integrity: special fs magic
[linux-2.6.git] / mm / slub.c
index 886131c..0c83e6a 100644 (file)
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -5,7 +5,7 @@
  * The allocator synchronizes using per slab locks and only
  * uses a centralized lock to manage a pool of partial slabs.
  *
- * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
+ * (C) 2007 SGI, Christoph Lameter
  */
 
 #include <linux/mm.h>
 #include <linux/cpuset.h>
 #include <linux/mempolicy.h>
 #include <linux/ctype.h>
+#include <linux/debugobjects.h>
 #include <linux/kallsyms.h>
 #include <linux/memory.h>
+#include <linux/math64.h>
 
 /*
  * Lock order:
  *                     the fast path and disables lockless freelists.
  */
 
-#define FROZEN (1 << PG_active)
-
 #ifdef CONFIG_SLUB_DEBUG
-#define SLABDEBUG (1 << PG_error)
+#define SLABDEBUG 1
 #else
 #define SLABDEBUG 0
 #endif
 
-static inline int SlabFrozen(struct page *page)
-{
-       return page->flags & FROZEN;
-}
-
-static inline void SetSlabFrozen(struct page *page)
-{
-       page->flags |= FROZEN;
-}
-
-static inline void ClearSlabFrozen(struct page *page)
-{
-       page->flags &= ~FROZEN;
-}
-
-static inline int SlabDebug(struct page *page)
-{
-       return page->flags & SLABDEBUG;
-}
-
-static inline void SetSlabDebug(struct page *page)
-{
-       page->flags |= SLABDEBUG;
-}
-
-static inline void ClearSlabDebug(struct page *page)
-{
-       page->flags &= ~SLABDEBUG;
-}
-
 /*
  * Issues still to be resolved:
  *
@@ -149,25 +119,6 @@ static inline void ClearSlabDebug(struct page *page)
 /* Enable to test recovery from slab corruption on boot */
 #undef SLUB_RESILIENCY_TEST
 
-#if PAGE_SHIFT <= 12
-
-/*
- * Small page size. Make sure that we do not fragment memory
- */
-#define DEFAULT_MAX_ORDER 1
-#define DEFAULT_MIN_OBJECTS 4
-
-#else
-
-/*
- * Large page machines are customarily able to handle larger
- * page orders.
- */
-#define DEFAULT_MAX_ORDER 2
-#define DEFAULT_MIN_OBJECTS 8
-
-#endif
-
 /*
  * Mininum number of partial slabs. These will be left on the partial
  * lists even if they are empty. kmem_cache_shrink may reclaim them.
@@ -205,11 +156,6 @@ static inline void ClearSlabDebug(struct page *page)
 #define __OBJECT_POISON                0x80000000 /* Poison object */
 #define __SYSFS_ADD_DEFERRED   0x40000000 /* Not yet visible via sysfs */
 
-/* Not all arches define cache_line_size */
-#ifndef cache_line_size
-#define cache_line_size()      L1_CACHE_BYTES
-#endif
-
 static int kmem_size = sizeof(struct kmem_cache);
 
 #ifdef CONFIG_SMP
@@ -239,17 +185,29 @@ struct track {
 
 enum track_item { TRACK_ALLOC, TRACK_FREE };
 
-#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
+#ifdef CONFIG_SLUB_DEBUG
 static int sysfs_slab_add(struct kmem_cache *);
 static int sysfs_slab_alias(struct kmem_cache *, const char *);
 static void sysfs_slab_remove(struct kmem_cache *);
+
 #else
 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
                                                        { return 0; }
-static inline void sysfs_slab_remove(struct kmem_cache *s) {}
+static inline void sysfs_slab_remove(struct kmem_cache *s)
+{
+       kfree(s);
+}
+
 #endif
 
+static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
+{
+#ifdef CONFIG_SLUB_STATS
+       c->stat[si]++;
+#endif
+}
+
 /********************************************************************
  *                     Core slab cache functions
  *******************************************************************/
@@ -277,6 +235,7 @@ static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
 #endif
 }
 
+/* Verify that a pointer has an address that is valid within a slab page */
 static inline int check_valid_pointer(struct kmem_cache *s,
                                struct page *page, const void *object)
 {
@@ -286,7 +245,7 @@ static inline int check_valid_pointer(struct kmem_cache *s,
                return 1;
 
        base = page_address(page);
-       if (object < base || object >= base + s->objects * s->size ||
+       if (object < base || object >= base + page->objects * s->size ||
                (object - base) % s->size) {
                return 0;
        }
@@ -312,8 +271,8 @@ static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
 }
 
 /* Loop over all objects in a slab */
-#define for_each_object(__p, __s, __addr) \
-       for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
+#define for_each_object(__p, __s, __addr, __objects) \
+       for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
                        __p += (__s)->size)
 
 /* Scan freelist */
@@ -326,6 +285,26 @@ static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
        return (p - addr) / s->size;
 }
 
+static inline struct kmem_cache_order_objects oo_make(int order,
+                                               unsigned long size)
+{
+       struct kmem_cache_order_objects x = {
+               (order << 16) + (PAGE_SIZE << order) / size
+       };
+
+       return x;
+}
+
+static inline int oo_order(struct kmem_cache_order_objects x)
+{
+       return x.x >> 16;
+}
+
+static inline int oo_objects(struct kmem_cache_order_objects x)
+{
+       return x.x & ((1 << 16) - 1);
+}
+
 #ifdef CONFIG_SLUB_DEBUG
 /*
  * Debug settings:
@@ -354,22 +333,22 @@ static void print_section(char *text, u8 *addr, unsigned int length)
                        printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
                        newline = 0;
                }
-               printk(" %02x", addr[i]);
+               printk(KERN_CONT " %02x", addr[i]);
                offset = i % 16;
                ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
                if (offset == 15) {
-                       printk(" %s\n",ascii);
+                       printk(KERN_CONT " %s\n", ascii);
                        newline = 1;
                }
        }
        if (!newline) {
                i %= 16;
                while (i < 16) {
-                       printk("   ");
+                       printk(KERN_CONT "   ");
                        ascii[i] = ' ';
                        i++;
                }
-               printk(" %s\n", ascii);
+               printk(KERN_CONT " %s\n", ascii);
        }
 }
 
@@ -400,7 +379,7 @@ static void set_track(struct kmem_cache *s, void *object,
        if (addr) {
                p->addr = addr;
                p->cpu = smp_processor_id();
-               p->pid = current ? current->pid : -1;
+               p->pid = current->pid;
                p->when = jiffies;
        } else
                memset(p, 0, sizeof(struct track));
@@ -420,9 +399,8 @@ static void print_track(const char *s, struct track *t)
        if (!t->addr)
                return;
 
-       printk(KERN_ERR "INFO: %s in ", s);
-       __print_symbol("%s", (unsigned long)t->addr);
-       printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
+       printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
+               s, t->addr, jiffies - t->when, t->cpu, t->pid);
 }
 
 static void print_tracking(struct kmem_cache *s, void *object)
@@ -436,8 +414,8 @@ static void print_tracking(struct kmem_cache *s, void *object)
 
 static void print_page_info(struct page *page)
 {
-       printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
-               page, page->inuse, page->freelist, page->flags);
+       printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
+               page, page->objects, page->inuse, page->freelist, page->flags);
 
 }
 
@@ -482,7 +460,7 @@ static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
        if (p > addr + 16)
                print_section("Bytes b4", p - 16, 16);
 
-       print_section("Object", p, min(s->objsize, 128));
+       print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
 
        if (s->flags & SLAB_RED_ZONE)
                print_section("Redzone", p + s->objsize,
@@ -506,7 +484,7 @@ static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
 static void object_err(struct kmem_cache *s, struct page *page,
                        u8 *object, char *reason)
 {
-       slab_bug(s, reason);
+       slab_bug(s, "%s", reason);
        print_trailer(s, page, object);
 }
 
@@ -518,7 +496,7 @@ static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
        va_start(args, fmt);
        vsnprintf(buf, sizeof(buf), fmt, args);
        va_end(args);
-       slab_bug(s, fmt);
+       slab_bug(s, "%s", buf);
        print_page_info(page);
        dump_stack();
 }
@@ -529,7 +507,7 @@ static void init_object(struct kmem_cache *s, void *object, int active)
 
        if (s->flags & __OBJECT_POISON) {
                memset(p, POISON_FREE, s->objsize - 1);
-               p[s->objsize -1] = POISON_END;
+               p[s->objsize - 1] = POISON_END;
        }
 
        if (s->flags & SLAB_RED_ZONE)
@@ -558,7 +536,7 @@ static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
 
 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
                        u8 *object, char *what,
-                       u8* start, unsigned int value, unsigned int bytes)
+                       u8 *start, unsigned int value, unsigned int bytes)
 {
        u8 *fault;
        u8 *end;
@@ -605,7 +583,7 @@ static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  *     A. Free pointer (if we cannot overwrite object on free)
  *     B. Tracking data for SLAB_STORE_USER
  *     C. Padding to reach required alignment boundary or at mininum
- *             one word if debuggin is on to be able to detect writes
+ *             one word if debugging is on to be able to detect writes
  *             before the word boundary.
  *
  *     Padding is done using 0x5a (POISON_INUSE)
@@ -637,6 +615,7 @@ static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
                                p + off, POISON_INUSE, s->size - off);
 }
 
+/* Check the pad bytes at the end of a slab page */
 static int slab_pad_check(struct kmem_cache *s, struct page *page)
 {
        u8 *start;
@@ -649,20 +628,20 @@ static int slab_pad_check(struct kmem_cache *s, struct page *page)
                return 1;
 
        start = page_address(page);
-       end = start + (PAGE_SIZE << s->order);
-       length = s->objects * s->size;
-       remainder = end - (start + length);
+       length = (PAGE_SIZE << compound_order(page));
+       end = start + length;
+       remainder = length % s->size;
        if (!remainder)
                return 1;
 
-       fault = check_bytes(start + length, POISON_INUSE, remainder);
+       fault = check_bytes(end - remainder, POISON_INUSE, remainder);
        if (!fault)
                return 1;
        while (end > fault && end[-1] == POISON_INUSE)
                end--;
 
        slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
-       print_section("Padding", start, length);
+       print_section("Padding", end - remainder, remainder);
 
        restore_bytes(s, "slab padding", POISON_INUSE, start, end);
        return 0;
@@ -682,9 +661,10 @@ static int check_object(struct kmem_cache *s, struct page *page,
                        endobject, red, s->inuse - s->objsize))
                        return 0;
        } else {
-               if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
-                       check_bytes_and_report(s, page, p, "Alignment padding", endobject,
-                               POISON_INUSE, s->inuse - s->objsize);
+               if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
+                       check_bytes_and_report(s, page, p, "Alignment padding",
+                               endobject, POISON_INUSE, s->inuse - s->objsize);
+               }
        }
 
        if (s->flags & SLAB_POISON) {
@@ -692,7 +672,7 @@ static int check_object(struct kmem_cache *s, struct page *page,
                        (!check_bytes_and_report(s, page, p, "Poison", p,
                                        POISON_FREE, s->objsize - 1) ||
                         !check_bytes_and_report(s, page, p, "Poison",
-                               p + s->objsize -1, POISON_END, 1)))
+                               p + s->objsize - 1, POISON_END, 1)))
                        return 0;
                /*
                 * check_pad_bytes cleans up on its own.
@@ -723,15 +703,24 @@ static int check_object(struct kmem_cache *s, struct page *page,
 
 static int check_slab(struct kmem_cache *s, struct page *page)
 {
+       int maxobj;
+
        VM_BUG_ON(!irqs_disabled());
 
        if (!PageSlab(page)) {
                slab_err(s, page, "Not a valid slab page");
                return 0;
        }
-       if (page->inuse > s->objects) {
+
+       maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
+       if (page->objects > maxobj) {
+               slab_err(s, page, "objects %u > max %u",
+                       s->name, page->objects, maxobj);
+               return 0;
+       }
+       if (page->inuse > page->objects) {
                slab_err(s, page, "inuse %u > max %u",
-                       s->name, page->inuse, s->objects);
+                       s->name, page->inuse, page->objects);
                return 0;
        }
        /* Slab_pad_check fixes things up after itself */
@@ -748,8 +737,9 @@ static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
        int nr = 0;
        void *fp = page->freelist;
        void *object = NULL;
+       unsigned long max_objects;
 
-       while (fp && nr <= s->objects) {
+       while (fp && nr <= page->objects) {
                if (fp == search)
                        return 1;
                if (!check_valid_pointer(s, page, fp)) {
@@ -761,7 +751,7 @@ static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
                        } else {
                                slab_err(s, page, "Freepointer corrupt");
                                page->freelist = NULL;
-                               page->inuse = s->objects;
+                               page->inuse = page->objects;
                                slab_fix(s, "Freelist cleared");
                                return 0;
                        }
@@ -772,16 +762,27 @@ static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
                nr++;
        }
 
-       if (page->inuse != s->objects - nr) {
+       max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
+       if (max_objects > 65535)
+               max_objects = 65535;
+
+       if (page->objects != max_objects) {
+               slab_err(s, page, "Wrong number of objects. Found %d but "
+                       "should be %d", page->objects, max_objects);
+               page->objects = max_objects;
+               slab_fix(s, "Number of objects adjusted.");
+       }
+       if (page->inuse != page->objects - nr) {
                slab_err(s, page, "Wrong object count. Counter is %d but "
-                       "counted were %d", page->inuse, s->objects - nr);
-               page->inuse = s->objects - nr;
+                       "counted were %d", page->inuse, page->objects - nr);
+               page->inuse = page->objects - nr;
                slab_fix(s, "Object count adjusted.");
        }
        return search == NULL;
 }
 
-static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
+static void trace(struct kmem_cache *s, struct page *page, void *object,
+                                                               int alloc)
 {
        if (s->flags & SLAB_TRACE) {
                printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
@@ -821,6 +822,38 @@ static void remove_full(struct kmem_cache *s, struct page *page)
        spin_unlock(&n->list_lock);
 }
 
+/* Tracking of the number of slabs for debugging purposes */
+static inline unsigned long slabs_node(struct kmem_cache *s, int node)
+{
+       struct kmem_cache_node *n = get_node(s, node);
+
+       return atomic_long_read(&n->nr_slabs);
+}
+
+static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
+{
+       struct kmem_cache_node *n = get_node(s, node);
+
+       /*
+        * May be called early in order to allocate a slab for the
+        * kmem_cache_node structure. Solve the chicken-egg
+        * dilemma by deferring the increment of the count during
+        * bootstrap (see early_kmem_cache_node_alloc).
+        */
+       if (!NUMA_BUILD || n) {
+               atomic_long_inc(&n->nr_slabs);
+               atomic_long_add(objects, &n->total_objects);
+       }
+}
+static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
+{
+       struct kmem_cache_node *n = get_node(s, node);
+
+       atomic_long_dec(&n->nr_slabs);
+       atomic_long_sub(objects, &n->total_objects);
+}
+
+/* Object debug checks for alloc/free paths */
 static void setup_object_debug(struct kmem_cache *s, struct page *page,
                                                                void *object)
 {
@@ -837,7 +870,7 @@ static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
        if (!check_slab(s, page))
                goto bad;
 
-       if (object && !on_freelist(s, page, object)) {
+       if (!on_freelist(s, page, object)) {
                object_err(s, page, object, "Object already allocated");
                goto bad;
        }
@@ -847,7 +880,7 @@ static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
                goto bad;
        }
 
-       if (object && !check_object(s, page, object, 0))
+       if (!check_object(s, page, object, 0))
                goto bad;
 
        /* Success perform special debug activities for allocs */
@@ -865,7 +898,7 @@ bad:
                 * as used avoids touching the remaining objects.
                 */
                slab_fix(s, "Marking all objects used");
-               page->inuse = s->objects;
+               page->inuse = page->objects;
                page->freelist = NULL;
        }
        return 0;
@@ -891,24 +924,22 @@ static int free_debug_processing(struct kmem_cache *s, struct page *page,
                return 0;
 
        if (unlikely(s != page->slab)) {
-               if (!PageSlab(page))
+               if (!PageSlab(page)) {
                        slab_err(s, page, "Attempt to free object(0x%p) "
                                "outside of slab", object);
-               else
-               if (!page->slab) {
+               } else if (!page->slab) {
                        printk(KERN_ERR
                                "SLUB <none>: no slab for object 0x%p.\n",
                                                object);
                        dump_stack();
-               }
-               else
+               } else
                        object_err(s, page, object,
                                        "page slab pointer corrupt.");
                goto fail;
        }
 
        /* Special debug activities for freeing objects */
-       if (!SlabFrozen(page) && !page->freelist)
+       if (!PageSlubFrozen(page) && !page->freelist)
                remove_full(s, page);
        if (s->flags & SLAB_STORE_USER)
                set_track(s, object, TRACK_FREE, addr);
@@ -947,7 +978,7 @@ static int __init setup_slub_debug(char *str)
        /*
         * Determine which debug features should be switched on
         */
-       for ( ;*str && *str != ','; str++) {
+       for (; *str && *str != ','; str++) {
                switch (tolower(*str)) {
                case 'f':
                        slub_debug |= SLAB_DEBUG_FREE;
@@ -966,7 +997,7 @@ static int __init setup_slub_debug(char *str)
                        break;
                default:
                        printk(KERN_ERR "slub_debug option '%c' "
-                               "unknown. skipped\n",*str);
+                               "unknown. skipped\n", *str);
                }
        }
 
@@ -981,33 +1012,14 @@ __setup("slub_debug", setup_slub_debug);
 
 static unsigned long kmem_cache_flags(unsigned long objsize,
        unsigned long flags, const char *name,
-       void (*ctor)(struct kmem_cache *, void *))
+       void (*ctor)(void *))
 {
        /*
-        * The page->offset field is only 16 bit wide. This is an offset
-        * in units of words from the beginning of an object. If the slab
-        * size is bigger then we cannot move the free pointer behind the
-        * object anymore.
-        *
-        * On 32 bit platforms the limit is 256k. On 64bit platforms
-        * the limit is 512k.
-        *
-        * Debugging or ctor may create a need to move the free
-        * pointer. Fail if this happens.
+        * Enable debugging if selected on the kernel commandline.
         */
-       if (objsize >= 65535 * sizeof(void *)) {
-               BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
-                               SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
-               BUG_ON(ctor);
-       } else {
-               /*
-                * Enable debugging if selected on the kernel commandline.
-                */
-               if (slub_debug && (!slub_debug_slabs ||
-                   strncmp(slub_debug_slabs, name,
-                       strlen(slub_debug_slabs)) == 0))
-                               flags |= slub_debug;
-       }
+       if (slub_debug && (!slub_debug_slabs ||
+           strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
+                       flags |= slub_debug;
 
        return flags;
 }
@@ -1028,41 +1040,60 @@ static inline int check_object(struct kmem_cache *s, struct page *page,
 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
 static inline unsigned long kmem_cache_flags(unsigned long objsize,
        unsigned long flags, const char *name,
-       void (*ctor)(struct kmem_cache *, void *))
+       void (*ctor)(void *))
 {
        return flags;
 }
 #define slub_debug 0
+
+static inline unsigned long slabs_node(struct kmem_cache *s, int node)
+                                                       { return 0; }
+static inline void inc_slabs_node(struct kmem_cache *s, int node,
+                                                       int objects) {}
+static inline void dec_slabs_node(struct kmem_cache *s, int node,
+                                                       int objects) {}
 #endif
+
 /*
  * Slab allocation and freeing
  */
-static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
+static inline struct page *alloc_slab_page(gfp_t flags, int node,
+                                       struct kmem_cache_order_objects oo)
 {
-       struct page * page;
-       int pages = 1 << s->order;
-
-       if (s->order)
-               flags |= __GFP_COMP;
-
-       if (s->flags & SLAB_CACHE_DMA)
-               flags |= SLUB_DMA;
-
-       if (s->flags & SLAB_RECLAIM_ACCOUNT)
-               flags |= __GFP_RECLAIMABLE;
+       int order = oo_order(oo);
 
        if (node == -1)
-               page = alloc_pages(flags, s->order);
+               return alloc_pages(flags, order);
        else
-               page = alloc_pages_node(node, flags, s->order);
+               return alloc_pages_node(node, flags, order);
+}
 
-       if (!page)
-               return NULL;
+static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
+{
+       struct page *page;
+       struct kmem_cache_order_objects oo = s->oo;
+
+       flags |= s->allocflags;
 
+       page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
+                                                                       oo);
+       if (unlikely(!page)) {
+               oo = s->min;
+               /*
+                * Allocation may have failed due to fragmentation.
+                * Try a lower order alloc if possible
+                */
+               page = alloc_slab_page(flags, node, oo);
+               if (!page)
+                       return NULL;
+
+               stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
+       }
+       page->objects = oo_objects(oo);
        mod_zone_page_state(page_zone(page),
                (s->flags & SLAB_RECLAIM_ACCOUNT) ?
                NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
-               pages);
+               1 << oo_order(oo));
 
        return page;
 }
@@ -1072,13 +1103,12 @@ static void setup_object(struct kmem_cache *s, struct page *page,
 {
        setup_object_debug(s, page, object);
        if (unlikely(s->ctor))
-               s->ctor(s, object);
+               s->ctor(object);
 }
 
 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
 {
        struct page *page;
-       struct kmem_cache_node *n;
        void *start;
        void *last;
        void *p;
@@ -1090,22 +1120,20 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
        if (!page)
                goto out;
 
-       n = get_node(s, page_to_nid(page));
-       if (n)
-               atomic_long_inc(&n->nr_slabs);
+       inc_slabs_node(s, page_to_nid(page), page->objects);
        page->slab = s;
        page->flags |= 1 << PG_slab;
        if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
                        SLAB_STORE_USER | SLAB_TRACE))
-               SetSlabDebug(page);
+               __SetPageSlubDebug(page);
 
        start = page_address(page);
 
        if (unlikely(s->flags & SLAB_POISON))
-               memset(start, POISON_INUSE, PAGE_SIZE << s->order);
+               memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
 
        last = start;
-       for_each_object(p, s, start) {
+       for_each_object(p, s, start, page->objects) {
                setup_object(s, page, last);
                set_freepointer(s, last, p);
                last = p;
@@ -1121,23 +1149,27 @@ out:
 
 static void __free_slab(struct kmem_cache *s, struct page *page)
 {
-       int pages = 1 << s->order;
+       int order = compound_order(page);
+       int pages = 1 << order;
 
-       if (unlikely(SlabDebug(page))) {
+       if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
                void *p;
 
                slab_pad_check(s, page);
-               for_each_object(p, s, page_address(page))
+               for_each_object(p, s, page_address(page),
+                                               page->objects)
                        check_object(s, page, p, 0);
-               ClearSlabDebug(page);
+               __ClearPageSlubDebug(page);
        }
 
        mod_zone_page_state(page_zone(page),
                (s->flags & SLAB_RECLAIM_ACCOUNT) ?
                NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
-               - pages);
+               -pages);
 
-       __free_pages(page, s->order);
+       __ClearPageSlab(page);
+       reset_page_mapcount(page);
+       __free_pages(page, order);
 }
 
 static void rcu_free_slab(struct rcu_head *h)
@@ -1163,11 +1195,7 @@ static void free_slab(struct kmem_cache *s, struct page *page)
 
 static void discard_slab(struct kmem_cache *s, struct page *page)
 {
-       struct kmem_cache_node *n = get_node(s, page_to_nid(page));
-
-       atomic_long_dec(&n->nr_slabs);
-       reset_page_mapcount(page);
-       __ClearPageSlab(page);
+       dec_slabs_node(s, page_to_nid(page), page->objects);
        free_slab(s, page);
 }
 
@@ -1181,7 +1209,7 @@ static __always_inline void slab_lock(struct page *page)
 
 static __always_inline void slab_unlock(struct page *page)
 {
-       bit_spin_unlock(PG_locked, &page->flags);
+       __bit_spin_unlock(PG_locked, &page->flags);
 }
 
 static __always_inline int slab_trylock(struct page *page)
@@ -1195,24 +1223,19 @@ static __always_inline int slab_trylock(struct page *page)
 /*
  * Management of partially allocated slabs
  */
-static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
-{
-       spin_lock(&n->list_lock);
-       n->nr_partial++;
-       list_add_tail(&page->lru, &n->partial);
-       spin_unlock(&n->list_lock);
-}
-
-static void add_partial(struct kmem_cache_node *n, struct page *page)
+static void add_partial(struct kmem_cache_node *n,
+                               struct page *page, int tail)
 {
        spin_lock(&n->list_lock);
        n->nr_partial++;
-       list_add(&page->lru, &n->partial);
+       if (tail)
+               list_add_tail(&page->lru, &n->partial);
+       else
+               list_add(&page->lru, &n->partial);
        spin_unlock(&n->list_lock);
 }
 
-static void remove_partial(struct kmem_cache *s,
-                                               struct page *page)
+static void remove_partial(struct kmem_cache *s, struct page *page)
 {
        struct kmem_cache_node *n = get_node(s, page_to_nid(page));
 
@@ -1227,12 +1250,13 @@ static void remove_partial(struct kmem_cache *s,
  *
  * Must hold list_lock.
  */
-static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
+static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
+                                                       struct page *page)
 {
        if (slab_trylock(page)) {
                list_del(&page->lru);
                n->nr_partial--;
-               SetSlabFrozen(page);
+               __SetPageSlubFrozen(page);
                return 1;
        }
        return 0;
@@ -1271,7 +1295,9 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
 {
 #ifdef CONFIG_NUMA
        struct zonelist *zonelist;
-       struct zone **z;
+       struct zoneref *z;
+       struct zone *zone;
+       enum zone_type high_zoneidx = gfp_zone(flags);
        struct page *page;
 
        /*
@@ -1285,25 +1311,25 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
         * may return off node objects because partial slabs are obtained
         * from other nodes and filled up.
         *
-        * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
+        * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
         * defrag_ratio = 1000) then every (well almost) allocation will
         * first attempt to defrag slab caches on other nodes. This means
         * scanning over all nodes to look for partial slabs which may be
         * expensive if we do it every time we are trying to find a slab
         * with available objects.
         */
-       if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
+       if (!s->remote_node_defrag_ratio ||
+                       get_cycles() % 1024 > s->remote_node_defrag_ratio)
                return NULL;
 
-       zonelist = &NODE_DATA(slab_node(current->mempolicy))
-                                       ->node_zonelists[gfp_zone(flags)];
-       for (z = zonelist->zones; *z; z++) {
+       zonelist = node_zonelist(slab_node(current->mempolicy), flags);
+       for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
                struct kmem_cache_node *n;
 
-               n = get_node(s, zone_to_nid(*z));
+               n = get_node(s, zone_to_nid(zone));
 
-               if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
-                               n->nr_partial > MIN_PARTIAL) {
+               if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
+                               n->nr_partial > n->min_partial) {
                        page = get_partial_node(n);
                        if (page)
                                return page;
@@ -1335,33 +1361,42 @@ static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  *
  * On exit the slab lock will have been dropped.
  */
-static void unfreeze_slab(struct kmem_cache *s, struct page *page)
+static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
 {
        struct kmem_cache_node *n = get_node(s, page_to_nid(page));
+       struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
 
-       ClearSlabFrozen(page);
+       __ClearPageSlubFrozen(page);
        if (page->inuse) {
 
-               if (page->freelist)
-                       add_partial(n, page);
-               else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
-                       add_full(n, page);
+               if (page->freelist) {
+                       add_partial(n, page, tail);
+                       stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
+               } else {
+                       stat(c, DEACTIVATE_FULL);
+                       if (SLABDEBUG && PageSlubDebug(page) &&
+                                               (s->flags & SLAB_STORE_USER))
+                               add_full(n, page);
+               }
                slab_unlock(page);
-
        } else {
-               if (n->nr_partial < MIN_PARTIAL) {
+               stat(c, DEACTIVATE_EMPTY);
+               if (n->nr_partial < n->min_partial) {
                        /*
                         * Adding an empty slab to the partial slabs in order
                         * to avoid page allocator overhead. This slab needs
                         * to come after the other slabs with objects in
-                        * order to fill them up. That way the size of the
-                        * partial list stays small. kmem_cache_shrink can
-                        * reclaim empty slabs from the partial list.
+                        * so that the others get filled first. That way the
+                        * size of the partial list stays small.
+                        *
+                        * kmem_cache_shrink can reclaim any empty slabs from
+                        * the partial list.
                         */
-                       add_partial_tail(n, page);
+                       add_partial(n, page, 1);
                        slab_unlock(page);
                } else {
                        slab_unlock(page);
+                       stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
                        discard_slab(s, page);
                }
        }
@@ -1373,14 +1408,20 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page)
 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
 {
        struct page *page = c->page;
+       int tail = 1;
+
+       if (page->freelist)
+               stat(c, DEACTIVATE_REMOTE_FREES);
        /*
-        * Merge cpu freelist into freelist. Typically we get here
+        * Merge cpu freelist into slab freelist. Typically we get here
         * because both freelists are empty. So this is unlikely
         * to occur.
         */
        while (unlikely(c->freelist)) {
                void **object;
 
+               tail = 0;       /* Hot objects. Put the slab first */
+
                /* Retrieve object from cpu_freelist */
                object = c->freelist;
                c->freelist = c->freelist[c->offset];
@@ -1391,17 +1432,19 @@ static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
                page->inuse--;
        }
        c->page = NULL;
-       unfreeze_slab(s, page);
+       unfreeze_slab(s, page, tail);
 }
 
 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
 {
+       stat(c, CPUSLAB_FLUSH);
        slab_lock(c->page);
        deactivate_slab(s, c);
 }
 
 /*
  * Flush cpu slab.
+ *
  * Called from IPI handler with interrupts disabled.
  */
 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
@@ -1421,15 +1464,7 @@ static void flush_cpu_slab(void *d)
 
 static void flush_all(struct kmem_cache *s)
 {
-#ifdef CONFIG_SMP
-       on_each_cpu(flush_cpu_slab, s, 1, 1);
-#else
-       unsigned long flags;
-
-       local_irq_save(flags);
-       flush_cpu_slab(s);
-       local_irq_restore(flags);
-#endif
+       on_each_cpu(flush_cpu_slab, s, 1);
 }
 
 /*
@@ -1460,7 +1495,8 @@ static inline int node_match(struct kmem_cache_cpu *c, int node)
  * rest of the freelist to the lockless freelist.
  *
  * And if we were unable to get a new slab from the partial slab lists then
- * we need to allocate a new slab. This is slowest path since we may sleep.
+ * we need to allocate a new slab. This is the slowest path since it involves
+ * a call to the page allocator and the setup of a new slab.
  */
 static void *__slab_alloc(struct kmem_cache *s,
                gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
@@ -1468,25 +1504,32 @@ static void *__slab_alloc(struct kmem_cache *s,
        void **object;
        struct page *new;
 
+       /* We handle __GFP_ZERO in the caller */
+       gfpflags &= ~__GFP_ZERO;
+
        if (!c->page)
                goto new_slab;
 
        slab_lock(c->page);
        if (unlikely(!node_match(c, node)))
                goto another_slab;
+
+       stat(c, ALLOC_REFILL);
+
 load_freelist:
        object = c->page->freelist;
        if (unlikely(!object))
                goto another_slab;
-       if (unlikely(SlabDebug(c->page)))
+       if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
                goto debug;
 
-       object = c->page->freelist;
        c->freelist = object[c->offset];
-       c->page->inuse = s->objects;
+       c->page->inuse = c->page->objects;
        c->page->freelist = NULL;
        c->node = page_to_nid(c->page);
+unlock_out:
        slab_unlock(c->page);
+       stat(c, ALLOC_SLOWPATH);
        return object;
 
 another_slab:
@@ -1496,6 +1539,7 @@ new_slab:
        new = get_partial(s, gfpflags, node);
        if (new) {
                c->page = new;
+               stat(c, ALLOC_FROM_PARTIAL);
                goto load_freelist;
        }
 
@@ -1509,24 +1553,23 @@ new_slab:
 
        if (new) {
                c = get_cpu_slab(s, smp_processor_id());
+               stat(c, ALLOC_SLAB);
                if (c->page)
                        flush_slab(s, c);
                slab_lock(new);
-               SetSlabFrozen(new);
+               __SetPageSlubFrozen(new);
                c->page = new;
                goto load_freelist;
        }
        return NULL;
 debug:
-       object = c->page->freelist;
        if (!alloc_debug_processing(s, c->page, object, addr))
                goto another_slab;
 
        c->page->inuse++;
        c->page->freelist = object[c->offset];
        c->node = -1;
-       slab_unlock(c->page);
-       return object;
+       goto unlock_out;
 }
 
 /*
@@ -1539,15 +1582,17 @@ debug:
  *
  * Otherwise we can simply pick the next object from the lockless free list.
  */
-static void __always_inline *slab_alloc(struct kmem_cache *s,
+static __always_inline void *slab_alloc(struct kmem_cache *s,
                gfp_t gfpflags, int node, void *addr)
 {
        void **object;
-       unsigned long flags;
        struct kmem_cache_cpu *c;
+       unsigned long flags;
+       unsigned int objsize;
 
        local_irq_save(flags);
        c = get_cpu_slab(s, smp_processor_id());
+       objsize = c->objsize;
        if (unlikely(!c->freelist || !node_match(c, node)))
 
                object = __slab_alloc(s, gfpflags, node, addr, c);
@@ -1555,11 +1600,12 @@ static void __always_inline *slab_alloc(struct kmem_cache *s,
        else {
                object = c->freelist;
                c->freelist = object[c->offset];
+               stat(c, ALLOC_FASTPATH);
        }
        local_irq_restore(flags);
 
        if (unlikely((gfpflags & __GFP_ZERO) && object))
-               memset(object, 0, c->objsize);
+               memset(object, 0, objsize);
 
        return object;
 }
@@ -1591,42 +1637,51 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
 {
        void *prior;
        void **object = (void *)x;
+       struct kmem_cache_cpu *c;
 
+       c = get_cpu_slab(s, raw_smp_processor_id());
+       stat(c, FREE_SLOWPATH);
        slab_lock(page);
 
-       if (unlikely(SlabDebug(page)))
+       if (unlikely(SLABDEBUG && PageSlubDebug(page)))
                goto debug;
+
 checks_ok:
        prior = object[offset] = page->freelist;
        page->freelist = object;
        page->inuse--;
 
-       if (unlikely(SlabFrozen(page)))
+       if (unlikely(PageSlubFrozen(page))) {
+               stat(c, FREE_FROZEN);
                goto out_unlock;
+       }
 
        if (unlikely(!page->inuse))
                goto slab_empty;
 
        /*
-        * Objects left in the slab. If it
-        * was not on the partial list before
+        * Objects left in the slab. If it was not on the partial list before
         * then add it.
         */
-       if (unlikely(!prior))
-               add_partial_tail(get_node(s, page_to_nid(page)), page);
+       if (unlikely(!prior)) {
+               add_partial(get_node(s, page_to_nid(page)), page, 1);
+               stat(c, FREE_ADD_PARTIAL);
+       }
 
 out_unlock:
        slab_unlock(page);
        return;
 
 slab_empty:
-       if (prior)
+       if (prior) {
                /*
                 * Slab still on the partial list.
                 */
                remove_partial(s, page);
-
+               stat(c, FREE_REMOVE_PARTIAL);
+       }
        slab_unlock(page);
+       stat(c, FREE_SLAB);
        discard_slab(s, page);
        return;
 
@@ -1647,19 +1702,22 @@ debug:
  * If fastpath is not possible then fall back to __slab_free where we deal
  * with all sorts of special processing.
  */
-static void __always_inline slab_free(struct kmem_cache *s,
+static __always_inline void slab_free(struct kmem_cache *s,
                        struct page *page, void *x, void *addr)
 {
        void **object = (void *)x;
-       unsigned long flags;
        struct kmem_cache_cpu *c;
+       unsigned long flags;
 
        local_irq_save(flags);
-       debug_check_no_locks_freed(object, s->objsize);
        c = get_cpu_slab(s, smp_processor_id());
+       debug_check_no_locks_freed(object, c->objsize);
+       if (!(s->flags & SLAB_DEBUG_OBJECTS))
+               debug_check_no_obj_freed(object, s->objsize);
        if (likely(page == c->page && c->node >= 0)) {
                object[c->offset] = c->freelist;
                c->freelist = object;
+               stat(c, FREE_FASTPATH);
        } else
                __slab_free(s, page, x, addr, c->offset);
 
@@ -1707,8 +1765,8 @@ static struct page *get_object_page(const void *x)
  * take the list_lock.
  */
 static int slub_min_order;
-static int slub_max_order = DEFAULT_MAX_ORDER;
-static int slub_min_objects = DEFAULT_MIN_OBJECTS;
+static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
+static int slub_min_objects;
 
 /*
  * Merge control. If this is set then no merging of slab caches will occur.
@@ -1723,7 +1781,7 @@ static int slub_nomerge;
  * system components. Generally order 0 allocations should be preferred since
  * order 0 does not cause fragmentation in the page allocator. Larger objects
  * be problematic to put into order 0 slabs because there may be too much
- * unused space left. We go to a higher order if more than 1/8th of the slab
+ * unused space left. We go to a higher order if more than 1/16th of the slab
  * would be wasted.
  *
  * In order to reach satisfactory performance we must ensure that a minimum
@@ -1748,6 +1806,9 @@ static inline int slab_order(int size, int min_objects,
        int rem;
        int min_order = slub_min_order;
 
+       if ((PAGE_SIZE << min_order) / size > 65535)
+               return get_order(size * 65535) - 1;
+
        for (order = max(min_order,
                                fls(min_objects * size - 1) - PAGE_SHIFT);
                        order <= max_order; order++) {
@@ -1782,8 +1843,10 @@ static inline int calculate_order(int size)
         * we reduce the minimum objects required in a slab.
         */
        min_objects = slub_min_objects;
+       if (!min_objects)
+               min_objects = 4 * (fls(nr_cpu_ids) + 1);
        while (min_objects > 1) {
-               fraction = 8;
+               fraction = 16;
                while (fraction >= 4) {
                        order = slab_order(size, min_objects,
                                                slub_max_order, fraction);
@@ -1818,20 +1881,21 @@ static unsigned long calculate_alignment(unsigned long flags,
                unsigned long align, unsigned long size)
 {
        /*
-        * If the user wants hardware cache aligned objects then
-        * follow that suggestion if the object is sufficiently
-        * large.
+        * If the user wants hardware cache aligned objects then follow that
+        * suggestion if the object is sufficiently large.
         *
-        * The hardware cache alignment cannot override the
-        * specified alignment though. If that is greater
-        * then use it.
+        * The hardware cache alignment cannot override the specified
+        * alignment though. If that is greater then use it.
         */
-       if ((flags & SLAB_HWCACHE_ALIGN) &&
-                       size > cache_line_size() / 2)
-               return max_t(unsigned long, align, cache_line_size());
+       if (flags & SLAB_HWCACHE_ALIGN) {
+               unsigned long ralign = cache_line_size();
+               while (size <= ralign / 2)
+                       ralign /= 2;
+               align = max(align, ralign);
+       }
 
        if (align < ARCH_SLAB_MINALIGN)
-               return ARCH_SLAB_MINALIGN;
+               align = ARCH_SLAB_MINALIGN;
 
        return ALIGN(align, sizeof(void *));
 }
@@ -1844,15 +1908,31 @@ static void init_kmem_cache_cpu(struct kmem_cache *s,
        c->node = 0;
        c->offset = s->offset / sizeof(void *);
        c->objsize = s->objsize;
+#ifdef CONFIG_SLUB_STATS
+       memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
+#endif
 }
 
-static void init_kmem_cache_node(struct kmem_cache_node *n)
+static void
+init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
 {
        n->nr_partial = 0;
-       atomic_long_set(&n->nr_slabs, 0);
+
+       /*
+        * The larger the object size is, the more pages we want on the partial
+        * list to avoid pounding the page allocator excessively.
+        */
+       n->min_partial = ilog2(s->size);
+       if (n->min_partial < MIN_PARTIAL)
+               n->min_partial = MIN_PARTIAL;
+       else if (n->min_partial > MAX_PARTIAL)
+               n->min_partial = MAX_PARTIAL;
+
        spin_lock_init(&n->list_lock);
        INIT_LIST_HEAD(&n->partial);
 #ifdef CONFIG_SLUB_DEBUG
+       atomic_long_set(&n->nr_slabs, 0);
+       atomic_long_set(&n->total_objects, 0);
        INIT_LIST_HEAD(&n->full);
 #endif
 }
@@ -1997,6 +2077,7 @@ static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
 {
        struct page *page;
        struct kmem_cache_node *n;
+       unsigned long flags;
 
        BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
 
@@ -2019,9 +2100,17 @@ static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
        init_object(kmalloc_caches, n, 1);
        init_tracking(kmalloc_caches, n);
 #endif
-       init_kmem_cache_node(n);
-       atomic_long_inc(&n->nr_slabs);
-       add_partial(n, page);
+       init_kmem_cache_node(n, kmalloc_caches);
+       inc_slabs_node(kmalloc_caches, node, page->objects);
+
+       /*
+        * lockdep requires consistent irq usage for each lock
+        * so even though there cannot be a race this early in
+        * the boot sequence, we still disable irqs.
+        */
+       local_irq_save(flags);
+       add_partial(n, page, 0);
+       local_irq_restore(flags);
        return n;
 }
 
@@ -2068,7 +2157,7 @@ static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
 
                }
                s->node[node] = n;
-               init_kmem_cache_node(n);
+               init_kmem_cache_node(n, s);
        }
        return 1;
 }
@@ -2079,7 +2168,7 @@ static void free_kmem_cache_nodes(struct kmem_cache *s)
 
 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
 {
-       init_kmem_cache_node(&s->local_node);
+       init_kmem_cache_node(&s->local_node, s);
        return 1;
 }
 #endif
@@ -2088,13 +2177,22 @@ static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  * calculate_sizes() determines the order and the distribution of data within
  * a slab object.
  */
-static int calculate_sizes(struct kmem_cache *s)
+static int calculate_sizes(struct kmem_cache *s, int forced_order)
 {
        unsigned long flags = s->flags;
        unsigned long size = s->objsize;
        unsigned long align = s->align;
+       int order;
 
        /*
+        * Round up object size to the next word boundary. We can only
+        * place the free pointer at word boundaries and this determines
+        * the possible location of the free pointer.
+        */
+       size = ALIGN(size, sizeof(void *));
+
+#ifdef CONFIG_SLUB_DEBUG
+       /*
         * Determine if we can poison the object itself. If the user of
         * the slab may touch the object after free or before allocation
         * then we should never poison the object itself.
@@ -2105,14 +2203,7 @@ static int calculate_sizes(struct kmem_cache *s)
        else
                s->flags &= ~__OBJECT_POISON;
 
-       /*
-        * Round up object size to the next word boundary. We can only
-        * place the free pointer at word boundaries and this determines
-        * the possible location of the free pointer.
-        */
-       size = ALIGN(size, sizeof(void *));
 
-#ifdef CONFIG_SLUB_DEBUG
        /*
         * If we are Redzoning then check if there is some space between the
         * end of the object and the free pointer. If not then add an
@@ -2175,24 +2266,40 @@ static int calculate_sizes(struct kmem_cache *s)
         */
        size = ALIGN(size, align);
        s->size = size;
+       if (forced_order >= 0)
+               order = forced_order;
+       else
+               order = calculate_order(size);
 
-       s->order = calculate_order(size);
-       if (s->order < 0)
+       if (order < 0)
                return 0;
 
+       s->allocflags = 0;
+       if (order)
+               s->allocflags |= __GFP_COMP;
+
+       if (s->flags & SLAB_CACHE_DMA)
+               s->allocflags |= SLUB_DMA;
+
+       if (s->flags & SLAB_RECLAIM_ACCOUNT)
+               s->allocflags |= __GFP_RECLAIMABLE;
+
        /*
         * Determine the number of objects per slab
         */
-       s->objects = (PAGE_SIZE << s->order) / size;
+       s->oo = oo_make(order, size);
+       s->min = oo_make(get_order(size), size);
+       if (oo_objects(s->oo) > oo_objects(s->max))
+               s->max = s->oo;
 
-       return !!s->objects;
+       return !!oo_objects(s->oo);
 
 }
 
 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
                const char *name, size_t size,
                size_t align, unsigned long flags,
-               void (*ctor)(struct kmem_cache *, void *))
+               void (*ctor)(void *))
 {
        memset(s, 0, kmem_size);
        s->name = name;
@@ -2201,12 +2308,12 @@ static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
        s->align = align;
        s->flags = kmem_cache_flags(size, flags, name, ctor);
 
-       if (!calculate_sizes(s))
+       if (!calculate_sizes(s, -1))
                goto error;
 
        s->refcount = 1;
 #ifdef CONFIG_NUMA
-       s->defrag_ratio = 100;
+       s->remote_node_defrag_ratio = 1000;
 #endif
        if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
                goto error;
@@ -2218,7 +2325,7 @@ error:
        if (flags & SLAB_PANIC)
                panic("Cannot create slab %s size=%lu realsize=%u "
                        "order=%u offset=%u flags=%lx\n",
-                       s->name, (unsigned long)size, s->size, s->order,
+                       s->name, (unsigned long)size, s->size, oo_order(s->oo),
                        s->offset, flags);
        return 0;
 }
@@ -2228,7 +2335,7 @@ error:
  */
 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
 {
-       struct page * page;
+       struct page *page;
 
        page = get_object_page(object);
 
@@ -2242,7 +2349,7 @@ int kmem_ptr_validate(struct kmem_cache *s, const void *object)
        /*
         * We could also check if the object is on the slabs freelist.
         * But this would be too expensive and it seems that the main
-        * purpose of kmem_ptr_valid is to check if the object belongs
+        * purpose of kmem_ptr_valid() is to check if the object belongs
         * to a certain slab.
         */
        return 1;
@@ -2264,26 +2371,52 @@ const char *kmem_cache_name(struct kmem_cache *s)
 }
 EXPORT_SYMBOL(kmem_cache_name);
 
+static void list_slab_objects(struct kmem_cache *s, struct page *page,
+                                                       const char *text)
+{
+#ifdef CONFIG_SLUB_DEBUG
+       void *addr = page_address(page);
+       void *p;
+       DECLARE_BITMAP(map, page->objects);
+
+       bitmap_zero(map, page->objects);
+       slab_err(s, page, "%s", text);
+       slab_lock(page);
+       for_each_free_object(p, s, page->freelist)
+               set_bit(slab_index(p, s, addr), map);
+
+       for_each_object(p, s, addr, page->objects) {
+
+               if (!test_bit(slab_index(p, s, addr), map)) {
+                       printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
+                                                       p, p - addr);
+                       print_tracking(s, p);
+               }
+       }
+       slab_unlock(page);
+#endif
+}
+
 /*
- * Attempt to free all slabs on a node. Return the number of slabs we
- * were unable to free.
+ * Attempt to free all partial slabs on a node.
  */
-static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
-                       struct list_head *list)
+static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
 {
-       int slabs_inuse = 0;
        unsigned long flags;
        struct page *page, *h;
 
        spin_lock_irqsave(&n->list_lock, flags);
-       list_for_each_entry_safe(page, h, list, lru)
+       list_for_each_entry_safe(page, h, &n->partial, lru) {
                if (!page->inuse) {
                        list_del(&page->lru);
                        discard_slab(s, page);
-               } else
-                       slabs_inuse++;
+                       n->nr_partial--;
+               } else {
+                       list_slab_objects(s, page,
+                               "Objects remaining on kmem_cache_close()");
+               }
+       }
        spin_unlock_irqrestore(&n->list_lock, flags);
-       return slabs_inuse;
 }
 
 /*
@@ -2300,8 +2433,8 @@ static inline int kmem_cache_close(struct kmem_cache *s)
        for_each_node_state(node, N_NORMAL_MEMORY) {
                struct kmem_cache_node *n = get_node(s, node);
 
-               n->nr_partial -= free_list(s, n, &n->partial);
-               if (atomic_long_read(&n->nr_slabs))
+               free_partial(s, n);
+               if (n->nr_partial || slabs_node(s, node))
                        return 1;
        }
        free_kmem_cache_nodes(s);
@@ -2319,10 +2452,12 @@ void kmem_cache_destroy(struct kmem_cache *s)
        if (!s->refcount) {
                list_del(&s->list);
                up_write(&slub_lock);
-               if (kmem_cache_close(s))
-                       WARN_ON(1);
+               if (kmem_cache_close(s)) {
+                       printk(KERN_ERR "SLUB %s: %s called for cache that "
+                               "still has objects.\n", s->name, __func__);
+                       dump_stack();
+               }
                sysfs_slab_remove(s);
-               kfree(s);
        } else
                up_write(&slub_lock);
 }
@@ -2332,16 +2467,12 @@ EXPORT_SYMBOL(kmem_cache_destroy);
  *             Kmalloc subsystem
  *******************************************************************/
 
-struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
+struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
 EXPORT_SYMBOL(kmalloc_caches);
 
-#ifdef CONFIG_ZONE_DMA
-static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
-#endif
-
 static int __init setup_slub_min_order(char *str)
 {
-       get_option (&str, &slub_min_order);
+       get_option(&str, &slub_min_order);
 
        return 1;
 }
@@ -2350,7 +2481,7 @@ __setup("slub_min_order=", setup_slub_min_order);
 
 static int __init setup_slub_max_order(char *str)
 {
-       get_option (&str, &slub_max_order);
+       get_option(&str, &slub_max_order);
 
        return 1;
 }
@@ -2359,7 +2490,7 @@ __setup("slub_max_order=", setup_slub_max_order);
 
 static int __init setup_slub_min_objects(char *str)
 {
-       get_option (&str, &slub_min_objects);
+       get_option(&str, &slub_min_objects);
 
        return 1;
 }
@@ -2384,7 +2515,7 @@ static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
 
        down_write(&slub_lock);
        if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
-                       flags, NULL))
+                                                               flags, NULL))
                goto panic;
 
        list_add(&s->list, &slab_caches);
@@ -2398,6 +2529,7 @@ panic:
 }
 
 #ifdef CONFIG_ZONE_DMA
+static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
 
 static void sysfs_add_func(struct work_struct *w)
 {
@@ -2437,7 +2569,8 @@ static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
                goto unlock_out;
 
        realsize = kmalloc_caches[index].objsize;
-       text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
+       text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
+                        (unsigned int)realsize);
        s = kmalloc(kmem_size, flags & ~SLUB_DMA);
 
        if (!s || !text || !kmem_cache_open(s, flags, text,
@@ -2517,9 +2650,8 @@ void *__kmalloc(size_t size, gfp_t flags)
 {
        struct kmem_cache *s;
 
-       if (unlikely(size > PAGE_SIZE / 2))
-               return (void *)__get_free_pages(flags | __GFP_COMP,
-                                                       get_order(size));
+       if (unlikely(size > PAGE_SIZE))
+               return kmalloc_large(size, flags);
 
        s = get_slab(size, flags);
 
@@ -2530,14 +2662,24 @@ void *__kmalloc(size_t size, gfp_t flags)
 }
 EXPORT_SYMBOL(__kmalloc);
 
+static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
+{
+       struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
+                                               get_order(size));
+
+       if (page)
+               return page_address(page);
+       else
+               return NULL;
+}
+
 #ifdef CONFIG_NUMA
 void *__kmalloc_node(size_t size, gfp_t flags, int node)
 {
        struct kmem_cache *s;
 
-       if (unlikely(size > PAGE_SIZE / 2))
-               return (void *)__get_free_pages(flags | __GFP_COMP,
-                                                       get_order(size));
+       if (unlikely(size > PAGE_SIZE))
+               return kmalloc_large_node(size, flags, node);
 
        s = get_slab(size, flags);
 
@@ -2554,19 +2696,18 @@ size_t ksize(const void *object)
        struct page *page;
        struct kmem_cache *s;
 
-       BUG_ON(!object);
        if (unlikely(object == ZERO_SIZE_PTR))
                return 0;
 
        page = virt_to_head_page(object);
-       BUG_ON(!page);
 
-       if (unlikely(!PageSlab(page)))
+       if (unlikely(!PageSlab(page))) {
+               WARN_ON(!PageCompound(page));
                return PAGE_SIZE << compound_order(page);
-
+       }
        s = page->slab;
-       BUG_ON(!s);
 
+#ifdef CONFIG_SLUB_DEBUG
        /*
         * Debugging requires use of the padding between object
         * and whatever may come after it.
@@ -2574,6 +2715,7 @@ size_t ksize(const void *object)
        if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
                return s->objsize;
 
+#endif
        /*
         * If we have the need to store the freelist pointer
         * back there or track user information then we can
@@ -2581,27 +2723,27 @@ size_t ksize(const void *object)
         */
        if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
                return s->inuse;
-
        /*
         * Else we can use all the padding etc for the allocation
         */
        return s->size;
 }
-EXPORT_SYMBOL(ksize);
 
 void kfree(const void *x)
 {
        struct page *page;
+       void *object = (void *)x;
 
        if (unlikely(ZERO_OR_NULL_PTR(x)))
                return;
 
        page = virt_to_head_page(x);
        if (unlikely(!PageSlab(page))) {
+               BUG_ON(!PageCompound(page));
                put_page(page);
                return;
        }
-       slab_free(page->slab, page, (void *)x, __builtin_return_address(0));
+       slab_free(page->slab, page, object, __builtin_return_address(0));
 }
 EXPORT_SYMBOL(kfree);
 
@@ -2622,8 +2764,9 @@ int kmem_cache_shrink(struct kmem_cache *s)
        struct kmem_cache_node *n;
        struct page *page;
        struct page *t;
+       int objects = oo_objects(s->max);
        struct list_head *slabs_by_inuse =
-               kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
+               kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
        unsigned long flags;
 
        if (!slabs_by_inuse)
@@ -2636,7 +2779,7 @@ int kmem_cache_shrink(struct kmem_cache *s)
                if (!n->nr_partial)
                        continue;
 
-               for (i = 0; i < s->objects; i++)
+               for (i = 0; i < objects; i++)
                        INIT_LIST_HEAD(slabs_by_inuse + i);
 
                spin_lock_irqsave(&n->list_lock, flags);
@@ -2668,7 +2811,7 @@ int kmem_cache_shrink(struct kmem_cache *s)
                 * Rebuild the partial list with the slabs filled up most
                 * first and the least used slabs at the end.
                 */
-               for (i = s->objects - 1; i >= 0; i--)
+               for (i = objects - 1; i >= 0; i--)
                        list_splice(slabs_by_inuse + i, n->partial.prev);
 
                spin_unlock_irqrestore(&n->list_lock, flags);
@@ -2718,7 +2861,7 @@ static void slab_mem_offline_callback(void *arg)
                         * and offline_pages() function shoudn't call this
                         * callback. So, we must fail.
                         */
-                       BUG_ON(atomic_long_read(&n->nr_slabs));
+                       BUG_ON(slabs_node(s, offline_node));
 
                        s->node[offline_node] = NULL;
                        kmem_cache_free(kmalloc_caches, n);
@@ -2743,7 +2886,7 @@ static int slab_mem_going_online_callback(void *arg)
                return 0;
 
        /*
-        * We are bringing a node online. No memory is availabe yet. We must
+        * We are bringing a node online. No memory is available yet. We must
         * allocate a kmem_cache_node structure in order to bring the node
         * online.
         */
@@ -2759,7 +2902,7 @@ static int slab_mem_going_online_callback(void *arg)
                        ret = -ENOMEM;
                        goto out;
                }
-               init_kmem_cache_node(n);
+               init_kmem_cache_node(n, s);
                s->node[nid] = n;
        }
 out:
@@ -2816,7 +2959,7 @@ void __init kmem_cache_init(void)
        kmalloc_caches[0].refcount = -1;
        caches++;
 
-       hotplug_memory_notifier(slab_memory_callback, 1);
+       hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
 #endif
 
        /* Able to allocate the per node structures */
@@ -2827,14 +2970,12 @@ void __init kmem_cache_init(void)
                create_kmalloc_cache(&kmalloc_caches[1],
                                "kmalloc-96", 96, GFP_KERNEL);
                caches++;
-       }
-       if (KMALLOC_MIN_SIZE <= 128) {
                create_kmalloc_cache(&kmalloc_caches[2],
                                "kmalloc-192", 192, GFP_KERNEL);
                caches++;
        }
 
-       for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
+       for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
                create_kmalloc_cache(&kmalloc_caches[i],
                        "kmalloc", 1 << i, GFP_KERNEL);
                caches++;
@@ -2844,7 +2985,7 @@ void __init kmem_cache_init(void)
        /*
         * Patch up the size_index table if we have strange large alignment
         * requirements for the kmalloc array. This is only the case for
-        * mips it seems. The standard arches will not generate any code here.
+        * MIPS it seems. The standard arches will not generate any code here.
         *
         * Largest permitted alignment is 256 bytes due to the way we
         * handle the index determination for the smaller caches.
@@ -2858,10 +2999,20 @@ void __init kmem_cache_init(void)
        for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
                size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
 
+       if (KMALLOC_MIN_SIZE == 128) {
+               /*
+                * The 192 byte sized cache is not used if the alignment
+                * is 128 byte. Redirect kmalloc to use the 256 byte cache
+                * instead.
+                */
+               for (i = 128 + 8; i <= 192; i += 8)
+                       size_index[(i - 1) / 8] = 8;
+       }
+
        slab_state = UP;
 
        /* Provide the correct kmalloc names now that the caches are up */
-       for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
+       for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
                kmalloc_caches[i]. name =
                        kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
 
@@ -2873,8 +3024,8 @@ void __init kmem_cache_init(void)
        kmem_size = sizeof(struct kmem_cache);
 #endif
 
-
-       printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
+       printk(KERN_INFO
+               "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
                " CPUs=%d, Nodes=%d\n",
                caches, cache_line_size(),
                slub_min_order, slub_max_order, slub_min_objects,
@@ -2903,7 +3054,7 @@ static int slab_unmergeable(struct kmem_cache *s)
 
 static struct kmem_cache *find_mergeable(size_t size,
                size_t align, unsigned long flags, const char *name,
-               void (*ctor)(struct kmem_cache *, void *))
+               void (*ctor)(void *))
 {
        struct kmem_cache *s;
 
@@ -2931,7 +3082,7 @@ static struct kmem_cache *find_mergeable(size_t size,
                 * Check if alignment is compatible.
                 * Courtesy of Adrian Drzewiecki
                 */
-               if ((s->size & ~(align -1)) != s->size)
+               if ((s->size & ~(align - 1)) != s->size)
                        continue;
 
                if (s->size - size >= sizeof(void *))
@@ -2943,8 +3094,7 @@ static struct kmem_cache *find_mergeable(size_t size,
 }
 
 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
-               size_t align, unsigned long flags,
-               void (*ctor)(struct kmem_cache *, void *))
+               size_t align, unsigned long flags, void (*ctor)(void *))
 {
        struct kmem_cache *s;
 
@@ -2966,12 +3116,15 @@ struct kmem_cache *kmem_cache_create(const char *name, size_t size,
                 */
                for_each_online_cpu(cpu)
                        get_cpu_slab(s, cpu)->objsize = s->objsize;
+
                s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
                up_write(&slub_lock);
+
                if (sysfs_slab_alias(s, name))
                        goto err;
                return s;
        }
+
        s = kmalloc(kmem_size, GFP_KERNEL);
        if (s) {
                if (kmem_cache_open(s, GFP_KERNEL, name,
@@ -3040,8 +3193,9 @@ static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
        return NOTIFY_OK;
 }
 
-static struct notifier_block __cpuinitdata slab_notifier =
-       { &slab_cpuup_callback, NULL, 0 };
+static struct notifier_block __cpuinitdata slab_notifier = {
+       .notifier_call = slab_cpuup_callback
+};
 
 #endif
 
@@ -3049,9 +3203,9 @@ void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
 {
        struct kmem_cache *s;
 
-       if (unlikely(size > PAGE_SIZE / 2))
-               return (void *)__get_free_pages(gfpflags | __GFP_COMP,
-                                                       get_order(size));
+       if (unlikely(size > PAGE_SIZE))
+               return kmalloc_large(size, gfpflags);
+
        s = get_slab(size, gfpflags);
 
        if (unlikely(ZERO_OR_NULL_PTR(s)))
@@ -3065,9 +3219,9 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
 {
        struct kmem_cache *s;
 
-       if (unlikely(size > PAGE_SIZE / 2))
-               return (void *)__get_free_pages(gfpflags | __GFP_COMP,
-                                                       get_order(size));
+       if (unlikely(size > PAGE_SIZE))
+               return kmalloc_large_node(size, gfpflags, node);
+
        s = get_slab(size, gfpflags);
 
        if (unlikely(ZERO_OR_NULL_PTR(s)))
@@ -3076,7 +3230,9 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
        return slab_alloc(s, gfpflags, node, caller);
 }
 
-static unsigned long count_partial(struct kmem_cache_node *n)
+#ifdef CONFIG_SLUB_DEBUG
+static unsigned long count_partial(struct kmem_cache_node *n,
+                                       int (*get_count)(struct page *))
 {
        unsigned long flags;
        unsigned long x = 0;
@@ -3084,12 +3240,26 @@ static unsigned long count_partial(struct kmem_cache_node *n)
 
        spin_lock_irqsave(&n->list_lock, flags);
        list_for_each_entry(page, &n->partial, lru)
-               x += page->inuse;
+               x += get_count(page);
        spin_unlock_irqrestore(&n->list_lock, flags);
        return x;
 }
 
-#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
+static int count_inuse(struct page *page)
+{
+       return page->inuse;
+}
+
+static int count_total(struct page *page)
+{
+       return page->objects;
+}
+
+static int count_free(struct page *page)
+{
+       return page->objects - page->inuse;
+}
+
 static int validate_slab(struct kmem_cache *s, struct page *page,
                                                unsigned long *map)
 {
@@ -3101,7 +3271,7 @@ static int validate_slab(struct kmem_cache *s, struct page *page,
                return 0;
 
        /* Now we know that a valid freelist exists */
-       bitmap_zero(map, s->objects);
+       bitmap_zero(map, page->objects);
 
        for_each_free_object(p, s, page->freelist) {
                set_bit(slab_index(p, s, addr), map);
@@ -3109,7 +3279,7 @@ static int validate_slab(struct kmem_cache *s, struct page *page,
                        return 0;
        }
 
-       for_each_object(p, s, addr)
+       for_each_object(p, s, addr, page->objects)
                if (!test_bit(slab_index(p, s, addr), map))
                        if (!check_object(s, page, p, 1))
                                return 0;
@@ -3127,12 +3297,12 @@ static void validate_slab_slab(struct kmem_cache *s, struct page *page,
                        s->name, page);
 
        if (s->flags & DEBUG_DEFAULT_FLAGS) {
-               if (!SlabDebug(page))
-                       printk(KERN_ERR "SLUB %s: SlabDebug not set "
+               if (!PageSlubDebug(page))
+                       printk(KERN_ERR "SLUB %s: SlubDebug not set "
                                "on slab 0x%p\n", s->name, page);
        } else {
-               if (SlabDebug(page))
-                       printk(KERN_ERR "SLUB %s: SlabDebug set on "
+               if (PageSlubDebug(page))
+                       printk(KERN_ERR "SLUB %s: SlubDebug set on "
                                "slab 0x%p\n", s->name, page);
        }
 }
@@ -3175,7 +3345,7 @@ static long validate_slab_cache(struct kmem_cache *s)
 {
        int node;
        unsigned long count = 0;
-       unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
+       unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
                                sizeof(unsigned long), GFP_KERNEL);
 
        if (!map)
@@ -3211,8 +3381,9 @@ static void resiliency_test(void)
        p = kzalloc(32, GFP_KERNEL);
        p[32 + sizeof(void *)] = 0x34;
        printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
-                       " 0x34 -> -0x%p\n", p);
-       printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
+                       " 0x34 -> -0x%p\n", p);
+       printk(KERN_ERR
+               "If allocated object is overwritten then not detectable\n\n");
 
        validate_slab_cache(kmalloc_caches + 5);
        p = kzalloc(64, GFP_KERNEL);
@@ -3220,7 +3391,8 @@ static void resiliency_test(void)
        *p = 0x56;
        printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
                                                                        p);
-       printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
+       printk(KERN_ERR
+               "If allocated object is overwritten then not detectable\n\n");
        validate_slab_cache(kmalloc_caches + 6);
 
        printk(KERN_ERR "\nB. Corruption after free\n");
@@ -3233,7 +3405,8 @@ static void resiliency_test(void)
        p = kzalloc(256, GFP_KERNEL);
        kfree(p);
        p[50] = 0x9a;
-       printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
+       printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
+                       p);
        validate_slab_cache(kmalloc_caches + 8);
 
        p = kzalloc(512, GFP_KERNEL);
@@ -3375,14 +3548,14 @@ static void process_slab(struct loc_track *t, struct kmem_cache *s,
                struct page *page, enum track_item alloc)
 {
        void *addr = page_address(page);
-       DECLARE_BITMAP(map, s->objects);
+       DECLARE_BITMAP(map, page->objects);
        void *p;
 
-       bitmap_zero(map, s->objects);
+       bitmap_zero(map, page->objects);
        for_each_free_object(p, s, page->freelist)
                set_bit(slab_index(p, s, addr), map);
 
-       for_each_object(p, s, addr)
+       for_each_object(p, s, addr, page->objects)
                if (!test_bit(slab_index(p, s, addr), map))
                        add_location(t, s, get_track(s, p, alloc));
 }
@@ -3390,7 +3563,7 @@ static void process_slab(struct loc_track *t, struct kmem_cache *s,
 static int list_locations(struct kmem_cache *s, char *buf,
                                        enum track_item alloc)
 {
-       int n = 0;
+       int len = 0;
        unsigned long i;
        struct loc_track t = { 0, 0, NULL };
        int node;
@@ -3421,134 +3594,136 @@ static int list_locations(struct kmem_cache *s, char *buf,
        for (i = 0; i < t.count; i++) {
                struct location *l = &t.loc[i];
 
-               if (n > PAGE_SIZE - 100)
+               if (len > PAGE_SIZE - 100)
                        break;
-               n += sprintf(buf + n, "%7ld ", l->count);
+               len += sprintf(buf + len, "%7ld ", l->count);
 
                if (l->addr)
-                       n += sprint_symbol(buf + n, (unsigned long)l->addr);
+                       len += sprint_symbol(buf + len, (unsigned long)l->addr);
                else
-                       n += sprintf(buf + n, "<not-available>");
+                       len += sprintf(buf + len, "<not-available>");
 
                if (l->sum_time != l->min_time) {
-                       unsigned long remainder;
-
-                       n += sprintf(buf + n, " age=%ld/%ld/%ld",
-                       l->min_time,
-                       div_long_long_rem(l->sum_time, l->count, &remainder),
-                       l->max_time);
+                       len += sprintf(buf + len, " age=%ld/%ld/%ld",
+                               l->min_time,
+                               (long)div_u64(l->sum_time, l->count),
+                               l->max_time);
                } else
-                       n += sprintf(buf + n, " age=%ld",
+                       len += sprintf(buf + len, " age=%ld",
                                l->min_time);
 
                if (l->min_pid != l->max_pid)
-                       n += sprintf(buf + n, " pid=%ld-%ld",
+                       len += sprintf(buf + len, " pid=%ld-%ld",
                                l->min_pid, l->max_pid);
                else
-                       n += sprintf(buf + n, " pid=%ld",
+                       len += sprintf(buf + len, " pid=%ld",
                                l->min_pid);
 
                if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
-                               n < PAGE_SIZE - 60) {
-                       n += sprintf(buf + n, " cpus=");
-                       n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
+                               len < PAGE_SIZE - 60) {
+                       len += sprintf(buf + len, " cpus=");
+                       len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
                                        l->cpus);
                }
 
                if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
-                               n < PAGE_SIZE - 60) {
-                       n += sprintf(buf + n, " nodes=");
-                       n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
+                               len < PAGE_SIZE - 60) {
+                       len += sprintf(buf + len, " nodes=");
+                       len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
                                        l->nodes);
                }
 
-               n += sprintf(buf + n, "\n");
+               len += sprintf(buf + len, "\n");
        }
 
        free_loc_track(&t);
        if (!t.count)
-               n += sprintf(buf, "No data\n");
-       return n;
+               len += sprintf(buf, "No data\n");
+       return len;
 }
 
 enum slab_stat_type {
-       SL_FULL,
-       SL_PARTIAL,
-       SL_CPU,
-       SL_OBJECTS
+       SL_ALL,                 /* All slabs */
+       SL_PARTIAL,             /* Only partially allocated slabs */
+       SL_CPU,                 /* Only slabs used for cpu caches */
+       SL_OBJECTS,             /* Determine allocated objects not slabs */
+       SL_TOTAL                /* Determine object capacity not slabs */
 };
 
-#define SO_FULL                (1 << SL_FULL)
+#define SO_ALL         (1 << SL_ALL)
 #define SO_PARTIAL     (1 << SL_PARTIAL)
 #define SO_CPU         (1 << SL_CPU)
 #define SO_OBJECTS     (1 << SL_OBJECTS)
+#define SO_TOTAL       (1 << SL_TOTAL)
 
-static unsigned long slab_objects(struct kmem_cache *s,
-                       char *buf, unsigned long flags)
+static ssize_t show_slab_objects(struct kmem_cache *s,
+                           char *buf, unsigned long flags)
 {
        unsigned long total = 0;
-       int cpu;
        int node;
        int x;
        unsigned long *nodes;
        unsigned long *per_cpu;
 
        nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
+       if (!nodes)
+               return -ENOMEM;
        per_cpu = nodes + nr_node_ids;
 
-       for_each_possible_cpu(cpu) {
-               struct page *page;
-               int node;
-               struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
+       if (flags & SO_CPU) {
+               int cpu;
 
-               if (!c)
-                       continue;
+               for_each_possible_cpu(cpu) {
+                       struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
 
-               page = c->page;
-               node = c->node;
-               if (node < 0)
-                       continue;
-               if (page) {
-                       if (flags & SO_CPU) {
-                               int x = 0;
+                       if (!c || c->node < 0)
+                               continue;
 
-                               if (flags & SO_OBJECTS)
-                                       x = page->inuse;
+                       if (c->page) {
+                                       if (flags & SO_TOTAL)
+                                               x = c->page->objects;
+                               else if (flags & SO_OBJECTS)
+                                       x = c->page->inuse;
                                else
                                        x = 1;
+
                                total += x;
-                               nodes[node] += x;
+                               nodes[c->node] += x;
                        }
-                       per_cpu[node]++;
+                       per_cpu[c->node]++;
                }
        }
 
-       for_each_node_state(node, N_NORMAL_MEMORY) {
-               struct kmem_cache_node *n = get_node(s, node);
+       if (flags & SO_ALL) {
+               for_each_node_state(node, N_NORMAL_MEMORY) {
+                       struct kmem_cache_node *n = get_node(s, node);
+
+               if (flags & SO_TOTAL)
+                       x = atomic_long_read(&n->total_objects);
+               else if (flags & SO_OBJECTS)
+                       x = atomic_long_read(&n->total_objects) -
+                               count_partial(n, count_free);
 
-               if (flags & SO_PARTIAL) {
-                       if (flags & SO_OBJECTS)
-                               x = count_partial(n);
                        else
-                               x = n->nr_partial;
+                               x = atomic_long_read(&n->nr_slabs);
                        total += x;
                        nodes[node] += x;
                }
 
-               if (flags & SO_FULL) {
-                       int full_slabs = atomic_long_read(&n->nr_slabs)
-                                       - per_cpu[node]
-                                       - n->nr_partial;
+       } else if (flags & SO_PARTIAL) {
+               for_each_node_state(node, N_NORMAL_MEMORY) {
+                       struct kmem_cache_node *n = get_node(s, node);
 
-                       if (flags & SO_OBJECTS)
-                               x = full_slabs * s->objects;
+                       if (flags & SO_TOTAL)
+                               x = count_partial(n, count_total);
+                       else if (flags & SO_OBJECTS)
+                               x = count_partial(n, count_inuse);
                        else
-                               x = full_slabs;
+                               x = n->nr_partial;
                        total += x;
                        nodes[node] += x;
                }
        }
-
        x = sprintf(buf, "%lu", total);
 #ifdef CONFIG_NUMA
        for_each_node_state(node, N_NORMAL_MEMORY)
@@ -3563,14 +3738,6 @@ static unsigned long slab_objects(struct kmem_cache *s,
 static int any_slab_objects(struct kmem_cache *s)
 {
        int node;
-       int cpu;
-
-       for_each_possible_cpu(cpu) {
-               struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
-
-               if (c && c->page)
-                       return 1;
-       }
 
        for_each_online_node(node) {
                struct kmem_cache_node *n = get_node(s, node);
@@ -3578,7 +3745,7 @@ static int any_slab_objects(struct kmem_cache *s)
                if (!n)
                        continue;
 
-               if (n->nr_partial || atomic_long_read(&n->nr_slabs))
+               if (atomic_long_read(&n->total_objects))
                        return 1;
        }
        return 0;
@@ -3620,15 +3787,32 @@ SLAB_ATTR_RO(object_size);
 
 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
 {
-       return sprintf(buf, "%d\n", s->objects);
+       return sprintf(buf, "%d\n", oo_objects(s->oo));
 }
 SLAB_ATTR_RO(objs_per_slab);
 
+static ssize_t order_store(struct kmem_cache *s,
+                               const char *buf, size_t length)
+{
+       unsigned long order;
+       int err;
+
+       err = strict_strtoul(buf, 10, &order);
+       if (err)
+               return err;
+
+       if (order > slub_max_order || order < slub_min_order)
+               return -EINVAL;
+
+       calculate_sizes(s, order);
+       return length;
+}
+
 static ssize_t order_show(struct kmem_cache *s, char *buf)
 {
-       return sprintf(buf, "%d\n", s->order);
+       return sprintf(buf, "%d\n", oo_order(s->oo));
 }
-SLAB_ATTR_RO(order);
+SLAB_ATTR(order);
 
 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
 {
@@ -3649,28 +3833,40 @@ SLAB_ATTR_RO(aliases);
 
 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
 {
-       return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
+       return show_slab_objects(s, buf, SO_ALL);
 }
 SLAB_ATTR_RO(slabs);
 
 static ssize_t partial_show(struct kmem_cache *s, char *buf)
 {
-       return slab_objects(s, buf, SO_PARTIAL);
+       return show_slab_objects(s, buf, SO_PARTIAL);
 }
 SLAB_ATTR_RO(partial);
 
 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
 {
-       return slab_objects(s, buf, SO_CPU);
+       return show_slab_objects(s, buf, SO_CPU);
 }
 SLAB_ATTR_RO(cpu_slabs);
 
 static ssize_t objects_show(struct kmem_cache *s, char *buf)
 {
-       return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
+       return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
 }
 SLAB_ATTR_RO(objects);
 
+static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
+{
+       return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
+}
+SLAB_ATTR_RO(objects_partial);
+
+static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
+{
+       return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
+}
+SLAB_ATTR_RO(total_objects);
+
 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
 {
        return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
@@ -3750,7 +3946,7 @@ static ssize_t red_zone_store(struct kmem_cache *s,
        s->flags &= ~SLAB_RED_ZONE;
        if (buf[0] == '1')
                s->flags |= SLAB_RED_ZONE;
-       calculate_sizes(s);
+       calculate_sizes(s, -1);
        return length;
 }
 SLAB_ATTR(red_zone);
@@ -3769,7 +3965,7 @@ static ssize_t poison_store(struct kmem_cache *s,
        s->flags &= ~SLAB_POISON;
        if (buf[0] == '1')
                s->flags |= SLAB_POISON;
-       calculate_sizes(s);
+       calculate_sizes(s, -1);
        return length;
 }
 SLAB_ATTR(poison);
@@ -3788,7 +3984,7 @@ static ssize_t store_user_store(struct kmem_cache *s,
        s->flags &= ~SLAB_STORE_USER;
        if (buf[0] == '1')
                s->flags |= SLAB_STORE_USER;
-       calculate_sizes(s);
+       calculate_sizes(s, -1);
        return length;
 }
 SLAB_ATTR(store_user);
@@ -3848,29 +4044,94 @@ static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
 SLAB_ATTR_RO(free_calls);
 
 #ifdef CONFIG_NUMA
-static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
+static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
 {
-       return sprintf(buf, "%d\n", s->defrag_ratio / 10);
+       return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
 }
 
-static ssize_t defrag_ratio_store(struct kmem_cache *s,
+static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
                                const char *buf, size_t length)
 {
-       int n = simple_strtoul(buf, NULL, 10);
+       unsigned long ratio;
+       int err;
+
+       err = strict_strtoul(buf, 10, &ratio);
+       if (err)
+               return err;
+
+       if (ratio <= 100)
+               s->remote_node_defrag_ratio = ratio * 10;
 
-       if (n < 100)
-               s->defrag_ratio = n * 10;
        return length;
 }
-SLAB_ATTR(defrag_ratio);
+SLAB_ATTR(remote_node_defrag_ratio);
+#endif
+
+#ifdef CONFIG_SLUB_STATS
+static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
+{
+       unsigned long sum  = 0;
+       int cpu;
+       int len;
+       int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
+
+       if (!data)
+               return -ENOMEM;
+
+       for_each_online_cpu(cpu) {
+               unsigned x = get_cpu_slab(s, cpu)->stat[si];
+
+               data[cpu] = x;
+               sum += x;
+       }
+
+       len = sprintf(buf, "%lu", sum);
+
+#ifdef CONFIG_SMP
+       for_each_online_cpu(cpu) {
+               if (data[cpu] && len < PAGE_SIZE - 20)
+                       len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
+       }
+#endif
+       kfree(data);
+       return len + sprintf(buf + len, "\n");
+}
+
+#define STAT_ATTR(si, text)                                    \
+static ssize_t text##_show(struct kmem_cache *s, char *buf)    \
+{                                                              \
+       return show_stat(s, buf, si);                           \
+}                                                              \
+SLAB_ATTR_RO(text);                                            \
+
+STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
+STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
+STAT_ATTR(FREE_FASTPATH, free_fastpath);
+STAT_ATTR(FREE_SLOWPATH, free_slowpath);
+STAT_ATTR(FREE_FROZEN, free_frozen);
+STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
+STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
+STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
+STAT_ATTR(ALLOC_SLAB, alloc_slab);
+STAT_ATTR(ALLOC_REFILL, alloc_refill);
+STAT_ATTR(FREE_SLAB, free_slab);
+STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
+STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
+STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
+STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
+STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
+STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
+STAT_ATTR(ORDER_FALLBACK, order_fallback);
 #endif
 
-static struct attribute * slab_attrs[] = {
+static struct attribute *slab_attrs[] = {
        &slab_size_attr.attr,
        &object_size_attr.attr,
        &objs_per_slab_attr.attr,
        &order_attr.attr,
        &objects_attr.attr,
+       &objects_partial_attr.attr,
+       &total_objects_attr.attr,
        &slabs_attr.attr,
        &partial_attr.attr,
        &cpu_slabs_attr.attr,
@@ -3893,7 +4154,27 @@ static struct attribute * slab_attrs[] = {
        &cache_dma_attr.attr,
 #endif
 #ifdef CONFIG_NUMA
-       &defrag_ratio_attr.attr,
+       &remote_node_defrag_ratio_attr.attr,
+#endif
+#ifdef CONFIG_SLUB_STATS
+       &alloc_fastpath_attr.attr,
+       &alloc_slowpath_attr.attr,
+       &free_fastpath_attr.attr,
+       &free_slowpath_attr.attr,
+       &free_frozen_attr.attr,
+       &free_add_partial_attr.attr,
+       &free_remove_partial_attr.attr,
+       &alloc_from_partial_attr.attr,
+       &alloc_slab_attr.attr,
+       &alloc_refill_attr.attr,
+       &free_slab_attr.attr,
+       &cpuslab_flush_attr.attr,
+       &deactivate_full_attr.attr,
+       &deactivate_empty_attr.attr,
+       &deactivate_to_head_attr.attr,
+       &deactivate_to_tail_attr.attr,
+       &deactivate_remote_frees_attr.attr,
+       &order_fallback_attr.attr,
 #endif
        NULL
 };
@@ -3940,6 +4221,13 @@ static ssize_t slab_attr_store(struct kobject *kobj,
        return err;
 }
 
+static void kmem_cache_release(struct kobject *kobj)
+{
+       struct kmem_cache *s = to_slab(kobj);
+
+       kfree(s);
+}
+
 static struct sysfs_ops slab_sysfs_ops = {
        .show = slab_attr_show,
        .store = slab_attr_store,
@@ -3947,6 +4235,7 @@ static struct sysfs_ops slab_sysfs_ops = {
 
 static struct kobj_type slab_ktype = {
        .sysfs_ops = &slab_sysfs_ops,
+       .release = kmem_cache_release
 };
 
 static int uevent_filter(struct kset *kset, struct kobject *kobj)
@@ -3967,8 +4256,8 @@ static struct kset *slab_kset;
 #define ID_STR_LENGTH 64
 
 /* Create a unique string id for a slab cache:
- * format
- * :[flags-]size:[memory address of kmemcache]
+ *
+ * Format      :[flags-]size
  */
 static char *create_unique_id(struct kmem_cache *s)
 {
@@ -4025,13 +4314,12 @@ static int sysfs_slab_add(struct kmem_cache *s)
                name = create_unique_id(s);
        }
 
-       kobject_set_name(&s->kobj, name);
        s->kobj.kset = slab_kset;
-       s->kobj.ktype = &slab_ktype;
-       kobject_init(&s->kobj);
-       err = kobject_add(&s->kobj);
-       if (err)
+       err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
+       if (err) {
+               kobject_put(&s->kobj);
                return err;
+       }
 
        err = sysfs_create_group(&s->kobj, &slab_attr_group);
        if (err)
@@ -4049,6 +4337,7 @@ static void sysfs_slab_remove(struct kmem_cache *s)
 {
        kobject_uevent(&s->kobj, KOBJ_REMOVE);
        kobject_del(&s->kobj);
+       kobject_put(&s->kobj);
 }
 
 /*
@@ -4091,7 +4380,7 @@ static int __init slab_sysfs_init(void)
        struct kmem_cache *s;
        int err;
 
-       slab_kset = kset_create_and_add("slab", &slab_uevent_ops, NULL);
+       slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
        if (!slab_kset) {
                printk(KERN_ERR "Cannot register slab subsystem.\n");
                return -ENOSYS;
@@ -4129,8 +4418,8 @@ __initcall(slab_sysfs_init);
  */
 #ifdef CONFIG_SLABINFO
 
-ssize_t slabinfo_write(struct file *file, const char __user * buffer,
-                       size_t count, loff_t *ppos)
+ssize_t slabinfo_write(struct file *file, const char __user *buffer,
+                      size_t count, loff_t *ppos)
 {
        return -EINVAL;
 }
@@ -4172,7 +4461,8 @@ static int s_show(struct seq_file *m, void *p)
        unsigned long nr_partials = 0;
        unsigned long nr_slabs = 0;
        unsigned long nr_inuse = 0;
-       unsigned long nr_objs;
+       unsigned long nr_objs = 0;
+       unsigned long nr_free = 0;
        struct kmem_cache *s;
        int node;
 
@@ -4186,14 +4476,15 @@ static int s_show(struct seq_file *m, void *p)
 
                nr_partials += n->nr_partial;
                nr_slabs += atomic_long_read(&n->nr_slabs);
-               nr_inuse += count_partial(n);
+               nr_objs += atomic_long_read(&n->total_objects);
+               nr_free += count_partial(n, count_free);
        }
 
-       nr_objs = nr_slabs * s->objects;
-       nr_inuse += (nr_slabs - nr_partials) * s->objects;
+       nr_inuse = nr_objs - nr_free;
 
        seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
-                  nr_objs, s->size, s->objects, (1 << s->order));
+                  nr_objs, s->size, oo_objects(s->oo),
+                  (1 << oo_order(s->oo)));
        seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
        seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
                   0UL);