bd1c515550389819abbe8322f897154bd391d9a1
[linux-3.10.git] / arch / ia64 / kvm / kvm-ia64.c
1 /*
2  * kvm_ia64.c: Basic KVM support On Itanium series processors
3  *
4  *
5  *      Copyright (C) 2007, Intel Corporation.
6  *      Xiantao Zhang  (xiantao.zhang@intel.com)
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19  * Place - Suite 330, Boston, MA 02111-1307 USA.
20  *
21  */
22
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/smp.h>
29 #include <linux/kvm_host.h>
30 #include <linux/kvm.h>
31 #include <linux/bitops.h>
32 #include <linux/hrtimer.h>
33 #include <linux/uaccess.h>
34 #include <linux/iommu.h>
35 #include <linux/intel-iommu.h>
36 #include <linux/pci.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/gcc_intrin.h>
40 #include <asm/pal.h>
41 #include <asm/cacheflush.h>
42 #include <asm/div64.h>
43 #include <asm/tlb.h>
44 #include <asm/elf.h>
45 #include <asm/sn/addrs.h>
46 #include <asm/sn/clksupport.h>
47 #include <asm/sn/shub_mmr.h>
48
49 #include "misc.h"
50 #include "vti.h"
51 #include "iodev.h"
52 #include "ioapic.h"
53 #include "lapic.h"
54 #include "irq.h"
55
56 static unsigned long kvm_vmm_base;
57 static unsigned long kvm_vsa_base;
58 static unsigned long kvm_vm_buffer;
59 static unsigned long kvm_vm_buffer_size;
60 unsigned long kvm_vmm_gp;
61
62 static long vp_env_info;
63
64 static struct kvm_vmm_info *kvm_vmm_info;
65
66 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
67
68 struct kvm_stats_debugfs_item debugfs_entries[] = {
69         { NULL }
70 };
71
72 static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
73 {
74 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
75         if (vcpu->kvm->arch.is_sn2)
76                 return rtc_time();
77         else
78 #endif
79                 return ia64_getreg(_IA64_REG_AR_ITC);
80 }
81
82 static void kvm_flush_icache(unsigned long start, unsigned long len)
83 {
84         int l;
85
86         for (l = 0; l < (len + 32); l += 32)
87                 ia64_fc((void *)(start + l));
88
89         ia64_sync_i();
90         ia64_srlz_i();
91 }
92
93 static void kvm_flush_tlb_all(void)
94 {
95         unsigned long i, j, count0, count1, stride0, stride1, addr;
96         long flags;
97
98         addr    = local_cpu_data->ptce_base;
99         count0  = local_cpu_data->ptce_count[0];
100         count1  = local_cpu_data->ptce_count[1];
101         stride0 = local_cpu_data->ptce_stride[0];
102         stride1 = local_cpu_data->ptce_stride[1];
103
104         local_irq_save(flags);
105         for (i = 0; i < count0; ++i) {
106                 for (j = 0; j < count1; ++j) {
107                         ia64_ptce(addr);
108                         addr += stride1;
109                 }
110                 addr += stride0;
111         }
112         local_irq_restore(flags);
113         ia64_srlz_i();                  /* srlz.i implies srlz.d */
114 }
115
116 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
117 {
118         struct ia64_pal_retval iprv;
119
120         PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
121                         (u64)opt_handler);
122
123         return iprv.status;
124 }
125
126 static  DEFINE_SPINLOCK(vp_lock);
127
128 int kvm_arch_hardware_enable(void *garbage)
129 {
130         long  status;
131         long  tmp_base;
132         unsigned long pte;
133         unsigned long saved_psr;
134         int slot;
135
136         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
137         local_irq_save(saved_psr);
138         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
139         local_irq_restore(saved_psr);
140         if (slot < 0)
141                 return -EINVAL;
142
143         spin_lock(&vp_lock);
144         status = ia64_pal_vp_init_env(kvm_vsa_base ?
145                                 VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
146                         __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
147         if (status != 0) {
148                 spin_unlock(&vp_lock);
149                 printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
150                 return -EINVAL;
151         }
152
153         if (!kvm_vsa_base) {
154                 kvm_vsa_base = tmp_base;
155                 printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
156         }
157         spin_unlock(&vp_lock);
158         ia64_ptr_entry(0x3, slot);
159
160         return 0;
161 }
162
163 void kvm_arch_hardware_disable(void *garbage)
164 {
165
166         long status;
167         int slot;
168         unsigned long pte;
169         unsigned long saved_psr;
170         unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
171
172         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
173                                 PAGE_KERNEL));
174
175         local_irq_save(saved_psr);
176         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
177         local_irq_restore(saved_psr);
178         if (slot < 0)
179                 return;
180
181         status = ia64_pal_vp_exit_env(host_iva);
182         if (status)
183                 printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
184                                 status);
185         ia64_ptr_entry(0x3, slot);
186 }
187
188 void kvm_arch_check_processor_compat(void *rtn)
189 {
190         *(int *)rtn = 0;
191 }
192
193 int kvm_dev_ioctl_check_extension(long ext)
194 {
195
196         int r;
197
198         switch (ext) {
199         case KVM_CAP_IRQCHIP:
200         case KVM_CAP_MP_STATE:
201         case KVM_CAP_IRQ_INJECT_STATUS:
202                 r = 1;
203                 break;
204         case KVM_CAP_COALESCED_MMIO:
205                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
206                 break;
207         case KVM_CAP_IOMMU:
208                 r = iommu_present(&pci_bus_type);
209                 break;
210         default:
211                 r = 0;
212         }
213         return r;
214
215 }
216
217 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
218 {
219         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
220         kvm_run->hw.hardware_exit_reason = 1;
221         return 0;
222 }
223
224 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
225 {
226         struct kvm_mmio_req *p;
227         struct kvm_io_device *mmio_dev;
228         int r;
229
230         p = kvm_get_vcpu_ioreq(vcpu);
231
232         if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
233                 goto mmio;
234         vcpu->mmio_needed = 1;
235         vcpu->mmio_fragments[0].gpa = kvm_run->mmio.phys_addr = p->addr;
236         vcpu->mmio_fragments[0].len = kvm_run->mmio.len = p->size;
237         vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
238
239         if (vcpu->mmio_is_write)
240                 memcpy(vcpu->arch.mmio_data, &p->data, p->size);
241         memcpy(kvm_run->mmio.data, &p->data, p->size);
242         kvm_run->exit_reason = KVM_EXIT_MMIO;
243         return 0;
244 mmio:
245         if (p->dir)
246                 r = kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, p->addr,
247                                     p->size, &p->data);
248         else
249                 r = kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, p->addr,
250                                      p->size, &p->data);
251         if (r)
252                 printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
253         p->state = STATE_IORESP_READY;
254
255         return 1;
256 }
257
258 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
259 {
260         struct exit_ctl_data *p;
261
262         p = kvm_get_exit_data(vcpu);
263
264         if (p->exit_reason == EXIT_REASON_PAL_CALL)
265                 return kvm_pal_emul(vcpu, kvm_run);
266         else {
267                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
268                 kvm_run->hw.hardware_exit_reason = 2;
269                 return 0;
270         }
271 }
272
273 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
274 {
275         struct exit_ctl_data *p;
276
277         p = kvm_get_exit_data(vcpu);
278
279         if (p->exit_reason == EXIT_REASON_SAL_CALL) {
280                 kvm_sal_emul(vcpu);
281                 return 1;
282         } else {
283                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
284                 kvm_run->hw.hardware_exit_reason = 3;
285                 return 0;
286         }
287
288 }
289
290 static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
291 {
292         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
293
294         if (!test_and_set_bit(vector, &vpd->irr[0])) {
295                 vcpu->arch.irq_new_pending = 1;
296                 kvm_vcpu_kick(vcpu);
297                 return 1;
298         }
299         return 0;
300 }
301
302 /*
303  *  offset: address offset to IPI space.
304  *  value:  deliver value.
305  */
306 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
307                                 uint64_t vector)
308 {
309         switch (dm) {
310         case SAPIC_FIXED:
311                 break;
312         case SAPIC_NMI:
313                 vector = 2;
314                 break;
315         case SAPIC_EXTINT:
316                 vector = 0;
317                 break;
318         case SAPIC_INIT:
319         case SAPIC_PMI:
320         default:
321                 printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
322                 return;
323         }
324         __apic_accept_irq(vcpu, vector);
325 }
326
327 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
328                         unsigned long eid)
329 {
330         union ia64_lid lid;
331         int i;
332         struct kvm_vcpu *vcpu;
333
334         kvm_for_each_vcpu(i, vcpu, kvm) {
335                 lid.val = VCPU_LID(vcpu);
336                 if (lid.id == id && lid.eid == eid)
337                         return vcpu;
338         }
339
340         return NULL;
341 }
342
343 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
344 {
345         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
346         struct kvm_vcpu *target_vcpu;
347         struct kvm_pt_regs *regs;
348         union ia64_ipi_a addr = p->u.ipi_data.addr;
349         union ia64_ipi_d data = p->u.ipi_data.data;
350
351         target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
352         if (!target_vcpu)
353                 return handle_vm_error(vcpu, kvm_run);
354
355         if (!target_vcpu->arch.launched) {
356                 regs = vcpu_regs(target_vcpu);
357
358                 regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
359                 regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
360
361                 target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
362                 if (waitqueue_active(&target_vcpu->wq))
363                         wake_up_interruptible(&target_vcpu->wq);
364         } else {
365                 vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
366                 if (target_vcpu != vcpu)
367                         kvm_vcpu_kick(target_vcpu);
368         }
369
370         return 1;
371 }
372
373 struct call_data {
374         struct kvm_ptc_g ptc_g_data;
375         struct kvm_vcpu *vcpu;
376 };
377
378 static void vcpu_global_purge(void *info)
379 {
380         struct call_data *p = (struct call_data *)info;
381         struct kvm_vcpu *vcpu = p->vcpu;
382
383         if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
384                 return;
385
386         set_bit(KVM_REQ_PTC_G, &vcpu->requests);
387         if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
388                 vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
389                                                         p->ptc_g_data;
390         } else {
391                 clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
392                 vcpu->arch.ptc_g_count = 0;
393                 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
394         }
395 }
396
397 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
398 {
399         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
400         struct kvm *kvm = vcpu->kvm;
401         struct call_data call_data;
402         int i;
403         struct kvm_vcpu *vcpui;
404
405         call_data.ptc_g_data = p->u.ptc_g_data;
406
407         kvm_for_each_vcpu(i, vcpui, kvm) {
408                 if (vcpui->arch.mp_state == KVM_MP_STATE_UNINITIALIZED ||
409                                 vcpu == vcpui)
410                         continue;
411
412                 if (waitqueue_active(&vcpui->wq))
413                         wake_up_interruptible(&vcpui->wq);
414
415                 if (vcpui->cpu != -1) {
416                         call_data.vcpu = vcpui;
417                         smp_call_function_single(vcpui->cpu,
418                                         vcpu_global_purge, &call_data, 1);
419                 } else
420                         printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
421
422         }
423         return 1;
424 }
425
426 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
427 {
428         return 1;
429 }
430
431 static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
432 {
433         unsigned long pte, rtc_phys_addr, map_addr;
434         int slot;
435
436         map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
437         rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
438         pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
439         slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
440         vcpu->arch.sn_rtc_tr_slot = slot;
441         if (slot < 0) {
442                 printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
443                 slot = 0;
444         }
445         return slot;
446 }
447
448 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
449 {
450
451         ktime_t kt;
452         long itc_diff;
453         unsigned long vcpu_now_itc;
454         unsigned long expires;
455         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
456         unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
457         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
458
459         if (irqchip_in_kernel(vcpu->kvm)) {
460
461                 vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
462
463                 if (time_after(vcpu_now_itc, vpd->itm)) {
464                         vcpu->arch.timer_check = 1;
465                         return 1;
466                 }
467                 itc_diff = vpd->itm - vcpu_now_itc;
468                 if (itc_diff < 0)
469                         itc_diff = -itc_diff;
470
471                 expires = div64_u64(itc_diff, cyc_per_usec);
472                 kt = ktime_set(0, 1000 * expires);
473
474                 vcpu->arch.ht_active = 1;
475                 hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
476
477                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
478                 kvm_vcpu_block(vcpu);
479                 hrtimer_cancel(p_ht);
480                 vcpu->arch.ht_active = 0;
481
482                 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
483                                 kvm_cpu_has_pending_timer(vcpu))
484                         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
485                                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
486
487                 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
488                         return -EINTR;
489                 return 1;
490         } else {
491                 printk(KERN_ERR"kvm: Unsupported userspace halt!");
492                 return 0;
493         }
494 }
495
496 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
497                 struct kvm_run *kvm_run)
498 {
499         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
500         return 0;
501 }
502
503 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
504                 struct kvm_run *kvm_run)
505 {
506         return 1;
507 }
508
509 static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
510                                 struct kvm_run *kvm_run)
511 {
512         printk("VMM: %s", vcpu->arch.log_buf);
513         return 1;
514 }
515
516 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
517                 struct kvm_run *kvm_run) = {
518         [EXIT_REASON_VM_PANIC]              = handle_vm_error,
519         [EXIT_REASON_MMIO_INSTRUCTION]      = handle_mmio,
520         [EXIT_REASON_PAL_CALL]              = handle_pal_call,
521         [EXIT_REASON_SAL_CALL]              = handle_sal_call,
522         [EXIT_REASON_SWITCH_RR6]            = handle_switch_rr6,
523         [EXIT_REASON_VM_DESTROY]            = handle_vm_shutdown,
524         [EXIT_REASON_EXTERNAL_INTERRUPT]    = handle_external_interrupt,
525         [EXIT_REASON_IPI]                   = handle_ipi,
526         [EXIT_REASON_PTC_G]                 = handle_global_purge,
527         [EXIT_REASON_DEBUG]                 = handle_vcpu_debug,
528
529 };
530
531 static const int kvm_vti_max_exit_handlers =
532                 sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
533
534 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
535 {
536         struct exit_ctl_data *p_exit_data;
537
538         p_exit_data = kvm_get_exit_data(vcpu);
539         return p_exit_data->exit_reason;
540 }
541
542 /*
543  * The guest has exited.  See if we can fix it or if we need userspace
544  * assistance.
545  */
546 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
547 {
548         u32 exit_reason = kvm_get_exit_reason(vcpu);
549         vcpu->arch.last_exit = exit_reason;
550
551         if (exit_reason < kvm_vti_max_exit_handlers
552                         && kvm_vti_exit_handlers[exit_reason])
553                 return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
554         else {
555                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
556                 kvm_run->hw.hardware_exit_reason = exit_reason;
557         }
558         return 0;
559 }
560
561 static inline void vti_set_rr6(unsigned long rr6)
562 {
563         ia64_set_rr(RR6, rr6);
564         ia64_srlz_i();
565 }
566
567 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
568 {
569         unsigned long pte;
570         struct kvm *kvm = vcpu->kvm;
571         int r;
572
573         /*Insert a pair of tr to map vmm*/
574         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
575         r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
576         if (r < 0)
577                 goto out;
578         vcpu->arch.vmm_tr_slot = r;
579         /*Insert a pairt of tr to map data of vm*/
580         pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
581         r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
582                                         pte, KVM_VM_DATA_SHIFT);
583         if (r < 0)
584                 goto out;
585         vcpu->arch.vm_tr_slot = r;
586
587 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
588         if (kvm->arch.is_sn2) {
589                 r = kvm_sn2_setup_mappings(vcpu);
590                 if (r < 0)
591                         goto out;
592         }
593 #endif
594
595         r = 0;
596 out:
597         return r;
598 }
599
600 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
601 {
602         struct kvm *kvm = vcpu->kvm;
603         ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
604         ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
605 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
606         if (kvm->arch.is_sn2)
607                 ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
608 #endif
609 }
610
611 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
612 {
613         unsigned long psr;
614         int r;
615         int cpu = smp_processor_id();
616
617         if (vcpu->arch.last_run_cpu != cpu ||
618                         per_cpu(last_vcpu, cpu) != vcpu) {
619                 per_cpu(last_vcpu, cpu) = vcpu;
620                 vcpu->arch.last_run_cpu = cpu;
621                 kvm_flush_tlb_all();
622         }
623
624         vcpu->arch.host_rr6 = ia64_get_rr(RR6);
625         vti_set_rr6(vcpu->arch.vmm_rr);
626         local_irq_save(psr);
627         r = kvm_insert_vmm_mapping(vcpu);
628         local_irq_restore(psr);
629         return r;
630 }
631
632 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
633 {
634         kvm_purge_vmm_mapping(vcpu);
635         vti_set_rr6(vcpu->arch.host_rr6);
636 }
637
638 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
639 {
640         union context *host_ctx, *guest_ctx;
641         int r, idx;
642
643         idx = srcu_read_lock(&vcpu->kvm->srcu);
644
645 again:
646         if (signal_pending(current)) {
647                 r = -EINTR;
648                 kvm_run->exit_reason = KVM_EXIT_INTR;
649                 goto out;
650         }
651
652         preempt_disable();
653         local_irq_disable();
654
655         /*Get host and guest context with guest address space.*/
656         host_ctx = kvm_get_host_context(vcpu);
657         guest_ctx = kvm_get_guest_context(vcpu);
658
659         clear_bit(KVM_REQ_KICK, &vcpu->requests);
660
661         r = kvm_vcpu_pre_transition(vcpu);
662         if (r < 0)
663                 goto vcpu_run_fail;
664
665         srcu_read_unlock(&vcpu->kvm->srcu, idx);
666         vcpu->mode = IN_GUEST_MODE;
667         kvm_guest_enter();
668
669         /*
670          * Transition to the guest
671          */
672         kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
673
674         kvm_vcpu_post_transition(vcpu);
675
676         vcpu->arch.launched = 1;
677         set_bit(KVM_REQ_KICK, &vcpu->requests);
678         local_irq_enable();
679
680         /*
681          * We must have an instruction between local_irq_enable() and
682          * kvm_guest_exit(), so the timer interrupt isn't delayed by
683          * the interrupt shadow.  The stat.exits increment will do nicely.
684          * But we need to prevent reordering, hence this barrier():
685          */
686         barrier();
687         kvm_guest_exit();
688         vcpu->mode = OUTSIDE_GUEST_MODE;
689         preempt_enable();
690
691         idx = srcu_read_lock(&vcpu->kvm->srcu);
692
693         r = kvm_handle_exit(kvm_run, vcpu);
694
695         if (r > 0) {
696                 if (!need_resched())
697                         goto again;
698         }
699
700 out:
701         srcu_read_unlock(&vcpu->kvm->srcu, idx);
702         if (r > 0) {
703                 kvm_resched(vcpu);
704                 idx = srcu_read_lock(&vcpu->kvm->srcu);
705                 goto again;
706         }
707
708         return r;
709
710 vcpu_run_fail:
711         local_irq_enable();
712         preempt_enable();
713         kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
714         goto out;
715 }
716
717 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
718 {
719         struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
720
721         if (!vcpu->mmio_is_write)
722                 memcpy(&p->data, vcpu->arch.mmio_data, 8);
723         p->state = STATE_IORESP_READY;
724 }
725
726 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
727 {
728         int r;
729         sigset_t sigsaved;
730
731         if (vcpu->sigset_active)
732                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
733
734         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
735                 kvm_vcpu_block(vcpu);
736                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
737                 r = -EAGAIN;
738                 goto out;
739         }
740
741         if (vcpu->mmio_needed) {
742                 memcpy(vcpu->arch.mmio_data, kvm_run->mmio.data, 8);
743                 kvm_set_mmio_data(vcpu);
744                 vcpu->mmio_read_completed = 1;
745                 vcpu->mmio_needed = 0;
746         }
747         r = __vcpu_run(vcpu, kvm_run);
748 out:
749         if (vcpu->sigset_active)
750                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
751
752         return r;
753 }
754
755 struct kvm *kvm_arch_alloc_vm(void)
756 {
757
758         struct kvm *kvm;
759         uint64_t  vm_base;
760
761         BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
762
763         vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
764
765         if (!vm_base)
766                 return NULL;
767
768         memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
769         kvm = (struct kvm *)(vm_base +
770                         offsetof(struct kvm_vm_data, kvm_vm_struct));
771         kvm->arch.vm_base = vm_base;
772         printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
773
774         return kvm;
775 }
776
777 struct kvm_ia64_io_range {
778         unsigned long start;
779         unsigned long size;
780         unsigned long type;
781 };
782
783 static const struct kvm_ia64_io_range io_ranges[] = {
784         {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
785         {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
786         {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
787         {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
788         {PIB_START, PIB_SIZE, GPFN_PIB},
789 };
790
791 static void kvm_build_io_pmt(struct kvm *kvm)
792 {
793         unsigned long i, j;
794
795         /* Mark I/O ranges */
796         for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
797                                                         i++) {
798                 for (j = io_ranges[i].start;
799                                 j < io_ranges[i].start + io_ranges[i].size;
800                                 j += PAGE_SIZE)
801                         kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
802                                         io_ranges[i].type, 0);
803         }
804
805 }
806
807 /*Use unused rids to virtualize guest rid.*/
808 #define GUEST_PHYSICAL_RR0      0x1739
809 #define GUEST_PHYSICAL_RR4      0x2739
810 #define VMM_INIT_RR             0x1660
811
812 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
813 {
814         BUG_ON(!kvm);
815
816         if (type)
817                 return -EINVAL;
818
819         kvm->arch.is_sn2 = ia64_platform_is("sn2");
820
821         kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
822         kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
823         kvm->arch.vmm_init_rr = VMM_INIT_RR;
824
825         /*
826          *Fill P2M entries for MMIO/IO ranges
827          */
828         kvm_build_io_pmt(kvm);
829
830         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
831
832         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
833         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
834
835         return 0;
836 }
837
838 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
839                                         struct kvm_irqchip *chip)
840 {
841         int r;
842
843         r = 0;
844         switch (chip->chip_id) {
845         case KVM_IRQCHIP_IOAPIC:
846                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
847                 break;
848         default:
849                 r = -EINVAL;
850                 break;
851         }
852         return r;
853 }
854
855 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
856 {
857         int r;
858
859         r = 0;
860         switch (chip->chip_id) {
861         case KVM_IRQCHIP_IOAPIC:
862                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
863                 break;
864         default:
865                 r = -EINVAL;
866                 break;
867         }
868         return r;
869 }
870
871 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
872
873 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
874 {
875         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
876         int i;
877
878         for (i = 0; i < 16; i++) {
879                 vpd->vgr[i] = regs->vpd.vgr[i];
880                 vpd->vbgr[i] = regs->vpd.vbgr[i];
881         }
882         for (i = 0; i < 128; i++)
883                 vpd->vcr[i] = regs->vpd.vcr[i];
884         vpd->vhpi = regs->vpd.vhpi;
885         vpd->vnat = regs->vpd.vnat;
886         vpd->vbnat = regs->vpd.vbnat;
887         vpd->vpsr = regs->vpd.vpsr;
888
889         vpd->vpr = regs->vpd.vpr;
890
891         memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
892
893         RESTORE_REGS(mp_state);
894         RESTORE_REGS(vmm_rr);
895         memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
896         memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
897         RESTORE_REGS(itr_regions);
898         RESTORE_REGS(dtr_regions);
899         RESTORE_REGS(tc_regions);
900         RESTORE_REGS(irq_check);
901         RESTORE_REGS(itc_check);
902         RESTORE_REGS(timer_check);
903         RESTORE_REGS(timer_pending);
904         RESTORE_REGS(last_itc);
905         for (i = 0; i < 8; i++) {
906                 vcpu->arch.vrr[i] = regs->vrr[i];
907                 vcpu->arch.ibr[i] = regs->ibr[i];
908                 vcpu->arch.dbr[i] = regs->dbr[i];
909         }
910         for (i = 0; i < 4; i++)
911                 vcpu->arch.insvc[i] = regs->insvc[i];
912         RESTORE_REGS(xtp);
913         RESTORE_REGS(metaphysical_rr0);
914         RESTORE_REGS(metaphysical_rr4);
915         RESTORE_REGS(metaphysical_saved_rr0);
916         RESTORE_REGS(metaphysical_saved_rr4);
917         RESTORE_REGS(fp_psr);
918         RESTORE_REGS(saved_gp);
919
920         vcpu->arch.irq_new_pending = 1;
921         vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
922         set_bit(KVM_REQ_RESUME, &vcpu->requests);
923
924         return 0;
925 }
926
927 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event)
928 {
929         if (!irqchip_in_kernel(kvm))
930                 return -ENXIO;
931
932         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
933                                         irq_event->irq, irq_event->level);
934         return 0;
935 }
936
937 long kvm_arch_vm_ioctl(struct file *filp,
938                 unsigned int ioctl, unsigned long arg)
939 {
940         struct kvm *kvm = filp->private_data;
941         void __user *argp = (void __user *)arg;
942         int r = -ENOTTY;
943
944         switch (ioctl) {
945         case KVM_SET_MEMORY_REGION: {
946                 struct kvm_memory_region kvm_mem;
947                 struct kvm_userspace_memory_region kvm_userspace_mem;
948
949                 r = -EFAULT;
950                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
951                         goto out;
952                 kvm_userspace_mem.slot = kvm_mem.slot;
953                 kvm_userspace_mem.flags = kvm_mem.flags;
954                 kvm_userspace_mem.guest_phys_addr =
955                                         kvm_mem.guest_phys_addr;
956                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
957                 r = kvm_vm_ioctl_set_memory_region(kvm,
958                                         &kvm_userspace_mem, 0);
959                 if (r)
960                         goto out;
961                 break;
962                 }
963         case KVM_CREATE_IRQCHIP:
964                 r = -EFAULT;
965                 r = kvm_ioapic_init(kvm);
966                 if (r)
967                         goto out;
968                 r = kvm_setup_default_irq_routing(kvm);
969                 if (r) {
970                         mutex_lock(&kvm->slots_lock);
971                         kvm_ioapic_destroy(kvm);
972                         mutex_unlock(&kvm->slots_lock);
973                         goto out;
974                 }
975                 break;
976         case KVM_GET_IRQCHIP: {
977                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
978                 struct kvm_irqchip chip;
979
980                 r = -EFAULT;
981                 if (copy_from_user(&chip, argp, sizeof chip))
982                                 goto out;
983                 r = -ENXIO;
984                 if (!irqchip_in_kernel(kvm))
985                         goto out;
986                 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
987                 if (r)
988                         goto out;
989                 r = -EFAULT;
990                 if (copy_to_user(argp, &chip, sizeof chip))
991                                 goto out;
992                 r = 0;
993                 break;
994                 }
995         case KVM_SET_IRQCHIP: {
996                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
997                 struct kvm_irqchip chip;
998
999                 r = -EFAULT;
1000                 if (copy_from_user(&chip, argp, sizeof chip))
1001                                 goto out;
1002                 r = -ENXIO;
1003                 if (!irqchip_in_kernel(kvm))
1004                         goto out;
1005                 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1006                 if (r)
1007                         goto out;
1008                 r = 0;
1009                 break;
1010                 }
1011         default:
1012                 ;
1013         }
1014 out:
1015         return r;
1016 }
1017
1018 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1019                 struct kvm_sregs *sregs)
1020 {
1021         return -EINVAL;
1022 }
1023
1024 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1025                 struct kvm_sregs *sregs)
1026 {
1027         return -EINVAL;
1028
1029 }
1030 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1031                 struct kvm_translation *tr)
1032 {
1033
1034         return -EINVAL;
1035 }
1036
1037 static int kvm_alloc_vmm_area(void)
1038 {
1039         if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1040                 kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1041                                 get_order(KVM_VMM_SIZE));
1042                 if (!kvm_vmm_base)
1043                         return -ENOMEM;
1044
1045                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1046                 kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1047
1048                 printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1049                                 kvm_vmm_base, kvm_vm_buffer);
1050         }
1051
1052         return 0;
1053 }
1054
1055 static void kvm_free_vmm_area(void)
1056 {
1057         if (kvm_vmm_base) {
1058                 /*Zero this area before free to avoid bits leak!!*/
1059                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1060                 free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1061                 kvm_vmm_base  = 0;
1062                 kvm_vm_buffer = 0;
1063                 kvm_vsa_base = 0;
1064         }
1065 }
1066
1067 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1068 {
1069         int i;
1070         union cpuid3_t cpuid3;
1071         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1072
1073         if (IS_ERR(vpd))
1074                 return PTR_ERR(vpd);
1075
1076         /* CPUID init */
1077         for (i = 0; i < 5; i++)
1078                 vpd->vcpuid[i] = ia64_get_cpuid(i);
1079
1080         /* Limit the CPUID number to 5 */
1081         cpuid3.value = vpd->vcpuid[3];
1082         cpuid3.number = 4;      /* 5 - 1 */
1083         vpd->vcpuid[3] = cpuid3.value;
1084
1085         /*Set vac and vdc fields*/
1086         vpd->vac.a_from_int_cr = 1;
1087         vpd->vac.a_to_int_cr = 1;
1088         vpd->vac.a_from_psr = 1;
1089         vpd->vac.a_from_cpuid = 1;
1090         vpd->vac.a_cover = 1;
1091         vpd->vac.a_bsw = 1;
1092         vpd->vac.a_int = 1;
1093         vpd->vdc.d_vmsw = 1;
1094
1095         /*Set virtual buffer*/
1096         vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1097
1098         return 0;
1099 }
1100
1101 static int vti_create_vp(struct kvm_vcpu *vcpu)
1102 {
1103         long ret;
1104         struct vpd *vpd = vcpu->arch.vpd;
1105         unsigned long  vmm_ivt;
1106
1107         vmm_ivt = kvm_vmm_info->vmm_ivt;
1108
1109         printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1110
1111         ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1112
1113         if (ret) {
1114                 printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1115                 return -EINVAL;
1116         }
1117         return 0;
1118 }
1119
1120 static void init_ptce_info(struct kvm_vcpu *vcpu)
1121 {
1122         ia64_ptce_info_t ptce = {0};
1123
1124         ia64_get_ptce(&ptce);
1125         vcpu->arch.ptce_base = ptce.base;
1126         vcpu->arch.ptce_count[0] = ptce.count[0];
1127         vcpu->arch.ptce_count[1] = ptce.count[1];
1128         vcpu->arch.ptce_stride[0] = ptce.stride[0];
1129         vcpu->arch.ptce_stride[1] = ptce.stride[1];
1130 }
1131
1132 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1133 {
1134         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1135
1136         if (hrtimer_cancel(p_ht))
1137                 hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
1138 }
1139
1140 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1141 {
1142         struct kvm_vcpu *vcpu;
1143         wait_queue_head_t *q;
1144
1145         vcpu  = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1146         q = &vcpu->wq;
1147
1148         if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1149                 goto out;
1150
1151         if (waitqueue_active(q))
1152                 wake_up_interruptible(q);
1153
1154 out:
1155         vcpu->arch.timer_fired = 1;
1156         vcpu->arch.timer_check = 1;
1157         return HRTIMER_NORESTART;
1158 }
1159
1160 #define PALE_RESET_ENTRY    0x80000000ffffffb0UL
1161
1162 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
1163 {
1164         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
1165 }
1166
1167 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1168 {
1169         struct kvm_vcpu *v;
1170         int r;
1171         int i;
1172         long itc_offset;
1173         struct kvm *kvm = vcpu->kvm;
1174         struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1175
1176         union context *p_ctx = &vcpu->arch.guest;
1177         struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1178
1179         /*Init vcpu context for first run.*/
1180         if (IS_ERR(vmm_vcpu))
1181                 return PTR_ERR(vmm_vcpu);
1182
1183         if (kvm_vcpu_is_bsp(vcpu)) {
1184                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1185
1186                 /*Set entry address for first run.*/
1187                 regs->cr_iip = PALE_RESET_ENTRY;
1188
1189                 /*Initialize itc offset for vcpus*/
1190                 itc_offset = 0UL - kvm_get_itc(vcpu);
1191                 for (i = 0; i < KVM_MAX_VCPUS; i++) {
1192                         v = (struct kvm_vcpu *)((char *)vcpu +
1193                                         sizeof(struct kvm_vcpu_data) * i);
1194                         v->arch.itc_offset = itc_offset;
1195                         v->arch.last_itc = 0;
1196                 }
1197         } else
1198                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1199
1200         r = -ENOMEM;
1201         vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1202         if (!vcpu->arch.apic)
1203                 goto out;
1204         vcpu->arch.apic->vcpu = vcpu;
1205
1206         p_ctx->gr[1] = 0;
1207         p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
1208         p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1209         p_ctx->psr = 0x1008522000UL;
1210         p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1211         p_ctx->caller_unat = 0;
1212         p_ctx->pr = 0x0;
1213         p_ctx->ar[36] = 0x0; /*unat*/
1214         p_ctx->ar[19] = 0x0; /*rnat*/
1215         p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1216                                 ((sizeof(struct kvm_vcpu)+15) & ~15);
1217         p_ctx->ar[64] = 0x0; /*pfs*/
1218         p_ctx->cr[0] = 0x7e04UL;
1219         p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1220         p_ctx->cr[8] = 0x3c;
1221
1222         /*Initialize region register*/
1223         p_ctx->rr[0] = 0x30;
1224         p_ctx->rr[1] = 0x30;
1225         p_ctx->rr[2] = 0x30;
1226         p_ctx->rr[3] = 0x30;
1227         p_ctx->rr[4] = 0x30;
1228         p_ctx->rr[5] = 0x30;
1229         p_ctx->rr[7] = 0x30;
1230
1231         /*Initialize branch register 0*/
1232         p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1233
1234         vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1235         vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1236         vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1237
1238         hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1239         vcpu->arch.hlt_timer.function = hlt_timer_fn;
1240
1241         vcpu->arch.last_run_cpu = -1;
1242         vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
1243         vcpu->arch.vsa_base = kvm_vsa_base;
1244         vcpu->arch.__gp = kvm_vmm_gp;
1245         vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1246         vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
1247         vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
1248         init_ptce_info(vcpu);
1249
1250         r = 0;
1251 out:
1252         return r;
1253 }
1254
1255 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1256 {
1257         unsigned long psr;
1258         int r;
1259
1260         local_irq_save(psr);
1261         r = kvm_insert_vmm_mapping(vcpu);
1262         local_irq_restore(psr);
1263         if (r)
1264                 goto fail;
1265         r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1266         if (r)
1267                 goto fail;
1268
1269         r = vti_init_vpd(vcpu);
1270         if (r) {
1271                 printk(KERN_DEBUG"kvm: vpd init error!!\n");
1272                 goto uninit;
1273         }
1274
1275         r = vti_create_vp(vcpu);
1276         if (r)
1277                 goto uninit;
1278
1279         kvm_purge_vmm_mapping(vcpu);
1280
1281         return 0;
1282 uninit:
1283         kvm_vcpu_uninit(vcpu);
1284 fail:
1285         return r;
1286 }
1287
1288 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1289                 unsigned int id)
1290 {
1291         struct kvm_vcpu *vcpu;
1292         unsigned long vm_base = kvm->arch.vm_base;
1293         int r;
1294         int cpu;
1295
1296         BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
1297
1298         r = -EINVAL;
1299         if (id >= KVM_MAX_VCPUS) {
1300                 printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
1301                                 KVM_MAX_VCPUS);
1302                 goto fail;
1303         }
1304
1305         r = -ENOMEM;
1306         if (!vm_base) {
1307                 printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1308                 goto fail;
1309         }
1310         vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
1311                                         vcpu_data[id].vcpu_struct));
1312         vcpu->kvm = kvm;
1313
1314         cpu = get_cpu();
1315         r = vti_vcpu_setup(vcpu, id);
1316         put_cpu();
1317
1318         if (r) {
1319                 printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1320                 goto fail;
1321         }
1322
1323         return vcpu;
1324 fail:
1325         return ERR_PTR(r);
1326 }
1327
1328 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1329 {
1330         return 0;
1331 }
1332
1333 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1334 {
1335         return 0;
1336 }
1337
1338 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1339 {
1340         return -EINVAL;
1341 }
1342
1343 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1344 {
1345         return -EINVAL;
1346 }
1347
1348 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1349                                         struct kvm_guest_debug *dbg)
1350 {
1351         return -EINVAL;
1352 }
1353
1354 void kvm_arch_free_vm(struct kvm *kvm)
1355 {
1356         unsigned long vm_base = kvm->arch.vm_base;
1357
1358         if (vm_base) {
1359                 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1360                 free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1361         }
1362
1363 }
1364
1365 static void kvm_release_vm_pages(struct kvm *kvm)
1366 {
1367         struct kvm_memslots *slots;
1368         struct kvm_memory_slot *memslot;
1369         int j;
1370
1371         slots = kvm_memslots(kvm);
1372         kvm_for_each_memslot(memslot, slots) {
1373                 for (j = 0; j < memslot->npages; j++) {
1374                         if (memslot->rmap[j])
1375                                 put_page((struct page *)memslot->rmap[j]);
1376                 }
1377         }
1378 }
1379
1380 void kvm_arch_sync_events(struct kvm *kvm)
1381 {
1382 }
1383
1384 void kvm_arch_destroy_vm(struct kvm *kvm)
1385 {
1386         kvm_iommu_unmap_guest(kvm);
1387 #ifdef  KVM_CAP_DEVICE_ASSIGNMENT
1388         kvm_free_all_assigned_devices(kvm);
1389 #endif
1390         kfree(kvm->arch.vioapic);
1391         kvm_release_vm_pages(kvm);
1392 }
1393
1394 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1395 {
1396 }
1397
1398 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1399 {
1400         if (cpu != vcpu->cpu) {
1401                 vcpu->cpu = cpu;
1402                 if (vcpu->arch.ht_active)
1403                         kvm_migrate_hlt_timer(vcpu);
1404         }
1405 }
1406
1407 #define SAVE_REGS(_x)   regs->_x = vcpu->arch._x
1408
1409 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1410 {
1411         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1412         int i;
1413
1414         vcpu_load(vcpu);
1415
1416         for (i = 0; i < 16; i++) {
1417                 regs->vpd.vgr[i] = vpd->vgr[i];
1418                 regs->vpd.vbgr[i] = vpd->vbgr[i];
1419         }
1420         for (i = 0; i < 128; i++)
1421                 regs->vpd.vcr[i] = vpd->vcr[i];
1422         regs->vpd.vhpi = vpd->vhpi;
1423         regs->vpd.vnat = vpd->vnat;
1424         regs->vpd.vbnat = vpd->vbnat;
1425         regs->vpd.vpsr = vpd->vpsr;
1426         regs->vpd.vpr = vpd->vpr;
1427
1428         memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
1429
1430         SAVE_REGS(mp_state);
1431         SAVE_REGS(vmm_rr);
1432         memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1433         memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1434         SAVE_REGS(itr_regions);
1435         SAVE_REGS(dtr_regions);
1436         SAVE_REGS(tc_regions);
1437         SAVE_REGS(irq_check);
1438         SAVE_REGS(itc_check);
1439         SAVE_REGS(timer_check);
1440         SAVE_REGS(timer_pending);
1441         SAVE_REGS(last_itc);
1442         for (i = 0; i < 8; i++) {
1443                 regs->vrr[i] = vcpu->arch.vrr[i];
1444                 regs->ibr[i] = vcpu->arch.ibr[i];
1445                 regs->dbr[i] = vcpu->arch.dbr[i];
1446         }
1447         for (i = 0; i < 4; i++)
1448                 regs->insvc[i] = vcpu->arch.insvc[i];
1449         regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
1450         SAVE_REGS(xtp);
1451         SAVE_REGS(metaphysical_rr0);
1452         SAVE_REGS(metaphysical_rr4);
1453         SAVE_REGS(metaphysical_saved_rr0);
1454         SAVE_REGS(metaphysical_saved_rr4);
1455         SAVE_REGS(fp_psr);
1456         SAVE_REGS(saved_gp);
1457
1458         vcpu_put(vcpu);
1459         return 0;
1460 }
1461
1462 int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
1463                                   struct kvm_ia64_vcpu_stack *stack)
1464 {
1465         memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
1466         return 0;
1467 }
1468
1469 int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
1470                                   struct kvm_ia64_vcpu_stack *stack)
1471 {
1472         memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
1473                sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
1474
1475         vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
1476         return 0;
1477 }
1478
1479 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1480 {
1481
1482         hrtimer_cancel(&vcpu->arch.hlt_timer);
1483         kfree(vcpu->arch.apic);
1484 }
1485
1486
1487 long kvm_arch_vcpu_ioctl(struct file *filp,
1488                          unsigned int ioctl, unsigned long arg)
1489 {
1490         struct kvm_vcpu *vcpu = filp->private_data;
1491         void __user *argp = (void __user *)arg;
1492         struct kvm_ia64_vcpu_stack *stack = NULL;
1493         long r;
1494
1495         switch (ioctl) {
1496         case KVM_IA64_VCPU_GET_STACK: {
1497                 struct kvm_ia64_vcpu_stack __user *user_stack;
1498                 void __user *first_p = argp;
1499
1500                 r = -EFAULT;
1501                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1502                         goto out;
1503
1504                 if (!access_ok(VERIFY_WRITE, user_stack,
1505                                sizeof(struct kvm_ia64_vcpu_stack))) {
1506                         printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
1507                                "Illegal user destination address for stack\n");
1508                         goto out;
1509                 }
1510                 stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1511                 if (!stack) {
1512                         r = -ENOMEM;
1513                         goto out;
1514                 }
1515
1516                 r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
1517                 if (r)
1518                         goto out;
1519
1520                 if (copy_to_user(user_stack, stack,
1521                                  sizeof(struct kvm_ia64_vcpu_stack))) {
1522                         r = -EFAULT;
1523                         goto out;
1524                 }
1525
1526                 break;
1527         }
1528         case KVM_IA64_VCPU_SET_STACK: {
1529                 struct kvm_ia64_vcpu_stack __user *user_stack;
1530                 void __user *first_p = argp;
1531
1532                 r = -EFAULT;
1533                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1534                         goto out;
1535
1536                 if (!access_ok(VERIFY_READ, user_stack,
1537                             sizeof(struct kvm_ia64_vcpu_stack))) {
1538                         printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
1539                                "Illegal user address for stack\n");
1540                         goto out;
1541                 }
1542                 stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1543                 if (!stack) {
1544                         r = -ENOMEM;
1545                         goto out;
1546                 }
1547                 if (copy_from_user(stack, user_stack,
1548                                    sizeof(struct kvm_ia64_vcpu_stack)))
1549                         goto out;
1550
1551                 r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
1552                 break;
1553         }
1554
1555         default:
1556                 r = -EINVAL;
1557         }
1558
1559 out:
1560         kfree(stack);
1561         return r;
1562 }
1563
1564 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1565 {
1566         return VM_FAULT_SIGBUS;
1567 }
1568
1569 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
1570                            struct kvm_memory_slot *dont)
1571 {
1572 }
1573
1574 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
1575 {
1576         return 0;
1577 }
1578
1579 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1580                 struct kvm_memory_slot *memslot,
1581                 struct kvm_memory_slot old,
1582                 struct kvm_userspace_memory_region *mem,
1583                 int user_alloc)
1584 {
1585         unsigned long i;
1586         unsigned long pfn;
1587         int npages = memslot->npages;
1588         unsigned long base_gfn = memslot->base_gfn;
1589
1590         if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
1591                 return -ENOMEM;
1592
1593         for (i = 0; i < npages; i++) {
1594                 pfn = gfn_to_pfn(kvm, base_gfn + i);
1595                 if (!kvm_is_mmio_pfn(pfn)) {
1596                         kvm_set_pmt_entry(kvm, base_gfn + i,
1597                                         pfn << PAGE_SHIFT,
1598                                 _PAGE_AR_RWX | _PAGE_MA_WB);
1599                         memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
1600                 } else {
1601                         kvm_set_pmt_entry(kvm, base_gfn + i,
1602                                         GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
1603                                         _PAGE_MA_UC);
1604                         memslot->rmap[i] = 0;
1605                         }
1606         }
1607
1608         return 0;
1609 }
1610
1611 void kvm_arch_commit_memory_region(struct kvm *kvm,
1612                 struct kvm_userspace_memory_region *mem,
1613                 struct kvm_memory_slot old,
1614                 int user_alloc)
1615 {
1616         return;
1617 }
1618
1619 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1620 {
1621         kvm_flush_remote_tlbs(kvm);
1622 }
1623
1624 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1625                                    struct kvm_memory_slot *slot)
1626 {
1627         kvm_arch_flush_shadow_all();
1628 }
1629
1630 long kvm_arch_dev_ioctl(struct file *filp,
1631                         unsigned int ioctl, unsigned long arg)
1632 {
1633         return -EINVAL;
1634 }
1635
1636 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1637 {
1638         kvm_vcpu_uninit(vcpu);
1639 }
1640
1641 static int vti_cpu_has_kvm_support(void)
1642 {
1643         long  avail = 1, status = 1, control = 1;
1644         long ret;
1645
1646         ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1647         if (ret)
1648                 goto out;
1649
1650         if (!(avail & PAL_PROC_VM_BIT))
1651                 goto out;
1652
1653         printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1654
1655         ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1656         if (ret)
1657                 goto out;
1658         printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1659
1660         if (!(vp_env_info & VP_OPCODE)) {
1661                 printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1662                                 "vm_env_info:0x%lx\n", vp_env_info);
1663         }
1664
1665         return 1;
1666 out:
1667         return 0;
1668 }
1669
1670
1671 /*
1672  * On SN2, the ITC isn't stable, so copy in fast path code to use the
1673  * SN2 RTC, replacing the ITC based default verion.
1674  */
1675 static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
1676                           struct module *module)
1677 {
1678         unsigned long new_ar, new_ar_sn2;
1679         unsigned long module_base;
1680
1681         if (!ia64_platform_is("sn2"))
1682                 return;
1683
1684         module_base = (unsigned long)module->module_core;
1685
1686         new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
1687         new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
1688
1689         printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
1690                "as source\n");
1691
1692         /*
1693          * Copy the SN2 version of mov_ar into place. They are both
1694          * the same size, so 6 bundles is sufficient (6 * 0x10).
1695          */
1696         memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
1697 }
1698
1699 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1700                             struct module *module)
1701 {
1702         unsigned long module_base;
1703         unsigned long vmm_size;
1704
1705         unsigned long vmm_offset, func_offset, fdesc_offset;
1706         struct fdesc *p_fdesc;
1707
1708         BUG_ON(!module);
1709
1710         if (!kvm_vmm_base) {
1711                 printk("kvm: kvm area hasn't been initialized yet!!\n");
1712                 return -EFAULT;
1713         }
1714
1715         /*Calculate new position of relocated vmm module.*/
1716         module_base = (unsigned long)module->module_core;
1717         vmm_size = module->core_size;
1718         if (unlikely(vmm_size > KVM_VMM_SIZE))
1719                 return -EFAULT;
1720
1721         memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1722         kvm_patch_vmm(vmm_info, module);
1723         kvm_flush_icache(kvm_vmm_base, vmm_size);
1724
1725         /*Recalculate kvm_vmm_info based on new VMM*/
1726         vmm_offset = vmm_info->vmm_ivt - module_base;
1727         kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1728         printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1729                         kvm_vmm_info->vmm_ivt);
1730
1731         fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1732         kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1733                                                         fdesc_offset);
1734         func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1735         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1736         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1737         p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1738
1739         printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1740                         KVM_VMM_BASE+func_offset);
1741
1742         fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1743         kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1744                         fdesc_offset);
1745         func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1746         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1747         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1748         p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1749
1750         kvm_vmm_gp = p_fdesc->gp;
1751
1752         printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1753                                                 kvm_vmm_info->vmm_entry);
1754         printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1755                                                 KVM_VMM_BASE + func_offset);
1756
1757         return 0;
1758 }
1759
1760 int kvm_arch_init(void *opaque)
1761 {
1762         int r;
1763         struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1764
1765         if (!vti_cpu_has_kvm_support()) {
1766                 printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1767                 r = -EOPNOTSUPP;
1768                 goto out;
1769         }
1770
1771         if (kvm_vmm_info) {
1772                 printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1773                 r = -EEXIST;
1774                 goto out;
1775         }
1776
1777         r = -ENOMEM;
1778         kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1779         if (!kvm_vmm_info)
1780                 goto out;
1781
1782         if (kvm_alloc_vmm_area())
1783                 goto out_free0;
1784
1785         r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1786         if (r)
1787                 goto out_free1;
1788
1789         return 0;
1790
1791 out_free1:
1792         kvm_free_vmm_area();
1793 out_free0:
1794         kfree(kvm_vmm_info);
1795 out:
1796         return r;
1797 }
1798
1799 void kvm_arch_exit(void)
1800 {
1801         kvm_free_vmm_area();
1802         kfree(kvm_vmm_info);
1803         kvm_vmm_info = NULL;
1804 }
1805
1806 static void kvm_ia64_sync_dirty_log(struct kvm *kvm,
1807                                     struct kvm_memory_slot *memslot)
1808 {
1809         int i;
1810         long base;
1811         unsigned long n;
1812         unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
1813                         offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
1814
1815         n = kvm_dirty_bitmap_bytes(memslot);
1816         base = memslot->base_gfn / BITS_PER_LONG;
1817
1818         spin_lock(&kvm->arch.dirty_log_lock);
1819         for (i = 0; i < n/sizeof(long); ++i) {
1820                 memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1821                 dirty_bitmap[base + i] = 0;
1822         }
1823         spin_unlock(&kvm->arch.dirty_log_lock);
1824 }
1825
1826 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1827                 struct kvm_dirty_log *log)
1828 {
1829         int r;
1830         unsigned long n;
1831         struct kvm_memory_slot *memslot;
1832         int is_dirty = 0;
1833
1834         mutex_lock(&kvm->slots_lock);
1835
1836         r = -EINVAL;
1837         if (log->slot >= KVM_MEMORY_SLOTS)
1838                 goto out;
1839
1840         memslot = id_to_memslot(kvm->memslots, log->slot);
1841         r = -ENOENT;
1842         if (!memslot->dirty_bitmap)
1843                 goto out;
1844
1845         kvm_ia64_sync_dirty_log(kvm, memslot);
1846         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1847         if (r)
1848                 goto out;
1849
1850         /* If nothing is dirty, don't bother messing with page tables. */
1851         if (is_dirty) {
1852                 kvm_flush_remote_tlbs(kvm);
1853                 n = kvm_dirty_bitmap_bytes(memslot);
1854                 memset(memslot->dirty_bitmap, 0, n);
1855         }
1856         r = 0;
1857 out:
1858         mutex_unlock(&kvm->slots_lock);
1859         return r;
1860 }
1861
1862 int kvm_arch_hardware_setup(void)
1863 {
1864         return 0;
1865 }
1866
1867 void kvm_arch_hardware_unsetup(void)
1868 {
1869 }
1870
1871 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
1872 {
1873         return __apic_accept_irq(vcpu, irq->vector);
1874 }
1875
1876 int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1877 {
1878         return apic->vcpu->vcpu_id == dest;
1879 }
1880
1881 int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1882 {
1883         return 0;
1884 }
1885
1886 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1887 {
1888         return vcpu1->arch.xtp - vcpu2->arch.xtp;
1889 }
1890
1891 int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1892                 int short_hand, int dest, int dest_mode)
1893 {
1894         struct kvm_lapic *target = vcpu->arch.apic;
1895         return (dest_mode == 0) ?
1896                 kvm_apic_match_physical_addr(target, dest) :
1897                 kvm_apic_match_logical_addr(target, dest);
1898 }
1899
1900 static int find_highest_bits(int *dat)
1901 {
1902         u32  bits, bitnum;
1903         int i;
1904
1905         /* loop for all 256 bits */
1906         for (i = 7; i >= 0 ; i--) {
1907                 bits = dat[i];
1908                 if (bits) {
1909                         bitnum = fls(bits);
1910                         return i * 32 + bitnum - 1;
1911                 }
1912         }
1913
1914         return -1;
1915 }
1916
1917 int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1918 {
1919     struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1920
1921     if (vpd->irr[0] & (1UL << NMI_VECTOR))
1922                 return NMI_VECTOR;
1923     if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1924                 return ExtINT_VECTOR;
1925
1926     return find_highest_bits((int *)&vpd->irr[0]);
1927 }
1928
1929 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1930 {
1931         return vcpu->arch.timer_fired;
1932 }
1933
1934 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1935 {
1936         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) ||
1937                 (kvm_highest_pending_irq(vcpu) != -1);
1938 }
1939
1940 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
1941 {
1942         return (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests));
1943 }
1944
1945 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1946                                     struct kvm_mp_state *mp_state)
1947 {
1948         mp_state->mp_state = vcpu->arch.mp_state;
1949         return 0;
1950 }
1951
1952 static int vcpu_reset(struct kvm_vcpu *vcpu)
1953 {
1954         int r;
1955         long psr;
1956         local_irq_save(psr);
1957         r = kvm_insert_vmm_mapping(vcpu);
1958         local_irq_restore(psr);
1959         if (r)
1960                 goto fail;
1961
1962         vcpu->arch.launched = 0;
1963         kvm_arch_vcpu_uninit(vcpu);
1964         r = kvm_arch_vcpu_init(vcpu);
1965         if (r)
1966                 goto fail;
1967
1968         kvm_purge_vmm_mapping(vcpu);
1969         r = 0;
1970 fail:
1971         return r;
1972 }
1973
1974 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1975                                     struct kvm_mp_state *mp_state)
1976 {
1977         int r = 0;
1978
1979         vcpu->arch.mp_state = mp_state->mp_state;
1980         if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
1981                 r = vcpu_reset(vcpu);
1982         return r;
1983 }