]> nv-tegra.nvidia Code Review - linux-3.10.git/blob - arch/ppc/platforms/pmac_smp.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/chrisw/lsm-2.6
[linux-3.10.git] / arch / ppc / platforms / pmac_smp.c
1 /*
2  * SMP support for power macintosh.
3  *
4  * We support both the old "powersurge" SMP architecture
5  * and the current Core99 (G4 PowerMac) machines.
6  *
7  * Note that we don't support the very first rev. of
8  * Apple/DayStar 2 CPUs board, the one with the funky
9  * watchdog. Hopefully, none of these should be there except
10  * maybe internally to Apple. I should probably still add some
11  * code to detect this card though and disable SMP. --BenH.
12  *
13  * Support Macintosh G4 SMP by Troy Benjegerdes (hozer@drgw.net)
14  * and Ben Herrenschmidt <benh@kernel.crashing.org>.
15  *
16  * Support for DayStar quad CPU cards
17  * Copyright (C) XLR8, Inc. 1994-2000
18  *
19  *  This program is free software; you can redistribute it and/or
20  *  modify it under the terms of the GNU General Public License
21  *  as published by the Free Software Foundation; either version
22  *  2 of the License, or (at your option) any later version.
23  */
24 #include <linux/config.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/smp.h>
28 #include <linux/smp_lock.h>
29 #include <linux/interrupt.h>
30 #include <linux/kernel_stat.h>
31 #include <linux/delay.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/errno.h>
35 #include <linux/hardirq.h>
36 #include <linux/cpu.h>
37
38 #include <asm/ptrace.h>
39 #include <asm/atomic.h>
40 #include <asm/irq.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/sections.h>
44 #include <asm/io.h>
45 #include <asm/prom.h>
46 #include <asm/smp.h>
47 #include <asm/residual.h>
48 #include <asm/machdep.h>
49 #include <asm/pmac_feature.h>
50 #include <asm/time.h>
51 #include <asm/open_pic.h>
52 #include <asm/cacheflush.h>
53 #include <asm/keylargo.h>
54
55 /*
56  * Powersurge (old powermac SMP) support.
57  */
58
59 extern void __secondary_start_pmac_0(void);
60
61 /* Addresses for powersurge registers */
62 #define HAMMERHEAD_BASE         0xf8000000
63 #define HHEAD_CONFIG            0x90
64 #define HHEAD_SEC_INTR          0xc0
65
66 /* register for interrupting the primary processor on the powersurge */
67 /* N.B. this is actually the ethernet ROM! */
68 #define PSURGE_PRI_INTR         0xf3019000
69
70 /* register for storing the start address for the secondary processor */
71 /* N.B. this is the PCI config space address register for the 1st bridge */
72 #define PSURGE_START            0xf2800000
73
74 /* Daystar/XLR8 4-CPU card */
75 #define PSURGE_QUAD_REG_ADDR    0xf8800000
76
77 #define PSURGE_QUAD_IRQ_SET     0
78 #define PSURGE_QUAD_IRQ_CLR     1
79 #define PSURGE_QUAD_IRQ_PRIMARY 2
80 #define PSURGE_QUAD_CKSTOP_CTL  3
81 #define PSURGE_QUAD_PRIMARY_ARB 4
82 #define PSURGE_QUAD_BOARD_ID    6
83 #define PSURGE_QUAD_WHICH_CPU   7
84 #define PSURGE_QUAD_CKSTOP_RDBK 8
85 #define PSURGE_QUAD_RESET_CTL   11
86
87 #define PSURGE_QUAD_OUT(r, v)   (out_8(quad_base + ((r) << 4) + 4, (v)))
88 #define PSURGE_QUAD_IN(r)       (in_8(quad_base + ((r) << 4) + 4) & 0x0f)
89 #define PSURGE_QUAD_BIS(r, v)   (PSURGE_QUAD_OUT((r), PSURGE_QUAD_IN(r) | (v)))
90 #define PSURGE_QUAD_BIC(r, v)   (PSURGE_QUAD_OUT((r), PSURGE_QUAD_IN(r) & ~(v)))
91
92 /* virtual addresses for the above */
93 static volatile u8 __iomem *hhead_base;
94 static volatile u8 __iomem *quad_base;
95 static volatile u32 __iomem *psurge_pri_intr;
96 static volatile u8 __iomem *psurge_sec_intr;
97 static volatile u32 __iomem *psurge_start;
98
99 /* values for psurge_type */
100 #define PSURGE_NONE             -1
101 #define PSURGE_DUAL             0
102 #define PSURGE_QUAD_OKEE        1
103 #define PSURGE_QUAD_COTTON      2
104 #define PSURGE_QUAD_ICEGRASS    3
105
106 /* what sort of powersurge board we have */
107 static int psurge_type = PSURGE_NONE;
108
109 /* L2 and L3 cache settings to pass from CPU0 to CPU1 */
110 volatile static long int core99_l2_cache;
111 volatile static long int core99_l3_cache;
112
113 /* Timebase freeze GPIO */
114 static unsigned int core99_tb_gpio;
115
116 /* Sync flag for HW tb sync */
117 static volatile int sec_tb_reset = 0;
118 static unsigned int pri_tb_hi, pri_tb_lo;
119 static unsigned int pri_tb_stamp;
120
121 static void __devinit core99_init_caches(int cpu)
122 {
123         if (!cpu_has_feature(CPU_FTR_L2CR))
124                 return;
125
126         if (cpu == 0) {
127                 core99_l2_cache = _get_L2CR();
128                 printk("CPU0: L2CR is %lx\n", core99_l2_cache);
129         } else {
130                 printk("CPU%d: L2CR was %lx\n", cpu, _get_L2CR());
131                 _set_L2CR(0);
132                 _set_L2CR(core99_l2_cache);
133                 printk("CPU%d: L2CR set to %lx\n", cpu, core99_l2_cache);
134         }
135
136         if (!cpu_has_feature(CPU_FTR_L3CR))
137                 return;
138
139         if (cpu == 0){
140                 core99_l3_cache = _get_L3CR();
141                 printk("CPU0: L3CR is %lx\n", core99_l3_cache);
142         } else {
143                 printk("CPU%d: L3CR was %lx\n", cpu, _get_L3CR());
144                 _set_L3CR(0);
145                 _set_L3CR(core99_l3_cache);
146                 printk("CPU%d: L3CR set to %lx\n", cpu, core99_l3_cache);
147         }
148 }
149
150 /*
151  * Set and clear IPIs for powersurge.
152  */
153 static inline void psurge_set_ipi(int cpu)
154 {
155         if (psurge_type == PSURGE_NONE)
156                 return;
157         if (cpu == 0)
158                 in_be32(psurge_pri_intr);
159         else if (psurge_type == PSURGE_DUAL)
160                 out_8(psurge_sec_intr, 0);
161         else
162                 PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_SET, 1 << cpu);
163 }
164
165 static inline void psurge_clr_ipi(int cpu)
166 {
167         if (cpu > 0) {
168                 switch(psurge_type) {
169                 case PSURGE_DUAL:
170                         out_8(psurge_sec_intr, ~0);
171                 case PSURGE_NONE:
172                         break;
173                 default:
174                         PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_CLR, 1 << cpu);
175                 }
176         }
177 }
178
179 /*
180  * On powersurge (old SMP powermac architecture) we don't have
181  * separate IPIs for separate messages like openpic does.  Instead
182  * we have a bitmap for each processor, where a 1 bit means that
183  * the corresponding message is pending for that processor.
184  * Ideally each cpu's entry would be in a different cache line.
185  *  -- paulus.
186  */
187 static unsigned long psurge_smp_message[NR_CPUS];
188
189 void __pmac psurge_smp_message_recv(struct pt_regs *regs)
190 {
191         int cpu = smp_processor_id();
192         int msg;
193
194         /* clear interrupt */
195         psurge_clr_ipi(cpu);
196
197         if (num_online_cpus() < 2)
198                 return;
199
200         /* make sure there is a message there */
201         for (msg = 0; msg < 4; msg++)
202                 if (test_and_clear_bit(msg, &psurge_smp_message[cpu]))
203                         smp_message_recv(msg, regs);
204 }
205
206 irqreturn_t __pmac psurge_primary_intr(int irq, void *d, struct pt_regs *regs)
207 {
208         psurge_smp_message_recv(regs);
209         return IRQ_HANDLED;
210 }
211
212 static void __pmac smp_psurge_message_pass(int target, int msg, unsigned long data,
213                                            int wait)
214 {
215         int i;
216
217         if (num_online_cpus() < 2)
218                 return;
219
220         for (i = 0; i < NR_CPUS; i++) {
221                 if (!cpu_online(i))
222                         continue;
223                 if (target == MSG_ALL
224                     || (target == MSG_ALL_BUT_SELF && i != smp_processor_id())
225                     || target == i) {
226                         set_bit(msg, &psurge_smp_message[i]);
227                         psurge_set_ipi(i);
228                 }
229         }
230 }
231
232 /*
233  * Determine a quad card presence. We read the board ID register, we
234  * force the data bus to change to something else, and we read it again.
235  * It it's stable, then the register probably exist (ugh !)
236  */
237 static int __init psurge_quad_probe(void)
238 {
239         int type;
240         unsigned int i;
241
242         type = PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID);
243         if (type < PSURGE_QUAD_OKEE || type > PSURGE_QUAD_ICEGRASS
244             || type != PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID))
245                 return PSURGE_DUAL;
246
247         /* looks OK, try a slightly more rigorous test */
248         /* bogus is not necessarily cacheline-aligned,
249            though I don't suppose that really matters.  -- paulus */
250         for (i = 0; i < 100; i++) {
251                 volatile u32 bogus[8];
252                 bogus[(0+i)%8] = 0x00000000;
253                 bogus[(1+i)%8] = 0x55555555;
254                 bogus[(2+i)%8] = 0xFFFFFFFF;
255                 bogus[(3+i)%8] = 0xAAAAAAAA;
256                 bogus[(4+i)%8] = 0x33333333;
257                 bogus[(5+i)%8] = 0xCCCCCCCC;
258                 bogus[(6+i)%8] = 0xCCCCCCCC;
259                 bogus[(7+i)%8] = 0x33333333;
260                 wmb();
261                 asm volatile("dcbf 0,%0" : : "r" (bogus) : "memory");
262                 mb();
263                 if (type != PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID))
264                         return PSURGE_DUAL;
265         }
266         return type;
267 }
268
269 static void __init psurge_quad_init(void)
270 {
271         int procbits;
272
273         if (ppc_md.progress) ppc_md.progress("psurge_quad_init", 0x351);
274         procbits = ~PSURGE_QUAD_IN(PSURGE_QUAD_WHICH_CPU);
275         if (psurge_type == PSURGE_QUAD_ICEGRASS)
276                 PSURGE_QUAD_BIS(PSURGE_QUAD_RESET_CTL, procbits);
277         else
278                 PSURGE_QUAD_BIC(PSURGE_QUAD_CKSTOP_CTL, procbits);
279         mdelay(33);
280         out_8(psurge_sec_intr, ~0);
281         PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_CLR, procbits);
282         PSURGE_QUAD_BIS(PSURGE_QUAD_RESET_CTL, procbits);
283         if (psurge_type != PSURGE_QUAD_ICEGRASS)
284                 PSURGE_QUAD_BIS(PSURGE_QUAD_CKSTOP_CTL, procbits);
285         PSURGE_QUAD_BIC(PSURGE_QUAD_PRIMARY_ARB, procbits);
286         mdelay(33);
287         PSURGE_QUAD_BIC(PSURGE_QUAD_RESET_CTL, procbits);
288         mdelay(33);
289         PSURGE_QUAD_BIS(PSURGE_QUAD_PRIMARY_ARB, procbits);
290         mdelay(33);
291 }
292
293 static int __init smp_psurge_probe(void)
294 {
295         int i, ncpus;
296
297         /* We don't do SMP on the PPC601 -- paulus */
298         if (PVR_VER(mfspr(SPRN_PVR)) == 1)
299                 return 1;
300
301         /*
302          * The powersurge cpu board can be used in the generation
303          * of powermacs that have a socket for an upgradeable cpu card,
304          * including the 7500, 8500, 9500, 9600.
305          * The device tree doesn't tell you if you have 2 cpus because
306          * OF doesn't know anything about the 2nd processor.
307          * Instead we look for magic bits in magic registers,
308          * in the hammerhead memory controller in the case of the
309          * dual-cpu powersurge board.  -- paulus.
310          */
311         if (find_devices("hammerhead") == NULL)
312                 return 1;
313
314         hhead_base = ioremap(HAMMERHEAD_BASE, 0x800);
315         quad_base = ioremap(PSURGE_QUAD_REG_ADDR, 1024);
316         psurge_sec_intr = hhead_base + HHEAD_SEC_INTR;
317
318         psurge_type = psurge_quad_probe();
319         if (psurge_type != PSURGE_DUAL) {
320                 psurge_quad_init();
321                 /* All released cards using this HW design have 4 CPUs */
322                 ncpus = 4;
323         } else {
324                 iounmap(quad_base);
325                 if ((in_8(hhead_base + HHEAD_CONFIG) & 0x02) == 0) {
326                         /* not a dual-cpu card */
327                         iounmap(hhead_base);
328                         psurge_type = PSURGE_NONE;
329                         return 1;
330                 }
331                 ncpus = 2;
332         }
333
334         psurge_start = ioremap(PSURGE_START, 4);
335         psurge_pri_intr = ioremap(PSURGE_PRI_INTR, 4);
336
337         /* this is not actually strictly necessary -- paulus. */
338         for (i = 1; i < ncpus; ++i)
339                 smp_hw_index[i] = i;
340
341         if (ppc_md.progress) ppc_md.progress("smp_psurge_probe - done", 0x352);
342
343         return ncpus;
344 }
345
346 static void __init smp_psurge_kick_cpu(int nr)
347 {
348         unsigned long start = __pa(__secondary_start_pmac_0) + nr * 8;
349         unsigned long a;
350
351         /* may need to flush here if secondary bats aren't setup */
352         for (a = KERNELBASE; a < KERNELBASE + 0x800000; a += 32)
353                 asm volatile("dcbf 0,%0" : : "r" (a) : "memory");
354         asm volatile("sync");
355
356         if (ppc_md.progress) ppc_md.progress("smp_psurge_kick_cpu", 0x353);
357
358         out_be32(psurge_start, start);
359         mb();
360
361         psurge_set_ipi(nr);
362         udelay(10);
363         psurge_clr_ipi(nr);
364
365         if (ppc_md.progress) ppc_md.progress("smp_psurge_kick_cpu - done", 0x354);
366 }
367
368 /*
369  * With the dual-cpu powersurge board, the decrementers and timebases
370  * of both cpus are frozen after the secondary cpu is started up,
371  * until we give the secondary cpu another interrupt.  This routine
372  * uses this to get the timebases synchronized.
373  *  -- paulus.
374  */
375 static void __init psurge_dual_sync_tb(int cpu_nr)
376 {
377         int t;
378
379         set_dec(tb_ticks_per_jiffy);
380         set_tb(0, 0);
381         last_jiffy_stamp(cpu_nr) = 0;
382
383         if (cpu_nr > 0) {
384                 mb();
385                 sec_tb_reset = 1;
386                 return;
387         }
388
389         /* wait for the secondary to have reset its TB before proceeding */
390         for (t = 10000000; t > 0 && !sec_tb_reset; --t)
391                 ;
392
393         /* now interrupt the secondary, starting both TBs */
394         psurge_set_ipi(1);
395
396         smp_tb_synchronized = 1;
397 }
398
399 static struct irqaction psurge_irqaction = {
400         .handler = psurge_primary_intr,
401         .flags = SA_INTERRUPT,
402         .mask = CPU_MASK_NONE,
403         .name = "primary IPI",
404 };
405
406 static void __init smp_psurge_setup_cpu(int cpu_nr)
407 {
408
409         if (cpu_nr == 0) {
410                 /* If we failed to start the second CPU, we should still
411                  * send it an IPI to start the timebase & DEC or we might
412                  * have them stuck.
413                  */
414                 if (num_online_cpus() < 2) {
415                         if (psurge_type == PSURGE_DUAL)
416                                 psurge_set_ipi(1);
417                         return;
418                 }
419                 /* reset the entry point so if we get another intr we won't
420                  * try to startup again */
421                 out_be32(psurge_start, 0x100);
422                 if (setup_irq(30, &psurge_irqaction))
423                         printk(KERN_ERR "Couldn't get primary IPI interrupt");
424         }
425
426         if (psurge_type == PSURGE_DUAL)
427                 psurge_dual_sync_tb(cpu_nr);
428 }
429
430 void __init smp_psurge_take_timebase(void)
431 {
432         /* Dummy implementation */
433 }
434
435 void __init smp_psurge_give_timebase(void)
436 {
437         /* Dummy implementation */
438 }
439
440 static int __init smp_core99_probe(void)
441 {
442 #ifdef CONFIG_6xx
443         extern int powersave_nap;
444 #endif
445         struct device_node *cpus, *firstcpu;
446         int i, ncpus = 0, boot_cpu = -1;
447         u32 *tbprop = NULL;
448
449         if (ppc_md.progress) ppc_md.progress("smp_core99_probe", 0x345);
450         cpus = firstcpu = find_type_devices("cpu");
451         while(cpus != NULL) {
452                 u32 *regprop = (u32 *)get_property(cpus, "reg", NULL);
453                 char *stateprop = (char *)get_property(cpus, "state", NULL);
454                 if (regprop != NULL && stateprop != NULL &&
455                     !strncmp(stateprop, "running", 7))
456                         boot_cpu = *regprop;
457                 ++ncpus;
458                 cpus = cpus->next;
459         }
460         if (boot_cpu == -1)
461                 printk(KERN_WARNING "Couldn't detect boot CPU !\n");
462         if (boot_cpu != 0)
463                 printk(KERN_WARNING "Boot CPU is %d, unsupported setup !\n", boot_cpu);
464
465         if (machine_is_compatible("MacRISC4")) {
466                 extern struct smp_ops_t core99_smp_ops;
467
468                 core99_smp_ops.take_timebase = smp_generic_take_timebase;
469                 core99_smp_ops.give_timebase = smp_generic_give_timebase;
470         } else {
471                 if (firstcpu != NULL)
472                         tbprop = (u32 *)get_property(firstcpu, "timebase-enable", NULL);
473                 if (tbprop)
474                         core99_tb_gpio = *tbprop;
475                 else
476                         core99_tb_gpio = KL_GPIO_TB_ENABLE;
477         }
478
479         if (ncpus > 1) {
480                 openpic_request_IPIs();
481                 for (i = 1; i < ncpus; ++i)
482                         smp_hw_index[i] = i;
483 #ifdef CONFIG_6xx
484                 powersave_nap = 0;
485 #endif
486                 core99_init_caches(0);
487         }
488
489         return ncpus;
490 }
491
492 static void __devinit smp_core99_kick_cpu(int nr)
493 {
494         unsigned long save_vector, new_vector;
495         unsigned long flags;
496
497         volatile unsigned long *vector
498                  = ((volatile unsigned long *)(KERNELBASE+0x100));
499         if (nr < 0 || nr > 3)
500                 return;
501         if (ppc_md.progress) ppc_md.progress("smp_core99_kick_cpu", 0x346);
502
503         local_irq_save(flags);
504         local_irq_disable();
505
506         /* Save reset vector */
507         save_vector = *vector;
508
509         /* Setup fake reset vector that does    
510          *   b __secondary_start_pmac_0 + nr*8 - KERNELBASE
511          */
512         new_vector = (unsigned long) __secondary_start_pmac_0 + nr * 8;
513         *vector = 0x48000002 + new_vector - KERNELBASE;
514
515         /* flush data cache and inval instruction cache */
516         flush_icache_range((unsigned long) vector, (unsigned long) vector + 4);
517
518         /* Put some life in our friend */
519         pmac_call_feature(PMAC_FTR_RESET_CPU, NULL, nr, 0);
520
521         /* FIXME: We wait a bit for the CPU to take the exception, I should
522          * instead wait for the entry code to set something for me. Well,
523          * ideally, all that crap will be done in prom.c and the CPU left
524          * in a RAM-based wait loop like CHRP.
525          */
526         mdelay(1);
527
528         /* Restore our exception vector */
529         *vector = save_vector;
530         flush_icache_range((unsigned long) vector, (unsigned long) vector + 4);
531
532         local_irq_restore(flags);
533         if (ppc_md.progress) ppc_md.progress("smp_core99_kick_cpu done", 0x347);
534 }
535
536 static void __devinit smp_core99_setup_cpu(int cpu_nr)
537 {
538         /* Setup L2/L3 */
539         if (cpu_nr != 0)
540                 core99_init_caches(cpu_nr);
541
542         /* Setup openpic */
543         do_openpic_setup_cpu();
544
545         if (cpu_nr == 0) {
546 #ifdef CONFIG_POWER4
547                 extern void g5_phy_disable_cpu1(void);
548
549                 /* If we didn't start the second CPU, we must take
550                  * it off the bus
551                  */
552                 if (machine_is_compatible("MacRISC4") &&
553                     num_online_cpus() < 2)              
554                         g5_phy_disable_cpu1();
555 #endif /* CONFIG_POWER4 */
556                 if (ppc_md.progress) ppc_md.progress("core99_setup_cpu 0 done", 0x349);
557         }
558 }
559
560 /* not __init, called in sleep/wakeup code */
561 void smp_core99_take_timebase(void)
562 {
563         unsigned long flags;
564
565         /* tell the primary we're here */
566         sec_tb_reset = 1;
567         mb();
568
569         /* wait for the primary to set pri_tb_hi/lo */
570         while (sec_tb_reset < 2)
571                 mb();
572
573         /* set our stuff the same as the primary */
574         local_irq_save(flags);
575         set_dec(1);
576         set_tb(pri_tb_hi, pri_tb_lo);
577         last_jiffy_stamp(smp_processor_id()) = pri_tb_stamp;
578         mb();
579
580         /* tell the primary we're done */
581         sec_tb_reset = 0;
582         mb();
583         local_irq_restore(flags);
584 }
585
586 /* not __init, called in sleep/wakeup code */
587 void smp_core99_give_timebase(void)
588 {
589         unsigned long flags;
590         unsigned int t;
591
592         /* wait for the secondary to be in take_timebase */
593         for (t = 100000; t > 0 && !sec_tb_reset; --t)
594                 udelay(10);
595         if (!sec_tb_reset) {
596                 printk(KERN_WARNING "Timeout waiting sync on second CPU\n");
597                 return;
598         }
599
600         /* freeze the timebase and read it */
601         /* disable interrupts so the timebase is disabled for the
602            shortest possible time */
603         local_irq_save(flags);
604         pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, core99_tb_gpio, 4);
605         pmac_call_feature(PMAC_FTR_READ_GPIO, NULL, core99_tb_gpio, 0);
606         mb();
607         pri_tb_hi = get_tbu();
608         pri_tb_lo = get_tbl();
609         pri_tb_stamp = last_jiffy_stamp(smp_processor_id());
610         mb();
611
612         /* tell the secondary we're ready */
613         sec_tb_reset = 2;
614         mb();
615
616         /* wait for the secondary to have taken it */
617         for (t = 100000; t > 0 && sec_tb_reset; --t)
618                 udelay(10);
619         if (sec_tb_reset)
620                 printk(KERN_WARNING "Timeout waiting sync(2) on second CPU\n");
621         else
622                 smp_tb_synchronized = 1;
623
624         /* Now, restart the timebase by leaving the GPIO to an open collector */
625         pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, core99_tb_gpio, 0);
626         pmac_call_feature(PMAC_FTR_READ_GPIO, NULL, core99_tb_gpio, 0);
627         local_irq_restore(flags);
628 }
629
630
631 /* PowerSurge-style Macs */
632 struct smp_ops_t psurge_smp_ops __pmacdata = {
633         .message_pass   = smp_psurge_message_pass,
634         .probe          = smp_psurge_probe,
635         .kick_cpu       = smp_psurge_kick_cpu,
636         .setup_cpu      = smp_psurge_setup_cpu,
637         .give_timebase  = smp_psurge_give_timebase,
638         .take_timebase  = smp_psurge_take_timebase,
639 };
640
641 /* Core99 Macs (dual G4s) */
642 struct smp_ops_t core99_smp_ops __pmacdata = {
643         .message_pass   = smp_openpic_message_pass,
644         .probe          = smp_core99_probe,
645         .kick_cpu       = smp_core99_kick_cpu,
646         .setup_cpu      = smp_core99_setup_cpu,
647         .give_timebase  = smp_core99_give_timebase,
648         .take_timebase  = smp_core99_take_timebase,
649 };
650
651 #ifdef CONFIG_HOTPLUG_CPU
652
653 int __cpu_disable(void)
654 {
655         cpu_clear(smp_processor_id(), cpu_online_map);
656
657         /* XXX reset cpu affinity here */
658         openpic_set_priority(0xf);
659         asm volatile("mtdec %0" : : "r" (0x7fffffff));
660         mb();
661         udelay(20);
662         asm volatile("mtdec %0" : : "r" (0x7fffffff));
663         return 0;
664 }
665
666 extern void low_cpu_die(void) __attribute__((noreturn)); /* in pmac_sleep.S */
667 static int cpu_dead[NR_CPUS];
668
669 void cpu_die(void)
670 {
671         local_irq_disable();
672         cpu_dead[smp_processor_id()] = 1;
673         mb();
674         low_cpu_die();
675 }
676
677 void __cpu_die(unsigned int cpu)
678 {
679         int timeout;
680
681         timeout = 1000;
682         while (!cpu_dead[cpu]) {
683                 if (--timeout == 0) {
684                         printk("CPU %u refused to die!\n", cpu);
685                         break;
686                 }
687                 msleep(1);
688         }
689         cpu_callin_map[cpu] = 0;
690         cpu_dead[cpu] = 0;
691 }
692
693 #endif