[IA64] forbid ptrace changes psr.ri to 3
[linux-3.10.git] / arch / ia64 / mm / init.c
1 /*
2  * Initialize MMU support.
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *      David Mosberger-Tang <davidm@hpl.hp.com>
6  */
7 #include <linux/kernel.h>
8 #include <linux/init.h>
9
10 #include <linux/bootmem.h>
11 #include <linux/efi.h>
12 #include <linux/elf.h>
13 #include <linux/mm.h>
14 #include <linux/mmzone.h>
15 #include <linux/module.h>
16 #include <linux/personality.h>
17 #include <linux/reboot.h>
18 #include <linux/slab.h>
19 #include <linux/swap.h>
20 #include <linux/proc_fs.h>
21 #include <linux/bitops.h>
22 #include <linux/kexec.h>
23
24 #include <asm/a.out.h>
25 #include <asm/dma.h>
26 #include <asm/ia32.h>
27 #include <asm/io.h>
28 #include <asm/machvec.h>
29 #include <asm/numa.h>
30 #include <asm/patch.h>
31 #include <asm/pgalloc.h>
32 #include <asm/sal.h>
33 #include <asm/sections.h>
34 #include <asm/system.h>
35 #include <asm/tlb.h>
36 #include <asm/uaccess.h>
37 #include <asm/unistd.h>
38 #include <asm/mca.h>
39
40 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
41
42 extern void ia64_tlb_init (void);
43
44 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
45
46 #ifdef CONFIG_VIRTUAL_MEM_MAP
47 unsigned long vmalloc_end = VMALLOC_END_INIT;
48 EXPORT_SYMBOL(vmalloc_end);
49 struct page *vmem_map;
50 EXPORT_SYMBOL(vmem_map);
51 #endif
52
53 struct page *zero_page_memmap_ptr;      /* map entry for zero page */
54 EXPORT_SYMBOL(zero_page_memmap_ptr);
55
56 void
57 lazy_mmu_prot_update (pte_t pte)
58 {
59         unsigned long addr;
60         struct page *page;
61         unsigned long order;
62
63         if (!pte_exec(pte))
64                 return;                         /* not an executable page... */
65
66         page = pte_page(pte);
67         addr = (unsigned long) page_address(page);
68
69         if (test_bit(PG_arch_1, &page->flags))
70                 return;                         /* i-cache is already coherent with d-cache */
71
72         if (PageCompound(page)) {
73                 order = compound_order(page);
74                 flush_icache_range(addr, addr + (1UL << order << PAGE_SHIFT));
75         }
76         else
77                 flush_icache_range(addr, addr + PAGE_SIZE);
78         set_bit(PG_arch_1, &page->flags);       /* mark page as clean */
79 }
80
81 /*
82  * Since DMA is i-cache coherent, any (complete) pages that were written via
83  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
84  * flush them when they get mapped into an executable vm-area.
85  */
86 void
87 dma_mark_clean(void *addr, size_t size)
88 {
89         unsigned long pg_addr, end;
90
91         pg_addr = PAGE_ALIGN((unsigned long) addr);
92         end = (unsigned long) addr + size;
93         while (pg_addr + PAGE_SIZE <= end) {
94                 struct page *page = virt_to_page(pg_addr);
95                 set_bit(PG_arch_1, &page->flags);
96                 pg_addr += PAGE_SIZE;
97         }
98 }
99
100 inline void
101 ia64_set_rbs_bot (void)
102 {
103         unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16;
104
105         if (stack_size > MAX_USER_STACK_SIZE)
106                 stack_size = MAX_USER_STACK_SIZE;
107         current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
108 }
109
110 /*
111  * This performs some platform-dependent address space initialization.
112  * On IA-64, we want to setup the VM area for the register backing
113  * store (which grows upwards) and install the gateway page which is
114  * used for signal trampolines, etc.
115  */
116 void
117 ia64_init_addr_space (void)
118 {
119         struct vm_area_struct *vma;
120
121         ia64_set_rbs_bot();
122
123         /*
124          * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
125          * the problem.  When the process attempts to write to the register backing store
126          * for the first time, it will get a SEGFAULT in this case.
127          */
128         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
129         if (vma) {
130                 vma->vm_mm = current->mm;
131                 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
132                 vma->vm_end = vma->vm_start + PAGE_SIZE;
133                 vma->vm_page_prot = protection_map[VM_DATA_DEFAULT_FLAGS & 0x7];
134                 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
135                 down_write(&current->mm->mmap_sem);
136                 if (insert_vm_struct(current->mm, vma)) {
137                         up_write(&current->mm->mmap_sem);
138                         kmem_cache_free(vm_area_cachep, vma);
139                         return;
140                 }
141                 up_write(&current->mm->mmap_sem);
142         }
143
144         /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
145         if (!(current->personality & MMAP_PAGE_ZERO)) {
146                 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
147                 if (vma) {
148                         vma->vm_mm = current->mm;
149                         vma->vm_end = PAGE_SIZE;
150                         vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
151                         vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
152                         down_write(&current->mm->mmap_sem);
153                         if (insert_vm_struct(current->mm, vma)) {
154                                 up_write(&current->mm->mmap_sem);
155                                 kmem_cache_free(vm_area_cachep, vma);
156                                 return;
157                         }
158                         up_write(&current->mm->mmap_sem);
159                 }
160         }
161 }
162
163 void
164 free_initmem (void)
165 {
166         unsigned long addr, eaddr;
167
168         addr = (unsigned long) ia64_imva(__init_begin);
169         eaddr = (unsigned long) ia64_imva(__init_end);
170         while (addr < eaddr) {
171                 ClearPageReserved(virt_to_page(addr));
172                 init_page_count(virt_to_page(addr));
173                 free_page(addr);
174                 ++totalram_pages;
175                 addr += PAGE_SIZE;
176         }
177         printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
178                (__init_end - __init_begin) >> 10);
179 }
180
181 void __init
182 free_initrd_mem (unsigned long start, unsigned long end)
183 {
184         struct page *page;
185         /*
186          * EFI uses 4KB pages while the kernel can use 4KB or bigger.
187          * Thus EFI and the kernel may have different page sizes. It is
188          * therefore possible to have the initrd share the same page as
189          * the end of the kernel (given current setup).
190          *
191          * To avoid freeing/using the wrong page (kernel sized) we:
192          *      - align up the beginning of initrd
193          *      - align down the end of initrd
194          *
195          *  |             |
196          *  |=============| a000
197          *  |             |
198          *  |             |
199          *  |             | 9000
200          *  |/////////////|
201          *  |/////////////|
202          *  |=============| 8000
203          *  |///INITRD////|
204          *  |/////////////|
205          *  |/////////////| 7000
206          *  |             |
207          *  |KKKKKKKKKKKKK|
208          *  |=============| 6000
209          *  |KKKKKKKKKKKKK|
210          *  |KKKKKKKKKKKKK|
211          *  K=kernel using 8KB pages
212          *
213          * In this example, we must free page 8000 ONLY. So we must align up
214          * initrd_start and keep initrd_end as is.
215          */
216         start = PAGE_ALIGN(start);
217         end = end & PAGE_MASK;
218
219         if (start < end)
220                 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
221
222         for (; start < end; start += PAGE_SIZE) {
223                 if (!virt_addr_valid(start))
224                         continue;
225                 page = virt_to_page(start);
226                 ClearPageReserved(page);
227                 init_page_count(page);
228                 free_page(start);
229                 ++totalram_pages;
230         }
231 }
232
233 /*
234  * This installs a clean page in the kernel's page table.
235  */
236 static struct page * __init
237 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
238 {
239         pgd_t *pgd;
240         pud_t *pud;
241         pmd_t *pmd;
242         pte_t *pte;
243
244         if (!PageReserved(page))
245                 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
246                        page_address(page));
247
248         pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
249
250         {
251                 pud = pud_alloc(&init_mm, pgd, address);
252                 if (!pud)
253                         goto out;
254                 pmd = pmd_alloc(&init_mm, pud, address);
255                 if (!pmd)
256                         goto out;
257                 pte = pte_alloc_kernel(pmd, address);
258                 if (!pte)
259                         goto out;
260                 if (!pte_none(*pte))
261                         goto out;
262                 set_pte(pte, mk_pte(page, pgprot));
263         }
264   out:
265         /* no need for flush_tlb */
266         return page;
267 }
268
269 static void __init
270 setup_gate (void)
271 {
272         struct page *page;
273
274         /*
275          * Map the gate page twice: once read-only to export the ELF
276          * headers etc. and once execute-only page to enable
277          * privilege-promotion via "epc":
278          */
279         page = virt_to_page(ia64_imva(__start_gate_section));
280         put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
281 #ifdef HAVE_BUGGY_SEGREL
282         page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
283         put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
284 #else
285         put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
286         /* Fill in the holes (if any) with read-only zero pages: */
287         {
288                 unsigned long addr;
289
290                 for (addr = GATE_ADDR + PAGE_SIZE;
291                      addr < GATE_ADDR + PERCPU_PAGE_SIZE;
292                      addr += PAGE_SIZE)
293                 {
294                         put_kernel_page(ZERO_PAGE(0), addr,
295                                         PAGE_READONLY);
296                         put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
297                                         PAGE_READONLY);
298                 }
299         }
300 #endif
301         ia64_patch_gate();
302 }
303
304 void __devinit
305 ia64_mmu_init (void *my_cpu_data)
306 {
307         unsigned long pta, impl_va_bits;
308         extern void __devinit tlb_init (void);
309
310 #ifdef CONFIG_DISABLE_VHPT
311 #       define VHPT_ENABLE_BIT  0
312 #else
313 #       define VHPT_ENABLE_BIT  1
314 #endif
315
316         /*
317          * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
318          * address space.  The IA-64 architecture guarantees that at least 50 bits of
319          * virtual address space are implemented but if we pick a large enough page size
320          * (e.g., 64KB), the mapped address space is big enough that it will overlap with
321          * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
322          * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
323          * problem in practice.  Alternatively, we could truncate the top of the mapped
324          * address space to not permit mappings that would overlap with the VMLPT.
325          * --davidm 00/12/06
326          */
327 #       define pte_bits                 3
328 #       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
329         /*
330          * The virtual page table has to cover the entire implemented address space within
331          * a region even though not all of this space may be mappable.  The reason for
332          * this is that the Access bit and Dirty bit fault handlers perform
333          * non-speculative accesses to the virtual page table, so the address range of the
334          * virtual page table itself needs to be covered by virtual page table.
335          */
336 #       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
337 #       define POW2(n)                  (1ULL << (n))
338
339         impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
340
341         if (impl_va_bits < 51 || impl_va_bits > 61)
342                 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
343         /*
344          * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
345          * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
346          * the test makes sure that our mapped space doesn't overlap the
347          * unimplemented hole in the middle of the region.
348          */
349         if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
350             (mapped_space_bits > impl_va_bits - 1))
351                 panic("Cannot build a big enough virtual-linear page table"
352                       " to cover mapped address space.\n"
353                       " Try using a smaller page size.\n");
354
355
356         /* place the VMLPT at the end of each page-table mapped region: */
357         pta = POW2(61) - POW2(vmlpt_bits);
358
359         /*
360          * Set the (virtually mapped linear) page table address.  Bit
361          * 8 selects between the short and long format, bits 2-7 the
362          * size of the table, and bit 0 whether the VHPT walker is
363          * enabled.
364          */
365         ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
366
367         ia64_tlb_init();
368
369 #ifdef  CONFIG_HUGETLB_PAGE
370         ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
371         ia64_srlz_d();
372 #endif
373 }
374
375 #ifdef CONFIG_VIRTUAL_MEM_MAP
376 int vmemmap_find_next_valid_pfn(int node, int i)
377 {
378         unsigned long end_address, hole_next_pfn;
379         unsigned long stop_address;
380         pg_data_t *pgdat = NODE_DATA(node);
381
382         end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
383         end_address = PAGE_ALIGN(end_address);
384
385         stop_address = (unsigned long) &vmem_map[
386                 pgdat->node_start_pfn + pgdat->node_spanned_pages];
387
388         do {
389                 pgd_t *pgd;
390                 pud_t *pud;
391                 pmd_t *pmd;
392                 pte_t *pte;
393
394                 pgd = pgd_offset_k(end_address);
395                 if (pgd_none(*pgd)) {
396                         end_address += PGDIR_SIZE;
397                         continue;
398                 }
399
400                 pud = pud_offset(pgd, end_address);
401                 if (pud_none(*pud)) {
402                         end_address += PUD_SIZE;
403                         continue;
404                 }
405
406                 pmd = pmd_offset(pud, end_address);
407                 if (pmd_none(*pmd)) {
408                         end_address += PMD_SIZE;
409                         continue;
410                 }
411
412                 pte = pte_offset_kernel(pmd, end_address);
413 retry_pte:
414                 if (pte_none(*pte)) {
415                         end_address += PAGE_SIZE;
416                         pte++;
417                         if ((end_address < stop_address) &&
418                             (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
419                                 goto retry_pte;
420                         continue;
421                 }
422                 /* Found next valid vmem_map page */
423                 break;
424         } while (end_address < stop_address);
425
426         end_address = min(end_address, stop_address);
427         end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
428         hole_next_pfn = end_address / sizeof(struct page);
429         return hole_next_pfn - pgdat->node_start_pfn;
430 }
431
432 int __init
433 create_mem_map_page_table (u64 start, u64 end, void *arg)
434 {
435         unsigned long address, start_page, end_page;
436         struct page *map_start, *map_end;
437         int node;
438         pgd_t *pgd;
439         pud_t *pud;
440         pmd_t *pmd;
441         pte_t *pte;
442
443         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
444         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
445
446         start_page = (unsigned long) map_start & PAGE_MASK;
447         end_page = PAGE_ALIGN((unsigned long) map_end);
448         node = paddr_to_nid(__pa(start));
449
450         for (address = start_page; address < end_page; address += PAGE_SIZE) {
451                 pgd = pgd_offset_k(address);
452                 if (pgd_none(*pgd))
453                         pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
454                 pud = pud_offset(pgd, address);
455
456                 if (pud_none(*pud))
457                         pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
458                 pmd = pmd_offset(pud, address);
459
460                 if (pmd_none(*pmd))
461                         pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
462                 pte = pte_offset_kernel(pmd, address);
463
464                 if (pte_none(*pte))
465                         set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
466                                              PAGE_KERNEL));
467         }
468         return 0;
469 }
470
471 struct memmap_init_callback_data {
472         struct page *start;
473         struct page *end;
474         int nid;
475         unsigned long zone;
476 };
477
478 static int
479 virtual_memmap_init (u64 start, u64 end, void *arg)
480 {
481         struct memmap_init_callback_data *args;
482         struct page *map_start, *map_end;
483
484         args = (struct memmap_init_callback_data *) arg;
485         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
486         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
487
488         if (map_start < args->start)
489                 map_start = args->start;
490         if (map_end > args->end)
491                 map_end = args->end;
492
493         /*
494          * We have to initialize "out of bounds" struct page elements that fit completely
495          * on the same pages that were allocated for the "in bounds" elements because they
496          * may be referenced later (and found to be "reserved").
497          */
498         map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
499         map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
500                     / sizeof(struct page));
501
502         if (map_start < map_end)
503                 memmap_init_zone((unsigned long)(map_end - map_start),
504                                  args->nid, args->zone, page_to_pfn(map_start),
505                                  MEMMAP_EARLY);
506         return 0;
507 }
508
509 void
510 memmap_init (unsigned long size, int nid, unsigned long zone,
511              unsigned long start_pfn)
512 {
513         if (!vmem_map)
514                 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
515         else {
516                 struct page *start;
517                 struct memmap_init_callback_data args;
518
519                 start = pfn_to_page(start_pfn);
520                 args.start = start;
521                 args.end = start + size;
522                 args.nid = nid;
523                 args.zone = zone;
524
525                 efi_memmap_walk(virtual_memmap_init, &args);
526         }
527 }
528
529 int
530 ia64_pfn_valid (unsigned long pfn)
531 {
532         char byte;
533         struct page *pg = pfn_to_page(pfn);
534
535         return     (__get_user(byte, (char __user *) pg) == 0)
536                 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
537                         || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
538 }
539 EXPORT_SYMBOL(ia64_pfn_valid);
540
541 int __init
542 find_largest_hole (u64 start, u64 end, void *arg)
543 {
544         u64 *max_gap = arg;
545
546         static u64 last_end = PAGE_OFFSET;
547
548         /* NOTE: this algorithm assumes efi memmap table is ordered */
549
550         if (*max_gap < (start - last_end))
551                 *max_gap = start - last_end;
552         last_end = end;
553         return 0;
554 }
555
556 #endif /* CONFIG_VIRTUAL_MEM_MAP */
557
558 int __init
559 register_active_ranges(u64 start, u64 end, void *arg)
560 {
561         int nid = paddr_to_nid(__pa(start));
562
563         if (nid < 0)
564                 nid = 0;
565 #ifdef CONFIG_KEXEC
566         if (start > crashk_res.start && start < crashk_res.end)
567                 start = crashk_res.end;
568         if (end > crashk_res.start && end < crashk_res.end)
569                 end = crashk_res.start;
570 #endif
571
572         if (start < end)
573                 add_active_range(nid, __pa(start) >> PAGE_SHIFT,
574                         __pa(end) >> PAGE_SHIFT);
575         return 0;
576 }
577
578 static int __init
579 count_reserved_pages (u64 start, u64 end, void *arg)
580 {
581         unsigned long num_reserved = 0;
582         unsigned long *count = arg;
583
584         for (; start < end; start += PAGE_SIZE)
585                 if (PageReserved(virt_to_page(start)))
586                         ++num_reserved;
587         *count += num_reserved;
588         return 0;
589 }
590
591 int
592 find_max_min_low_pfn (unsigned long start, unsigned long end, void *arg)
593 {
594         unsigned long pfn_start, pfn_end;
595 #ifdef CONFIG_FLATMEM
596         pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
597         pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
598 #else
599         pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
600         pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
601 #endif
602         min_low_pfn = min(min_low_pfn, pfn_start);
603         max_low_pfn = max(max_low_pfn, pfn_end);
604         return 0;
605 }
606
607 /*
608  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
609  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
610  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
611  * useful for performance testing, but conceivably could also come in handy for debugging
612  * purposes.
613  */
614
615 static int nolwsys __initdata;
616
617 static int __init
618 nolwsys_setup (char *s)
619 {
620         nolwsys = 1;
621         return 1;
622 }
623
624 __setup("nolwsys", nolwsys_setup);
625
626 void __init
627 mem_init (void)
628 {
629         long reserved_pages, codesize, datasize, initsize;
630         pg_data_t *pgdat;
631         int i;
632         static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel;
633
634         BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
635         BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
636         BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
637
638 #ifdef CONFIG_PCI
639         /*
640          * This needs to be called _after_ the command line has been parsed but _before_
641          * any drivers that may need the PCI DMA interface are initialized or bootmem has
642          * been freed.
643          */
644         platform_dma_init();
645 #endif
646
647 #ifdef CONFIG_FLATMEM
648         if (!mem_map)
649                 BUG();
650         max_mapnr = max_low_pfn;
651 #endif
652
653         high_memory = __va(max_low_pfn * PAGE_SIZE);
654
655         kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE);
656         kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
657         kclist_add(&kcore_kernel, _stext, _end - _stext);
658
659         for_each_online_pgdat(pgdat)
660                 if (pgdat->bdata->node_bootmem_map)
661                         totalram_pages += free_all_bootmem_node(pgdat);
662
663         reserved_pages = 0;
664         efi_memmap_walk(count_reserved_pages, &reserved_pages);
665
666         codesize =  (unsigned long) _etext - (unsigned long) _stext;
667         datasize =  (unsigned long) _edata - (unsigned long) _etext;
668         initsize =  (unsigned long) __init_end - (unsigned long) __init_begin;
669
670         printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
671                "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
672                num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
673                reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
674
675
676         /*
677          * For fsyscall entrpoints with no light-weight handler, use the ordinary
678          * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
679          * code can tell them apart.
680          */
681         for (i = 0; i < NR_syscalls; ++i) {
682                 extern unsigned long fsyscall_table[NR_syscalls];
683                 extern unsigned long sys_call_table[NR_syscalls];
684
685                 if (!fsyscall_table[i] || nolwsys)
686                         fsyscall_table[i] = sys_call_table[i] | 1;
687         }
688         setup_gate();
689
690 #ifdef CONFIG_IA32_SUPPORT
691         ia32_mem_init();
692 #endif
693 }
694
695 #ifdef CONFIG_MEMORY_HOTPLUG
696 void online_page(struct page *page)
697 {
698         ClearPageReserved(page);
699         init_page_count(page);
700         __free_page(page);
701         totalram_pages++;
702         num_physpages++;
703 }
704
705 int arch_add_memory(int nid, u64 start, u64 size)
706 {
707         pg_data_t *pgdat;
708         struct zone *zone;
709         unsigned long start_pfn = start >> PAGE_SHIFT;
710         unsigned long nr_pages = size >> PAGE_SHIFT;
711         int ret;
712
713         pgdat = NODE_DATA(nid);
714
715         zone = pgdat->node_zones + ZONE_NORMAL;
716         ret = __add_pages(zone, start_pfn, nr_pages);
717
718         if (ret)
719                 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
720                        __FUNCTION__,  ret);
721
722         return ret;
723 }
724
725 int remove_memory(u64 start, u64 size)
726 {
727         return -EINVAL;
728 }
729 EXPORT_SYMBOL_GPL(remove_memory);
730 #endif