Merge branch 'linus' into sched/core
[linux-3.10.git] / arch / x86 / kernel / cpu / cpufreq / acpi-cpufreq.c
1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or (at
14  *  your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful, but
17  *  WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  *  General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License along
22  *  with this program; if not, write to the Free Software Foundation, Inc.,
23  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24  *
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <linux/slab.h>
37 #include <trace/events/power.h>
38
39 #include <linux/acpi.h>
40 #include <linux/io.h>
41 #include <linux/delay.h>
42 #include <linux/uaccess.h>
43
44 #include <acpi/processor.h>
45
46 #include <asm/msr.h>
47 #include <asm/processor.h>
48 #include <asm/cpufeature.h>
49
50 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, \
51                 "acpi-cpufreq", msg)
52
53 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
54 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
55 MODULE_LICENSE("GPL");
56
57 enum {
58         UNDEFINED_CAPABLE = 0,
59         SYSTEM_INTEL_MSR_CAPABLE,
60         SYSTEM_IO_CAPABLE,
61 };
62
63 #define INTEL_MSR_RANGE         (0xffff)
64
65 struct acpi_cpufreq_data {
66         struct acpi_processor_performance *acpi_data;
67         struct cpufreq_frequency_table *freq_table;
68         unsigned int resume;
69         unsigned int cpu_feature;
70 };
71
72 static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data);
73
74 static DEFINE_PER_CPU(struct aperfmperf, acfreq_old_perf);
75
76 /* acpi_perf_data is a pointer to percpu data. */
77 static struct acpi_processor_performance *acpi_perf_data;
78
79 static struct cpufreq_driver acpi_cpufreq_driver;
80
81 static unsigned int acpi_pstate_strict;
82
83 static int check_est_cpu(unsigned int cpuid)
84 {
85         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
86
87         return cpu_has(cpu, X86_FEATURE_EST);
88 }
89
90 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
91 {
92         struct acpi_processor_performance *perf;
93         int i;
94
95         perf = data->acpi_data;
96
97         for (i = 0; i < perf->state_count; i++) {
98                 if (value == perf->states[i].status)
99                         return data->freq_table[i].frequency;
100         }
101         return 0;
102 }
103
104 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
105 {
106         int i;
107         struct acpi_processor_performance *perf;
108
109         msr &= INTEL_MSR_RANGE;
110         perf = data->acpi_data;
111
112         for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
113                 if (msr == perf->states[data->freq_table[i].index].status)
114                         return data->freq_table[i].frequency;
115         }
116         return data->freq_table[0].frequency;
117 }
118
119 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
120 {
121         switch (data->cpu_feature) {
122         case SYSTEM_INTEL_MSR_CAPABLE:
123                 return extract_msr(val, data);
124         case SYSTEM_IO_CAPABLE:
125                 return extract_io(val, data);
126         default:
127                 return 0;
128         }
129 }
130
131 struct msr_addr {
132         u32 reg;
133 };
134
135 struct io_addr {
136         u16 port;
137         u8 bit_width;
138 };
139
140 struct drv_cmd {
141         unsigned int type;
142         const struct cpumask *mask;
143         union {
144                 struct msr_addr msr;
145                 struct io_addr io;
146         } addr;
147         u32 val;
148 };
149
150 /* Called via smp_call_function_single(), on the target CPU */
151 static void do_drv_read(void *_cmd)
152 {
153         struct drv_cmd *cmd = _cmd;
154         u32 h;
155
156         switch (cmd->type) {
157         case SYSTEM_INTEL_MSR_CAPABLE:
158                 rdmsr(cmd->addr.msr.reg, cmd->val, h);
159                 break;
160         case SYSTEM_IO_CAPABLE:
161                 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
162                                 &cmd->val,
163                                 (u32)cmd->addr.io.bit_width);
164                 break;
165         default:
166                 break;
167         }
168 }
169
170 /* Called via smp_call_function_many(), on the target CPUs */
171 static void do_drv_write(void *_cmd)
172 {
173         struct drv_cmd *cmd = _cmd;
174         u32 lo, hi;
175
176         switch (cmd->type) {
177         case SYSTEM_INTEL_MSR_CAPABLE:
178                 rdmsr(cmd->addr.msr.reg, lo, hi);
179                 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
180                 wrmsr(cmd->addr.msr.reg, lo, hi);
181                 break;
182         case SYSTEM_IO_CAPABLE:
183                 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
184                                 cmd->val,
185                                 (u32)cmd->addr.io.bit_width);
186                 break;
187         default:
188                 break;
189         }
190 }
191
192 static void drv_read(struct drv_cmd *cmd)
193 {
194         int err;
195         cmd->val = 0;
196
197         err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
198         WARN_ON_ONCE(err);      /* smp_call_function_any() was buggy? */
199 }
200
201 static void drv_write(struct drv_cmd *cmd)
202 {
203         int this_cpu;
204
205         this_cpu = get_cpu();
206         if (cpumask_test_cpu(this_cpu, cmd->mask))
207                 do_drv_write(cmd);
208         smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
209         put_cpu();
210 }
211
212 static u32 get_cur_val(const struct cpumask *mask)
213 {
214         struct acpi_processor_performance *perf;
215         struct drv_cmd cmd;
216
217         if (unlikely(cpumask_empty(mask)))
218                 return 0;
219
220         switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) {
221         case SYSTEM_INTEL_MSR_CAPABLE:
222                 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
223                 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
224                 break;
225         case SYSTEM_IO_CAPABLE:
226                 cmd.type = SYSTEM_IO_CAPABLE;
227                 perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data;
228                 cmd.addr.io.port = perf->control_register.address;
229                 cmd.addr.io.bit_width = perf->control_register.bit_width;
230                 break;
231         default:
232                 return 0;
233         }
234
235         cmd.mask = mask;
236         drv_read(&cmd);
237
238         dprintk("get_cur_val = %u\n", cmd.val);
239
240         return cmd.val;
241 }
242
243 /* Called via smp_call_function_single(), on the target CPU */
244 static void read_measured_perf_ctrs(void *_cur)
245 {
246         struct aperfmperf *am = _cur;
247
248         get_aperfmperf(am);
249 }
250
251 /*
252  * Return the measured active (C0) frequency on this CPU since last call
253  * to this function.
254  * Input: cpu number
255  * Return: Average CPU frequency in terms of max frequency (zero on error)
256  *
257  * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
258  * over a period of time, while CPU is in C0 state.
259  * IA32_MPERF counts at the rate of max advertised frequency
260  * IA32_APERF counts at the rate of actual CPU frequency
261  * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
262  * no meaning should be associated with absolute values of these MSRs.
263  */
264 static unsigned int get_measured_perf(struct cpufreq_policy *policy,
265                                       unsigned int cpu)
266 {
267         struct aperfmperf perf;
268         unsigned long ratio;
269         unsigned int retval;
270
271         if (smp_call_function_single(cpu, read_measured_perf_ctrs, &perf, 1))
272                 return 0;
273
274         ratio = calc_aperfmperf_ratio(&per_cpu(acfreq_old_perf, cpu), &perf);
275         per_cpu(acfreq_old_perf, cpu) = perf;
276
277         retval = (policy->cpuinfo.max_freq * ratio) >> APERFMPERF_SHIFT;
278
279         return retval;
280 }
281
282 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
283 {
284         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu);
285         unsigned int freq;
286         unsigned int cached_freq;
287
288         dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
289
290         if (unlikely(data == NULL ||
291                      data->acpi_data == NULL || data->freq_table == NULL)) {
292                 return 0;
293         }
294
295         cached_freq = data->freq_table[data->acpi_data->state].frequency;
296         freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
297         if (freq != cached_freq) {
298                 /*
299                  * The dreaded BIOS frequency change behind our back.
300                  * Force set the frequency on next target call.
301                  */
302                 data->resume = 1;
303         }
304
305         dprintk("cur freq = %u\n", freq);
306
307         return freq;
308 }
309
310 static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
311                                 struct acpi_cpufreq_data *data)
312 {
313         unsigned int cur_freq;
314         unsigned int i;
315
316         for (i = 0; i < 100; i++) {
317                 cur_freq = extract_freq(get_cur_val(mask), data);
318                 if (cur_freq == freq)
319                         return 1;
320                 udelay(10);
321         }
322         return 0;
323 }
324
325 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
326                                unsigned int target_freq, unsigned int relation)
327 {
328         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
329         struct acpi_processor_performance *perf;
330         struct cpufreq_freqs freqs;
331         struct drv_cmd cmd;
332         unsigned int next_state = 0; /* Index into freq_table */
333         unsigned int next_perf_state = 0; /* Index into perf table */
334         unsigned int i;
335         int result = 0;
336
337         dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
338
339         if (unlikely(data == NULL ||
340              data->acpi_data == NULL || data->freq_table == NULL)) {
341                 return -ENODEV;
342         }
343
344         perf = data->acpi_data;
345         result = cpufreq_frequency_table_target(policy,
346                                                 data->freq_table,
347                                                 target_freq,
348                                                 relation, &next_state);
349         if (unlikely(result)) {
350                 result = -ENODEV;
351                 goto out;
352         }
353
354         next_perf_state = data->freq_table[next_state].index;
355         if (perf->state == next_perf_state) {
356                 if (unlikely(data->resume)) {
357                         dprintk("Called after resume, resetting to P%d\n",
358                                 next_perf_state);
359                         data->resume = 0;
360                 } else {
361                         dprintk("Already at target state (P%d)\n",
362                                 next_perf_state);
363                         goto out;
364                 }
365         }
366
367         trace_power_frequency(POWER_PSTATE, data->freq_table[next_state].frequency);
368
369         switch (data->cpu_feature) {
370         case SYSTEM_INTEL_MSR_CAPABLE:
371                 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
372                 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
373                 cmd.val = (u32) perf->states[next_perf_state].control;
374                 break;
375         case SYSTEM_IO_CAPABLE:
376                 cmd.type = SYSTEM_IO_CAPABLE;
377                 cmd.addr.io.port = perf->control_register.address;
378                 cmd.addr.io.bit_width = perf->control_register.bit_width;
379                 cmd.val = (u32) perf->states[next_perf_state].control;
380                 break;
381         default:
382                 result = -ENODEV;
383                 goto out;
384         }
385
386         /* cpufreq holds the hotplug lock, so we are safe from here on */
387         if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
388                 cmd.mask = policy->cpus;
389         else
390                 cmd.mask = cpumask_of(policy->cpu);
391
392         freqs.old = perf->states[perf->state].core_frequency * 1000;
393         freqs.new = data->freq_table[next_state].frequency;
394         for_each_cpu(i, cmd.mask) {
395                 freqs.cpu = i;
396                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
397         }
398
399         drv_write(&cmd);
400
401         if (acpi_pstate_strict) {
402                 if (!check_freqs(cmd.mask, freqs.new, data)) {
403                         dprintk("acpi_cpufreq_target failed (%d)\n",
404                                 policy->cpu);
405                         result = -EAGAIN;
406                         goto out;
407                 }
408         }
409
410         for_each_cpu(i, cmd.mask) {
411                 freqs.cpu = i;
412                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
413         }
414         perf->state = next_perf_state;
415
416 out:
417         return result;
418 }
419
420 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
421 {
422         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
423
424         dprintk("acpi_cpufreq_verify\n");
425
426         return cpufreq_frequency_table_verify(policy, data->freq_table);
427 }
428
429 static unsigned long
430 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
431 {
432         struct acpi_processor_performance *perf = data->acpi_data;
433
434         if (cpu_khz) {
435                 /* search the closest match to cpu_khz */
436                 unsigned int i;
437                 unsigned long freq;
438                 unsigned long freqn = perf->states[0].core_frequency * 1000;
439
440                 for (i = 0; i < (perf->state_count-1); i++) {
441                         freq = freqn;
442                         freqn = perf->states[i+1].core_frequency * 1000;
443                         if ((2 * cpu_khz) > (freqn + freq)) {
444                                 perf->state = i;
445                                 return freq;
446                         }
447                 }
448                 perf->state = perf->state_count-1;
449                 return freqn;
450         } else {
451                 /* assume CPU is at P0... */
452                 perf->state = 0;
453                 return perf->states[0].core_frequency * 1000;
454         }
455 }
456
457 static void free_acpi_perf_data(void)
458 {
459         unsigned int i;
460
461         /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
462         for_each_possible_cpu(i)
463                 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
464                                  ->shared_cpu_map);
465         free_percpu(acpi_perf_data);
466 }
467
468 /*
469  * acpi_cpufreq_early_init - initialize ACPI P-States library
470  *
471  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
472  * in order to determine correct frequency and voltage pairings. We can
473  * do _PDC and _PSD and find out the processor dependency for the
474  * actual init that will happen later...
475  */
476 static int __init acpi_cpufreq_early_init(void)
477 {
478         unsigned int i;
479         dprintk("acpi_cpufreq_early_init\n");
480
481         acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
482         if (!acpi_perf_data) {
483                 dprintk("Memory allocation error for acpi_perf_data.\n");
484                 return -ENOMEM;
485         }
486         for_each_possible_cpu(i) {
487                 if (!zalloc_cpumask_var_node(
488                         &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
489                         GFP_KERNEL, cpu_to_node(i))) {
490
491                         /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
492                         free_acpi_perf_data();
493                         return -ENOMEM;
494                 }
495         }
496
497         /* Do initialization in ACPI core */
498         acpi_processor_preregister_performance(acpi_perf_data);
499         return 0;
500 }
501
502 #ifdef CONFIG_SMP
503 /*
504  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
505  * or do it in BIOS firmware and won't inform about it to OS. If not
506  * detected, this has a side effect of making CPU run at a different speed
507  * than OS intended it to run at. Detect it and handle it cleanly.
508  */
509 static int bios_with_sw_any_bug;
510
511 static int sw_any_bug_found(const struct dmi_system_id *d)
512 {
513         bios_with_sw_any_bug = 1;
514         return 0;
515 }
516
517 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
518         {
519                 .callback = sw_any_bug_found,
520                 .ident = "Supermicro Server X6DLP",
521                 .matches = {
522                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
523                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
524                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
525                 },
526         },
527         { }
528 };
529
530 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
531 {
532         /* Intel Xeon Processor 7100 Series Specification Update
533          * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
534          * AL30: A Machine Check Exception (MCE) Occurring during an
535          * Enhanced Intel SpeedStep Technology Ratio Change May Cause
536          * Both Processor Cores to Lock Up. */
537         if (c->x86_vendor == X86_VENDOR_INTEL) {
538                 if ((c->x86 == 15) &&
539                     (c->x86_model == 6) &&
540                     (c->x86_mask == 8)) {
541                         printk(KERN_INFO "acpi-cpufreq: Intel(R) "
542                             "Xeon(R) 7100 Errata AL30, processors may "
543                             "lock up on frequency changes: disabling "
544                             "acpi-cpufreq.\n");
545                         return -ENODEV;
546                     }
547                 }
548         return 0;
549 }
550 #endif
551
552 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
553 {
554         unsigned int i;
555         unsigned int valid_states = 0;
556         unsigned int cpu = policy->cpu;
557         struct acpi_cpufreq_data *data;
558         unsigned int result = 0;
559         struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
560         struct acpi_processor_performance *perf;
561 #ifdef CONFIG_SMP
562         static int blacklisted;
563 #endif
564
565         dprintk("acpi_cpufreq_cpu_init\n");
566
567 #ifdef CONFIG_SMP
568         if (blacklisted)
569                 return blacklisted;
570         blacklisted = acpi_cpufreq_blacklist(c);
571         if (blacklisted)
572                 return blacklisted;
573 #endif
574
575         data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
576         if (!data)
577                 return -ENOMEM;
578
579         data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
580         per_cpu(acfreq_data, cpu) = data;
581
582         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
583                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
584
585         result = acpi_processor_register_performance(data->acpi_data, cpu);
586         if (result)
587                 goto err_free;
588
589         perf = data->acpi_data;
590         policy->shared_type = perf->shared_type;
591
592         /*
593          * Will let policy->cpus know about dependency only when software
594          * coordination is required.
595          */
596         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
597             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
598                 cpumask_copy(policy->cpus, perf->shared_cpu_map);
599         }
600         cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
601
602 #ifdef CONFIG_SMP
603         dmi_check_system(sw_any_bug_dmi_table);
604         if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
605                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
606                 cpumask_copy(policy->cpus, cpu_core_mask(cpu));
607         }
608 #endif
609
610         /* capability check */
611         if (perf->state_count <= 1) {
612                 dprintk("No P-States\n");
613                 result = -ENODEV;
614                 goto err_unreg;
615         }
616
617         if (perf->control_register.space_id != perf->status_register.space_id) {
618                 result = -ENODEV;
619                 goto err_unreg;
620         }
621
622         switch (perf->control_register.space_id) {
623         case ACPI_ADR_SPACE_SYSTEM_IO:
624                 dprintk("SYSTEM IO addr space\n");
625                 data->cpu_feature = SYSTEM_IO_CAPABLE;
626                 break;
627         case ACPI_ADR_SPACE_FIXED_HARDWARE:
628                 dprintk("HARDWARE addr space\n");
629                 if (!check_est_cpu(cpu)) {
630                         result = -ENODEV;
631                         goto err_unreg;
632                 }
633                 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
634                 break;
635         default:
636                 dprintk("Unknown addr space %d\n",
637                         (u32) (perf->control_register.space_id));
638                 result = -ENODEV;
639                 goto err_unreg;
640         }
641
642         data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
643                     (perf->state_count+1), GFP_KERNEL);
644         if (!data->freq_table) {
645                 result = -ENOMEM;
646                 goto err_unreg;
647         }
648
649         /* detect transition latency */
650         policy->cpuinfo.transition_latency = 0;
651         for (i = 0; i < perf->state_count; i++) {
652                 if ((perf->states[i].transition_latency * 1000) >
653                     policy->cpuinfo.transition_latency)
654                         policy->cpuinfo.transition_latency =
655                             perf->states[i].transition_latency * 1000;
656         }
657
658         /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
659         if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
660             policy->cpuinfo.transition_latency > 20 * 1000) {
661                 policy->cpuinfo.transition_latency = 20 * 1000;
662                 printk_once(KERN_INFO
663                             "P-state transition latency capped at 20 uS\n");
664         }
665
666         /* table init */
667         for (i = 0; i < perf->state_count; i++) {
668                 if (i > 0 && perf->states[i].core_frequency >=
669                     data->freq_table[valid_states-1].frequency / 1000)
670                         continue;
671
672                 data->freq_table[valid_states].index = i;
673                 data->freq_table[valid_states].frequency =
674                     perf->states[i].core_frequency * 1000;
675                 valid_states++;
676         }
677         data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
678         perf->state = 0;
679
680         result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
681         if (result)
682                 goto err_freqfree;
683
684         if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
685                 printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
686
687         switch (perf->control_register.space_id) {
688         case ACPI_ADR_SPACE_SYSTEM_IO:
689                 /* Current speed is unknown and not detectable by IO port */
690                 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
691                 break;
692         case ACPI_ADR_SPACE_FIXED_HARDWARE:
693                 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
694                 policy->cur = get_cur_freq_on_cpu(cpu);
695                 break;
696         default:
697                 break;
698         }
699
700         /* notify BIOS that we exist */
701         acpi_processor_notify_smm(THIS_MODULE);
702
703         /* Check for APERF/MPERF support in hardware */
704         if (cpu_has(c, X86_FEATURE_APERFMPERF))
705                 acpi_cpufreq_driver.getavg = get_measured_perf;
706
707         dprintk("CPU%u - ACPI performance management activated.\n", cpu);
708         for (i = 0; i < perf->state_count; i++)
709                 dprintk("     %cP%d: %d MHz, %d mW, %d uS\n",
710                         (i == perf->state ? '*' : ' '), i,
711                         (u32) perf->states[i].core_frequency,
712                         (u32) perf->states[i].power,
713                         (u32) perf->states[i].transition_latency);
714
715         cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
716
717         /*
718          * the first call to ->target() should result in us actually
719          * writing something to the appropriate registers.
720          */
721         data->resume = 1;
722
723         return result;
724
725 err_freqfree:
726         kfree(data->freq_table);
727 err_unreg:
728         acpi_processor_unregister_performance(perf, cpu);
729 err_free:
730         kfree(data);
731         per_cpu(acfreq_data, cpu) = NULL;
732
733         return result;
734 }
735
736 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
737 {
738         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
739
740         dprintk("acpi_cpufreq_cpu_exit\n");
741
742         if (data) {
743                 cpufreq_frequency_table_put_attr(policy->cpu);
744                 per_cpu(acfreq_data, policy->cpu) = NULL;
745                 acpi_processor_unregister_performance(data->acpi_data,
746                                                       policy->cpu);
747                 kfree(data);
748         }
749
750         return 0;
751 }
752
753 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
754 {
755         struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
756
757         dprintk("acpi_cpufreq_resume\n");
758
759         data->resume = 1;
760
761         return 0;
762 }
763
764 static struct freq_attr *acpi_cpufreq_attr[] = {
765         &cpufreq_freq_attr_scaling_available_freqs,
766         NULL,
767 };
768
769 static struct cpufreq_driver acpi_cpufreq_driver = {
770         .verify         = acpi_cpufreq_verify,
771         .target         = acpi_cpufreq_target,
772         .bios_limit     = acpi_processor_get_bios_limit,
773         .init           = acpi_cpufreq_cpu_init,
774         .exit           = acpi_cpufreq_cpu_exit,
775         .resume         = acpi_cpufreq_resume,
776         .name           = "acpi-cpufreq",
777         .owner          = THIS_MODULE,
778         .attr           = acpi_cpufreq_attr,
779 };
780
781 static int __init acpi_cpufreq_init(void)
782 {
783         int ret;
784
785         if (acpi_disabled)
786                 return 0;
787
788         dprintk("acpi_cpufreq_init\n");
789
790         ret = acpi_cpufreq_early_init();
791         if (ret)
792                 return ret;
793
794         ret = cpufreq_register_driver(&acpi_cpufreq_driver);
795         if (ret)
796                 free_acpi_perf_data();
797
798         return ret;
799 }
800
801 static void __exit acpi_cpufreq_exit(void)
802 {
803         dprintk("acpi_cpufreq_exit\n");
804
805         cpufreq_unregister_driver(&acpi_cpufreq_driver);
806
807         free_percpu(acpi_perf_data);
808 }
809
810 module_param(acpi_pstate_strict, uint, 0644);
811 MODULE_PARM_DESC(acpi_pstate_strict,
812         "value 0 or non-zero. non-zero -> strict ACPI checks are "
813         "performed during frequency changes.");
814
815 late_initcall(acpi_cpufreq_init);
816 module_exit(acpi_cpufreq_exit);
817
818 MODULE_ALIAS("acpi");