2ba23c13df683db209e04a4b46df0638cff04d37
[linux-3.10.git] / arch / cris / arch-v10 / kernel / process.c
1 /*
2  *  linux/arch/cris/kernel/process.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000-2002  Axis Communications AB
6  *
7  *  Authors:   Bjorn Wesen (bjornw@axis.com)
8  *             Mikael Starvik (starvik@axis.com)
9  *
10  * This file handles the architecture-dependent parts of process handling..
11  */
12
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15 #include <linux/err.h>
16 #include <linux/fs.h>
17 #include <arch/svinto.h>
18 #include <linux/init.h>
19 #include <arch/system.h>
20 #include <linux/ptrace.h>
21
22 #ifdef CONFIG_ETRAX_GPIO
23 void etrax_gpio_wake_up_check(void); /* drivers/gpio.c */
24 #endif
25
26 /*
27  * We use this if we don't have any better
28  * idle routine..
29  */
30 void default_idle(void)
31 {
32 #ifdef CONFIG_ETRAX_GPIO
33         etrax_gpio_wake_up_check();
34 #endif
35         local_irq_enable();
36 }
37
38 /*
39  * Free current thread data structures etc..
40  */
41
42 void exit_thread(void)
43 {
44         /* Nothing needs to be done.  */
45 }
46
47 /* if the watchdog is enabled, we can simply disable interrupts and go
48  * into an eternal loop, and the watchdog will reset the CPU after 0.1s
49  * if on the other hand the watchdog wasn't enabled, we just enable it and wait
50  */
51
52 void hard_reset_now (void)
53 {
54         /*
55          * Don't declare this variable elsewhere.  We don't want any other
56          * code to know about it than the watchdog handler in entry.S and
57          * this code, implementing hard reset through the watchdog.
58          */
59 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
60         extern int cause_of_death;
61 #endif
62
63         printk("*** HARD RESET ***\n");
64         local_irq_disable();
65
66 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
67         cause_of_death = 0xbedead;
68 #else
69         /* Since we dont plan to keep on resetting the watchdog,
70            the key can be arbitrary hence three */
71         *R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, 3) |
72                 IO_STATE(R_WATCHDOG, enable, start);
73 #endif
74
75         while(1) /* waiting for RETRIBUTION! */ ;
76 }
77
78 /*
79  * Return saved PC of a blocked thread.
80  */
81 unsigned long thread_saved_pc(struct task_struct *t)
82 {
83         return task_pt_regs(t)->irp;
84 }
85
86 /* setup the child's kernel stack with a pt_regs and switch_stack on it.
87  * it will be un-nested during _resume and _ret_from_sys_call when the
88  * new thread is scheduled.
89  *
90  * also setup the thread switching structure which is used to keep
91  * thread-specific data during _resumes.
92  *
93  */
94 asmlinkage void ret_from_fork(void);
95 asmlinkage void ret_from_kernel_thread(void);
96
97 int copy_thread(unsigned long clone_flags, unsigned long usp,
98                 unsigned long arg, struct task_struct *p)
99 {
100         struct pt_regs *childregs = task_pt_regs(p);
101         struct switch_stack *swstack = ((struct switch_stack *)childregs) - 1;
102         
103         /* put the pt_regs structure at the end of the new kernel stack page and fix it up
104          * remember that the task_struct doubles as the kernel stack for the task
105          */
106
107         if (unlikely(p->flags & PF_KTHREAD)) {
108                 memset(swstack, 0,
109                         sizeof(struct switch_stack) + sizeof(struct pt_regs));
110                 swstack->r1 = usp;
111                 swstack->r2 = arg;
112                 childregs->dccr = 1 << I_DCCR_BITNR;
113                 swstack->return_ip = (unsigned long) ret_from_kernel_thread;
114                 p->thread.ksp = (unsigned long) swstack;
115                 p->thread.usp = 0;
116                 return 0;
117         }
118         *childregs = *current_pt_regs();  /* struct copy of pt_regs */
119
120         childregs->r10 = 0;  /* child returns 0 after a fork/clone */
121
122         /* put the switch stack right below the pt_regs */
123
124         swstack->r9 = 0; /* parameter to ret_from_sys_call, 0 == dont restart the syscall */
125
126         /* we want to return into ret_from_sys_call after the _resume */
127
128         swstack->return_ip = (unsigned long) ret_from_fork; /* Will call ret_from_sys_call */
129         
130         /* fix the user-mode stackpointer */
131
132         p->thread.usp = usp ?: rdusp();
133
134         /* and the kernel-mode one */
135
136         p->thread.ksp = (unsigned long) swstack;
137
138 #ifdef DEBUG
139         printk("copy_thread: new regs at 0x%p, as shown below:\n", childregs);
140         show_registers(childregs);
141 #endif
142
143         return 0;
144 }
145
146 unsigned long get_wchan(struct task_struct *p)
147 {
148 #if 0
149         /* YURGH. TODO. */
150
151         unsigned long ebp, esp, eip;
152         unsigned long stack_page;
153         int count = 0;
154         if (!p || p == current || p->state == TASK_RUNNING)
155                 return 0;
156         stack_page = (unsigned long)p;
157         esp = p->thread.esp;
158         if (!stack_page || esp < stack_page || esp > 8188+stack_page)
159                 return 0;
160         /* include/asm-i386/system.h:switch_to() pushes ebp last. */
161         ebp = *(unsigned long *) esp;
162         do {
163                 if (ebp < stack_page || ebp > 8184+stack_page)
164                         return 0;
165                 eip = *(unsigned long *) (ebp+4);
166                 if (!in_sched_functions(eip))
167                         return eip;
168                 ebp = *(unsigned long *) ebp;
169         } while (count++ < 16);
170 #endif
171         return 0;
172 }
173 #undef last_sched
174 #undef first_sched
175
176 void show_regs(struct pt_regs * regs)
177 {
178         unsigned long usp = rdusp();
179         printk("IRP: %08lx SRP: %08lx DCCR: %08lx USP: %08lx MOF: %08lx\n",
180                regs->irp, regs->srp, regs->dccr, usp, regs->mof );
181         printk(" r0: %08lx  r1: %08lx   r2: %08lx  r3: %08lx\n",
182                regs->r0, regs->r1, regs->r2, regs->r3);
183         printk(" r4: %08lx  r5: %08lx   r6: %08lx  r7: %08lx\n",
184                regs->r4, regs->r5, regs->r6, regs->r7);
185         printk(" r8: %08lx  r9: %08lx  r10: %08lx r11: %08lx\n",
186                regs->r8, regs->r9, regs->r10, regs->r11);
187         printk("r12: %08lx r13: %08lx oR10: %08lx\n",
188                regs->r12, regs->r13, regs->orig_r10);
189 }
190