]> nv-tegra.nvidia Code Review - linux-3.10.git/blob - arch/x86/kernel/dumpstack_64.c
x86: Eliminate bp argument from the stack tracing routines
[linux-3.10.git] / arch / x86 / kernel / dumpstack_64.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  */
5 #include <linux/kallsyms.h>
6 #include <linux/kprobes.h>
7 #include <linux/uaccess.h>
8 #include <linux/hardirq.h>
9 #include <linux/kdebug.h>
10 #include <linux/module.h>
11 #include <linux/ptrace.h>
12 #include <linux/kexec.h>
13 #include <linux/sysfs.h>
14 #include <linux/bug.h>
15 #include <linux/nmi.h>
16
17 #include <asm/stacktrace.h>
18
19
20 #define N_EXCEPTION_STACKS_END \
21                 (N_EXCEPTION_STACKS + DEBUG_STKSZ/EXCEPTION_STKSZ - 2)
22
23 static char x86_stack_ids[][8] = {
24                 [ DEBUG_STACK-1                 ]       = "#DB",
25                 [ NMI_STACK-1                   ]       = "NMI",
26                 [ DOUBLEFAULT_STACK-1           ]       = "#DF",
27                 [ STACKFAULT_STACK-1            ]       = "#SS",
28                 [ MCE_STACK-1                   ]       = "#MC",
29 #if DEBUG_STKSZ > EXCEPTION_STKSZ
30                 [ N_EXCEPTION_STACKS ...
31                   N_EXCEPTION_STACKS_END        ]       = "#DB[?]"
32 #endif
33 };
34
35 static unsigned long *in_exception_stack(unsigned cpu, unsigned long stack,
36                                          unsigned *usedp, char **idp)
37 {
38         unsigned k;
39
40         /*
41          * Iterate over all exception stacks, and figure out whether
42          * 'stack' is in one of them:
43          */
44         for (k = 0; k < N_EXCEPTION_STACKS; k++) {
45                 unsigned long end = per_cpu(orig_ist, cpu).ist[k];
46                 /*
47                  * Is 'stack' above this exception frame's end?
48                  * If yes then skip to the next frame.
49                  */
50                 if (stack >= end)
51                         continue;
52                 /*
53                  * Is 'stack' above this exception frame's start address?
54                  * If yes then we found the right frame.
55                  */
56                 if (stack >= end - EXCEPTION_STKSZ) {
57                         /*
58                          * Make sure we only iterate through an exception
59                          * stack once. If it comes up for the second time
60                          * then there's something wrong going on - just
61                          * break out and return NULL:
62                          */
63                         if (*usedp & (1U << k))
64                                 break;
65                         *usedp |= 1U << k;
66                         *idp = x86_stack_ids[k];
67                         return (unsigned long *)end;
68                 }
69                 /*
70                  * If this is a debug stack, and if it has a larger size than
71                  * the usual exception stacks, then 'stack' might still
72                  * be within the lower portion of the debug stack:
73                  */
74 #if DEBUG_STKSZ > EXCEPTION_STKSZ
75                 if (k == DEBUG_STACK - 1 && stack >= end - DEBUG_STKSZ) {
76                         unsigned j = N_EXCEPTION_STACKS - 1;
77
78                         /*
79                          * Black magic. A large debug stack is composed of
80                          * multiple exception stack entries, which we
81                          * iterate through now. Dont look:
82                          */
83                         do {
84                                 ++j;
85                                 end -= EXCEPTION_STKSZ;
86                                 x86_stack_ids[j][4] = '1' +
87                                                 (j - N_EXCEPTION_STACKS);
88                         } while (stack < end - EXCEPTION_STKSZ);
89                         if (*usedp & (1U << j))
90                                 break;
91                         *usedp |= 1U << j;
92                         *idp = x86_stack_ids[j];
93                         return (unsigned long *)end;
94                 }
95 #endif
96         }
97         return NULL;
98 }
99
100 static inline int
101 in_irq_stack(unsigned long *stack, unsigned long *irq_stack,
102              unsigned long *irq_stack_end)
103 {
104         return (stack >= irq_stack && stack < irq_stack_end);
105 }
106
107 /*
108  * We are returning from the irq stack and go to the previous one.
109  * If the previous stack is also in the irq stack, then bp in the first
110  * frame of the irq stack points to the previous, interrupted one.
111  * Otherwise we have another level of indirection: We first save
112  * the bp of the previous stack, then we switch the stack to the irq one
113  * and save a new bp that links to the previous one.
114  * (See save_args())
115  */
116 static inline unsigned long
117 fixup_bp_irq_link(unsigned long bp, unsigned long *stack,
118                   unsigned long *irq_stack, unsigned long *irq_stack_end)
119 {
120 #ifdef CONFIG_FRAME_POINTER
121         struct stack_frame *frame = (struct stack_frame *)bp;
122         unsigned long next;
123
124         if (!in_irq_stack(stack, irq_stack, irq_stack_end)) {
125                 if (!probe_kernel_address(&frame->next_frame, next))
126                         return next;
127                 else
128                         WARN_ONCE(1, "Perf: bad frame pointer = %p in "
129                                   "callchain\n", &frame->next_frame);
130         }
131 #endif
132         return bp;
133 }
134
135 /*
136  * x86-64 can have up to three kernel stacks:
137  * process stack
138  * interrupt stack
139  * severe exception (double fault, nmi, stack fault, debug, mce) hardware stack
140  */
141
142 void dump_trace(struct task_struct *task,
143                 struct pt_regs *regs, unsigned long *stack,
144                 const struct stacktrace_ops *ops, void *data)
145 {
146         const unsigned cpu = get_cpu();
147         unsigned long *irq_stack_end =
148                 (unsigned long *)per_cpu(irq_stack_ptr, cpu);
149         unsigned used = 0;
150         struct thread_info *tinfo;
151         int graph = 0;
152         unsigned long bp;
153
154         if (!task)
155                 task = current;
156
157         if (!stack) {
158                 unsigned long dummy;
159                 stack = &dummy;
160                 if (task && task != current)
161                         stack = (unsigned long *)task->thread.sp;
162         }
163
164         bp = stack_frame(task, regs);
165         /*
166          * Print function call entries in all stacks, starting at the
167          * current stack address. If the stacks consist of nested
168          * exceptions
169          */
170         tinfo = task_thread_info(task);
171         for (;;) {
172                 char *id;
173                 unsigned long *estack_end;
174                 estack_end = in_exception_stack(cpu, (unsigned long)stack,
175                                                 &used, &id);
176
177                 if (estack_end) {
178                         if (ops->stack(data, id) < 0)
179                                 break;
180
181                         bp = ops->walk_stack(tinfo, stack, bp, ops,
182                                              data, estack_end, &graph);
183                         ops->stack(data, "<EOE>");
184                         /*
185                          * We link to the next stack via the
186                          * second-to-last pointer (index -2 to end) in the
187                          * exception stack:
188                          */
189                         stack = (unsigned long *) estack_end[-2];
190                         continue;
191                 }
192                 if (irq_stack_end) {
193                         unsigned long *irq_stack;
194                         irq_stack = irq_stack_end -
195                                 (IRQ_STACK_SIZE - 64) / sizeof(*irq_stack);
196
197                         if (in_irq_stack(stack, irq_stack, irq_stack_end)) {
198                                 if (ops->stack(data, "IRQ") < 0)
199                                         break;
200                                 bp = ops->walk_stack(tinfo, stack, bp,
201                                         ops, data, irq_stack_end, &graph);
202                                 /*
203                                  * We link to the next stack (which would be
204                                  * the process stack normally) the last
205                                  * pointer (index -1 to end) in the IRQ stack:
206                                  */
207                                 stack = (unsigned long *) (irq_stack_end[-1]);
208                                 bp = fixup_bp_irq_link(bp, stack, irq_stack,
209                                                        irq_stack_end);
210                                 irq_stack_end = NULL;
211                                 ops->stack(data, "EOI");
212                                 continue;
213                         }
214                 }
215                 break;
216         }
217
218         /*
219          * This handles the process stack:
220          */
221         bp = ops->walk_stack(tinfo, stack, bp, ops, data, NULL, &graph);
222         put_cpu();
223 }
224 EXPORT_SYMBOL(dump_trace);
225
226 void
227 show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs,
228                    unsigned long *sp, char *log_lvl)
229 {
230         unsigned long *irq_stack_end;
231         unsigned long *irq_stack;
232         unsigned long *stack;
233         int cpu;
234         int i;
235
236         preempt_disable();
237         cpu = smp_processor_id();
238
239         irq_stack_end   = (unsigned long *)(per_cpu(irq_stack_ptr, cpu));
240         irq_stack       = (unsigned long *)(per_cpu(irq_stack_ptr, cpu) - IRQ_STACK_SIZE);
241
242         /*
243          * Debugging aid: "show_stack(NULL, NULL);" prints the
244          * back trace for this cpu:
245          */
246         if (sp == NULL) {
247                 if (task)
248                         sp = (unsigned long *)task->thread.sp;
249                 else
250                         sp = (unsigned long *)&sp;
251         }
252
253         stack = sp;
254         for (i = 0; i < kstack_depth_to_print; i++) {
255                 if (stack >= irq_stack && stack <= irq_stack_end) {
256                         if (stack == irq_stack_end) {
257                                 stack = (unsigned long *) (irq_stack_end[-1]);
258                                 printk(KERN_CONT " <EOI> ");
259                         }
260                 } else {
261                 if (((long) stack & (THREAD_SIZE-1)) == 0)
262                         break;
263                 }
264                 if (i && ((i % STACKSLOTS_PER_LINE) == 0))
265                         printk(KERN_CONT "\n");
266                 printk(KERN_CONT " %016lx", *stack++);
267                 touch_nmi_watchdog();
268         }
269         preempt_enable();
270
271         printk(KERN_CONT "\n");
272         show_trace_log_lvl(task, regs, sp, log_lvl);
273 }
274
275 void show_registers(struct pt_regs *regs)
276 {
277         int i;
278         unsigned long sp;
279         const int cpu = smp_processor_id();
280         struct task_struct *cur = current;
281
282         sp = regs->sp;
283         printk("CPU %d ", cpu);
284         print_modules();
285         __show_regs(regs, 1);
286         printk("Process %s (pid: %d, threadinfo %p, task %p)\n",
287                 cur->comm, cur->pid, task_thread_info(cur), cur);
288
289         /*
290          * When in-kernel, we also print out the stack and code at the
291          * time of the fault..
292          */
293         if (!user_mode(regs)) {
294                 unsigned int code_prologue = code_bytes * 43 / 64;
295                 unsigned int code_len = code_bytes;
296                 unsigned char c;
297                 u8 *ip;
298
299                 printk(KERN_EMERG "Stack:\n");
300                 show_stack_log_lvl(NULL, regs, (unsigned long *)sp,
301                                    KERN_EMERG);
302
303                 printk(KERN_EMERG "Code: ");
304
305                 ip = (u8 *)regs->ip - code_prologue;
306                 if (ip < (u8 *)PAGE_OFFSET || probe_kernel_address(ip, c)) {
307                         /* try starting at IP */
308                         ip = (u8 *)regs->ip;
309                         code_len = code_len - code_prologue + 1;
310                 }
311                 for (i = 0; i < code_len; i++, ip++) {
312                         if (ip < (u8 *)PAGE_OFFSET ||
313                                         probe_kernel_address(ip, c)) {
314                                 printk(" Bad RIP value.");
315                                 break;
316                         }
317                         if (ip == (u8 *)regs->ip)
318                                 printk("<%02x> ", c);
319                         else
320                                 printk("%02x ", c);
321                 }
322         }
323         printk("\n");
324 }
325
326 int is_valid_bugaddr(unsigned long ip)
327 {
328         unsigned short ud2;
329
330         if (__copy_from_user(&ud2, (const void __user *) ip, sizeof(ud2)))
331                 return 0;
332
333         return ud2 == 0x0b0f;
334 }