (!spte_has_volatile_bits(old_spte))
521                 __update_clear_spte_fast(sptep, 0ull);
522         else
523                 old_spte = __update_clear_spte_slow(sptep, 0ull);
524
525         if (!is_rmap_spte(old_spte))
526                 return 0;
527
528         pfn = spte_to_pfn(old_spte);
529         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
530                 kvm_set_pfn_accessed(pfn);
531         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
532                 kvm_set_pfn_dirty(pfn);
533         return 1;
534 }
535
536 /*
537  * Rules for using mmu_spte_clear_no_track:
538  * Directly clear spte without caring the state bits of sptep,
539  * it is used to set the upper level spte.
540  */
541 static void mmu_spte_clear_no_track(u64 *sptep)
542 {
543         __update_clear_spte_fast(sptep, 0ull);
544 }
545
546 static u64 mmu_spte_get_lockless(u64 *sptep)
547 {
548         return __get_spte_lockless(sptep);
549 }
550
551 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
552 {
553         rcu_read_lock();
554         atomic_inc(&vcpu->kvm->arch.reader_counter);
555
556         /* Increase the counter before walking shadow page table */
557         smp_mb__after_atomic_inc();
558 }
559
560 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
561 {
562         /* Decrease the counter after walking shadow page table finished */
563         smp_mb__before_atomic_dec();
564         atomic_dec(&vcpu->kvm->arch.reader_counter);
565         rcu_read_unlock();
566 }
567
568 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
569                                   struct kmem_cache *base_cache, int min)
570 {
571         void *obj;
572
573         if (cache->nobjs >= min)
574                 return 0;
575         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
576                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
577                 if (!obj)
578                         return -ENOMEM;
579                 cache->objects[cache->nobjs++] = obj;
580         }
581         return 0;
582 }
583
584 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
585 {
586         return cache->nobjs;
587 }
588
589 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
590                                   struct kmem_cache *cache)
591 {
592         while (mc->nobjs)
593                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
594 }
595
596 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
597                                        int min)
598 {
599         void *page;
600
601         if (cache->nobjs >= min)
602                 return 0;
603         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
604                 page = (void *)__get_free_page(GFP_KERNEL);
605                 if (!page)
606                         return -ENOMEM;
607                 cache->objects[cache->nobjs++] = page;
608         }
609         return 0;
610 }
611
612 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
613 {
614         while (mc->nobjs)
615                 free_page((unsigned long)mc->objects[--mc->nobjs]);
616 }
617
618 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
619 {
620         int r;
621
622         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
623                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
624         if (r)
625                 goto out;
626         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
627         if (r)
628                 goto out;
629         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
630                                    mmu_page_header_cache, 4);
631 out:
632         return r;
633 }
634
635 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
636 {
637         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
638                                 pte_list_desc_cache);
639         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
640         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
641                                 mmu_page_header_cache);
642 }
643
644 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
645                                     size_t size)
646 {
647         void *p;
648
649         BUG_ON(!mc->nobjs);
650         p = mc->objects[--mc->nobjs];
651         return p;
652 }
653
654 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
655 {
656         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
657                                       sizeof(struct pte_list_desc));
658 }
659
660 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
661 {
662         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
663 }
664
665 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
666 {
667         if (!sp->role.direct)
668                 return sp->gfns[index];
669
670         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
671 }
672
673 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
674 {
675         if (sp->role.direct)
676                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
677         else
678                 sp->gfns[index] = gfn;
679 }
680
681 /*
682  * Return the pointer to the large page information for a given gfn,
683  * handling slots that are not large page aligned.
684  */
685 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
686                                               struct kvm_memory_slot *slot,
687                                               int level)
688 {
689         unsigned long idx;
690
691         idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
692               (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
693         return &slot->lpage_info[level - 2][idx];
694 }
695
696 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
697 {
698         struct kvm_memory_slot *slot;
699         struct kvm_lpage_info *linfo;
700         int i;
701
702         slot = gfn_to_memslot(kvm, gfn);
703         for (i = PT_DIRECTORY_LEVEL;
704              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
705                 linfo = lpage_info_slot(gfn, slot, i);
706                 linfo->write_count += 1;
707         }
708         kvm->arch.indirect_shadow_pages++;
709 }
710
711 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
712 {
713         struct kvm_memory_slot *slot;
714         struct kvm_lpage_info *linfo;
715         int i;
716
717         slot = gfn_to_memslot(kvm, gfn);
718         for (i = PT_DIRECTORY_LEVEL;
719              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
720                 linfo = lpage_info_slot(gfn, slot, i);
721                 linfo->write_count -= 1;
722                 WARN_ON(linfo->write_count < 0);
723         }
724         kvm->arch.indirect_shadow_pages--;
725 }
726
727 static int has_wrprotected_page(struct kvm *kvm,
728                                 gfn_t gfn,
729                                 int level)
730 {
731         struct kvm_memory_slot *slot;
732         struct kvm_lpage_info *linfo;
733
734         slot = gfn_to_memslot(kvm, gfn);
735         if (slot) {
736                 linfo = lpage_info_slot(gfn, slot, level);
737                 return linfo->write_count;
738         }
739
740         return 1;
741 }
742
743 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
744 {
745         unsigned long page_size;
746         int i, ret = 0;
747
748         page_size = kvm_host_page_size(kvm, gfn);
749
750         for (i = PT_PAGE_TABLE_LEVEL;
751              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
752                 if (page_size >= KVM_HPAGE_SIZE(i))
753                         ret = i;
754                 else
755                         break;
756         }
757
758         return ret;
759 }
760
761 static struct kvm_memory_slot *
762 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
763                             bool no_dirty_log)
764 {
765         struct kvm_memory_slot *slot;
766
767         slot = gfn_to_memslot(vcpu->kvm, gfn);
768         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
769               (no_dirty_log && slot->dirty_bitmap))
770                 slot = NULL;
771
772         return slot;
773 }
774
775 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
776 {
777         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
778 }
779
780 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
781 {
782         int host_level, level, max_level;
783
784         host_level = host_mapping_level(vcpu->kvm, large_gfn);
785
786         if (host_level == PT_PAGE_TABLE_LEVEL)
787                 return host_level;
788
789         max_level = kvm_x86_ops->get_lpage_level() < host_level ?
790                 kvm_x86_ops->get_lpage_level() : host_level;
791
792         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
793                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
794                         break;
795
796         return level - 1;
797 }
798
799 /*
800  * Pte mapping structures:
801  *
802  * If pte_list bit zero is zero, then pte_list point to the spte.
803  *
804  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
805  * pte_list_desc containing more mappings.
806  *
807  * Returns the number of pte entries before the spte was added or zero if
808  * the spte was not added.
809  *
810  */
811 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
812                         unsigned long *pte_list)
813 {
814         struct pte_list_desc *desc;
815         int i, count = 0;
816
817         if (!*pte_list) {
818                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
819                 *pte_list = (unsigned long)spte;
820         } else if (!(*pte_list & 1)) {
821                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
822                 desc = mmu_alloc_pte_list_desc(vcpu);
823                 desc->sptes[0] = (u64 *)*pte_list;
824                 desc->sptes[1] = spte;
825                 *pte_list = (unsigned long)desc | 1;
826                 ++count;
827         } else {
828                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
829                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
830                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
831                         desc = desc->more;
832                         count += PTE_LIST_EXT;
833                 }
834                 if (desc->sptes[PTE_LIST_EXT-1]) {
835                         desc->more = mmu_alloc_pte_list_desc(vcpu);
836                         desc = desc->more;
837                 }
838                 for (i = 0; desc->sptes[i]; ++i)
839                         ++count;
840                 desc->sptes[i] = spte;
841         }
842         return count;
843 }
844
845 static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
846 {
847         struct pte_list_desc *desc;
848         u64 *prev_spte;
849         int i;
850
851         if (!*pte_list)
852                 return NULL;
853         else if (!(*pte_list & 1)) {
854                 if (!spte)
855                         return (u64 *)*pte_list;
856                 return NULL;
857         }
858         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
859         prev_spte = NULL;
860         while (desc) {
861                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
862                         if (prev_spte == spte)
863                                 return desc->sptes[i];
864                         prev_spte = desc->sptes[i];
865                 }
866                 desc = desc->more;
867         }
868         return NULL;
869 }
870
871 static void
872 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
873                            int i, struct pte_list_desc *prev_desc)
874 {
875         int j;
876
877         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
878                 ;
879         desc->sptes[i] = desc->sptes[j];
880         desc->sptes[j] = NULL;
881         if (j != 0)
882                 return;
883         if (!prev_desc && !desc->more)
884                 *pte_list = (unsigned long)desc->sptes[0];
885         else
886                 if (prev_desc)
887                         prev_desc->more = desc->more;
888                 else
889                         *pte_list = (unsigned long)desc->more | 1;
890         mmu_free_pte_list_desc(desc);
891 }
892
893 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
894 {
895         struct pte_list_desc *desc;
896         struct pte_list_desc *prev_desc;
897         int i;
898
899         if (!*pte_list) {
900                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
901                 BUG();
902         } else if (!(*pte_list & 1)) {
903                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
904                 if ((u64 *)*pte_list != spte) {
905                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
906                         BUG();
907                 }
908                 *pte_list = 0;
909         } else {
910                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
911                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
912                 prev_desc = NULL;
913                 while (desc) {
914                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
915                                 if (desc->sptes[i] == spte) {
916                                         pte_list_desc_remove_entry(pte_list,
917                                                                desc, i,
918                                                                prev_desc);
919                                         return;
920                                 }
921                         prev_desc = desc;
922                         desc = desc->more;
923                 }
924                 pr_err("pte_list_remove: %p many->many\n", spte);
925                 BUG();
926         }
927 }
928
929 typedef void (*pte_list_walk_fn) (u64 *spte);
930 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
931 {
932         struct pte_list_desc *desc;
933         int i;
934
935         if (!*pte_list)
936                 return;
937
938         if (!(*pte_list & 1))
939                 return fn((u64 *)*pte_list);
940
941         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
942         while (desc) {
943                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
944                         fn(desc->sptes[i]);
945                 desc = desc->more;
946         }
947 }
948
949 static unsigned long *__gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level,
950                                     struct kvm_memory_slot *slot)
951 {
952         struct kvm_lpage_info *linfo;
953
954         if (likely(level == PT_PAGE_TABLE_LEVEL))
955                 return &slot->rmap[gfn - slot->base_gfn];
956
957         linfo = lpage_info_slot(gfn, slot, level);
958         return &linfo->rmap_pde;
959 }
960
961 /*
962  * Take gfn and return the reverse mapping to it.
963  */
964 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
965 {
966         struct kvm_memory_slot *slot;
967
968         slot = gfn_to_memslot(kvm, gfn);
969         return __gfn_to_rmap(kvm, gfn, level, slot);
970 }
971
972 static bool rmap_can_add(struct kvm_vcpu *vcpu)
973 {
974         struct kvm_mmu_memory_cache *cache;
975
976         cache = &vcpu->arch.mmu_pte_list_desc_cache;
977         return mmu_memory_cache_free_objects(cache);
978 }
979
980 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
981 {
982         struct kvm_mmu_page *sp;
983         unsigned long *rmapp;
984
985         sp = page_header(__pa(spte));
986         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
987         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
988         return pte_list_add(vcpu, spte, rmapp);
989 }
990
991 static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
992 {
993         return pte_list_next(rmapp, spte);
994 }
995
996 static void rmap_remove(struct kvm *kvm, u64 *spte)
997 {
998         struct kvm_mmu_page *sp;
999         gfn_t gfn;
1000         unsigned long *rmapp;
1001
1002         sp = page_header(__pa(spte));
1003         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1004         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1005         pte_list_remove(spte, rmapp);
1006 }
1007
1008 static void drop_spte(struct kvm *kvm, u64 *sptep)
1009 {
1010         if (mmu_spte_clear_track_bits(sptep))
1011                 rmap_remove(kvm, sptep);
1012 }
1013
1014 int kvm_mmu_rmap_write_protect(struct kvm *kvm, u64 gfn,
1015                                struct kvm_memory_slot *slot)
1016 {
1017         unsigned long *rmapp;
1018         u64 *spte;
1019         int i, write_protected = 0;
1020
1021         rmapp = __gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL, slot);
1022         spte = rmap_next(kvm, rmapp, NULL);
1023         while (spte) {
1024                 BUG_ON(!(*spte & PT_PRESENT_MASK));
1025                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
1026                 if (is_writable_pte(*spte)) {
1027                         mmu_spte_update(spte, *spte & ~PT_WRITABLE_MASK);
1028                         write_protected = 1;
1029                 }
1030                 spte = rmap_next(kvm, rmapp, spte);
1031         }
1032
1033         /* check for huge page mappings */
1034         for (i = PT_DIRECTORY_LEVEL;
1035              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1036                 rmapp = __gfn_to_rmap(kvm, gfn, i, slot);
1037                 spte = rmap_next(kvm, rmapp, NULL);
1038                 while (spte) {
1039                         BUG_ON(!(*spte & PT_PRESENT_MASK));
1040                         BUG_ON(!is_large_pte(*spte));
1041                         pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
1042                         if (is_writable_pte(*spte)) {
1043                                 drop_spte(kvm, spte);
1044                                 --kvm->stat.lpages;
1045                                 spte = NULL;
1046                                 write_protected = 1;
1047                         }
1048                         spte = rmap_next(kvm, rmapp, spte);
1049                 }
1050         }
1051
1052         return write_protected;
1053 }
1054
1055 static int rmap_write_protect(struct kvm *kvm, u64 gfn)
1056 {
1057         struct kvm_memory_slot *slot;
1058
1059         slot = gfn_to_memslot(kvm, gfn);
1060         return kvm_mmu_rmap_write_protect(kvm, gfn, slot);
1061 }
1062
1063 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1064                            unsigned long data)
1065 {
1066         u64 *spte;
1067         int need_tlb_flush = 0;
1068
1069         while ((spte = rmap_next(kvm, rmapp, NULL))) {
1070                 BUG_ON(!(*spte & PT_PRESENT_MASK));
1071                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
1072                 drop_spte(kvm, spte);
1073                 need_tlb_flush = 1;
1074         }
1075         return need_tlb_flush;
1076 }
1077
1078 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1079                              unsigned long data)
1080 {
1081         int need_flush = 0;
1082         u64 *spte, new_spte;
1083         pte_t *ptep = (pte_t *)data;
1084         pfn_t new_pfn;
1085
1086         WARN_ON(pte_huge(*ptep));
1087         new_pfn = pte_pfn(*ptep);
1088         spte = rmap_next(kvm, rmapp, NULL);
1089         while (spte) {
1090                 BUG_ON(!is_shadow_present_pte(*spte));
1091                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
1092                 need_flush = 1;
1093                 if (pte_write(*ptep)) {
1094                         drop_spte(kvm, spte);
1095                         spte = rmap_next(kvm, rmapp, NULL);
1096                 } else {
1097                         new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
1098                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1099
1100                         new_spte &= ~PT_WRITABLE_MASK;
1101                         new_spte &= ~SPTE_HOST_WRITEABLE;
1102                         new_spte &= ~shadow_accessed_mask;
1103                         mmu_spte_clear_track_bits(spte);
1104                         mmu_spte_set(spte, new_spte);
1105                         spte = rmap_next(kvm, rmapp, spte);
1106                 }
1107         }
1108         if (need_flush)
1109                 kvm_flush_remote_tlbs(kvm);
1110
1111         return 0;
1112 }
1113
1114 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1115                           unsigned long data,
1116                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1117                                          unsigned long data))
1118 {
1119         int j;
1120         int ret;
1121         int retval = 0;
1122         struct kvm_memslots *slots;
1123         struct kvm_memory_slot *memslot;
1124
1125         slots = kvm_memslots(kvm);
1126
1127         kvm_for_each_memslot(memslot, slots) {
1128                 unsigned long start = memslot->userspace_addr;
1129                 unsigned long end;
1130
1131                 end = start + (memslot->npages << PAGE_SHIFT);
1132                 if (hva >= start && hva < end) {
1133                         gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
1134                         gfn_t gfn = memslot->base_gfn + gfn_offset;
1135
1136                         ret = handler(kvm, &memslot->rmap[gfn_offset], data);
1137
1138                         for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
1139                                 struct kvm_lpage_info *linfo;
1140
1141                                 linfo = lpage_info_slot(gfn, memslot,
1142                                                         PT_DIRECTORY_LEVEL + j);
1143                                 ret |= handler(kvm, &linfo->rmap_pde, data);
1144                         }
1145                         trace_kvm_age_page(hva, memslot, ret);
1146                         retval |= ret;
1147                 }
1148         }
1149
1150         return retval;
1151 }
1152
1153 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1154 {
1155         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1156 }
1157
1158 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1159 {
1160         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1161 }
1162
1163 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1164                          unsigned long data)
1165 {
1166         u64 *spte;
1167         int young = 0;
1168
1169         /*
1170          * Emulate the accessed bit for EPT, by checking if this page has
1171          * an EPT mapping, and clearing it if it does. On the next access,
1172          * a new EPT mapping will be established.
1173          * This has some overhead, but not as much as the cost of swapping
1174          * out actively used pages or breaking up actively used hugepages.
1175          */
1176         if (!shadow_accessed_mask)
1177                 return kvm_unmap_rmapp(kvm, rmapp, data);
1178
1179         spte = rmap_next(kvm, rmapp, NULL);
1180         while (spte) {
1181                 int _young;
1182                 u64 _spte = *spte;
1183                 BUG_ON(!(_spte & PT_PRESENT_MASK));
1184                 _young = _spte & PT_ACCESSED_MASK;
1185                 if (_young) {
1186                         young = 1;
1187                         clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
1188                 }
1189                 spte = rmap_next(kvm, rmapp, spte);
1190         }
1191         return young;
1192 }
1193
1194 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1195                               unsigned long data)
1196 {
1197         u64 *spte;
1198         int young = 0;
1199
1200         /*
1201          * If there's no access bit in the secondary pte set by the
1202          * hardware it's up to gup-fast/gup to set the access bit in
1203          * the primary pte or in the page structure.
1204          */
1205         if (!shadow_accessed_mask)
1206                 goto out;
1207
1208         spte = rmap_next(kvm, rmapp, NULL);
1209         while (spte) {
1210                 u64 _spte = *spte;
1211                 BUG_ON(!(_spte & PT_PRESENT_MASK));
1212                 young = _spte & PT_ACCESSED_MASK;
1213                 if (young) {
1214                         young = 1;
1215                         break;
1216                 }
1217                 spte = rmap_next(kvm, rmapp, spte);
1218         }
1219 out:
1220         return young;
1221 }
1222
1223 #define RMAP_RECYCLE_THRESHOLD 1000
1224
1225 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1226 {
1227         unsigned long *rmapp;
1228         struct kvm_mmu_page *sp;
1229
1230         sp = page_header(__pa(spte));
1231
1232         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1233
1234         kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
1235         kvm_flush_remote_tlbs(vcpu->kvm);
1236 }
1237
1238 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1239 {
1240         return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
1241 }
1242
1243 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1244 {
1245         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1246 }
1247
1248 #ifdef MMU_DEBUG
1249 static int is_empty_shadow_page(u64 *spt)
1250 {
1251         u64 *pos;
1252         u64 *end;
1253
1254         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1255                 if (is_shadow_present_pte(*pos)) {
1256                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1257                                pos, *pos);
1258                         return 0;
1259                 }
1260         return 1;
1261 }
1262 #endif
1263
1264 /*
1265  * This value is the sum of all of the kvm instances's
1266  * kvm->arch.n_used_mmu_pages values.  We need a global,
1267  * aggregate version in order to make the slab shrinker
1268  * faster
1269  */
1270 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1271 {
1272         kvm->arch.n_used_mmu_pages += nr;
1273         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1274 }
1275
1276 /*
1277  * Remove the sp from shadow page cache, after call it,
1278  * we can not find this sp from the cache, and the shadow
1279  * page table is still valid.
1280  * It should be under the protection of mmu lock.
1281  */
1282 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1283 {
1284         ASSERT(is_empty_shadow_page(sp->spt));
1285         hlist_del(&sp->hash_link);
1286         if (!sp->role.direct)
1287                 free_page((unsigned long)sp->gfns);
1288 }
1289
1290 /*
1291  * Free the shadow page table and the sp, we can do it
1292  * out of the protection of mmu lock.
1293  */
1294 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1295 {
1296         list_del(&sp->link);
1297         free_page((unsigned long)sp->spt);
1298         kmem_cache_free(mmu_page_header_cache, sp);
1299 }
1300
1301 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1302 {
1303         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1304 }
1305
1306 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1307                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1308 {
1309         if (!parent_pte)
1310                 return;
1311
1312         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1313 }
1314
1315 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1316                                        u64 *parent_pte)
1317 {
1318         pte_list_remove(parent_pte, &sp->parent_ptes);
1319 }
1320
1321 static void drop_parent_pte(struct kvm_mmu_page *sp,
1322                             u64 *parent_pte)
1323 {
1324         mmu_page_remove_parent_pte(sp, parent_pte);
1325         mmu_spte_clear_no_track(parent_pte);
1326 }
1327
1328 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1329                                                u64 *parent_pte, int direct)
1330 {
1331         struct kvm_mmu_page *sp;
1332         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1333                                         sizeof *sp);
1334         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1335         if (!direct)
1336                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1337                                                   PAGE_SIZE);
1338         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1339         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1340         bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
1341         sp->parent_ptes = 0;
1342         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1343         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1344         return sp;
1345 }
1346
1347 static void mark_unsync(u64 *spte);
1348 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1349 {
1350         pte_list_walk(&sp->parent_ptes, mark_unsync);
1351 }
1352
1353 static void mark_unsync(u64 *spte)
1354 {
1355         struct kvm_mmu_page *sp;
1356         unsigned int index;
1357
1358         sp = page_header(__pa(spte));
1359         index = spte - sp->spt;
1360         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1361                 return;
1362         if (sp->unsync_children++)
1363                 return;
1364         kvm_mmu_mark_parents_unsync(sp);
1365 }
1366
1367 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1368                                struct kvm_mmu_page *sp)
1369 {
1370         return 1;
1371 }
1372
1373 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1374 {
1375 }
1376
1377 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1378                                  struct kvm_mmu_page *sp, u64 *spte,
1379                                  const void *pte)
1380 {
1381         WARN_ON(1);
1382 }
1383
1384 #define KVM_PAGE_ARRAY_NR 16
1385
1386 struct kvm_mmu_pages {
1387         struct mmu_page_and_offset {
1388                 struct kvm_mmu_page *sp;
1389                 unsigned int idx;
1390         } page[KVM_PAGE_ARRAY_NR];
1391         unsigned int nr;
1392 };
1393
1394 #define for_each_unsync_children(bitmap, idx)           \
1395         for (idx = find_first_bit(bitmap, 512);         \
1396              idx < 512;                                 \
1397              idx = find_next_bit(bitmap, 512, idx+1))
1398
1399 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1400                          int idx)
1401 {
1402         int i;
1403
1404         if (sp->unsync)
1405                 for (i=0; i < pvec->nr; i++)
1406                         if (pvec->page[i].sp == sp)
1407                                 return 0;
1408
1409         pvec->page[pvec->nr].sp = sp;
1410         pvec->page[pvec->nr].idx = idx;
1411         pvec->nr++;
1412         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1413 }
1414
1415 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1416                            struct kvm_mmu_pages *pvec)
1417 {
1418         int i, ret, nr_unsync_leaf = 0;
1419
1420         for_each_unsync_children(sp->unsync_child_bitmap, i) {
1421                 struct kvm_mmu_page *child;
1422                 u64 ent = sp->spt[i];
1423
1424                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1425                         goto clear_child_bitmap;
1426
1427                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1428
1429                 if (child->unsync_children) {
1430                         if (mmu_pages_add(pvec, child, i))
1431                                 return -ENOSPC;
1432
1433                         ret = __mmu_unsync_walk(child, pvec);
1434                         if (!ret)
1435                                 goto clear_child_bitmap;
1436                         else if (ret > 0)
1437                                 nr_unsync_leaf += ret;
1438                         else
1439                                 return ret;
1440                 } else if (child->unsync) {
1441                         nr_unsync_leaf++;
1442                         if (mmu_pages_add(pvec, child, i))
1443                                 return -ENOSPC;
1444                 } else
1445                          goto clear_child_bitmap;
1446
1447                 continue;
1448
1449 clear_child_bitmap:
1450                 __clear_bit(i, sp->unsync_child_bitmap);
1451                 sp->unsync_children--;
1452                 WARN_ON((int)sp->unsync_children < 0);
1453         }
1454
1455
1456         return nr_unsync_leaf;
1457 }
1458
1459 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1460                            struct kvm_mmu_pages *pvec)
1461 {
1462         if (!sp->unsync_children)
1463                 return 0;
1464
1465         mmu_pages_add(pvec, sp, 0);
1466         return __mmu_unsync_walk(sp, pvec);
1467 }
1468
1469 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1470 {
1471         WARN_ON(!sp->unsync);
1472         trace_kvm_mmu_sync_page(sp);
1473         sp->unsync = 0;
1474         --kvm->stat.mmu_unsync;
1475 }
1476
1477 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1478                                     struct list_head *invalid_list);
1479 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1480                                     struct list_head *invalid_list);
1481
1482 #define for_each_gfn_sp(kvm, sp, gfn, pos)                              \
1483   hlist_for_each_entry(sp, pos,                                         \
1484    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1485         if ((sp)->gfn != (gfn)) {} else
1486
1487 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos)               \
1488   hlist_for_each_entry(sp, pos,                                         \
1489    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1490                 if ((sp)->gfn != (gfn) || (sp)->role.direct ||          \
1491                         (sp)->role.invalid) {} else
1492
1493 /* @sp->gfn should be write-protected at the call site */
1494 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1495                            struct list_head *invalid_list, bool clear_unsync)
1496 {
1497         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1498                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1499                 return 1;
1500         }
1501
1502         if (clear_unsync)
1503                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1504
1505         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1506                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1507                 return 1;
1508         }
1509
1510         kvm_mmu_flush_tlb(vcpu);
1511         return 0;
1512 }
1513
1514 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1515                                    struct kvm_mmu_page *sp)
1516 {
1517         LIST_HEAD(invalid_list);
1518         int ret;
1519
1520         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1521         if (ret)
1522                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1523
1524         return ret;
1525 }
1526
1527 #ifdef CONFIG_KVM_MMU_AUDIT
1528 #include "mmu_audit.c"
1529 #else
1530 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1531 static void mmu_audit_disable(void) { }
1532 #endif
1533
1534 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1535                          struct list_head *invalid_list)
1536 {
1537         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1538 }
1539
1540 /* @gfn should be write-protected at the call site */
1541 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1542 {
1543         struct kvm_mmu_page *s;
1544         struct hlist_node *node;
1545         LIST_HEAD(invalid_list);
1546         bool flush = false;
1547
1548         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1549                 if (!s->unsync)
1550                         continue;
1551
1552                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1553                 kvm_unlink_unsync_page(vcpu->kvm, s);
1554                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1555                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1556                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1557                         continue;
1558                 }
1559                 flush = true;
1560         }
1561
1562         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1563         if (flush)
1564                 kvm_mmu_flush_tlb(vcpu);
1565 }
1566
1567 struct mmu_page_path {
1568         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1569         unsigned int idx[PT64_ROOT_LEVEL-1];
1570 };
1571
1572 #define for_each_sp(pvec, sp, parents, i)                       \
1573                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1574                         sp = pvec.page[i].sp;                   \
1575                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1576                         i = mmu_pages_next(&pvec, &parents, i))
1577
1578 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1579                           struct mmu_page_path *parents,
1580                           int i)
1581 {
1582         int n;
1583
1584         for (n = i+1; n < pvec->nr; n++) {
1585                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1586
1587                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1588                         parents->idx[0] = pvec->page[n].idx;
1589                         return n;
1590                 }
1591
1592                 parents->parent[sp->role.level-2] = sp;
1593                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1594         }
1595
1596         return n;
1597 }
1598
1599 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1600 {
1601         struct kvm_mmu_page *sp;
1602         unsigned int level = 0;
1603
1604         do {
1605                 unsigned int idx = parents->idx[level];
1606
1607                 sp = parents->parent[level];
1608                 if (!sp)
1609                         return;
1610
1611                 --sp->unsync_children;
1612                 WARN_ON((int)sp->unsync_children < 0);
1613                 __clear_bit(idx, sp->unsync_child_bitmap);
1614                 level++;
1615         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1616 }
1617
1618 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1619                                struct mmu_page_path *parents,
1620                                struct kvm_mmu_pages *pvec)
1621 {
1622         parents->parent[parent->role.level-1] = NULL;
1623         pvec->nr = 0;
1624 }
1625
1626 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1627                               struct kvm_mmu_page *parent)
1628 {
1629         int i;
1630         struct kvm_mmu_page *sp;
1631         struct mmu_page_path parents;
1632         struct kvm_mmu_pages pages;
1633         LIST_HEAD(invalid_list);
1634
1635         kvm_mmu_pages_init(parent, &parents, &pages);
1636         while (mmu_unsync_walk(parent, &pages)) {
1637                 int protected = 0;
1638
1639                 for_each_sp(pages, sp, parents, i)
1640                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1641
1642                 if (protected)
1643                         kvm_flush_remote_tlbs(vcpu->kvm);
1644
1645                 for_each_sp(pages, sp, parents, i) {
1646                         kvm_sync_page(vcpu, sp, &invalid_list);
1647                         mmu_pages_clear_parents(&parents);
1648                 }
1649                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1650                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1651                 kvm_mmu_pages_init(parent, &parents, &pages);
1652         }
1653 }
1654
1655 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1656 {
1657         int i;
1658
1659         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1660                 sp->spt[i] = 0ull;
1661 }
1662
1663 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1664 {
1665         sp->write_flooding_count = 0;
1666 }
1667
1668 static void clear_sp_write_flooding_count(u64 *spte)
1669 {
1670         struct kvm_mmu_page *sp =  page_header(__pa(spte));
1671
1672         __clear_sp_write_flooding_count(sp);
1673 }
1674
1675 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1676                                              gfn_t gfn,
1677                                              gva_t gaddr,
1678                                              unsigned level,
1679                                              int direct,
1680                                              unsigned access,
1681                                              u64 *parent_pte)
1682 {
1683         union kvm_mmu_page_role role;
1684         unsigned quadrant;
1685         struct kvm_mmu_page *sp;
1686         struct hlist_node *node;
1687         bool need_sync = false;
1688
1689         role = vcpu->arch.mmu.base_role;
1690         role.level = level;
1691         role.direct = direct;
1692         if (role.direct)
1693                 role.cr4_pae = 0;
1694         role.access = access;
1695         if (!vcpu->arch.mmu.direct_map
1696             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1697                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1698                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1699                 role.quadrant = quadrant;
1700         }
1701         for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1702                 if (!need_sync && sp->unsync)
1703                         need_sync = true;
1704
1705                 if (sp->role.word != role.word)
1706                         continue;
1707
1708                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1709                         break;
1710
1711                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1712                 if (sp->unsync_children) {
1713                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1714                         kvm_mmu_mark_parents_unsync(sp);
1715                 } else if (sp->unsync)
1716                         kvm_mmu_mark_parents_unsync(sp);
1717
1718                 __clear_sp_write_flooding_count(sp);
1719                 trace_kvm_mmu_get_page(sp, false);
1720                 return sp;
1721         }
1722         ++vcpu->kvm->stat.mmu_cache_miss;
1723         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1724         if (!sp)
1725                 return sp;
1726         sp->gfn = gfn;
1727         sp->role = role;
1728         hlist_add_head(&sp->hash_link,
1729                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1730         if (!direct) {
1731                 if (rmap_write_protect(vcpu->kvm, gfn))
1732                         kvm_flush_remote_tlbs(vcpu->kvm);
1733                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1734                         kvm_sync_pages(vcpu, gfn);
1735
1736                 account_shadowed(vcpu->kvm, gfn);
1737         }
1738         init_shadow_page_table(sp);
1739         trace_kvm_mmu_get_page(sp, true);
1740         return sp;
1741 }
1742
1743 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1744                              struct kvm_vcpu *vcpu, u64 addr)
1745 {
1746         iterator->addr = addr;
1747         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1748         iterator->level = vcpu->arch.mmu.shadow_root_level;
1749
1750         if (iterator->level == PT64_ROOT_LEVEL &&
1751             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1752             !vcpu->arch.mmu.direct_map)
1753                 --iterator->level;
1754
1755         if (iterator->level == PT32E_ROOT_LEVEL) {
1756                 iterator->shadow_addr
1757                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1758                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1759                 --iterator->level;
1760                 if (!iterator->shadow_addr)
1761                         iterator->level = 0;
1762         }
1763 }
1764
1765 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1766 {
1767         if (iterator->level < PT_PAGE_TABLE_LEVEL)
1768                 return false;
1769
1770         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1771         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1772         return true;
1773 }
1774
1775 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1776                                u64 spte)
1777 {
1778         if (is_last_spte(spte, iterator->level)) {
1779                 iterator->level = 0;
1780                 return;
1781         }
1782
1783         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1784         --iterator->level;
1785 }
1786
1787 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1788 {
1789         return __shadow_walk_next(iterator, *iterator->sptep);
1790 }
1791
1792 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1793 {
1794         u64 spte;
1795
1796         spte = __pa(sp->spt)
1797                 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1798                 | PT_WRITABLE_MASK | PT_USER_MASK;
1799         mmu_spte_set(sptep, spte);
1800 }
1801
1802 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1803 {
1804         if (is_large_pte(*sptep)) {
1805                 drop_spte(vcpu->kvm, sptep);
1806                 kvm_flush_remote_tlbs(vcpu->kvm);
1807         }
1808 }
1809
1810 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1811                                    unsigned direct_access)
1812 {
1813         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1814                 struct kvm_mmu_page *child;
1815
1816                 /*
1817                  * For the direct sp, if the guest pte's dirty bit
1818                  * changed form clean to dirty, it will corrupt the
1819                  * sp's access: allow writable in the read-only sp,
1820                  * so we should update the spte at this point to get
1821                  * a new sp with the correct access.
1822                  */
1823                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1824                 if (child->role.access == direct_access)
1825                         return;
1826
1827                 drop_parent_pte(child, sptep);
1828                 kvm_flush_remote_tlbs(vcpu->kvm);
1829         }
1830 }
1831
1832 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1833                              u64 *spte)
1834 {
1835         u64 pte;
1836         struct kvm_mmu_page *child;
1837
1838         pte = *spte;
1839         if (is_shadow_present_pte(pte)) {
1840                 if (is_last_spte(pte, sp->role.level)) {
1841                         drop_spte(kvm, spte);
1842                         if (is_large_pte(pte))
1843                                 --kvm->stat.lpages;
1844                 } else {
1845                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1846                         drop_parent_pte(child, spte);
1847                 }
1848                 return true;
1849         }
1850
1851         if (is_mmio_spte(pte))
1852                 mmu_spte_clear_no_track(spte);
1853
1854         return false;
1855 }
1856
1857 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1858                                          struct kvm_mmu_page *sp)
1859 {
1860         unsigned i;
1861
1862         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1863                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
1864 }
1865
1866 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1867 {
1868         mmu_page_remove_parent_pte(sp, parent_pte);
1869 }
1870
1871 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1872 {
1873         u64 *parent_pte;
1874
1875         while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
1876                 drop_parent_pte(sp, parent_pte);
1877 }
1878
1879 static int mmu_zap_unsync_children(struct kvm *kvm,
1880                                    struct kvm_mmu_page *parent,
1881                                    struct list_head *invalid_list)
1882 {
1883         int i, zapped = 0;
1884         struct mmu_page_path parents;
1885         struct kvm_mmu_pages pages;
1886
1887         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1888                 return 0;
1889
1890         kvm_mmu_pages_init(parent, &parents, &pages);
1891         while (mmu_unsync_walk(parent, &pages)) {
1892                 struct kvm_mmu_page *sp;
1893
1894                 for_each_sp(pages, sp, parents, i) {
1895                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1896                         mmu_pages_clear_parents(&parents);
1897                         zapped++;
1898                 }
1899                 kvm_mmu_pages_init(parent, &parents, &pages);
1900         }
1901
1902         return zapped;
1903 }
1904
1905 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1906                                     struct list_head *invalid_list)
1907 {
1908         int ret;
1909
1910         trace_kvm_mmu_prepare_zap_page(sp);
1911         ++kvm->stat.mmu_shadow_zapped;
1912         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1913         kvm_mmu_page_unlink_children(kvm, sp);
1914         kvm_mmu_unlink_parents(kvm, sp);
1915         if (!sp->role.invalid && !sp->role.direct)
1916                 unaccount_shadowed(kvm, sp->gfn);
1917         if (sp->unsync)
1918                 kvm_unlink_unsync_page(kvm, sp);
1919         if (!sp->root_count) {
1920                 /* Count self */
1921                 ret++;
1922                 list_move(&sp->link, invalid_list);
1923                 kvm_mod_used_mmu_pages(kvm, -1);
1924         } else {
1925                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
1926                 kvm_reload_remote_mmus(kvm);
1927         }
1928
1929         sp->role.invalid = 1;
1930         return ret;
1931 }
1932
1933 static void kvm_mmu_isolate_pages(struct list_head *invalid_list)
1934 {
1935         struct kvm_mmu_page *sp;
1936
1937         list_for_each_entry(sp, invalid_list, link)
1938                 kvm_mmu_isolate_page(sp);
1939 }
1940
1941 static void free_pages_rcu(struct rcu_head *head)
1942 {
1943         struct kvm_mmu_page *next, *sp;
1944
1945         sp = container_of(head, struct kvm_mmu_page, rcu);
1946         while (sp) {
1947                 if (!list_empty(&sp->link))
1948                         next = list_first_entry(&sp->link,
1949                                       struct kvm_mmu_page, link);
1950                 else
1951                         next = NULL;
1952                 kvm_mmu_free_page(sp);
1953                 sp = next;
1954         }
1955 }
1956
1957 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1958                                     struct list_head *invalid_list)
1959 {
1960         struct kvm_mmu_page *sp;
1961
1962         if (list_empty(invalid_list))
1963                 return;
1964
1965         kvm_flush_remote_tlbs(kvm);
1966
1967         if (atomic_read(&kvm->arch.reader_counter)) {
1968                 kvm_mmu_isolate_pages(invalid_list);
1969                 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1970                 list_del_init(invalid_list);
1971
1972                 trace_kvm_mmu_delay_free_pages(sp);
1973                 call_rcu(&sp->rcu, free_pages_rcu);
1974                 return;
1975         }
1976
1977         do {
1978                 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1979                 WARN_ON(!sp->role.invalid || sp->root_count);
1980                 kvm_mmu_isolate_page(sp);
1981                 kvm_mmu_free_page(sp);
1982         } while (!list_empty(invalid_list));
1983
1984 }
1985
1986 /*
1987  * Changing the number of mmu pages allocated to the vm
1988  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1989  */
1990 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1991 {
1992         LIST_HEAD(invalid_list);
1993         /*
1994          * If we set the number of mmu pages to be smaller be than the
1995          * number of actived pages , we must to free some mmu pages before we
1996          * change the value
1997          */
1998
1999         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2000                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
2001                         !list_empty(&kvm->arch.active_mmu_pages)) {
2002                         struct kvm_mmu_page *page;
2003
2004                         page = container_of(kvm->arch.active_mmu_pages.prev,
2005                                             struct kvm_mmu_page, link);
2006                         kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2007                 }
2008                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2009                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2010         }
2011
2012         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2013 }
2014
2015 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2016 {
2017         struct kvm_mmu_page *sp;
2018         struct hlist_node *node;
2019         LIST_HEAD(invalid_list);
2020         int r;
2021
2022         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2023         r = 0;
2024         spin_lock(&kvm->mmu_lock);
2025         for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2026                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2027                          sp->role.word);
2028                 r = 1;
2029                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2030         }
2031         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2032         spin_unlock(&kvm->mmu_lock);
2033
2034         return r;
2035 }
2036 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2037
2038 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
2039 {
2040         int slot = memslot_id(kvm, gfn);
2041         struct kvm_mmu_page *sp = page_header(__pa(pte));
2042
2043         __set_bit(slot, sp->slot_bitmap);
2044 }
2045
2046 /*
2047  * The function is based on mtrr_type_lookup() in
2048  * arch/x86/kernel/cpu/mtrr/generic.c
2049  */
2050 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2051                          u64 start, u64 end)
2052 {
2053         int i;
2054         u64 base, mask;
2055         u8 prev_match, curr_match;
2056         int num_var_ranges = KVM_NR_VAR_MTRR;
2057
2058         if (!mtrr_state->enabled)
2059                 return 0xFF;
2060
2061         /* Make end inclusive end, instead of exclusive */
2062         end--;
2063
2064         /* Look in fixed ranges. Just return the type as per start */
2065         if (mtrr_state->have_fixed && (start < 0x100000)) {
2066                 int idx;
2067
2068                 if (start < 0x80000) {
2069                         idx = 0;
2070                         idx += (start >> 16);
2071                         return mtrr_state->fixed_ranges[idx];
2072                 } else if (start < 0xC0000) {
2073                         idx = 1 * 8;
2074                         idx += ((start - 0x80000) >> 14);
2075                         return mtrr_state->fixed_ranges[idx];
2076                 } else if (start < 0x1000000) {
2077                         idx = 3 * 8;
2078                         idx += ((start - 0xC0000) >> 12);
2079                         return mtrr_state->fixed_ranges[idx];
2080                 }
2081         }
2082
2083         /*
2084          * Look in variable ranges
2085          * Look of multiple ranges matching this address and pick type
2086          * as per MTRR precedence
2087          */
2088         if (!(mtrr_state->enabled & 2))
2089                 return mtrr_state->def_type;
2090
2091         prev_match = 0xFF;
2092         for (i = 0; i < num_var_ranges; ++i) {
2093                 unsigned short start_state, end_state;
2094
2095                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2096                         continue;
2097
2098                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2099                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2100                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2101                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2102
2103                 start_state = ((start & mask) == (base & mask));
2104                 end_state = ((end & mask) == (base & mask));
2105                 if (start_state != end_state)
2106                         return 0xFE;
2107
2108                 if ((start & mask) != (base & mask))
2109                         continue;
2110
2111                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2112                 if (prev_match == 0xFF) {
2113                         prev_match = curr_match;
2114                         continue;
2115                 }
2116
2117                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2118                     curr_match == MTRR_TYPE_UNCACHABLE)
2119                         return MTRR_TYPE_UNCACHABLE;
2120
2121                 if ((prev_match == MTRR_TYPE_WRBACK &&
2122                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2123                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2124                      curr_match == MTRR_TYPE_WRBACK)) {
2125                         prev_match = MTRR_TYPE_WRTHROUGH;
2126                         curr_match = MTRR_TYPE_WRTHROUGH;
2127                 }
2128
2129                 if (prev_match != curr_match)
2130                         return MTRR_TYPE_UNCACHABLE;
2131         }
2132
2133         if (prev_match != 0xFF)
2134                 return prev_match;
2135
2136         return mtrr_state->def_type;
2137 }
2138
2139 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2140 {
2141         u8 mtrr;
2142
2143         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2144                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2145         if (mtrr == 0xfe || mtrr == 0xff)
2146                 mtrr = MTRR_TYPE_WRBACK;
2147         return mtrr;
2148 }
2149 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2150
2151 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2152 {
2153         trace_kvm_mmu_unsync_page(sp);
2154         ++vcpu->kvm->stat.mmu_unsync;
2155         sp->unsync = 1;
2156
2157         kvm_mmu_mark_parents_unsync(sp);
2158 }
2159
2160 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2161 {
2162         struct kvm_mmu_page *s;
2163         struct hlist_node *node;
2164
2165         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2166                 if (s->unsync)
2167                         continue;
2168                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2169                 __kvm_unsync_page(vcpu, s);
2170         }
2171 }
2172
2173 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2174                                   bool can_unsync)
2175 {
2176         struct kvm_mmu_page *s;
2177         struct hlist_node *node;
2178         bool need_unsync = false;
2179
2180         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2181                 if (!can_unsync)
2182                         return 1;
2183
2184                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2185                         return 1;
2186
2187                 if (!need_unsync && !s->unsync) {
2188                         need_unsync = true;
2189                 }
2190         }
2191         if (need_unsync)
2192                 kvm_unsync_pages(vcpu, gfn);
2193         return 0;
2194 }
2195
2196 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2197                     unsigned pte_access, int user_fault,
2198                     int write_fault, int level,
2199                     gfn_t gfn, pfn_t pfn, bool speculative,
2200                     bool can_unsync, bool host_writable)
2201 {
2202         u64 spte, entry = *sptep;
2203         int ret = 0;
2204
2205         if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2206                 return 0;
2207
2208         spte = PT_PRESENT_MASK;
2209         if (!speculative)
2210                 spte |= shadow_accessed_mask;
2211
2212         if (pte_access & ACC_EXEC_MASK)
2213                 spte |= shadow_x_mask;
2214         else
2215                 spte |= shadow_nx_mask;
2216         if (pte_access & ACC_USER_MASK)
2217                 spte |= shadow_user_mask;
2218         if (level > PT_PAGE_TABLE_LEVEL)
2219                 spte |= PT_PAGE_SIZE_MASK;
2220         if (tdp_enabled)
2221                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2222                         kvm_is_mmio_pfn(pfn));
2223
2224         if (host_writable)
2225                 spte |= SPTE_HOST_WRITEABLE;
2226         else
2227                 pte_access &= ~ACC_WRITE_MASK;
2228
2229         spte |= (u64)pfn << PAGE_SHIFT;
2230
2231         if ((pte_access & ACC_WRITE_MASK)
2232             || (!vcpu->arch.mmu.direct_map && write_fault
2233                 && !is_write_protection(vcpu) && !user_fault)) {
2234
2235                 if (level > PT_PAGE_TABLE_LEVEL &&
2236                     has_wrprotected_page(vcpu->kvm, gfn, level)) {
2237                         ret = 1;
2238                         drop_spte(vcpu->kvm, sptep);
2239                         goto done;
2240                 }
2241
2242                 spte |= PT_WRITABLE_MASK;
2243
2244                 if (!vcpu->arch.mmu.direct_map
2245                     && !(pte_access & ACC_WRITE_MASK)) {
2246                         spte &= ~PT_USER_MASK;
2247                         /*
2248                          * If we converted a user page to a kernel page,
2249                          * so that the kernel can write to it when cr0.wp=0,
2250                          * then we should prevent the kernel from executing it
2251                          * if SMEP is enabled.
2252                          */
2253                         if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2254                                 spte |= PT64_NX_MASK;
2255                 }
2256
2257                 /*
2258                  * Optimization: for pte sync, if spte was writable the hash
2259                  * lookup is unnecessary (and expensive). Write protection
2260                  * is responsibility of mmu_get_page / kvm_sync_page.
2261                  * Same reasoning can be applied to dirty page accounting.
2262                  */
2263                 if (!can_unsync && is_writable_pte(*sptep))
2264                         goto set_pte;
2265
2266                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2267                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2268                                  __func__, gfn);
2269                         ret = 1;
2270                         pte_access &= ~ACC_WRITE_MASK;
2271                         if (is_writable_pte(spte))
2272                                 spte &= ~PT_WRITABLE_MASK;
2273                 }
2274         }
2275
2276         if (pte_access & ACC_WRITE_MASK)
2277                 mark_page_dirty(vcpu->kvm, gfn);
2278
2279 set_pte:
2280         mmu_spte_update(sptep, spte);
2281         /*
2282          * If we overwrite a writable spte with a read-only one we
2283          * should flush remote TLBs. Otherwise rmap_write_protect
2284          * will find a read-only spte, even though the writable spte
2285          * might be cached on a CPU's TLB.
2286          */
2287         if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2288                 kvm_flush_remote_tlbs(vcpu->kvm);
2289 done:
2290         return ret;
2291 }
2292
2293 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2294                          unsigned pt_access, unsigned pte_access,
2295                          int user_fault, int write_fault,
2296                          int *emulate, int level, gfn_t gfn,
2297                          pfn_t pfn, bool speculative,
2298                          bool host_writable)
2299 {
2300         int was_rmapped = 0;
2301         int rmap_count;
2302
2303         pgprintk("%s: spte %llx access %x write_fault %d"
2304                  " user_fault %d gfn %llx\n",
2305                  __func__, *sptep, pt_access,
2306                  write_fault, user_fault, gfn);
2307
2308         if (is_rmap_spte(*sptep)) {
2309                 /*
2310                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2311                  * the parent of the now unreachable PTE.
2312                  */
2313                 if (level > PT_PAGE_TABLE_LEVEL &&
2314                     !is_large_pte(*sptep)) {
2315                         struct kvm_mmu_page *child;
2316                         u64 pte = *sptep;
2317
2318                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2319                         drop_parent_pte(child, sptep);
2320                         kvm_flush_remote_tlbs(vcpu->kvm);
2321                 } else if (pfn != spte_to_pfn(*sptep)) {
2322                         pgprintk("hfn old %llx new %llx\n",
2323                                  spte_to_pfn(*sptep), pfn);
2324                         drop_spte(vcpu->kvm, sptep);
2325                         kvm_flush_remote_tlbs(vcpu->kvm);
2326                 } else
2327                         was_rmapped = 1;
2328         }
2329
2330         if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2331                       level, gfn, pfn, speculative, true,
2332                       host_writable)) {
2333                 if (write_fault)
2334                         *emulate = 1;
2335                 kvm_mmu_flush_tlb(vcpu);
2336         }
2337
2338         if (unlikely(is_mmio_spte(*sptep) && emulate))
2339                 *emulate = 1;
2340
2341         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2342         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2343                  is_large_pte(*sptep)? "2MB" : "4kB",
2344                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2345                  *sptep, sptep);
2346         if (!was_rmapped && is_large_pte(*sptep))
2347                 ++vcpu->kvm->stat.lpages;
2348
2349         if (is_shadow_present_pte(*sptep)) {
2350                 page_header_update_slot(vcpu->kvm, sptep, gfn);
2351                 if (!was_rmapped) {
2352                         rmap_count = rmap_add(vcpu, sptep, gfn);
2353                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2354                                 rmap_recycle(vcpu, sptep, gfn);
2355                 }
2356         }
2357         kvm_release_pfn_clean(pfn);
2358 }
2359
2360 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2361 {
2362 }
2363
2364 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2365                                      bool no_dirty_log)
2366 {
2367         struct kvm_memory_slot *slot;
2368         unsigned long hva;
2369
2370         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2371         if (!slot) {
2372                 get_page(fault_page);
2373                 return page_to_pfn(fault_page);
2374         }
2375
2376         hva = gfn_to_hva_memslot(slot, gfn);
2377
2378         return hva_to_pfn_atomic(vcpu->kvm, hva);
2379 }
2380
2381 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2382                                     struct kvm_mmu_page *sp,
2383                                     u64 *start, u64 *end)
2384 {
2385         struct page *pages[PTE_PREFETCH_NUM];
2386         unsigned access = sp->role.access;
2387         int i, ret;
2388         gfn_t gfn;
2389
2390         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2391         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2392                 return -1;
2393
2394         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2395         if (ret <= 0)
2396                 return -1;
2397
2398         for (i = 0; i < ret; i++, gfn++, start++)
2399                 mmu_set_spte(vcpu, start, ACC_ALL,
2400                              access, 0, 0, NULL,
2401                              sp->role.level, gfn,
2402                              page_to_pfn(pages[i]), true, true);
2403
2404         return 0;
2405 }
2406
2407 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2408                                   struct kvm_mmu_page *sp, u64 *sptep)
2409 {
2410         u64 *spte, *start = NULL;
2411         int i;
2412
2413         WARN_ON(!sp->role.direct);
2414
2415         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2416         spte = sp->spt + i;
2417
2418         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2419                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2420                         if (!start)
2421                                 continue;
2422                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2423                                 break;
2424                         start = NULL;
2425                 } else if (!start)
2426                         start = spte;
2427         }
2428 }
2429
2430 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2431 {
2432         struct kvm_mmu_page *sp;
2433
2434         /*
2435          * Since it's no accessed bit on EPT, it's no way to
2436          * distinguish between actually accessed translations
2437          * and prefetched, so disable pte prefetch if EPT is
2438          * enabled.
2439          */
2440         if (!shadow_accessed_mask)
2441                 return;
2442
2443         sp = page_header(__pa(sptep));
2444         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2445                 return;
2446
2447         __direct_pte_prefetch(vcpu, sp, sptep);
2448 }
2449
2450 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2451                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2452                         bool prefault)
2453 {
2454         struct kvm_shadow_walk_iterator iterator;
2455         struct kvm_mmu_page *sp;
2456         int emulate = 0;
2457         gfn_t pseudo_gfn;
2458
2459         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2460                 if (iterator.level == level) {
2461                         unsigned pte_access = ACC_ALL;
2462
2463                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2464                                      0, write, &emulate,
2465                                      level, gfn, pfn, prefault, map_writable);
2466                         direct_pte_prefetch(vcpu, iterator.sptep);
2467                         ++vcpu->stat.pf_fixed;
2468                         break;
2469                 }
2470
2471                 if (!is_shadow_present_pte(*iterator.sptep)) {
2472                         u64 base_addr = iterator.addr;
2473
2474                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2475                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2476                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2477                                               iterator.level - 1,
2478                                               1, ACC_ALL, iterator.sptep);
2479                         if (!sp) {
2480                                 pgprintk("nonpaging_map: ENOMEM\n");
2481                                 kvm_release_pfn_clean(pfn);
2482                                 return -ENOMEM;
2483                         }
2484
2485                         mmu_spte_set(iterator.sptep,
2486                                      __pa(sp->spt)
2487                                      | PT_PRESENT_MASK | PT_WRITABLE_MASK
2488                                      | shadow_user_mask | shadow_x_mask
2489                                      | shadow_accessed_mask);
2490                 }
2491         }
2492         return emulate;
2493 }
2494
2495 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2496 {
2497         siginfo_t info;
2498
2499         info.si_signo   = SIGBUS;
2500         info.si_errno   = 0;
2501         info.si_code    = BUS_MCEERR_AR;
2502         info.si_addr    = (void __user *)address;
2503         info.si_addr_lsb = PAGE_SHIFT;
2504
2505         send_sig_info(SIGBUS, &info, tsk);
2506 }
2507
2508 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2509 {
2510         kvm_release_pfn_clean(pfn);
2511         if (is_hwpoison_pfn(pfn)) {
2512                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2513                 return 0;
2514         }
2515
2516         return -EFAULT;
2517 }
2518
2519 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2520                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2521 {
2522         pfn_t pfn = *pfnp;
2523         gfn_t gfn = *gfnp;
2524         int level = *levelp;
2525
2526         /*
2527          * Check if it's a transparent hugepage. If this would be an
2528          * hugetlbfs page, level wouldn't be set to
2529          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2530          * here.
2531          */
2532         if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2533             level == PT_PAGE_TABLE_LEVEL &&
2534             PageTransCompound(pfn_to_page(pfn)) &&
2535             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2536                 unsigned long mask;
2537                 /*
2538                  * mmu_notifier_retry was successful and we hold the
2539                  * mmu_lock here, so the pmd can't become splitting
2540                  * from under us, and in turn
2541                  * __split_huge_page_refcount() can't run from under
2542                  * us and we can safely transfer the refcount from
2543                  * PG_tail to PG_head as we switch the pfn to tail to
2544                  * head.
2545                  */
2546                 *levelp = level = PT_DIRECTORY_LEVEL;
2547                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2548                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2549                 if (pfn & mask) {
2550                         gfn &= ~mask;
2551                         *gfnp = gfn;
2552                         kvm_release_pfn_clean(pfn);
2553                         pfn &= ~mask;
2554                         if (!get_page_unless_zero(pfn_to_page(pfn)))
2555                                 BUG();
2556                         *pfnp = pfn;
2557                 }
2558         }
2559 }
2560
2561 static bool mmu_invalid_pfn(pfn_t pfn)
2562 {
2563         return unlikely(is_invalid_pfn(pfn));
2564 }
2565
2566 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2567                                 pfn_t pfn, unsigned access, int *ret_val)
2568 {
2569         bool ret = true;
2570
2571         /* The pfn is invalid, report the error! */
2572         if (unlikely(is_invalid_pfn(pfn))) {
2573                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2574                 goto exit;
2575         }
2576
2577         if (unlikely(is_noslot_pfn(pfn)))
2578                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2579
2580         ret = false;
2581 exit:
2582         return ret;
2583 }
2584
2585 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2586                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2587
2588 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2589                          bool prefault)
2590 {
2591         int r;
2592         int level;
2593         int force_pt_level;
2594         pfn_t pfn;
2595         unsigned long mmu_seq;
2596         bool map_writable;
2597
2598         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2599         if (likely(!force_pt_level)) {
2600                 level = mapping_level(vcpu, gfn);
2601                 /*
2602                  * This path builds a PAE pagetable - so we can map
2603                  * 2mb pages at maximum. Therefore check if the level
2604                  * is larger than that.
2605                  */
2606                 if (level > PT_DIRECTORY_LEVEL)
2607                         level = PT_DIRECTORY_LEVEL;
2608
2609                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2610         } else
2611                 level = PT_PAGE_TABLE_LEVEL;
2612
2613         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2614         smp_rmb();
2615
2616         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2617                 return 0;
2618
2619         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2620                 return r;
2621
2622         spin_lock(&vcpu->kvm->mmu_lock);
2623         if (mmu_notifier_retry(vcpu, mmu_seq))
2624                 goto out_unlock;
2625         kvm_mmu_free_some_pages(vcpu);
2626         if (likely(!force_pt_level))
2627                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2628         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2629                          prefault);
2630         spin_unlock(&vcpu->kvm->mmu_lock);
2631
2632
2633         return r;
2634
2635 out_unlock:
2636         spin_unlock(&vcpu->kvm->mmu_lock);
2637         kvm_release_pfn_clean(pfn);
2638         return 0;
2639 }
2640
2641
2642 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2643 {
2644         int i;
2645         struct kvm_mmu_page *sp;
2646         LIST_HEAD(invalid_list);
2647
2648         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2649                 return;
2650         spin_lock(&vcpu->kvm->mmu_lock);
2651         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2652             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2653              vcpu->arch.mmu.direct_map)) {
2654                 hpa_t root = vcpu->arch.mmu.root_hpa;
2655
2656                 sp = page_header(root);
2657                 --sp->root_count;
2658                 if (!sp->root_count && sp->role.invalid) {
2659                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2660                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2661                 }
2662                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2663                 spin_unlock(&vcpu->kvm->mmu_lock);
2664                 return;
2665         }
2666         for (i = 0; i < 4; ++i) {
2667                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2668
2669                 if (root) {
2670                         root &= PT64_BASE_ADDR_MASK;
2671                         sp = page_header(root);
2672                         --sp->root_count;
2673                         if (!sp->root_count && sp->role.invalid)
2674                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2675                                                          &invalid_list);
2676                 }
2677                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2678         }
2679         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2680         spin_unlock(&vcpu->kvm->mmu_lock);
2681         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2682 }
2683
2684 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2685 {
2686         int ret = 0;
2687
2688         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2689                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2690                 ret = 1;
2691         }
2692
2693         return ret;
2694 }
2695
2696 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2697 {
2698         struct kvm_mmu_page *sp;
2699         unsigned i;
2700
2701         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2702                 spin_lock(&vcpu->kvm->mmu_lock);
2703                 kvm_mmu_free_some_pages(vcpu);
2704                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2705                                       1, ACC_ALL, NULL);
2706                 ++sp->root_count;
2707                 spin_unlock(&vcpu->kvm->mmu_lock);
2708                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2709         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2710                 for (i = 0; i < 4; ++i) {
2711                         hpa_t root = vcpu->arch.mmu.pae_root[i];
2712
2713                         ASSERT(!VALID_PAGE(root));
2714                         spin_lock(&vcpu->kvm->mmu_lock);
2715                         kvm_mmu_free_some_pages(vcpu);
2716                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2717                                               i << 30,
2718                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
2719                                               NULL);
2720                         root = __pa(sp->spt);
2721                         ++sp->root_count;
2722                         spin_unlock(&vcpu->kvm->mmu_lock);
2723                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2724                 }
2725                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2726         } else
2727                 BUG();
2728
2729         return 0;
2730 }
2731
2732 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2733 {
2734         struct kvm_mmu_page *sp;
2735         u64 pdptr, pm_mask;
2736         gfn_t root_gfn;
2737         int i;
2738
2739         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2740
2741         if (mmu_check_root(vcpu, root_gfn))
2742                 return 1;
2743
2744         /*
2745          * Do we shadow a long mode page table? If so we need to
2746          * write-protect the guests page table root.
2747          */
2748         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2749                 hpa_t root = vcpu->arch.mmu.root_hpa;
2750
2751                 ASSERT(!VALID_PAGE(root));
2752
2753                 spin_lock(&vcpu->kvm->mmu_lock);
2754                 kvm_mmu_free_some_pages(vcpu);
2755                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2756                                       0, ACC_ALL, NULL);
2757                 root = __pa(sp->spt);
2758                 ++sp->root_count;
2759                 spin_unlock(&vcpu->kvm->mmu_lock);
2760                 vcpu->arch.mmu.root_hpa = root;
2761                 return 0;
2762         }
2763
2764         /*
2765          * We shadow a 32 bit page table. This may be a legacy 2-level
2766          * or a PAE 3-level page table. In either case we need to be aware that
2767          * the shadow page table may be a PAE or a long mode page table.
2768          */
2769         pm_mask = PT_PRESENT_MASK;
2770         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2771                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2772
2773         for (i = 0; i < 4; ++i) {
2774                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2775
2776                 ASSERT(!VALID_PAGE(root));
2777                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2778                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
2779                         if (!is_present_gpte(pdptr)) {
2780                                 vcpu->arch.mmu.pae_root[i] = 0;
2781                                 continue;
2782                         }
2783                         root_gfn = pdptr >> PAGE_SHIFT;
2784                         if (mmu_check_root(vcpu, root_gfn))
2785                                 return 1;
2786                 }
2787                 spin_lock(&vcpu->kvm->mmu_lock);
2788                 kvm_mmu_free_some_pages(vcpu);
2789                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2790                                       PT32_ROOT_LEVEL, 0,
2791                                       ACC_ALL, NULL);
2792                 root = __pa(sp->spt);
2793                 ++sp->root_count;
2794                 spin_unlock(&vcpu->kvm->mmu_lock);
2795
2796                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2797         }
2798         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2799
2800         /*
2801          * If we shadow a 32 bit page table with a long mode page
2802          * table we enter this path.
2803          */
2804         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2805                 if (vcpu->arch.mmu.lm_root == NULL) {
2806                         /*
2807                          * The additional page necessary for this is only
2808                          * allocated on demand.
2809                          */
2810
2811                         u64 *lm_root;
2812
2813                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2814                         if (lm_root == NULL)
2815                                 return 1;
2816
2817                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2818
2819                         vcpu->arch.mmu.lm_root = lm_root;
2820                 }
2821
2822                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2823         }
2824
2825         return 0;
2826 }
2827
2828 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2829 {
2830         if (vcpu->arch.mmu.direct_map)
2831                 return mmu_alloc_direct_roots(vcpu);
2832         else
2833                 return mmu_alloc_shadow_roots(vcpu);
2834 }
2835
2836 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2837 {
2838         int i;
2839         struct kvm_mmu_page *sp;
2840
2841         if (vcpu->arch.mmu.direct_map)
2842                 return;
2843
2844         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2845                 return;
2846
2847         vcpu_clear_mmio_info(vcpu, ~0ul);
2848         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2849         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2850                 hpa_t root = vcpu->arch.mmu.root_hpa;
2851                 sp = page_header(root);
2852                 mmu_sync_children(vcpu, sp);
2853                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2854                 return;
2855         }
2856         for (i = 0; i < 4; ++i) {
2857                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2858
2859                 if (root && VALID_PAGE(root)) {
2860                         root &= PT64_BASE_ADDR_MASK;
2861                         sp = page_header(root);
2862                         mmu_sync_children(vcpu, sp);
2863                 }
2864         }
2865         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2866 }
2867
2868 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2869 {
2870         spin_lock(&vcpu->kvm->mmu_lock);
2871         mmu_sync_roots(vcpu);
2872         spin_unlock(&vcpu->kvm->mmu_lock);
2873 }
2874
2875 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2876                                   u32 access, struct x86_exception *exception)
2877 {
2878         if (exception)
2879                 exception->error_code = 0;
2880         return vaddr;
2881 }
2882
2883 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2884                                          u32 access,
2885                                          struct x86_exception *exception)
2886 {
2887         if (exception)
2888                 exception->error_code = 0;
2889         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2890 }
2891
2892 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2893 {
2894         if (direct)
2895                 return vcpu_match_mmio_gpa(vcpu, addr);
2896
2897         return vcpu_match_mmio_gva(vcpu, addr);
2898 }
2899
2900
2901 /*
2902  * On direct hosts, the last spte is only allows two states
2903  * for mmio page fault:
2904  *   - It is the mmio spte
2905  *   - It is zapped or it is being zapped.
2906  *
2907  * This function completely checks the spte when the last spte
2908  * is not the mmio spte.
2909  */
2910 static bool check_direct_spte_mmio_pf(u64 spte)
2911 {
2912         return __check_direct_spte_mmio_pf(spte);
2913 }
2914
2915 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2916 {
2917         struct kvm_shadow_walk_iterator iterator;
2918         u64 spte = 0ull;
2919
2920         walk_shadow_page_lockless_begin(vcpu);
2921         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2922                 if (!is_shadow_present_pte(spte))
2923                         break;
2924         walk_shadow_page_lockless_end(vcpu);
2925
2926         return spte;
2927 }
2928
2929 /*
2930  * If it is a real mmio page fault, return 1 and emulat the instruction
2931  * directly, return 0 to let CPU fault again on the address, -1 is
2932  * returned if bug is detected.
2933  */
2934 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2935 {
2936         u64 spte;
2937
2938         if (quickly_check_mmio_pf(vcpu, addr, direct))
2939                 return 1;
2940
2941         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
2942
2943         if (is_mmio_spte(spte)) {
2944                 gfn_t gfn = get_mmio_spte_gfn(spte);
2945                 unsigned access = get_mmio_spte_access(spte);
2946
2947                 if (direct)
2948                         addr = 0;
2949
2950                 trace_handle_mmio_page_fault(addr, gfn, access);
2951                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
2952                 return 1;
2953         }
2954
2955         /*
2956          * It's ok if the gva is remapped by other cpus on shadow guest,
2957          * it's a BUG if the gfn is not a mmio page.
2958          */
2959         if (direct && !check_direct_spte_mmio_pf(spte))
2960                 return -1;
2961
2962         /*
2963          * If the page table is zapped by other cpus, let CPU fault again on
2964          * the address.
2965          */
2966         return 0;
2967 }
2968 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
2969
2970 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
2971                                   u32 error_code, bool direct)
2972 {
2973         int ret;
2974
2975         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
2976         WARN_ON(ret < 0);
2977         return ret;
2978 }
2979
2980 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2981                                 u32 error_code, bool prefault)
2982 {
2983         gfn_t gfn;
2984         int r;
2985
2986         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2987
2988         if (unlikely(error_code & PFERR_RSVD_MASK))
2989                 return handle_mmio_page_fault(vcpu, gva, error_code, true);
2990
2991         r = mmu_topup_memory_caches(vcpu);
2992         if (r)
2993                 return r;
2994
2995         ASSERT(vcpu);
2996         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2997
2998         gfn = gva >> PAGE_SHIFT;
2999
3000         return nonpaging_map(vcpu, gva & PAGE_MASK,
3001                              error_code & PFERR_WRITE_MASK, gfn, prefault);
3002 }
3003
3004 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3005 {
3006         struct kvm_arch_async_pf arch;
3007
3008         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3009         arch.gfn = gfn;
3010         arch.direct_map = vcpu->arch.mmu.direct_map;
3011         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3012
3013         return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3014 }
3015
3016 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3017 {
3018         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3019                      kvm_event_needs_reinjection(vcpu)))
3020                 return false;
3021
3022         return kvm_x86_ops->interrupt_allowed(vcpu);
3023 }
3024
3025 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3026                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3027 {
3028         bool async;
3029
3030         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3031
3032         if (!async)
3033                 return false; /* *pfn has correct page already */
3034
3035         put_page(pfn_to_page(*pfn));
3036
3037         if (!prefault && can_do_async_pf(vcpu)) {
3038                 trace_kvm_try_async_get_page(gva, gfn);
3039                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3040                         trace_kvm_async_pf_doublefault(gva, gfn);
3041                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3042                         return true;
3043                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3044                         return true;
3045         }
3046
3047         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3048
3049         return false;
3050 }
3051
3052 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3053                           bool prefault)
3054 {
3055         pfn_t pfn;
3056         int r;
3057         int level;
3058         int force_pt_level;
3059         gfn_t gfn = gpa >> PAGE_SHIFT;
3060         unsigned long mmu_seq;
3061         int write = error_code & PFERR_WRITE_MASK;
3062         bool map_writable;
3063
3064         ASSERT(vcpu);
3065         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3066
3067         if (unlikely(error_code & PFERR_RSVD_MASK))
3068                 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3069
3070         r = mmu_topup_memory_caches(vcpu);
3071         if (r)
3072                 return r;
3073
3074         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3075         if (likely(!force_pt_level)) {
3076                 level = mapping_level(vcpu, gfn);
3077                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3078         } else
3079                 level = PT_PAGE_TABLE_LEVEL;
3080
3081         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3082         smp_rmb();
3083
3084         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3085                 return 0;
3086
3087         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3088                 return r;
3089
3090         spin_lock(&vcpu->kvm->mmu_lock);
3091         if (mmu_notifier_retry(vcpu, mmu_seq))
3092                 goto out_unlock;
3093         kvm_mmu_free_some_pages(vcpu);
3094         if (likely(!force_pt_level))
3095                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3096         r = __direct_map(vcpu, gpa, write, map_writable,
3097                          level, gfn, pfn, prefault);
3098         spin_unlock(&vcpu->kvm->mmu_lock);
3099
3100         return r;
3101
3102 out_unlock:
3103         spin_unlock(&vcpu->kvm->mmu_lock);
3104         kvm_release_pfn_clean(pfn);
3105         return 0;
3106 }
3107
3108 static void nonpaging_free(struct kvm_vcpu *vcpu)
3109 {
3110         mmu_free_roots(vcpu);
3111 }
3112
3113 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3114                                   struct kvm_mmu *context)
3115 {
3116         context->new_cr3 = nonpaging_new_cr3;
3117         context->page_fault = nonpaging_page_fault;
3118         context->gva_to_gpa = nonpaging_gva_to_gpa;
3119         context->free = nonpaging_free;
3120         context->sync_page = nonpaging_sync_page;
3121         context->invlpg = nonpaging_invlpg;
3122         context->update_pte = nonpaging_update_pte;
3123         context->root_level = 0;
3124         context->shadow_root_level = PT32E_ROOT_LEVEL;
3125         context->root_hpa = INVALID_PAGE;
3126         context->direct_map = true;
3127         context->nx = false;
3128         return 0;
3129 }
3130
3131 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3132 {
3133         ++vcpu->stat.tlb_flush;
3134         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3135 }
3136
3137 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3138 {
3139         pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3140         mmu_free_roots(vcpu);
3141 }
3142
3143 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3144 {
3145         return kvm_read_cr3(vcpu);
3146 }
3147
3148 static void inject_page_fault(struct kvm_vcpu *vcpu,
3149                               struct x86_exception *fault)
3150 {
3151         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3152 }
3153
3154 static void paging_free(struct kvm_vcpu *vcpu)
3155 {
3156         nonpaging_free(vcpu);
3157 }
3158
3159 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3160 {
3161         int bit7;
3162
3163         bit7 = (gpte >> 7) & 1;
3164         return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
3165 }
3166
3167 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3168                            int *nr_present)
3169 {
3170         if (unlikely(is_mmio_spte(*sptep))) {
3171                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3172                         mmu_spte_clear_no_track(sptep);
3173                         return true;
3174                 }
3175
3176                 (*nr_present)++;
3177                 mark_mmio_spte(sptep, gfn, access);
3178                 return true;
3179         }
3180
3181         return false;
3182 }
3183
3184 #define PTTYPE 64
3185 #include "paging_tmpl.h"
3186 #undef PTTYPE
3187
3188 #define PTTYPE 32
3189 #include "paging_tmpl.h"
3190 #undef PTTYPE
3191
3192 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3193                                   struct kvm_mmu *context,
3194                                   int level)
3195 {
3196         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3197         u64 exb_bit_rsvd = 0;
3198
3199         if (!context->nx)
3200                 exb_bit_rsvd = rsvd_bits(63, 63);
3201         switch (level) {
3202         case PT32_ROOT_LEVEL:
3203                 /* no rsvd bits for 2 level 4K page table entries */
3204                 context->rsvd_bits_mask[0][1] = 0;
3205                 context->rsvd_bits_mask[0][0] = 0;
3206                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3207
3208                 if (!is_pse(vcpu)) {
3209                         context->rsvd_bits_mask[1][1] = 0;
3210                         break;
3211                 }
3212
3213                 if (is_cpuid_PSE36())
3214                         /* 36bits PSE 4MB page */
3215                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3216                 else
3217                         /* 32 bits PSE 4MB page */
3218                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3219                 break;
3220         case PT32E_ROOT_LEVEL:
3221                 context->rsvd_bits_mask[0][2] =
3222                         rsvd_bits(maxphyaddr, 63) |
3223                         rsvd_bits(7, 8) | rsvd_bits(1, 2);      /* PDPTE */
3224                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3225                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3226                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3227                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3228                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3229                         rsvd_bits(maxphyaddr, 62) |
3230                         rsvd_bits(13, 20);              /* large page */
3231                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3232                 break;
3233         case PT64_ROOT_LEVEL:
3234                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3235                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3236                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3237                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3238                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3239                         rsvd_bits(maxphyaddr, 51);
3240                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3241                         rsvd_bits(maxphyaddr, 51);
3242                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3243                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3244                         rsvd_bits(maxphyaddr, 51) |
3245                         rsvd_bits(13, 29);
3246                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3247                         rsvd_bits(maxphyaddr, 51) |
3248                         rsvd_bits(13, 20);              /* large page */
3249                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3250                 break;
3251         }
3252 }
3253
3254 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3255                                         struct kvm_mmu *context,
3256                                         int level)
3257 {
3258         context->nx = is_nx(vcpu);
3259
3260         reset_rsvds_bits_mask(vcpu, context, level);
3261
3262         ASSERT(is_pae(vcpu));
3263         context->new_cr3 = paging_new_cr3;
3264         context->page_fault = paging64_page_fault;
3265         context->gva_to_gpa = paging64_gva_to_gpa;
3266         context->sync_page = paging64_sync_page;
3267         context->invlpg = paging64_invlpg;
3268         context->update_pte = paging64_update_pte;
3269         context->free = paging_free;
3270         context->root_level = level;
3271         context->shadow_root_level = level;
3272         context->root_hpa = INVALID_PAGE;
3273         context->direct_map = false;
3274         return 0;
3275 }
3276
3277 static int paging64_init_context(struct kvm_vcpu *vcpu,
3278                                  struct kvm_mmu *context)
3279 {
3280         return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3281 }
3282
3283 static int paging32_init_context(struct kvm_vcpu *vcpu,
3284                                  struct kvm_mmu *context)
3285 {
3286         context->nx = false;
3287
3288         reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
3289
3290         context->new_cr3 = paging_new_cr3;
3291         context->page_fault = paging32_page_fault;
3292         context->gva_to_gpa = paging32_gva_to_gpa;
3293         context->free = paging_free;
3294         context->sync_page = paging32_sync_page;
3295         context->invlpg = paging32_invlpg;
3296         context->update_pte = paging32_update_pte;
3297         context->root_level = PT32_ROOT_LEVEL;
3298         context->shadow_root_level = PT32E_ROOT_LEVEL;
3299         context->root_hpa = INVALID_PAGE;
3300         context->direct_map = false;
3301         return 0;
3302 }
3303
3304 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3305                                   struct kvm_mmu *context)
3306 {
3307         return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3308 }
3309
3310 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3311 {
3312         struct kvm_mmu *context = vcpu->arch.walk_mmu;
3313
3314         context->base_role.word = 0;
3315         context->new_cr3 = nonpaging_new_cr3;
3316         context->page_fault = tdp_page_fault;
3317         context->free = nonpaging_free;
3318         context->sync_page = nonpaging_sync_page;
3319         context->invlpg = nonpaging_invlpg;
3320         context->update_pte = nonpaging_update_pte;
3321         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3322         context->root_hpa = INVALID_PAGE;
3323         context->direct_map = true;
3324         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3325         context->get_cr3 = get_cr3;
3326         context->get_pdptr = kvm_pdptr_read;
3327         context->inject_page_fault = kvm_inject_page_fault;
3328         context->nx = is_nx(vcpu);
3329
3330         if (!is_paging(vcpu)) {
3331                 context->nx = false;
3332                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3333                 context->root_level = 0;
3334         } else if (is_long_mode(vcpu)) {
3335                 context->nx = is_nx(vcpu);
3336                 reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
3337                 context->gva_to_gpa = paging64_gva_to_gpa;
3338                 context->root_level = PT64_ROOT_LEVEL;
3339         } else if (is_pae(vcpu)) {
3340                 context->nx = is_nx(vcpu);
3341                 reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
3342                 context->gva_to_gpa = paging64_gva_to_gpa;
3343                 context->root_level = PT32E_ROOT_LEVEL;
3344         } else {
3345                 context->nx = false;
3346                 reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
3347                 context->gva_to_gpa = paging32_gva_to_gpa;
3348                 context->root_level = PT32_ROOT_LEVEL;
3349         }
3350
3351         return 0;
3352 }
3353
3354 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3355 {
3356         int r;
3357         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3358         ASSERT(vcpu);
3359         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3360
3361         if (!is_paging(vcpu))
3362                 r = nonpaging_init_context(vcpu, context);
3363         else if (is_long_mode(vcpu))
3364                 r = paging64_init_context(vcpu, context);
3365         else if (is_pae(vcpu))
3366                 r = paging32E_init_context(vcpu, context);
3367         else
3368                 r = paging32_init_context(vcpu, context);
3369
3370         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3371         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3372         vcpu->arch.mmu.base_role.smep_andnot_wp
3373                 = smep && !is_write_protection(vcpu);
3374
3375         return r;
3376 }
3377 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3378
3379 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3380 {
3381         int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3382
3383         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3384         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3385         vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3386         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3387
3388         return r;
3389 }
3390
3391 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3392 {
3393         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3394
3395         g_context->get_cr3           = get_cr3;
3396         g_context->get_pdptr         = kvm_pdptr_read;
3397         g_context->inject_page_fault = kvm_inject_page_fault;
3398
3399         /*
3400          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3401          * translation of l2_gpa to l1_gpa addresses is done using the
3402          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3403          * functions between mmu and nested_mmu are swapped.
3404          */
3405         if (!is_paging(vcpu)) {
3406                 g_context->nx = false;
3407                 g_context->root_level = 0;
3408                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3409         } else if (is_long_mode(vcpu)) {
3410                 g_context->nx = is_nx(vcpu);
3411                 reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
3412                 g_context->root_level = PT64_ROOT_LEVEL;
3413                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3414         } else if (is_pae(vcpu)) {
3415                 g_context->nx = is_nx(vcpu);
3416                 reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
3417                 g_context->root_level = PT32E_ROOT_LEVEL;
3418                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3419         } else {
3420                 g_context->nx = false;
3421                 reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
3422                 g_context->root_level = PT32_ROOT_LEVEL;
3423                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3424         }
3425
3426         return 0;
3427 }
3428
3429 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3430 {
3431         if (mmu_is_nested(vcpu))
3432                 return init_kvm_nested_mmu(vcpu);
3433         else if (tdp_enabled)
3434                 return init_kvm_tdp_mmu(vcpu);
3435         else
3436                 return init_kvm_softmmu(vcpu);
3437 }
3438
3439 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3440 {
3441         ASSERT(vcpu);
3442         if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3443                 /* mmu.free() should set root_hpa = INVALID_PAGE */
3444                 vcpu->arch.mmu.free(vcpu);
3445 }
3446
3447 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3448 {
3449         destroy_kvm_mmu(vcpu);
3450         return init_kvm_mmu(vcpu);
3451 }
3452 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3453
3454 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3455 {
3456         int r;
3457
3458         r = mmu_topup_memory_caches(vcpu);
3459         if (r)
3460                 goto out;
3461         r = mmu_alloc_roots(vcpu);
3462         spin_lock(&vcpu->kvm->mmu_lock);
3463         mmu_sync_roots(vcpu);
3464         spin_unlock(&vcpu->kvm->mmu_lock);
3465         if (r)
3466                 goto out;
3467         /* set_cr3() should ensure TLB has been flushed */
3468         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3469 out:
3470         return r;
3471 }
3472 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3473
3474 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3475 {
3476         mmu_free_roots(vcpu);
3477 }
3478 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3479
3480 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3481                                   struct kvm_mmu_page *sp, u64 *spte,
3482                                   const void *new)
3483 {
3484         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3485                 ++vcpu->kvm->stat.mmu_pde_zapped;
3486                 return;
3487         }
3488
3489         ++vcpu->kvm->stat.mmu_pte_updated;
3490         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3491 }
3492
3493 static bool need_remote_flush(u64 old, u64 new)
3494 {
3495         if (!is_shadow_present_pte(old))
3496                 return false;
3497         if (!is_shadow_present_pte(new))
3498                 return true;
3499         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3500                 return true;
3501         old ^= PT64_NX_MASK;
3502         new ^= PT64_NX_MASK;
3503         return (old & ~new & PT64_PERM_MASK) != 0;
3504 }
3505
3506 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3507                                     bool remote_flush, bool local_flush)
3508 {
3509         if (zap_page)
3510                 return;
3511
3512         if (remote_flush)
3513                 kvm_flush_remote_tlbs(vcpu->kvm);
3514         else if (local_flush)
3515                 kvm_mmu_flush_tlb(vcpu);
3516 }
3517
3518 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3519                                     const u8 *new, int *bytes)
3520 {
3521         u64 gentry;
3522         int r;
3523
3524         /*
3525          * Assume that the pte write on a page table of the same type
3526          * as the current vcpu paging mode since we update the sptes only
3527          * when they have the same mode.
3528          */
3529         if (is_pae(vcpu) && *bytes == 4) {
3530                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3531                 *gpa &= ~(gpa_t)7;
3532                 *bytes = 8;
3533                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
3534                 if (r)
3535                         gentry = 0;
3536                 new = (const u8 *)&gentry;
3537         }
3538
3539         switch (*bytes) {
3540         case 4:
3541                 gentry = *(const u32 *)new;
3542                 break;
3543         case 8:
3544                 gentry = *(const u64 *)new;
3545                 break;
3546         default:
3547                 gentry = 0;
3548                 break;
3549         }
3550
3551         return gentry;
3552 }
3553
3554 /*
3555  * If we're seeing too many writes to a page, it may no longer be a page table,
3556  * or we may be forking, in which case it is better to unmap the page.
3557  */
3558 static bool detect_write_flooding(struct kvm_mmu_page *sp, u64 *spte)
3559 {
3560         /*
3561          * Skip write-flooding detected for the sp whose level is 1, because
3562          * it can become unsync, then the guest page is not write-protected.
3563          */
3564         if (sp->role.level == 1)
3565                 return false;
3566
3567         return ++sp->write_flooding_count >= 3;
3568 }
3569
3570 /*
3571  * Misaligned accesses are too much trouble to fix up; also, they usually
3572  * indicate a page is not used as a page table.
3573  */
3574 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3575                                     int bytes)
3576 {
3577         unsigned offset, pte_size, misaligned;
3578
3579         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3580                  gpa, bytes, sp->role.word);
3581
3582         offset = offset_in_page(gpa);
3583         pte_size = sp->role.cr4_pae ? 8 : 4;
3584
3585         /*
3586          * Sometimes, the OS only writes the last one bytes to update status
3587          * bits, for example, in linux, andb instruction is used in clear_bit().
3588          */
3589         if (!(offset & (pte_size - 1)) && bytes == 1)
3590                 return false;
3591
3592         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3593         misaligned |= bytes < 4;
3594
3595         return misaligned;
3596 }
3597
3598 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3599 {
3600         unsigned page_offset, quadrant;
3601         u64 *spte;
3602         int level;
3603
3604         page_offset = offset_in_page(gpa);
3605         level = sp->role.level;
3606         *nspte = 1;
3607         if (!sp->role.cr4_pae) {
3608                 page_offset <<= 1;      /* 32->64 */
3609                 /*
3610                  * A 32-bit pde maps 4MB while the shadow pdes map
3611                  * only 2MB.  So we need to double the offset again
3612                  * and zap two pdes instead of one.
3613                  */
3614                 if (level == PT32_ROOT_LEVEL) {
3615                         page_offset &= ~7; /* kill rounding error */
3616                         page_offset <<= 1;
3617                         *nspte = 2;
3618                 }
3619                 quadrant = page_offset >> PAGE_SHIFT;
3620                 page_offset &= ~PAGE_MASK;
3621                 if (quadrant != sp->role.quadrant)
3622                         return NULL;
3623         }
3624
3625         spte = &sp->spt[page_offset / sizeof(*spte)];
3626         return spte;
3627 }
3628
3629 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3630                        const u8 *new, int bytes)
3631 {
3632         gfn_t gfn = gpa >> PAGE_SHIFT;
3633         union kvm_mmu_page_role mask = { .word = 0 };
3634         struct kvm_mmu_page *sp;
3635         struct hlist_node *node;
3636         LIST_HEAD(invalid_list);
3637         u64 entry, gentry, *spte;
3638         int npte;
3639         bool remote_flush, local_flush, zap_page;
3640
3641         /*
3642          * If we don't have indirect shadow pages, it means no page is
3643          * write-protected, so we can exit simply.
3644          */
3645         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3646                 return;
3647
3648         zap_page = remote_flush = local_flush = false;
3649
3650         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3651
3652         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3653
3654         /*
3655          * No need to care whether allocation memory is successful
3656          * or not since pte prefetch is skiped if it does not have
3657          * enough objects in the cache.
3658          */
3659         mmu_topup_memory_caches(vcpu);
3660
3661         spin_lock(&vcpu->kvm->mmu_lock);
3662         ++vcpu->kvm->stat.mmu_pte_write;
3663         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3664
3665         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3666         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3667                 spte = get_written_sptes(sp, gpa, &npte);
3668
3669                 if (detect_write_misaligned(sp, gpa, bytes) ||
3670                       detect_write_flooding(sp, spte)) {
3671                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3672                                                      &invalid_list);
3673                         ++vcpu->kvm->stat.mmu_flooded;
3674                         continue;
3675                 }
3676
3677                 spte = get_written_sptes(sp, gpa, &npte);
3678                 if (!spte)
3679                         continue;
3680
3681                 local_flush = true;
3682                 while (npte--) {
3683                         entry = *spte;
3684                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
3685                         if (gentry &&
3686                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3687                               & mask.word) && rmap_can_add(vcpu))
3688                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3689                         if (!remote_flush && need_remote_flush(entry, *spte))
3690                                 remote_flush = true;
3691                         ++spte;
3692                 }
3693         }
3694         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3695         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3696         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3697         spin_unlock(&vcpu->kvm->mmu_lock);
3698 }
3699
3700 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3701 {
3702         gpa_t gpa;
3703         int r;
3704
3705         if (vcpu->arch.mmu.direct_map)
3706                 return 0;
3707
3708         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3709
3710         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3711
3712         return r;
3713 }
3714 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3715
3716 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3717 {
3718         LIST_HEAD(invalid_list);
3719
3720         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3721                !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3722                 struct kvm_mmu_page *sp;
3723
3724                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3725                                   struct kvm_mmu_page, link);
3726                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3727                 ++vcpu->kvm->stat.mmu_recycled;
3728         }
3729         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3730 }
3731
3732 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3733 {
3734         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3735                 return vcpu_match_mmio_gpa(vcpu, addr);
3736
3737         return vcpu_match_mmio_gva(vcpu, addr);
3738 }
3739
3740 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3741                        void *insn, int insn_len)
3742 {
3743         int r, emulation_type = EMULTYPE_RETRY;
3744         enum emulation_result er;
3745
3746         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3747         if (r < 0)
3748                 goto out;
3749
3750         if (!r) {
3751                 r = 1;
3752                 goto out;
3753         }
3754
3755         if (is_mmio_page_fault(vcpu, cr2))
3756                 emulation_type = 0;
3757
3758         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3759
3760         switch (er) {
3761         case EMULATE_DONE:
3762                 return 1;
3763         case EMULATE_DO_MMIO:
3764                 ++vcpu->stat.mmio_exits;
3765                 /* fall through */
3766         case EMULATE_FAIL:
3767                 return 0;
3768         default:
3769                 BUG();
3770         }
3771 out:
3772         return r;
3773 }
3774 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3775
3776 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3777 {
3778         vcpu->arch.mmu.invlpg(vcpu, gva);
3779         kvm_mmu_flush_tlb(vcpu);
3780         ++vcpu->stat.invlpg;
3781 }
3782 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3783
3784 void kvm_enable_tdp(void)
3785 {
3786         tdp_enabled = true;
3787 }
3788 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3789
3790 void kvm_disable_tdp(void)
3791 {
3792         tdp_enabled = false;
3793 }
3794 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3795
3796 static void free_mmu_pages(struct kvm_vcpu *vcpu)
3797 {
3798         free_page((unsigned long)vcpu->arch.mmu.pae_root);
3799         if (vcpu->arch.mmu.lm_root != NULL)
3800                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
3801 }
3802
3803 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3804 {
3805         struct page *page;
3806         int i;
3807
3808         ASSERT(vcpu);
3809
3810         /*
3811          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3812          * Therefore we need to allocate shadow page tables in the first
3813          * 4GB of memory, which happens to fit the DMA32 zone.
3814          */
3815         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3816         if (!page)
3817                 return -ENOMEM;
3818
3819         vcpu->arch.mmu.pae_root = page_address(page);
3820         for (i = 0; i < 4; ++i)
3821                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3822
3823         return 0;
3824 }
3825
3826 int kvm_mmu_create(struct kvm_vcpu *vcpu)
3827 {
3828         ASSERT(vcpu);
3829
3830         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
3831         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3832         vcpu->arch.mmu.translate_gpa = translate_gpa;
3833         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
3834
3835         return alloc_mmu_pages(vcpu);
3836 }
3837
3838 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3839 {
3840         ASSERT(vcpu);
3841         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3842
3843         return init_kvm_mmu(vcpu);
3844 }
3845
3846 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3847 {
3848         struct kvm_mmu_page *sp;
3849
3850         list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3851                 int i;
3852                 u64 *pt;
3853
3854                 if (!test_bit(slot, sp->slot_bitmap))
3855                         continue;
3856
3857                 pt = sp->spt;
3858                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3859                         if (!is_shadow_present_pte(pt[i]) ||
3860                               !is_last_spte(pt[i], sp->role.level))
3861                                 continue;
3862
3863                         if (is_large_pte(pt[i])) {
3864                                 drop_spte(kvm, &pt[i]);
3865                                 --kvm->stat.lpages;
3866                                 continue;
3867                         }
3868
3869                         /* avoid RMW */
3870                         if (is_writable_pte(pt[i]))
3871                                 mmu_spte_update(&pt[i],
3872                                                 pt[i] & ~PT_WRITABLE_MASK);
3873                 }
3874         }
3875         kvm_flush_remote_tlbs(kvm);
3876 }
3877
3878 void kvm_mmu_zap_all(struct kvm *kvm)
3879 {
3880         struct kvm_mmu_page *sp, *node;
3881         LIST_HEAD(invalid_list);
3882
3883         spin_lock(&kvm->mmu_lock);
3884 restart:
3885         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3886                 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3887                         goto restart;
3888
3889         kvm_mmu_commit_zap_page(kvm, &invalid_list);
3890         spin_unlock(&kvm->mmu_lock);
3891 }
3892
3893 static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3894                                                 struct list_head *invalid_list)
3895 {
3896         struct kvm_mmu_page *page;
3897
3898         page = container_of(kvm->arch.active_mmu_pages.prev,
3899                             struct kvm_mmu_page, link);
3900         kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3901 }
3902
3903 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3904 {
3905         struct kvm *kvm;
3906         struct kvm *kvm_freed = NULL;
3907         int nr_to_scan = sc->nr_to_scan;
3908
3909         if (nr_to_scan == 0)
3910                 goto out;
3911
3912         raw_spin_lock(&kvm_lock);
3913
3914         list_for_each_entry(kvm, &vm_list, vm_list) {
3915                 int idx;
3916                 LIST_HEAD(invalid_list);
3917
3918                 idx = srcu_read_lock(&kvm->srcu);
3919                 spin_lock(&kvm->mmu_lock);
3920                 if (!kvm_freed && nr_to_scan > 0 &&
3921                     kvm->arch.n_used_mmu_pages > 0) {
3922                         kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3923                                                             &invalid_list);
3924                         kvm_freed = kvm;
3925                 }
3926                 nr_to_scan--;
3927
3928                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
3929                 spin_unlock(&kvm->mmu_lock);
3930                 srcu_read_unlock(&kvm->srcu, idx);
3931         }
3932         if (kvm_freed)
3933                 list_move_tail(&kvm_freed->vm_list, &vm_list);
3934
3935         raw_spin_unlock(&kvm_lock);
3936
3937 out:
3938         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3939 }
3940
3941 static struct shrinker mmu_shrinker = {
3942         .shrink = mmu_shrink,
3943         .seeks = DEFAULT_SEEKS * 10,
3944 };
3945
3946 static void mmu_destroy_caches(void)
3947 {
3948         if (pte_list_desc_cache)
3949                 kmem_cache_destroy(pte_list_desc_cache);
3950         if (mmu_page_header_cache)
3951                 kmem_cache_destroy(mmu_page_header_cache);
3952 }
3953
3954 int kvm_mmu_module_init(void)
3955 {
3956         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
3957                                             sizeof(struct pte_list_desc),
3958                                             0, 0, NULL);
3959         if (!pte_list_desc_cache)
3960                 goto nomem;
3961
3962         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3963                                                   sizeof(struct kvm_mmu_page),
3964                                                   0, 0, NULL);
3965         if (!mmu_page_header_cache)
3966                 goto nomem;
3967
3968         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3969                 goto nomem;
3970
3971         register_shrinker(&mmu_shrinker);
3972
3973         return 0;
3974
3975 nomem:
3976         mmu_destroy_caches();
3977         return -ENOMEM;
3978 }
3979
3980 /*
3981  * Caculate mmu pages needed for kvm.
3982  */
3983 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3984 {
3985         unsigned int nr_mmu_pages;
3986         unsigned int  nr_pages = 0;
3987         struct kvm_memslots *slots;
3988         struct kvm_memory_slot *memslot;
3989
3990         slots = kvm_memslots(kvm);
3991
3992         kvm_for_each_memslot(memslot, slots)
3993                 nr_pages += memslot->npages;
3994
3995         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3996         nr_mmu_pages = max(nr_mmu_pages,
3997                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3998
3999         return nr_mmu_pages;
4000 }
4001
4002 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4003 {
4004         struct kvm_shadow_walk_iterator iterator;
4005         u64 spte;
4006         int nr_sptes = 0;
4007
4008         walk_shadow_page_lockless_begin(vcpu);
4009         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4010                 sptes[iterator.level-1] = spte;
4011                 nr_sptes++;
4012                 if (!is_shadow_present_pte(spte))
4013                         break;
4014         }
4015         walk_shadow_page_lockless_end(vcpu);
4016
4017         return nr_sptes;
4018 }
4019 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4020
4021 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4022 {
4023         ASSERT(vcpu);
4024
4025         destroy_kvm_mmu(vcpu);
4026         free_mmu_pages(vcpu);
4027         mmu_free_memory_caches(vcpu);
4028 }
4029
4030 void kvm_mmu_module_exit(void)
4031 {
4032         mmu_destroy_caches();
4033         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4034         unregister_shrinker(&mmu_shrinker);
4035         mmu_audit_disable();
4036 }