]> nv-tegra.nvidia Code Review - linux-2.6.git/blobdiff - kernel/workqueue.c
workqueues: s/ON_STACK/ONSTACK/
[linux-2.6.git] / kernel / workqueue.c
index 1f0c509b40d34d944bea77e300e237ab9145439c..90db1bd1a97852e4c547c43d840b2ca624c9a773 100644 (file)
@@ -1,19 +1,26 @@
 /*
- * linux/kernel/workqueue.c
+ * kernel/workqueue.c - generic async execution with shared worker pool
  *
- * Generic mechanism for defining kernel helper threads for running
- * arbitrary tasks in process context.
+ * Copyright (C) 2002          Ingo Molnar
  *
- * Started by Ingo Molnar, Copyright (C) 2002
+ *   Derived from the taskqueue/keventd code by:
+ *     David Woodhouse <dwmw2@infradead.org>
+ *     Andrew Morton
+ *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
+ *     Theodore Ts'o <tytso@mit.edu>
  *
- * Derived from the taskqueue/keventd code by:
+ * Made to use alloc_percpu by Christoph Lameter.
  *
- *   David Woodhouse <dwmw2@infradead.org>
- *   Andrew Morton
- *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
- *   Theodore Ts'o <tytso@mit.edu>
+ * Copyright (C) 2010          SUSE Linux Products GmbH
+ * Copyright (C) 2010          Tejun Heo <tj@kernel.org>
  *
- * Made to use alloc_percpu by Christoph Lameter.
+ * This is the generic async execution mechanism.  Work items as are
+ * executed in process context.  The worker pool is shared and
+ * automatically managed.  There is one worker pool for each CPU and
+ * one extra for works which are better served by workers which are
+ * not bound to any specific CPU.
+ *
+ * Please read Documentation/workqueue.txt for details.
  */
 
 #include <linux/module.h>
 #include <linux/kallsyms.h>
 #include <linux/debug_locks.h>
 #include <linux/lockdep.h>
+#include <linux/idr.h>
+
+#include "workqueue_sched.h"
+
+enum {
+       /* global_cwq flags */
+       GCWQ_MANAGE_WORKERS     = 1 << 0,       /* need to manage workers */
+       GCWQ_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
+       GCWQ_DISASSOCIATED      = 1 << 2,       /* cpu can't serve workers */
+       GCWQ_FREEZING           = 1 << 3,       /* freeze in progress */
+       GCWQ_HIGHPRI_PENDING    = 1 << 4,       /* highpri works on queue */
+
+       /* worker flags */
+       WORKER_STARTED          = 1 << 0,       /* started */
+       WORKER_DIE              = 1 << 1,       /* die die die */
+       WORKER_IDLE             = 1 << 2,       /* is idle */
+       WORKER_PREP             = 1 << 3,       /* preparing to run works */
+       WORKER_ROGUE            = 1 << 4,       /* not bound to any cpu */
+       WORKER_REBIND           = 1 << 5,       /* mom is home, come back */
+       WORKER_CPU_INTENSIVE    = 1 << 6,       /* cpu intensive */
+       WORKER_UNBOUND          = 1 << 7,       /* worker is unbound */
+
+       WORKER_NOT_RUNNING      = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
+                                 WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
+
+       /* gcwq->trustee_state */
+       TRUSTEE_START           = 0,            /* start */
+       TRUSTEE_IN_CHARGE       = 1,            /* trustee in charge of gcwq */
+       TRUSTEE_BUTCHER         = 2,            /* butcher workers */
+       TRUSTEE_RELEASE         = 3,            /* release workers */
+       TRUSTEE_DONE            = 4,            /* trustee is done */
+
+       BUSY_WORKER_HASH_ORDER  = 6,            /* 64 pointers */
+       BUSY_WORKER_HASH_SIZE   = 1 << BUSY_WORKER_HASH_ORDER,
+       BUSY_WORKER_HASH_MASK   = BUSY_WORKER_HASH_SIZE - 1,
+
+       MAX_IDLE_WORKERS_RATIO  = 4,            /* 1/4 of busy can be idle */
+       IDLE_WORKER_TIMEOUT     = 300 * HZ,     /* keep idle ones for 5 mins */
+
+       MAYDAY_INITIAL_TIMEOUT  = HZ / 100,     /* call for help after 10ms */
+       MAYDAY_INTERVAL         = HZ / 10,      /* and then every 100ms */
+       CREATE_COOLDOWN         = HZ,           /* time to breath after fail */
+       TRUSTEE_COOLDOWN        = HZ / 10,      /* for trustee draining */
+
+       /*
+        * Rescue workers are used only on emergencies and shared by
+        * all cpus.  Give -20.
+        */
+       RESCUER_NICE_LEVEL      = -20,
+};
 
 /*
- * The per-CPU workqueue (if single thread, we always use the first
- * possible cpu).
+ * Structure fields follow one of the following exclusion rules.
+ *
+ * I: Modifiable by initialization/destruction paths and read-only for
+ *    everyone else.
+ *
+ * P: Preemption protected.  Disabling preemption is enough and should
+ *    only be modified and accessed from the local cpu.
+ *
+ * L: gcwq->lock protected.  Access with gcwq->lock held.
+ *
+ * X: During normal operation, modification requires gcwq->lock and
+ *    should be done only from local cpu.  Either disabling preemption
+ *    on local cpu or grabbing gcwq->lock is enough for read access.
+ *    If GCWQ_DISASSOCIATED is set, it's identical to L.
+ *
+ * F: wq->flush_mutex protected.
+ *
+ * W: workqueue_lock protected.
  */
-struct cpu_workqueue_struct {
 
-       spinlock_t lock;
+struct global_cwq;
+
+/*
+ * The poor guys doing the actual heavy lifting.  All on-duty workers
+ * are either serving the manager role, on idle list or on busy hash.
+ */
+struct worker {
+       /* on idle list while idle, on busy hash table while busy */
+       union {
+               struct list_head        entry;  /* L: while idle */
+               struct hlist_node       hentry; /* L: while busy */
+       };
+
+       struct work_struct      *current_work;  /* L: work being processed */
+       struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
+       struct list_head        scheduled;      /* L: scheduled works */
+       struct task_struct      *task;          /* I: worker task */
+       struct global_cwq       *gcwq;          /* I: the associated gcwq */
+       /* 64 bytes boundary on 64bit, 32 on 32bit */
+       unsigned long           last_active;    /* L: last active timestamp */
+       unsigned int            flags;          /* X: flags */
+       int                     id;             /* I: worker id */
+       struct work_struct      rebind_work;    /* L: rebind worker to cpu */
+};
+
+/*
+ * Global per-cpu workqueue.  There's one and only one for each cpu
+ * and all works are queued and processed here regardless of their
+ * target workqueues.
+ */
+struct global_cwq {
+       spinlock_t              lock;           /* the gcwq lock */
+       struct list_head        worklist;       /* L: list of pending works */
+       unsigned int            cpu;            /* I: the associated cpu */
+       unsigned int            flags;          /* L: GCWQ_* flags */
+
+       int                     nr_workers;     /* L: total number of workers */
+       int                     nr_idle;        /* L: currently idle ones */
 
-       struct list_head worklist;
-       wait_queue_head_t more_work;
-       struct work_struct *current_work;
+       /* workers are chained either in the idle_list or busy_hash */
+       struct list_head        idle_list;      /* X: list of idle workers */
+       struct hlist_head       busy_hash[BUSY_WORKER_HASH_SIZE];
+                                               /* L: hash of busy workers */
 
-       struct workqueue_struct *wq;
-       struct task_struct *thread;
+       struct timer_list       idle_timer;     /* L: worker idle timeout */
+       struct timer_list       mayday_timer;   /* L: SOS timer for dworkers */
+
+       struct ida              worker_ida;     /* L: for worker IDs */
+
+       struct task_struct      *trustee;       /* L: for gcwq shutdown */
+       unsigned int            trustee_state;  /* L: trustee state */
+       wait_queue_head_t       trustee_wait;   /* trustee wait */
+       struct worker           *first_idle;    /* L: first idle worker */
+} ____cacheline_aligned_in_smp;
+
+/*
+ * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
+ * work_struct->data are used for flags and thus cwqs need to be
+ * aligned at two's power of the number of flag bits.
+ */
+struct cpu_workqueue_struct {
+       struct global_cwq       *gcwq;          /* I: the associated gcwq */
+       struct workqueue_struct *wq;            /* I: the owning workqueue */
+       int                     work_color;     /* L: current color */
+       int                     flush_color;    /* L: flushing color */
+       int                     nr_in_flight[WORK_NR_COLORS];
+                                               /* L: nr of in_flight works */
+       int                     nr_active;      /* L: nr of active works */
+       int                     max_active;     /* L: max active works */
+       struct list_head        delayed_works;  /* L: delayed works */
+};
+
+/*
+ * Structure used to wait for workqueue flush.
+ */
+struct wq_flusher {
+       struct list_head        list;           /* F: list of flushers */
+       int                     flush_color;    /* F: flush color waiting for */
+       struct completion       done;           /* flush completion */
+};
 
-       int run_depth;          /* Detect run_workqueue() recursion depth */
-} ____cacheline_aligned;
+/*
+ * All cpumasks are assumed to be always set on UP and thus can't be
+ * used to determine whether there's something to be done.
+ */
+#ifdef CONFIG_SMP
+typedef cpumask_var_t mayday_mask_t;
+#define mayday_test_and_set_cpu(cpu, mask)     \
+       cpumask_test_and_set_cpu((cpu), (mask))
+#define mayday_clear_cpu(cpu, mask)            cpumask_clear_cpu((cpu), (mask))
+#define for_each_mayday_cpu(cpu, mask)         for_each_cpu((cpu), (mask))
+#define alloc_mayday_mask(maskp, gfp)          zalloc_cpumask_var((maskp), (gfp))
+#define free_mayday_mask(mask)                 free_cpumask_var((mask))
+#else
+typedef unsigned long mayday_mask_t;
+#define mayday_test_and_set_cpu(cpu, mask)     test_and_set_bit(0, &(mask))
+#define mayday_clear_cpu(cpu, mask)            clear_bit(0, &(mask))
+#define for_each_mayday_cpu(cpu, mask)         if ((cpu) = 0, (mask))
+#define alloc_mayday_mask(maskp, gfp)          true
+#define free_mayday_mask(mask)                 do { } while (0)
+#endif
 
 /*
  * The externally visible workqueue abstraction is an array of
  * per-CPU workqueues:
  */
 struct workqueue_struct {
-       struct cpu_workqueue_struct *cpu_wq;
-       struct list_head list;
-       const char *name;
-       int singlethread;
-       int freezeable;         /* Freeze threads during suspend */
-       int rt;
+       unsigned int            flags;          /* I: WQ_* flags */
+       union {
+               struct cpu_workqueue_struct __percpu    *pcpu;
+               struct cpu_workqueue_struct             *single;
+               unsigned long                           v;
+       } cpu_wq;                               /* I: cwq's */
+       struct list_head        list;           /* W: list of all workqueues */
+
+       struct mutex            flush_mutex;    /* protects wq flushing */
+       int                     work_color;     /* F: current work color */
+       int                     flush_color;    /* F: current flush color */
+       atomic_t                nr_cwqs_to_flush; /* flush in progress */
+       struct wq_flusher       *first_flusher; /* F: first flusher */
+       struct list_head        flusher_queue;  /* F: flush waiters */
+       struct list_head        flusher_overflow; /* F: flush overflow list */
+
+       mayday_mask_t           mayday_mask;    /* cpus requesting rescue */
+       struct worker           *rescuer;       /* I: rescue worker */
+
+       int                     saved_max_active; /* W: saved cwq max_active */
+       const char              *name;          /* I: workqueue name */
 #ifdef CONFIG_LOCKDEP
-       struct lockdep_map lockdep_map;
+       struct lockdep_map      lockdep_map;
 #endif
 };
 
-/* Serializes the accesses to the list of workqueues. */
-static DEFINE_SPINLOCK(workqueue_lock);
-static LIST_HEAD(workqueues);
+struct workqueue_struct *system_wq __read_mostly;
+struct workqueue_struct *system_long_wq __read_mostly;
+struct workqueue_struct *system_nrt_wq __read_mostly;
+struct workqueue_struct *system_unbound_wq __read_mostly;
+EXPORT_SYMBOL_GPL(system_wq);
+EXPORT_SYMBOL_GPL(system_long_wq);
+EXPORT_SYMBOL_GPL(system_nrt_wq);
+EXPORT_SYMBOL_GPL(system_unbound_wq);
 
-static int singlethread_cpu __read_mostly;
-static const struct cpumask *cpu_singlethread_map __read_mostly;
-/*
- * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
- * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
- * which comes in between can't use for_each_online_cpu(). We could
- * use cpu_possible_map, the cpumask below is more a documentation
- * than optimization.
- */
-static cpumask_var_t cpu_populated_map __read_mostly;
+#define CREATE_TRACE_POINTS
+#include <trace/events/workqueue.h>
+
+#define for_each_busy_worker(worker, i, pos, gcwq)                     \
+       for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)                     \
+               hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
 
-/* If it's single threaded, it isn't in the list of workqueues. */
-static inline int is_wq_single_threaded(struct workqueue_struct *wq)
+static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
+                                 unsigned int sw)
 {
-       return wq->singlethread;
+       if (cpu < nr_cpu_ids) {
+               if (sw & 1) {
+                       cpu = cpumask_next(cpu, mask);
+                       if (cpu < nr_cpu_ids)
+                               return cpu;
+               }
+               if (sw & 2)
+                       return WORK_CPU_UNBOUND;
+       }
+       return WORK_CPU_NONE;
 }
 
-static const struct cpumask *wq_cpu_map(struct workqueue_struct *wq)
+static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
+                               struct workqueue_struct *wq)
 {
-       return is_wq_single_threaded(wq)
-               ? cpu_singlethread_map : cpu_populated_map;
+       return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
 }
 
-static
-struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
+/*
+ * CPU iterators
+ *
+ * An extra gcwq is defined for an invalid cpu number
+ * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
+ * specific CPU.  The following iterators are similar to
+ * for_each_*_cpu() iterators but also considers the unbound gcwq.
+ *
+ * for_each_gcwq_cpu()         : possible CPUs + WORK_CPU_UNBOUND
+ * for_each_online_gcwq_cpu()  : online CPUs + WORK_CPU_UNBOUND
+ * for_each_cwq_cpu()          : possible CPUs for bound workqueues,
+ *                               WORK_CPU_UNBOUND for unbound workqueues
+ */
+#define for_each_gcwq_cpu(cpu)                                         \
+       for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);         \
+            (cpu) < WORK_CPU_NONE;                                     \
+            (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
+
+#define for_each_online_gcwq_cpu(cpu)                                  \
+       for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);           \
+            (cpu) < WORK_CPU_NONE;                                     \
+            (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
+
+#define for_each_cwq_cpu(cpu, wq)                                      \
+       for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));        \
+            (cpu) < WORK_CPU_NONE;                                     \
+            (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
+
+#ifdef CONFIG_DEBUG_OBJECTS_WORK
+
+static struct debug_obj_descr work_debug_descr;
+
+/*
+ * fixup_init is called when:
+ * - an active object is initialized
+ */
+static int work_fixup_init(void *addr, enum debug_obj_state state)
 {
-       if (unlikely(is_wq_single_threaded(wq)))
-               cpu = singlethread_cpu;
-       return per_cpu_ptr(wq->cpu_wq, cpu);
+       struct work_struct *work = addr;
+
+       switch (state) {
+       case ODEBUG_STATE_ACTIVE:
+               cancel_work_sync(work);
+               debug_object_init(work, &work_debug_descr);
+               return 1;
+       default:
+               return 0;
+       }
 }
 
 /*
- * Set the workqueue on which a work item is to be run
- * - Must *only* be called if the pending flag is set
+ * fixup_activate is called when:
+ * - an active object is activated
+ * - an unknown object is activated (might be a statically initialized object)
  */
-static inline void set_wq_data(struct work_struct *work,
-                               struct cpu_workqueue_struct *cwq)
+static int work_fixup_activate(void *addr, enum debug_obj_state state)
 {
-       unsigned long new;
+       struct work_struct *work = addr;
 
-       BUG_ON(!work_pending(work));
+       switch (state) {
+
+       case ODEBUG_STATE_NOTAVAILABLE:
+               /*
+                * This is not really a fixup. The work struct was
+                * statically initialized. We just make sure that it
+                * is tracked in the object tracker.
+                */
+               if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
+                       debug_object_init(work, &work_debug_descr);
+                       debug_object_activate(work, &work_debug_descr);
+                       return 0;
+               }
+               WARN_ON_ONCE(1);
+               return 0;
+
+       case ODEBUG_STATE_ACTIVE:
+               WARN_ON(1);
 
-       new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
-       new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
-       atomic_long_set(&work->data, new);
+       default:
+               return 0;
+       }
 }
 
-static inline
-struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
+/*
+ * fixup_free is called when:
+ * - an active object is freed
+ */
+static int work_fixup_free(void *addr, enum debug_obj_state state)
 {
-       return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
+       struct work_struct *work = addr;
+
+       switch (state) {
+       case ODEBUG_STATE_ACTIVE:
+               cancel_work_sync(work);
+               debug_object_free(work, &work_debug_descr);
+               return 1;
+       default:
+               return 0;
+       }
 }
 
-static void insert_work(struct cpu_workqueue_struct *cwq,
-                       struct work_struct *work, struct list_head *head)
+static struct debug_obj_descr work_debug_descr = {
+       .name           = "work_struct",
+       .fixup_init     = work_fixup_init,
+       .fixup_activate = work_fixup_activate,
+       .fixup_free     = work_fixup_free,
+};
+
+static inline void debug_work_activate(struct work_struct *work)
 {
-       set_wq_data(work, cwq);
-       /*
-        * Ensure that we get the right work->data if we see the
-        * result of list_add() below, see try_to_grab_pending().
-        */
-       smp_wmb();
-       list_add_tail(&work->entry, head);
-       wake_up(&cwq->more_work);
+       debug_object_activate(work, &work_debug_descr);
 }
 
-static void __queue_work(struct cpu_workqueue_struct *cwq,
-                        struct work_struct *work)
+static inline void debug_work_deactivate(struct work_struct *work)
 {
-       unsigned long flags;
+       debug_object_deactivate(work, &work_debug_descr);
+}
 
-       spin_lock_irqsave(&cwq->lock, flags);
-       insert_work(cwq, work, &cwq->worklist);
-       spin_unlock_irqrestore(&cwq->lock, flags);
+void __init_work(struct work_struct *work, int onstack)
+{
+       if (onstack)
+               debug_object_init_on_stack(work, &work_debug_descr);
+       else
+               debug_object_init(work, &work_debug_descr);
 }
+EXPORT_SYMBOL_GPL(__init_work);
 
-/**
- * queue_work - queue work on a workqueue
- * @wq: workqueue to use
- * @work: work to queue
- *
- * Returns 0 if @work was already on a queue, non-zero otherwise.
- *
- * We queue the work to the CPU on which it was submitted, but if the CPU dies
- * it can be processed by another CPU.
- */
-int queue_work(struct workqueue_struct *wq, struct work_struct *work)
+void destroy_work_on_stack(struct work_struct *work)
 {
-       int ret;
+       debug_object_free(work, &work_debug_descr);
+}
+EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 
-       ret = queue_work_on(get_cpu(), wq, work);
-       put_cpu();
+#else
+static inline void debug_work_activate(struct work_struct *work) { }
+static inline void debug_work_deactivate(struct work_struct *work) { }
+#endif
 
-       return ret;
-}
-EXPORT_SYMBOL_GPL(queue_work);
+/* Serializes the accesses to the list of workqueues. */
+static DEFINE_SPINLOCK(workqueue_lock);
+static LIST_HEAD(workqueues);
+static bool workqueue_freezing;                /* W: have wqs started freezing? */
 
-/**
- * queue_work_on - queue work on specific cpu
- * @cpu: CPU number to execute work on
- * @wq: workqueue to use
- * @work: work to queue
- *
- * Returns 0 if @work was already on a queue, non-zero otherwise.
- *
- * We queue the work to a specific CPU, the caller must ensure it
- * can't go away.
+/*
+ * The almighty global cpu workqueues.  nr_running is the only field
+ * which is expected to be used frequently by other cpus via
+ * try_to_wake_up().  Put it in a separate cacheline.
  */
-int
-queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
+static DEFINE_PER_CPU(struct global_cwq, global_cwq);
+static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
+
+/*
+ * Global cpu workqueue and nr_running counter for unbound gcwq.  The
+ * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
+ * workers have WORKER_UNBOUND set.
+ */
+static struct global_cwq unbound_global_cwq;
+static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0);      /* always 0 */
+
+static int worker_thread(void *__worker);
+
+static struct global_cwq *get_gcwq(unsigned int cpu)
 {
-       int ret = 0;
+       if (cpu != WORK_CPU_UNBOUND)
+               return &per_cpu(global_cwq, cpu);
+       else
+               return &unbound_global_cwq;
+}
 
-       if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
-               BUG_ON(!list_empty(&work->entry));
-               __queue_work(wq_per_cpu(wq, cpu), work);
-               ret = 1;
-       }
-       return ret;
+static atomic_t *get_gcwq_nr_running(unsigned int cpu)
+{
+       if (cpu != WORK_CPU_UNBOUND)
+               return &per_cpu(gcwq_nr_running, cpu);
+       else
+               return &unbound_gcwq_nr_running;
 }
-EXPORT_SYMBOL_GPL(queue_work_on);
 
-static void delayed_work_timer_fn(unsigned long __data)
+static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
+                                           struct workqueue_struct *wq)
 {
-       struct delayed_work *dwork = (struct delayed_work *)__data;
-       struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
-       struct workqueue_struct *wq = cwq->wq;
+       if (!(wq->flags & WQ_UNBOUND)) {
+               if (likely(cpu < nr_cpu_ids)) {
+#ifdef CONFIG_SMP
+                       return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
+#else
+                       return wq->cpu_wq.single;
+#endif
+               }
+       } else if (likely(cpu == WORK_CPU_UNBOUND))
+               return wq->cpu_wq.single;
+       return NULL;
+}
 
-       __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
+static unsigned int work_color_to_flags(int color)
+{
+       return color << WORK_STRUCT_COLOR_SHIFT;
 }
 
-/**
- * queue_delayed_work - queue work on a workqueue after delay
- * @wq: workqueue to use
- * @dwork: delayable work to queue
- * @delay: number of jiffies to wait before queueing
- *
- * Returns 0 if @work was already on a queue, non-zero otherwise.
- */
-int queue_delayed_work(struct workqueue_struct *wq,
-                       struct delayed_work *dwork, unsigned long delay)
+static int get_work_color(struct work_struct *work)
 {
-       if (delay == 0)
-               return queue_work(wq, &dwork->work);
+       return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
+               ((1 << WORK_STRUCT_COLOR_BITS) - 1);
+}
 
-       return queue_delayed_work_on(-1, wq, dwork, delay);
+static int work_next_color(int color)
+{
+       return (color + 1) % WORK_NR_COLORS;
 }
-EXPORT_SYMBOL_GPL(queue_delayed_work);
 
-/**
- * queue_delayed_work_on - queue work on specific CPU after delay
- * @cpu: CPU number to execute work on
- * @wq: workqueue to use
- * @dwork: work to queue
- * @delay: number of jiffies to wait before queueing
+/*
+ * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
+ * work is on queue.  Once execution starts, WORK_STRUCT_CWQ is
+ * cleared and the work data contains the cpu number it was last on.
  *
- * Returns 0 if @work was already on a queue, non-zero otherwise.
+ * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
+ * cwq, cpu or clear work->data.  These functions should only be
+ * called while the work is owned - ie. while the PENDING bit is set.
+ *
+ * get_work_[g]cwq() can be used to obtain the gcwq or cwq
+ * corresponding to a work.  gcwq is available once the work has been
+ * queued anywhere after initialization.  cwq is available only from
+ * queueing until execution starts.
  */
-int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
-                       struct delayed_work *dwork, unsigned long delay)
+static inline void set_work_data(struct work_struct *work, unsigned long data,
+                                unsigned long flags)
 {
-       int ret = 0;
-       struct timer_list *timer = &dwork->timer;
-       struct work_struct *work = &dwork->work;
-
-       if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
-               BUG_ON(timer_pending(timer));
-               BUG_ON(!list_empty(&work->entry));
-
-               timer_stats_timer_set_start_info(&dwork->timer);
-
-               /* This stores cwq for the moment, for the timer_fn */
-               set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
-               timer->expires = jiffies + delay;
-               timer->data = (unsigned long)dwork;
-               timer->function = delayed_work_timer_fn;
-
-               if (unlikely(cpu >= 0))
-                       add_timer_on(timer, cpu);
-               else
-                       add_timer(timer);
-               ret = 1;
-       }
-       return ret;
+       BUG_ON(!work_pending(work));
+       atomic_long_set(&work->data, data | flags | work_static(work));
 }
-EXPORT_SYMBOL_GPL(queue_delayed_work_on);
 
-static void run_workqueue(struct cpu_workqueue_struct *cwq)
+static void set_work_cwq(struct work_struct *work,
+                        struct cpu_workqueue_struct *cwq,
+                        unsigned long extra_flags)
 {
-       spin_lock_irq(&cwq->lock);
-       cwq->run_depth++;
-       if (cwq->run_depth > 3) {
-               /* morton gets to eat his hat */
-               printk("%s: recursion depth exceeded: %d\n",
-                       __func__, cwq->run_depth);
-               dump_stack();
-       }
-       while (!list_empty(&cwq->worklist)) {
-               struct work_struct *work = list_entry(cwq->worklist.next,
-                                               struct work_struct, entry);
-               work_func_t f = work->func;
-#ifdef CONFIG_LOCKDEP
-               /*
-                * It is permissible to free the struct work_struct
-                * from inside the function that is called from it,
-                * this we need to take into account for lockdep too.
-                * To avoid bogus "held lock freed" warnings as well
-                * as problems when looking into work->lockdep_map,
-                * make a copy and use that here.
-                */
-               struct lockdep_map lockdep_map = work->lockdep_map;
-#endif
+       set_work_data(work, (unsigned long)cwq,
+                     WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
+}
 
-               cwq->current_work = work;
-               list_del_init(cwq->worklist.next);
-               spin_unlock_irq(&cwq->lock);
-
-               BUG_ON(get_wq_data(work) != cwq);
-               work_clear_pending(work);
-               lock_map_acquire(&cwq->wq->lockdep_map);
-               lock_map_acquire(&lockdep_map);
-               f(work);
-               lock_map_release(&lockdep_map);
-               lock_map_release(&cwq->wq->lockdep_map);
-
-               if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
-                       printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
-                                       "%s/0x%08x/%d\n",
-                                       current->comm, preempt_count(),
-                                       task_pid_nr(current));
-                       printk(KERN_ERR "    last function: ");
-                       print_symbol("%s\n", (unsigned long)f);
-                       debug_show_held_locks(current);
-                       dump_stack();
-               }
+static void set_work_cpu(struct work_struct *work, unsigned int cpu)
+{
+       set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
+}
 
-               spin_lock_irq(&cwq->lock);
-               cwq->current_work = NULL;
-       }
-       cwq->run_depth--;
-       spin_unlock_irq(&cwq->lock);
+static void clear_work_data(struct work_struct *work)
+{
+       set_work_data(work, WORK_STRUCT_NO_CPU, 0);
 }
 
-static int worker_thread(void *__cwq)
+static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
 {
-       struct cpu_workqueue_struct *cwq = __cwq;
-       DEFINE_WAIT(wait);
+       unsigned long data = atomic_long_read(&work->data);
 
-       if (cwq->wq->freezeable)
-               set_freezable();
+       if (data & WORK_STRUCT_CWQ)
+               return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
+       else
+               return NULL;
+}
 
-       set_user_nice(current, -5);
+static struct global_cwq *get_work_gcwq(struct work_struct *work)
+{
+       unsigned long data = atomic_long_read(&work->data);
+       unsigned int cpu;
 
-       for (;;) {
-               prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
-               if (!freezing(current) &&
-                   !kthread_should_stop() &&
-                   list_empty(&cwq->worklist))
-                       schedule();
-               finish_wait(&cwq->more_work, &wait);
+       if (data & WORK_STRUCT_CWQ)
+               return ((struct cpu_workqueue_struct *)
+                       (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq;
 
-               try_to_freeze();
+       cpu = data >> WORK_STRUCT_FLAG_BITS;
+       if (cpu == WORK_CPU_NONE)
+               return NULL;
 
-               if (kthread_should_stop())
-                       break;
+       BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
+       return get_gcwq(cpu);
+}
 
-               run_workqueue(cwq);
-       }
+/*
+ * Policy functions.  These define the policies on how the global
+ * worker pool is managed.  Unless noted otherwise, these functions
+ * assume that they're being called with gcwq->lock held.
+ */
 
-       return 0;
+static bool __need_more_worker(struct global_cwq *gcwq)
+{
+       return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
+               gcwq->flags & GCWQ_HIGHPRI_PENDING;
 }
 
-struct wq_barrier {
-       struct work_struct      work;
-       struct completion       done;
-};
+/*
+ * Need to wake up a worker?  Called from anything but currently
+ * running workers.
+ */
+static bool need_more_worker(struct global_cwq *gcwq)
+{
+       return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
+}
 
-static void wq_barrier_func(struct work_struct *work)
+/* Can I start working?  Called from busy but !running workers. */
+static bool may_start_working(struct global_cwq *gcwq)
 {
-       struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
-       complete(&barr->done);
+       return gcwq->nr_idle;
 }
 
-static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
-                       struct wq_barrier *barr, struct list_head *head)
+/* Do I need to keep working?  Called from currently running workers. */
+static bool keep_working(struct global_cwq *gcwq)
 {
-       INIT_WORK(&barr->work, wq_barrier_func);
-       __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
+       atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
 
-       init_completion(&barr->done);
+       return !list_empty(&gcwq->worklist) &&
+               (atomic_read(nr_running) <= 1 ||
+                gcwq->flags & GCWQ_HIGHPRI_PENDING);
+}
 
-       insert_work(cwq, &barr->work, head);
+/* Do we need a new worker?  Called from manager. */
+static bool need_to_create_worker(struct global_cwq *gcwq)
+{
+       return need_more_worker(gcwq) && !may_start_working(gcwq);
 }
 
-static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
+/* Do I need to be the manager? */
+static bool need_to_manage_workers(struct global_cwq *gcwq)
 {
-       int active;
+       return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
+}
 
-       if (cwq->thread == current) {
-               /*
-                * Probably keventd trying to flush its own queue. So simply run
-                * it by hand rather than deadlocking.
-                */
-               run_workqueue(cwq);
-               active = 1;
-       } else {
-               struct wq_barrier barr;
+/* Do we have too many workers and should some go away? */
+static bool too_many_workers(struct global_cwq *gcwq)
+{
+       bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
+       int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
+       int nr_busy = gcwq->nr_workers - nr_idle;
 
-               active = 0;
-               spin_lock_irq(&cwq->lock);
-               if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
-                       insert_wq_barrier(cwq, &barr, &cwq->worklist);
-                       active = 1;
-               }
-               spin_unlock_irq(&cwq->lock);
+       return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
+}
 
-               if (active)
-                       wait_for_completion(&barr.done);
-       }
+/*
+ * Wake up functions.
+ */
+
+/* Return the first worker.  Safe with preemption disabled */
+static struct worker *first_worker(struct global_cwq *gcwq)
+{
+       if (unlikely(list_empty(&gcwq->idle_list)))
+               return NULL;
 
-       return active;
+       return list_first_entry(&gcwq->idle_list, struct worker, entry);
 }
 
 /**
- * flush_workqueue - ensure that any scheduled work has run to completion.
- * @wq: workqueue to flush
+ * wake_up_worker - wake up an idle worker
+ * @gcwq: gcwq to wake worker for
  *
- * Forces execution of the workqueue and blocks until its completion.
- * This is typically used in driver shutdown handlers.
- *
- * We sleep until all works which were queued on entry have been handled,
- * but we are not livelocked by new incoming ones.
+ * Wake up the first idle worker of @gcwq.
  *
- * This function used to run the workqueues itself.  Now we just wait for the
- * helper threads to do it.
+ * CONTEXT:
+ * spin_lock_irq(gcwq->lock).
  */
-void flush_workqueue(struct workqueue_struct *wq)
+static void wake_up_worker(struct global_cwq *gcwq)
 {
-       const struct cpumask *cpu_map = wq_cpu_map(wq);
-       int cpu;
+       struct worker *worker = first_worker(gcwq);
 
-       might_sleep();
-       lock_map_acquire(&wq->lockdep_map);
-       lock_map_release(&wq->lockdep_map);
-       for_each_cpu_mask_nr(cpu, *cpu_map)
-               flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
+       if (likely(worker))
+               wake_up_process(worker->task);
 }
-EXPORT_SYMBOL_GPL(flush_workqueue);
 
 /**
- * flush_work - block until a work_struct's callback has terminated
- * @work: the work which is to be flushed
+ * wq_worker_waking_up - a worker is waking up
+ * @task: task waking up
+ * @cpu: CPU @task is waking up to
  *
- * Returns false if @work has already terminated.
+ * This function is called during try_to_wake_up() when a worker is
+ * being awoken.
  *
- * It is expected that, prior to calling flush_work(), the caller has
- * arranged for the work to not be requeued, otherwise it doesn't make
- * sense to use this function.
+ * CONTEXT:
+ * spin_lock_irq(rq->lock)
  */
-int flush_work(struct work_struct *work)
+void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
+{
+       struct worker *worker = kthread_data(task);
+
+       if (likely(!(worker->flags & WORKER_NOT_RUNNING)))
+               atomic_inc(get_gcwq_nr_running(cpu));
+}
+
+/**
+ * wq_worker_sleeping - a worker is going to sleep
+ * @task: task going to sleep
+ * @cpu: CPU in question, must be the current CPU number
+ *
+ * This function is called during schedule() when a busy worker is
+ * going to sleep.  Worker on the same cpu can be woken up by
+ * returning pointer to its task.
+ *
+ * CONTEXT:
+ * spin_lock_irq(rq->lock)
+ *
+ * RETURNS:
+ * Worker task on @cpu to wake up, %NULL if none.
+ */
+struct task_struct *wq_worker_sleeping(struct task_struct *task,
+                                      unsigned int cpu)
+{
+       struct worker *worker = kthread_data(task), *to_wakeup = NULL;
+       struct global_cwq *gcwq = get_gcwq(cpu);
+       atomic_t *nr_running = get_gcwq_nr_running(cpu);
+
+       if (unlikely(worker->flags & WORKER_NOT_RUNNING))
+               return NULL;
+
+       /* this can only happen on the local cpu */
+       BUG_ON(cpu != raw_smp_processor_id());
+
+       /*
+        * The counterpart of the following dec_and_test, implied mb,
+        * worklist not empty test sequence is in insert_work().
+        * Please read comment there.
+        *
+        * NOT_RUNNING is clear.  This means that trustee is not in
+        * charge and we're running on the local cpu w/ rq lock held
+        * and preemption disabled, which in turn means that none else
+        * could be manipulating idle_list, so dereferencing idle_list
+        * without gcwq lock is safe.
+        */
+       if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
+               to_wakeup = first_worker(gcwq);
+       return to_wakeup ? to_wakeup->task : NULL;
+}
+
+/**
+ * worker_set_flags - set worker flags and adjust nr_running accordingly
+ * @worker: self
+ * @flags: flags to set
+ * @wakeup: wakeup an idle worker if necessary
+ *
+ * Set @flags in @worker->flags and adjust nr_running accordingly.  If
+ * nr_running becomes zero and @wakeup is %true, an idle worker is
+ * woken up.
+ *
+ * CONTEXT:
+ * spin_lock_irq(gcwq->lock)
+ */
+static inline void worker_set_flags(struct worker *worker, unsigned int flags,
+                                   bool wakeup)
+{
+       struct global_cwq *gcwq = worker->gcwq;
+
+       WARN_ON_ONCE(worker->task != current);
+
+       /*
+        * If transitioning into NOT_RUNNING, adjust nr_running and
+        * wake up an idle worker as necessary if requested by
+        * @wakeup.
+        */
+       if ((flags & WORKER_NOT_RUNNING) &&
+           !(worker->flags & WORKER_NOT_RUNNING)) {
+               atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
+
+               if (wakeup) {
+                       if (atomic_dec_and_test(nr_running) &&
+                           !list_empty(&gcwq->worklist))
+                               wake_up_worker(gcwq);
+               } else
+                       atomic_dec(nr_running);
+       }
+
+       worker->flags |= flags;
+}
+
+/**
+ * worker_clr_flags - clear worker flags and adjust nr_running accordingly
+ * @worker: self
+ * @flags: flags to clear
+ *
+ * Clear @flags in @worker->flags and adjust nr_running accordingly.
+ *
+ * CONTEXT:
+ * spin_lock_irq(gcwq->lock)
+ */
+static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
+{
+       struct global_cwq *gcwq = worker->gcwq;
+       unsigned int oflags = worker->flags;
+
+       WARN_ON_ONCE(worker->task != current);
+
+       worker->flags &= ~flags;
+
+       /* if transitioning out of NOT_RUNNING, increment nr_running */
+       if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
+               if (!(worker->flags & WORKER_NOT_RUNNING))
+                       atomic_inc(get_gcwq_nr_running(gcwq->cpu));
+}
+
+/**
+ * busy_worker_head - return the busy hash head for a work
+ * @gcwq: gcwq of interest
+ * @work: work to be hashed
+ *
+ * Return hash head of @gcwq for @work.
+ *
+ * CONTEXT:
+ * spin_lock_irq(gcwq->lock).
+ *
+ * RETURNS:
+ * Pointer to the hash head.
+ */
+static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
+                                          struct work_struct *work)
+{
+       const int base_shift = ilog2(sizeof(struct work_struct));
+       unsigned long v = (unsigned long)work;
+
+       /* simple shift and fold hash, do we need something better? */
+       v >>= base_shift;
+       v += v >> BUSY_WORKER_HASH_ORDER;
+       v &= BUSY_WORKER_HASH_MASK;
+
+       return &gcwq->busy_hash[v];
+}
+
+/**
+ * __find_worker_executing_work - find worker which is executing a work
+ * @gcwq: gcwq of interest
+ * @bwh: hash head as returned by busy_worker_head()
+ * @work: work to find worker for
+ *
+ * Find a worker which is executing @work on @gcwq.  @bwh should be
+ * the hash head obtained by calling busy_worker_head() with the same
+ * work.
+ *
+ * CONTEXT:
+ * spin_lock_irq(gcwq->lock).
+ *
+ * RETURNS:
+ * Pointer to worker which is executing @work if found, NULL
+ * otherwise.
+ */
+static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
+                                                  struct hlist_head *bwh,
+                                                  struct work_struct *work)
+{
+       struct worker *worker;
+       struct hlist_node *tmp;
+
+       hlist_for_each_entry(worker, tmp, bwh, hentry)
+               if (worker->current_work == work)
+                       return worker;
+       return NULL;
+}
+
+/**
+ * find_worker_executing_work - find worker which is executing a work
+ * @gcwq: gcwq of interest
+ * @work: work to find worker for
+ *
+ * Find a worker which is executing @work on @gcwq.  This function is
+ * identical to __find_worker_executing_work() except that this
+ * function calculates @bwh itself.
+ *
+ * CONTEXT:
+ * spin_lock_irq(gcwq->lock).
+ *
+ * RETURNS:
+ * Pointer to worker which is executing @work if found, NULL
+ * otherwise.
+ */
+static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
+                                                struct work_struct *work)
+{
+       return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
+                                           work);
+}
+
+/**
+ * gcwq_determine_ins_pos - find insertion position
+ * @gcwq: gcwq of interest
+ * @cwq: cwq a work is being queued for
+ *
+ * A work for @cwq is about to be queued on @gcwq, determine insertion
+ * position for the work.  If @cwq is for HIGHPRI wq, the work is
+ * queued at the head of the queue but in FIFO order with respect to
+ * other HIGHPRI works; otherwise, at the end of the queue.  This
+ * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
+ * there are HIGHPRI works pending.
+ *
+ * CONTEXT:
+ * spin_lock_irq(gcwq->lock).
+ *
+ * RETURNS:
+ * Pointer to inserstion position.
+ */
+static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
+                                              struct cpu_workqueue_struct *cwq)
+{
+       struct work_struct *twork;
+
+       if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
+               return &gcwq->worklist;
+
+       list_for_each_entry(twork, &gcwq->worklist, entry) {
+               struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
+
+               if (!(tcwq->wq->flags & WQ_HIGHPRI))
+                       break;
+       }
+
+       gcwq->flags |= GCWQ_HIGHPRI_PENDING;
+       return &twork->entry;
+}
+
+/**
+ * insert_work - insert a work into gcwq
+ * @cwq: cwq @work belongs to
+ * @work: work to insert
+ * @head: insertion point
+ * @extra_flags: extra WORK_STRUCT_* flags to set
+ *
+ * Insert @work which belongs to @cwq into @gcwq after @head.
+ * @extra_flags is or'd to work_struct flags.
+ *
+ * CONTEXT:
+ * spin_lock_irq(gcwq->lock).
+ */
+static void insert_work(struct cpu_workqueue_struct *cwq,
+                       struct work_struct *work, struct list_head *head,
+                       unsigned int extra_flags)
+{
+       struct global_cwq *gcwq = cwq->gcwq;
+
+       /* we own @work, set data and link */
+       set_work_cwq(work, cwq, extra_flags);
+
+       /*
+        * Ensure that we get the right work->data if we see the
+        * result of list_add() below, see try_to_grab_pending().
+        */
+       smp_wmb();
+
+       list_add_tail(&work->entry, head);
+
+       /*
+        * Ensure either worker_sched_deactivated() sees the above
+        * list_add_tail() or we see zero nr_running to avoid workers
+        * lying around lazily while there are works to be processed.
+        */
+       smp_mb();
+
+       if (__need_more_worker(gcwq))
+               wake_up_worker(gcwq);
+}
+
+static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
+                        struct work_struct *work)
+{
+       struct global_cwq *gcwq;
+       struct cpu_workqueue_struct *cwq;
+       struct list_head *worklist;
+       unsigned int work_flags;
+       unsigned long flags;
+
+       debug_work_activate(work);
+
+       if (WARN_ON_ONCE(wq->flags & WQ_DYING))
+               return;
+
+       /* determine gcwq to use */
+       if (!(wq->flags & WQ_UNBOUND)) {
+               struct global_cwq *last_gcwq;
+
+               if (unlikely(cpu == WORK_CPU_UNBOUND))
+                       cpu = raw_smp_processor_id();
+
+               /*
+                * It's multi cpu.  If @wq is non-reentrant and @work
+                * was previously on a different cpu, it might still
+                * be running there, in which case the work needs to
+                * be queued on that cpu to guarantee non-reentrance.
+                */
+               gcwq = get_gcwq(cpu);
+               if (wq->flags & WQ_NON_REENTRANT &&
+                   (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
+                       struct worker *worker;
+
+                       spin_lock_irqsave(&last_gcwq->lock, flags);
+
+                       worker = find_worker_executing_work(last_gcwq, work);
+
+                       if (worker && worker->current_cwq->wq == wq)
+                               gcwq = last_gcwq;
+                       else {
+                               /* meh... not running there, queue here */
+                               spin_unlock_irqrestore(&last_gcwq->lock, flags);
+                               spin_lock_irqsave(&gcwq->lock, flags);
+                       }
+               } else
+                       spin_lock_irqsave(&gcwq->lock, flags);
+       } else {
+               gcwq = get_gcwq(WORK_CPU_UNBOUND);
+               spin_lock_irqsave(&gcwq->lock, flags);
+       }
+
+       /* gcwq determined, get cwq and queue */
+       cwq = get_cwq(gcwq->cpu, wq);
+       trace_workqueue_queue_work(cpu, cwq, work);
+
+       BUG_ON(!list_empty(&work->entry));
+
+       cwq->nr_in_flight[cwq->work_color]++;
+       work_flags = work_color_to_flags(cwq->work_color);
+
+       if (likely(cwq->nr_active < cwq->max_active)) {
+               trace_workqueue_activate_work(work);
+               cwq->nr_active++;
+               worklist = gcwq_determine_ins_pos(gcwq, cwq);
+       } else {
+               work_flags |= WORK_STRUCT_DELAYED;
+               worklist = &cwq->delayed_works;
+       }
+
+       insert_work(cwq, work, worklist, work_flags);
+
+       spin_unlock_irqrestore(&gcwq->lock, flags);
+}
+
+/**
+ * queue_work - queue work on a workqueue
+ * @wq: workqueue to use
+ * @work: work to queue
+ *
+ * Returns 0 if @work was already on a queue, non-zero otherwise.
+ *
+ * We queue the work to the CPU on which it was submitted, but if the CPU dies
+ * it can be processed by another CPU.
+ */
+int queue_work(struct workqueue_struct *wq, struct work_struct *work)
+{
+       int ret;
+
+       ret = queue_work_on(get_cpu(), wq, work);
+       put_cpu();
+
+       return ret;
+}
+EXPORT_SYMBOL_GPL(queue_work);
+
+/**
+ * queue_work_on - queue work on specific cpu
+ * @cpu: CPU number to execute work on
+ * @wq: workqueue to use
+ * @work: work to queue
+ *
+ * Returns 0 if @work was already on a queue, non-zero otherwise.
+ *
+ * We queue the work to a specific CPU, the caller must ensure it
+ * can't go away.
+ */
+int
+queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
+{
+       int ret = 0;
+
+       if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
+               __queue_work(cpu, wq, work);
+               ret = 1;
+       }
+       return ret;
+}
+EXPORT_SYMBOL_GPL(queue_work_on);
+
+static void delayed_work_timer_fn(unsigned long __data)
+{
+       struct delayed_work *dwork = (struct delayed_work *)__data;
+       struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
+
+       __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
+}
+
+/**
+ * queue_delayed_work - queue work on a workqueue after delay
+ * @wq: workqueue to use
+ * @dwork: delayable work to queue
+ * @delay: number of jiffies to wait before queueing
+ *
+ * Returns 0 if @work was already on a queue, non-zero otherwise.
+ */
+int queue_delayed_work(struct workqueue_struct *wq,
+                       struct delayed_work *dwork, unsigned long delay)
+{
+       if (delay == 0)
+               return queue_work(wq, &dwork->work);
+
+       return queue_delayed_work_on(-1, wq, dwork, delay);
+}
+EXPORT_SYMBOL_GPL(queue_delayed_work);
+
+/**
+ * queue_delayed_work_on - queue work on specific CPU after delay
+ * @cpu: CPU number to execute work on
+ * @wq: workqueue to use
+ * @dwork: work to queue
+ * @delay: number of jiffies to wait before queueing
+ *
+ * Returns 0 if @work was already on a queue, non-zero otherwise.
+ */
+int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
+                       struct delayed_work *dwork, unsigned long delay)
+{
+       int ret = 0;
+       struct timer_list *timer = &dwork->timer;
+       struct work_struct *work = &dwork->work;
+
+       if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
+               unsigned int lcpu;
+
+               BUG_ON(timer_pending(timer));
+               BUG_ON(!list_empty(&work->entry));
+
+               timer_stats_timer_set_start_info(&dwork->timer);
+
+               /*
+                * This stores cwq for the moment, for the timer_fn.
+                * Note that the work's gcwq is preserved to allow
+                * reentrance detection for delayed works.
+                */
+               if (!(wq->flags & WQ_UNBOUND)) {
+                       struct global_cwq *gcwq = get_work_gcwq(work);
+
+                       if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
+                               lcpu = gcwq->cpu;
+                       else
+                               lcpu = raw_smp_processor_id();
+               } else
+                       lcpu = WORK_CPU_UNBOUND;
+
+               set_work_cwq(work, get_cwq(lcpu, wq), 0);
+
+               timer->expires = jiffies + delay;
+               timer->data = (unsigned long)dwork;
+               timer->function = delayed_work_timer_fn;
+
+               if (unlikely(cpu >= 0))
+                       add_timer_on(timer, cpu);
+               else
+                       add_timer(timer);
+               ret = 1;
+       }
+       return ret;
+}
+EXPORT_SYMBOL_GPL(queue_delayed_work_on);
+
+/**
+ * worker_enter_idle - enter idle state
+ * @worker: worker which is entering idle state
+ *
+ * @worker is entering idle state.  Update stats and idle timer if
+ * necessary.
+ *
+ * LOCKING:
+ * spin_lock_irq(gcwq->lock).
+ */
+static void worker_enter_idle(struct worker *worker)
+{
+       struct global_cwq *gcwq = worker->gcwq;
+
+       BUG_ON(worker->flags & WORKER_IDLE);
+       BUG_ON(!list_empty(&worker->entry) &&
+              (worker->hentry.next || worker->hentry.pprev));
+
+       /* can't use worker_set_flags(), also called from start_worker() */
+       worker->flags |= WORKER_IDLE;
+       gcwq->nr_idle++;
+       worker->last_active = jiffies;
+
+       /* idle_list is LIFO */
+       list_add(&worker->entry, &gcwq->idle_list);
+
+       if (likely(!(worker->flags & WORKER_ROGUE))) {
+               if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
+                       mod_timer(&gcwq->idle_timer,
+                                 jiffies + IDLE_WORKER_TIMEOUT);
+       } else
+               wake_up_all(&gcwq->trustee_wait);
+
+       /* sanity check nr_running */
+       WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle &&
+                    atomic_read(get_gcwq_nr_running(gcwq->cpu)));
+}
+
+/**
+ * worker_leave_idle - leave idle state
+ * @worker: worker which is leaving idle state
+ *
+ * @worker is leaving idle state.  Update stats.
+ *
+ * LOCKING:
+ * spin_lock_irq(gcwq->lock).
+ */
+static void worker_leave_idle(struct worker *worker)
+{
+       struct global_cwq *gcwq = worker->gcwq;
+
+       BUG_ON(!(worker->flags & WORKER_IDLE));
+       worker_clr_flags(worker, WORKER_IDLE);
+       gcwq->nr_idle--;
+       list_del_init(&worker->entry);
+}
+
+/**
+ * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
+ * @worker: self
+ *
+ * Works which are scheduled while the cpu is online must at least be
+ * scheduled to a worker which is bound to the cpu so that if they are
+ * flushed from cpu callbacks while cpu is going down, they are
+ * guaranteed to execute on the cpu.
+ *
+ * This function is to be used by rogue workers and rescuers to bind
+ * themselves to the target cpu and may race with cpu going down or
+ * coming online.  kthread_bind() can't be used because it may put the
+ * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
+ * verbatim as it's best effort and blocking and gcwq may be
+ * [dis]associated in the meantime.
+ *
+ * This function tries set_cpus_allowed() and locks gcwq and verifies
+ * the binding against GCWQ_DISASSOCIATED which is set during
+ * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
+ * idle state or fetches works without dropping lock, it can guarantee
+ * the scheduling requirement described in the first paragraph.
+ *
+ * CONTEXT:
+ * Might sleep.  Called without any lock but returns with gcwq->lock
+ * held.
+ *
+ * RETURNS:
+ * %true if the associated gcwq is online (@worker is successfully
+ * bound), %false if offline.
+ */
+static bool worker_maybe_bind_and_lock(struct worker *worker)
+__acquires(&gcwq->lock)
+{
+       struct global_cwq *gcwq = worker->gcwq;
+       struct task_struct *task = worker->task;
+
+       while (true) {
+               /*
+                * The following call may fail, succeed or succeed
+                * without actually migrating the task to the cpu if
+                * it races with cpu hotunplug operation.  Verify
+                * against GCWQ_DISASSOCIATED.
+                */
+               if (!(gcwq->flags & GCWQ_DISASSOCIATED))
+                       set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
+
+               spin_lock_irq(&gcwq->lock);
+               if (gcwq->flags & GCWQ_DISASSOCIATED)
+                       return false;
+               if (task_cpu(task) == gcwq->cpu &&
+                   cpumask_equal(&current->cpus_allowed,
+                                 get_cpu_mask(gcwq->cpu)))
+                       return true;
+               spin_unlock_irq(&gcwq->lock);
+
+               /* CPU has come up inbetween, retry migration */
+               cpu_relax();
+       }
+}
+
+/*
+ * Function for worker->rebind_work used to rebind rogue busy workers
+ * to the associated cpu which is coming back online.  This is
+ * scheduled by cpu up but can race with other cpu hotplug operations
+ * and may be executed twice without intervening cpu down.
+ */
+static void worker_rebind_fn(struct work_struct *work)
+{
+       struct worker *worker = container_of(work, struct worker, rebind_work);
+       struct global_cwq *gcwq = worker->gcwq;
+
+       if (worker_maybe_bind_and_lock(worker))
+               worker_clr_flags(worker, WORKER_REBIND);
+
+       spin_unlock_irq(&gcwq->lock);
+}
+
+static struct worker *alloc_worker(void)
+{
+       struct worker *worker;
+
+       worker = kzalloc(sizeof(*worker), GFP_KERNEL);
+       if (worker) {
+               INIT_LIST_HEAD(&worker->entry);
+               INIT_LIST_HEAD(&worker->scheduled);
+               INIT_WORK(&worker->rebind_work, worker_rebind_fn);
+               /* on creation a worker is in !idle && prep state */
+               worker->flags = WORKER_PREP;
+       }
+       return worker;
+}
+
+/**
+ * create_worker - create a new workqueue worker
+ * @gcwq: gcwq the new worker will belong to
+ * @bind: whether to set affinity to @cpu or not
+ *
+ * Create a new worker which is bound to @gcwq.  The returned worker
+ * can be started by calling start_worker() or destroyed using
+ * destroy_worker().
+ *
+ * CONTEXT:
+ * Might sleep.  Does GFP_KERNEL allocations.
+ *
+ * RETURNS:
+ * Pointer to the newly created worker.
+ */
+static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
+{
+       bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
+       struct worker *worker = NULL;
+       int id = -1;
+
+       spin_lock_irq(&gcwq->lock);
+       while (ida_get_new(&gcwq->worker_ida, &id)) {
+               spin_unlock_irq(&gcwq->lock);
+               if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
+                       goto fail;
+               spin_lock_irq(&gcwq->lock);
+       }
+       spin_unlock_irq(&gcwq->lock);
+
+       worker = alloc_worker();
+       if (!worker)
+               goto fail;
+
+       worker->gcwq = gcwq;
+       worker->id = id;
+
+       if (!on_unbound_cpu)
+               worker->task = kthread_create(worker_thread, worker,
+                                             "kworker/%u:%d", gcwq->cpu, id);
+       else
+               worker->task = kthread_create(worker_thread, worker,
+                                             "kworker/u:%d", id);
+       if (IS_ERR(worker->task))
+               goto fail;
+
+       /*
+        * A rogue worker will become a regular one if CPU comes
+        * online later on.  Make sure every worker has
+        * PF_THREAD_BOUND set.
+        */
+       if (bind && !on_unbound_cpu)
+               kthread_bind(worker->task, gcwq->cpu);
+       else {
+               worker->task->flags |= PF_THREAD_BOUND;
+               if (on_unbound_cpu)
+                       worker->flags |= WORKER_UNBOUND;
+       }
+
+       return worker;
+fail:
+       if (id >= 0) {
+               spin_lock_irq(&gcwq->lock);
+               ida_remove(&gcwq->worker_ida, id);
+               spin_unlock_irq(&gcwq->lock);
+       }
+       kfree(worker);
+       return NULL;
+}
+
+/**
+ * start_worker - start a newly created worker
+ * @worker: worker to start
+ *
+ * Make the gcwq aware of @worker and start it.
+ *
+ * CONTEXT:
+ * spin_lock_irq(gcwq->lock).
+ */
+static void start_worker(struct worker *worker)
+{
+       worker->flags |= WORKER_STARTED;
+       worker->gcwq->nr_workers++;
+       worker_enter_idle(worker);
+       wake_up_process(worker->task);
+}
+
+/**
+ * destroy_worker - destroy a workqueue worker
+ * @worker: worker to be destroyed
+ *
+ * Destroy @worker and adjust @gcwq stats accordingly.
+ *
+ * CONTEXT:
+ * spin_lock_irq(gcwq->lock) which is released and regrabbed.
+ */
+static void destroy_worker(struct worker *worker)
+{
+       struct global_cwq *gcwq = worker->gcwq;
+       int id = worker->id;
+
+       /* sanity check frenzy */
+       BUG_ON(worker->current_work);
+       BUG_ON(!list_empty(&worker->scheduled));
+
+       if (worker->flags & WORKER_STARTED)
+               gcwq->nr_workers--;
+       if (worker->flags & WORKER_IDLE)
+               gcwq->nr_idle--;
+
+       list_del_init(&worker->entry);
+       worker->flags |= WORKER_DIE;
+
+       spin_unlock_irq(&gcwq->lock);
+
+       kthread_stop(worker->task);
+       kfree(worker);
+
+       spin_lock_irq(&gcwq->lock);
+       ida_remove(&gcwq->worker_ida, id);
+}
+
+static void idle_worker_timeout(unsigned long __gcwq)
+{
+       struct global_cwq *gcwq = (void *)__gcwq;
+
+       spin_lock_irq(&gcwq->lock);
+
+       if (too_many_workers(gcwq)) {
+               struct worker *worker;
+               unsigned long expires;
+
+               /* idle_list is kept in LIFO order, check the last one */
+               worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
+               expires = worker->last_active + IDLE_WORKER_TIMEOUT;
+
+               if (time_before(jiffies, expires))
+                       mod_timer(&gcwq->idle_timer, expires);
+               else {
+                       /* it's been idle for too long, wake up manager */
+                       gcwq->flags |= GCWQ_MANAGE_WORKERS;
+                       wake_up_worker(gcwq);
+               }
+       }
+
+       spin_unlock_irq(&gcwq->lock);
+}
+
+static bool send_mayday(struct work_struct *work)
+{
+       struct cpu_workqueue_struct *cwq = get_work_cwq(work);
+       struct workqueue_struct *wq = cwq->wq;
+       unsigned int cpu;
+
+       if (!(wq->flags & WQ_RESCUER))
+               return false;
+
+       /* mayday mayday mayday */
+       cpu = cwq->gcwq->cpu;
+       /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
+       if (cpu == WORK_CPU_UNBOUND)
+               cpu = 0;
+       if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
+               wake_up_process(wq->rescuer->task);
+       return true;
+}
+
+static void gcwq_mayday_timeout(unsigned long __gcwq)
+{
+       struct global_cwq *gcwq = (void *)__gcwq;
+       struct work_struct *work;
+
+       spin_lock_irq(&gcwq->lock);
+
+       if (need_to_create_worker(gcwq)) {
+               /*
+                * We've been trying to create a new worker but
+                * haven't been successful.  We might be hitting an
+                * allocation deadlock.  Send distress signals to
+                * rescuers.
+                */
+               list_for_each_entry(work, &gcwq->worklist, entry)
+                       send_mayday(work);
+       }
+
+       spin_unlock_irq(&gcwq->lock);
+
+       mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
+}
+
+/**
+ * maybe_create_worker - create a new worker if necessary
+ * @gcwq: gcwq to create a new worker for
+ *
+ * Create a new worker for @gcwq if necessary.  @gcwq is guaranteed to
+ * have at least one idle worker on return from this function.  If
+ * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
+ * sent to all rescuers with works scheduled on @gcwq to resolve
+ * possible allocation deadlock.
+ *
+ * On return, need_to_create_worker() is guaranteed to be false and
+ * may_start_working() true.
+ *
+ * LOCKING:
+ * spin_lock_irq(gcwq->lock) which may be released and regrabbed
+ * multiple times.  Does GFP_KERNEL allocations.  Called only from
+ * manager.
+ *
+ * RETURNS:
+ * false if no action was taken and gcwq->lock stayed locked, true
+ * otherwise.
+ */
+static bool maybe_create_worker(struct global_cwq *gcwq)
+__releases(&gcwq->lock)
+__acquires(&gcwq->lock)
+{
+       if (!need_to_create_worker(gcwq))
+               return false;
+restart:
+       spin_unlock_irq(&gcwq->lock);
+
+       /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
+       mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
+
+       while (true) {
+               struct worker *worker;
+
+               worker = create_worker(gcwq, true);
+               if (worker) {
+                       del_timer_sync(&gcwq->mayday_timer);
+                       spin_lock_irq(&gcwq->lock);
+                       start_worker(worker);
+                       BUG_ON(need_to_create_worker(gcwq));
+                       return true;
+               }
+
+               if (!need_to_create_worker(gcwq))
+                       break;
+
+               __set_current_state(TASK_INTERRUPTIBLE);
+               schedule_timeout(CREATE_COOLDOWN);
+
+               if (!need_to_create_worker(gcwq))
+                       break;
+       }
+
+       del_timer_sync(&gcwq->mayday_timer);
+       spin_lock_irq(&gcwq->lock);
+       if (need_to_create_worker(gcwq))
+               goto restart;
+       return true;
+}
+
+/**
+ * maybe_destroy_worker - destroy workers which have been idle for a while
+ * @gcwq: gcwq to destroy workers for
+ *
+ * Destroy @gcwq workers which have been idle for longer than
+ * IDLE_WORKER_TIMEOUT.
+ *
+ * LOCKING:
+ * spin_lock_irq(gcwq->lock) which may be released and regrabbed
+ * multiple times.  Called only from manager.
+ *
+ * RETURNS:
+ * false if no action was taken and gcwq->lock stayed locked, true
+ * otherwise.
+ */
+static bool maybe_destroy_workers(struct global_cwq *gcwq)
+{
+       bool ret = false;
+
+       while (too_many_workers(gcwq)) {
+               struct worker *worker;
+               unsigned long expires;
+
+               worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
+               expires = worker->last_active + IDLE_WORKER_TIMEOUT;
+
+               if (time_before(jiffies, expires)) {
+                       mod_timer(&gcwq->idle_timer, expires);
+                       break;
+               }
+
+               destroy_worker(worker);
+               ret = true;
+       }
+
+       return ret;
+}
+
+/**
+ * manage_workers - manage worker pool
+ * @worker: self
+ *
+ * Assume the manager role and manage gcwq worker pool @worker belongs
+ * to.  At any given time, there can be only zero or one manager per
+ * gcwq.  The exclusion is handled automatically by this function.
+ *
+ * The caller can safely start processing works on false return.  On
+ * true return, it's guaranteed that need_to_create_worker() is false
+ * and may_start_working() is true.
+ *
+ * CONTEXT:
+ * spin_lock_irq(gcwq->lock) which may be released and regrabbed
+ * multiple times.  Does GFP_KERNEL allocations.
+ *
+ * RETURNS:
+ * false if no action was taken and gcwq->lock stayed locked, true if
+ * some action was taken.
+ */
+static bool manage_workers(struct worker *worker)
+{
+       struct global_cwq *gcwq = worker->gcwq;
+       bool ret = false;
+
+       if (gcwq->flags & GCWQ_MANAGING_WORKERS)
+               return ret;
+
+       gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
+       gcwq->flags |= GCWQ_MANAGING_WORKERS;
+
+       /*
+        * Destroy and then create so that may_start_working() is true
+        * on return.
+        */
+       ret |= maybe_destroy_workers(gcwq);
+       ret |= maybe_create_worker(gcwq);
+
+       gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
+
+       /*
+        * The trustee might be waiting to take over the manager
+        * position, tell it we're done.
+        */
+       if (unlikely(gcwq->trustee))
+               wake_up_all(&gcwq->trustee_wait);
+
+       return ret;
+}
+
+/**
+ * move_linked_works - move linked works to a list
+ * @work: start of series of works to be scheduled
+ * @head: target list to append @work to
+ * @nextp: out paramter for nested worklist walking
+ *
+ * Schedule linked works starting from @work to @head.  Work series to
+ * be scheduled starts at @work and includes any consecutive work with
+ * WORK_STRUCT_LINKED set in its predecessor.
+ *
+ * If @nextp is not NULL, it's updated to point to the next work of
+ * the last scheduled work.  This allows move_linked_works() to be
+ * nested inside outer list_for_each_entry_safe().
+ *
+ * CONTEXT:
+ * spin_lock_irq(gcwq->lock).
+ */
+static void move_linked_works(struct work_struct *work, struct list_head *head,
+                             struct work_struct **nextp)
+{
+       struct work_struct *n;
+
+       /*
+        * Linked worklist will always end before the end of the list,
+        * use NULL for list head.
+        */
+       list_for_each_entry_safe_from(work, n, NULL, entry) {
+               list_move_tail(&work->entry, head);
+               if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
+                       break;
+       }
+
+       /*
+        * If we're already inside safe list traversal and have moved
+        * multiple works to the scheduled queue, the next position
+        * needs to be updated.
+        */
+       if (nextp)
+               *nextp = n;
+}
+
+static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
+{
+       struct work_struct *work = list_first_entry(&cwq->delayed_works,
+                                                   struct work_struct, entry);
+       struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
+
+       trace_workqueue_activate_work(work);
+       move_linked_works(work, pos, NULL);
+       __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
+       cwq->nr_active++;
+}
+
+/**
+ * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
+ * @cwq: cwq of interest
+ * @color: color of work which left the queue
+ * @delayed: for a delayed work
+ *
+ * A work either has completed or is removed from pending queue,
+ * decrement nr_in_flight of its cwq and handle workqueue flushing.
+ *
+ * CONTEXT:
+ * spin_lock_irq(gcwq->lock).
+ */
+static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
+                                bool delayed)
+{
+       /* ignore uncolored works */
+       if (color == WORK_NO_COLOR)
+               return;
+
+       cwq->nr_in_flight[color]--;
+
+       if (!delayed) {
+               cwq->nr_active--;
+               if (!list_empty(&cwq->delayed_works)) {
+                       /* one down, submit a delayed one */
+                       if (cwq->nr_active < cwq->max_active)
+                               cwq_activate_first_delayed(cwq);
+               }
+       }
+
+       /* is flush in progress and are we at the flushing tip? */
+       if (likely(cwq->flush_color != color))
+               return;
+
+       /* are there still in-flight works? */
+       if (cwq->nr_in_flight[color])
+               return;
+
+       /* this cwq is done, clear flush_color */
+       cwq->flush_color = -1;
+
+       /*
+        * If this was the last cwq, wake up the first flusher.  It
+        * will handle the rest.
+        */
+       if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
+               complete(&cwq->wq->first_flusher->done);
+}
+
+/**
+ * process_one_work - process single work
+ * @worker: self
+ * @work: work to process
+ *
+ * Process @work.  This function contains all the logics necessary to
+ * process a single work including synchronization against and
+ * interaction with other workers on the same cpu, queueing and
+ * flushing.  As long as context requirement is met, any worker can
+ * call this function to process a work.
+ *
+ * CONTEXT:
+ * spin_lock_irq(gcwq->lock) which is released and regrabbed.
+ */
+static void process_one_work(struct worker *worker, struct work_struct *work)
+__releases(&gcwq->lock)
+__acquires(&gcwq->lock)
+{
+       struct cpu_workqueue_struct *cwq = get_work_cwq(work);
+       struct global_cwq *gcwq = cwq->gcwq;
+       struct hlist_head *bwh = busy_worker_head(gcwq, work);
+       bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
+       work_func_t f = work->func;
+       int work_color;
+       struct worker *collision;
+#ifdef CONFIG_LOCKDEP
+       /*
+        * It is permissible to free the struct work_struct from
+        * inside the function that is called from it, this we need to
+        * take into account for lockdep too.  To avoid bogus "held
+        * lock freed" warnings as well as problems when looking into
+        * work->lockdep_map, make a copy and use that here.
+        */
+       struct lockdep_map lockdep_map = work->lockdep_map;
+#endif
+       /*
+        * A single work shouldn't be executed concurrently by
+        * multiple workers on a single cpu.  Check whether anyone is
+        * already processing the work.  If so, defer the work to the
+        * currently executing one.
+        */
+       collision = __find_worker_executing_work(gcwq, bwh, work);
+       if (unlikely(collision)) {
+               move_linked_works(work, &collision->scheduled, NULL);
+               return;
+       }
+
+       /* claim and process */
+       debug_work_deactivate(work);
+       hlist_add_head(&worker->hentry, bwh);
+       worker->current_work = work;
+       worker->current_cwq = cwq;
+       work_color = get_work_color(work);
+
+       /* record the current cpu number in the work data and dequeue */
+       set_work_cpu(work, gcwq->cpu);
+       list_del_init(&work->entry);
+
+       /*
+        * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
+        * wake up another worker; otherwise, clear HIGHPRI_PENDING.
+        */
+       if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
+               struct work_struct *nwork = list_first_entry(&gcwq->worklist,
+                                               struct work_struct, entry);
+
+               if (!list_empty(&gcwq->worklist) &&
+                   get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
+                       wake_up_worker(gcwq);
+               else
+                       gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
+       }
+
+       /*
+        * CPU intensive works don't participate in concurrency
+        * management.  They're the scheduler's responsibility.
+        */
+       if (unlikely(cpu_intensive))
+               worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
+
+       spin_unlock_irq(&gcwq->lock);
+
+       work_clear_pending(work);
+       lock_map_acquire(&cwq->wq->lockdep_map);
+       lock_map_acquire(&lockdep_map);
+       trace_workqueue_execute_start(work);
+       f(work);
+       /*
+        * While we must be careful to not use "work" after this, the trace
+        * point will only record its address.
+        */
+       trace_workqueue_execute_end(work);
+       lock_map_release(&lockdep_map);
+       lock_map_release(&cwq->wq->lockdep_map);
+
+       if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
+               printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
+                      "%s/0x%08x/%d\n",
+                      current->comm, preempt_count(), task_pid_nr(current));
+               printk(KERN_ERR "    last function: ");
+               print_symbol("%s\n", (unsigned long)f);
+               debug_show_held_locks(current);
+               dump_stack();
+       }
+
+       spin_lock_irq(&gcwq->lock);
+
+       /* clear cpu intensive status */
+       if (unlikely(cpu_intensive))
+               worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
+
+       /* we're done with it, release */
+       hlist_del_init(&worker->hentry);
+       worker->current_work = NULL;
+       worker->current_cwq = NULL;
+       cwq_dec_nr_in_flight(cwq, work_color, false);
+}
+
+/**
+ * process_scheduled_works - process scheduled works
+ * @worker: self
+ *
+ * Process all scheduled works.  Please note that the scheduled list
+ * may change while processing a work, so this function repeatedly
+ * fetches a work from the top and executes it.
+ *
+ * CONTEXT:
+ * spin_lock_irq(gcwq->lock) which may be released and regrabbed
+ * multiple times.
+ */
+static void process_scheduled_works(struct worker *worker)
+{
+       while (!list_empty(&worker->scheduled)) {
+               struct work_struct *work = list_first_entry(&worker->scheduled,
+                                               struct work_struct, entry);
+               process_one_work(worker, work);
+       }
+}
+
+/**
+ * worker_thread - the worker thread function
+ * @__worker: self
+ *
+ * The gcwq worker thread function.  There's a single dynamic pool of
+ * these per each cpu.  These workers process all works regardless of
+ * their specific target workqueue.  The only exception is works which
+ * belong to workqueues with a rescuer which will be explained in
+ * rescuer_thread().
+ */
+static int worker_thread(void *__worker)
+{
+       struct worker *worker = __worker;
+       struct global_cwq *gcwq = worker->gcwq;
+
+       /* tell the scheduler that this is a workqueue worker */
+       worker->task->flags |= PF_WQ_WORKER;
+woke_up:
+       spin_lock_irq(&gcwq->lock);
+
+       /* DIE can be set only while we're idle, checking here is enough */
+       if (worker->flags & WORKER_DIE) {
+               spin_unlock_irq(&gcwq->lock);
+               worker->task->flags &= ~PF_WQ_WORKER;
+               return 0;
+       }
+
+       worker_leave_idle(worker);
+recheck:
+       /* no more worker necessary? */
+       if (!need_more_worker(gcwq))
+               goto sleep;
+
+       /* do we need to manage? */
+       if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
+               goto recheck;
+
+       /*
+        * ->scheduled list can only be filled while a worker is
+        * preparing to process a work or actually processing it.
+        * Make sure nobody diddled with it while I was sleeping.
+        */
+       BUG_ON(!list_empty(&worker->scheduled));
+
+       /*
+        * When control reaches this point, we're guaranteed to have
+        * at least one idle worker or that someone else has already
+        * assumed the manager role.
+        */
+       worker_clr_flags(worker, WORKER_PREP);
+
+       do {
+               struct work_struct *work =
+                       list_first_entry(&gcwq->worklist,
+                                        struct work_struct, entry);
+
+               if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
+                       /* optimization path, not strictly necessary */
+                       process_one_work(worker, work);
+                       if (unlikely(!list_empty(&worker->scheduled)))
+                               process_scheduled_works(worker);
+               } else {
+                       move_linked_works(work, &worker->scheduled, NULL);
+                       process_scheduled_works(worker);
+               }
+       } while (keep_working(gcwq));
+
+       worker_set_flags(worker, WORKER_PREP, false);
+sleep:
+       if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
+               goto recheck;
+
+       /*
+        * gcwq->lock is held and there's no work to process and no
+        * need to manage, sleep.  Workers are woken up only while
+        * holding gcwq->lock or from local cpu, so setting the
+        * current state before releasing gcwq->lock is enough to
+        * prevent losing any event.
+        */
+       worker_enter_idle(worker);
+       __set_current_state(TASK_INTERRUPTIBLE);
+       spin_unlock_irq(&gcwq->lock);
+       schedule();
+       goto woke_up;
+}
+
+/**
+ * rescuer_thread - the rescuer thread function
+ * @__wq: the associated workqueue
+ *
+ * Workqueue rescuer thread function.  There's one rescuer for each
+ * workqueue which has WQ_RESCUER set.
+ *
+ * Regular work processing on a gcwq may block trying to create a new
+ * worker which uses GFP_KERNEL allocation which has slight chance of
+ * developing into deadlock if some works currently on the same queue
+ * need to be processed to satisfy the GFP_KERNEL allocation.  This is
+ * the problem rescuer solves.
+ *
+ * When such condition is possible, the gcwq summons rescuers of all
+ * workqueues which have works queued on the gcwq and let them process
+ * those works so that forward progress can be guaranteed.
+ *
+ * This should happen rarely.
+ */
+static int rescuer_thread(void *__wq)
+{
+       struct workqueue_struct *wq = __wq;
+       struct worker *rescuer = wq->rescuer;
+       struct list_head *scheduled = &rescuer->scheduled;
+       bool is_unbound = wq->flags & WQ_UNBOUND;
+       unsigned int cpu;
+
+       set_user_nice(current, RESCUER_NICE_LEVEL);
+repeat:
+       set_current_state(TASK_INTERRUPTIBLE);
+
+       if (kthread_should_stop())
+               return 0;
+
+       /*
+        * See whether any cpu is asking for help.  Unbounded
+        * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
+        */
+       for_each_mayday_cpu(cpu, wq->mayday_mask) {
+               unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
+               struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
+               struct global_cwq *gcwq = cwq->gcwq;
+               struct work_struct *work, *n;
+
+               __set_current_state(TASK_RUNNING);
+               mayday_clear_cpu(cpu, wq->mayday_mask);
+
+               /* migrate to the target cpu if possible */
+               rescuer->gcwq = gcwq;
+               worker_maybe_bind_and_lock(rescuer);
+
+               /*
+                * Slurp in all works issued via this workqueue and
+                * process'em.
+                */
+               BUG_ON(!list_empty(&rescuer->scheduled));
+               list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
+                       if (get_work_cwq(work) == cwq)
+                               move_linked_works(work, scheduled, &n);
+
+               process_scheduled_works(rescuer);
+               spin_unlock_irq(&gcwq->lock);
+       }
+
+       schedule();
+       goto repeat;
+}
+
+struct wq_barrier {
+       struct work_struct      work;
+       struct completion       done;
+};
+
+static void wq_barrier_func(struct work_struct *work)
+{
+       struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
+       complete(&barr->done);
+}
+
+/**
+ * insert_wq_barrier - insert a barrier work
+ * @cwq: cwq to insert barrier into
+ * @barr: wq_barrier to insert
+ * @target: target work to attach @barr to
+ * @worker: worker currently executing @target, NULL if @target is not executing
+ *
+ * @barr is linked to @target such that @barr is completed only after
+ * @target finishes execution.  Please note that the ordering
+ * guarantee is observed only with respect to @target and on the local
+ * cpu.
+ *
+ * Currently, a queued barrier can't be canceled.  This is because
+ * try_to_grab_pending() can't determine whether the work to be
+ * grabbed is at the head of the queue and thus can't clear LINKED
+ * flag of the previous work while there must be a valid next work
+ * after a work with LINKED flag set.
+ *
+ * Note that when @worker is non-NULL, @target may be modified
+ * underneath us, so we can't reliably determine cwq from @target.
+ *
+ * CONTEXT:
+ * spin_lock_irq(gcwq->lock).
+ */
+static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
+                             struct wq_barrier *barr,
+                             struct work_struct *target, struct worker *worker)
+{
+       struct list_head *head;
+       unsigned int linked = 0;
+
+       /*
+        * debugobject calls are safe here even with gcwq->lock locked
+        * as we know for sure that this will not trigger any of the
+        * checks and call back into the fixup functions where we
+        * might deadlock.
+        */
+       INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
+       __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
+       init_completion(&barr->done);
+
+       /*
+        * If @target is currently being executed, schedule the
+        * barrier to the worker; otherwise, put it after @target.
+        */
+       if (worker)
+               head = worker->scheduled.next;
+       else {
+               unsigned long *bits = work_data_bits(target);
+
+               head = target->entry.next;
+               /* there can already be other linked works, inherit and set */
+               linked = *bits & WORK_STRUCT_LINKED;
+               __set_bit(WORK_STRUCT_LINKED_BIT, bits);
+       }
+
+       debug_work_activate(&barr->work);
+       insert_work(cwq, &barr->work, head,
+                   work_color_to_flags(WORK_NO_COLOR) | linked);
+}
+
+/**
+ * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
+ * @wq: workqueue being flushed
+ * @flush_color: new flush color, < 0 for no-op
+ * @work_color: new work color, < 0 for no-op
+ *
+ * Prepare cwqs for workqueue flushing.
+ *
+ * If @flush_color is non-negative, flush_color on all cwqs should be
+ * -1.  If no cwq has in-flight commands at the specified color, all
+ * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
+ * has in flight commands, its cwq->flush_color is set to
+ * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
+ * wakeup logic is armed and %true is returned.
+ *
+ * The caller should have initialized @wq->first_flusher prior to
+ * calling this function with non-negative @flush_color.  If
+ * @flush_color is negative, no flush color update is done and %false
+ * is returned.
+ *
+ * If @work_color is non-negative, all cwqs should have the same
+ * work_color which is previous to @work_color and all will be
+ * advanced to @work_color.
+ *
+ * CONTEXT:
+ * mutex_lock(wq->flush_mutex).
+ *
+ * RETURNS:
+ * %true if @flush_color >= 0 and there's something to flush.  %false
+ * otherwise.
+ */
+static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
+                                     int flush_color, int work_color)
+{
+       bool wait = false;
+       unsigned int cpu;
+
+       if (flush_color >= 0) {
+               BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
+               atomic_set(&wq->nr_cwqs_to_flush, 1);
+       }
+
+       for_each_cwq_cpu(cpu, wq) {
+               struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
+               struct global_cwq *gcwq = cwq->gcwq;
+
+               spin_lock_irq(&gcwq->lock);
+
+               if (flush_color >= 0) {
+                       BUG_ON(cwq->flush_color != -1);
+
+                       if (cwq->nr_in_flight[flush_color]) {
+                               cwq->flush_color = flush_color;
+                               atomic_inc(&wq->nr_cwqs_to_flush);
+                               wait = true;
+                       }
+               }
+
+               if (work_color >= 0) {
+                       BUG_ON(work_color != work_next_color(cwq->work_color));
+                       cwq->work_color = work_color;
+               }
+
+               spin_unlock_irq(&gcwq->lock);
+       }
+
+       if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
+               complete(&wq->first_flusher->done);
+
+       return wait;
+}
+
+/**
+ * flush_workqueue - ensure that any scheduled work has run to completion.
+ * @wq: workqueue to flush
+ *
+ * Forces execution of the workqueue and blocks until its completion.
+ * This is typically used in driver shutdown handlers.
+ *
+ * We sleep until all works which were queued on entry have been handled,
+ * but we are not livelocked by new incoming ones.
+ */
+void flush_workqueue(struct workqueue_struct *wq)
+{
+       struct wq_flusher this_flusher = {
+               .list = LIST_HEAD_INIT(this_flusher.list),
+               .flush_color = -1,
+               .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
+       };
+       int next_color;
+
+       lock_map_acquire(&wq->lockdep_map);
+       lock_map_release(&wq->lockdep_map);
+
+       mutex_lock(&wq->flush_mutex);
+
+       /*
+        * Start-to-wait phase
+        */
+       next_color = work_next_color(wq->work_color);
+
+       if (next_color != wq->flush_color) {
+               /*
+                * Color space is not full.  The current work_color
+                * becomes our flush_color and work_color is advanced
+                * by one.
+                */
+               BUG_ON(!list_empty(&wq->flusher_overflow));
+               this_flusher.flush_color = wq->work_color;
+               wq->work_color = next_color;
+
+               if (!wq->first_flusher) {
+                       /* no flush in progress, become the first flusher */
+                       BUG_ON(wq->flush_color != this_flusher.flush_color);
+
+                       wq->first_flusher = &this_flusher;
+
+                       if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
+                                                      wq->work_color)) {
+                               /* nothing to flush, done */
+                               wq->flush_color = next_color;
+                               wq->first_flusher = NULL;
+                               goto out_unlock;
+                       }
+               } else {
+                       /* wait in queue */
+                       BUG_ON(wq->flush_color == this_flusher.flush_color);
+                       list_add_tail(&this_flusher.list, &wq->flusher_queue);
+                       flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
+               }
+       } else {
+               /*
+                * Oops, color space is full, wait on overflow queue.
+                * The next flush completion will assign us
+                * flush_color and transfer to flusher_queue.
+                */
+               list_add_tail(&this_flusher.list, &wq->flusher_overflow);
+       }
+
+       mutex_unlock(&wq->flush_mutex);
+
+       wait_for_completion(&this_flusher.done);
+
+       /*
+        * Wake-up-and-cascade phase
+        *
+        * First flushers are responsible for cascading flushes and
+        * handling overflow.  Non-first flushers can simply return.
+        */
+       if (wq->first_flusher != &this_flusher)
+               return;
+
+       mutex_lock(&wq->flush_mutex);
+
+       /* we might have raced, check again with mutex held */
+       if (wq->first_flusher != &this_flusher)
+               goto out_unlock;
+
+       wq->first_flusher = NULL;
+
+       BUG_ON(!list_empty(&this_flusher.list));
+       BUG_ON(wq->flush_color != this_flusher.flush_color);
+
+       while (true) {
+               struct wq_flusher *next, *tmp;
+
+               /* complete all the flushers sharing the current flush color */
+               list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
+                       if (next->flush_color != wq->flush_color)
+                               break;
+                       list_del_init(&next->list);
+                       complete(&next->done);
+               }
+
+               BUG_ON(!list_empty(&wq->flusher_overflow) &&
+                      wq->flush_color != work_next_color(wq->work_color));
+
+               /* this flush_color is finished, advance by one */
+               wq->flush_color = work_next_color(wq->flush_color);
+
+               /* one color has been freed, handle overflow queue */
+               if (!list_empty(&wq->flusher_overflow)) {
+                       /*
+                        * Assign the same color to all overflowed
+                        * flushers, advance work_color and append to
+                        * flusher_queue.  This is the start-to-wait
+                        * phase for these overflowed flushers.
+                        */
+                       list_for_each_entry(tmp, &wq->flusher_overflow, list)
+                               tmp->flush_color = wq->work_color;
+
+                       wq->work_color = work_next_color(wq->work_color);
+
+                       list_splice_tail_init(&wq->flusher_overflow,
+                                             &wq->flusher_queue);
+                       flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
+               }
+
+               if (list_empty(&wq->flusher_queue)) {
+                       BUG_ON(wq->flush_color != wq->work_color);
+                       break;
+               }
+
+               /*
+                * Need to flush more colors.  Make the next flusher
+                * the new first flusher and arm cwqs.
+                */
+               BUG_ON(wq->flush_color == wq->work_color);
+               BUG_ON(wq->flush_color != next->flush_color);
+
+               list_del_init(&next->list);
+               wq->first_flusher = next;
+
+               if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
+                       break;
+
+               /*
+                * Meh... this color is already done, clear first
+                * flusher and repeat cascading.
+                */
+               wq->first_flusher = NULL;
+       }
+
+out_unlock:
+       mutex_unlock(&wq->flush_mutex);
+}
+EXPORT_SYMBOL_GPL(flush_workqueue);
+
+static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
+                            bool wait_executing)
+{
+       struct worker *worker = NULL;
+       struct global_cwq *gcwq;
+       struct cpu_workqueue_struct *cwq;
+
+       might_sleep();
+       gcwq = get_work_gcwq(work);
+       if (!gcwq)
+               return false;
+
+       spin_lock_irq(&gcwq->lock);
+       if (!list_empty(&work->entry)) {
+               /*
+                * See the comment near try_to_grab_pending()->smp_rmb().
+                * If it was re-queued to a different gcwq under us, we
+                * are not going to wait.
+                */
+               smp_rmb();
+               cwq = get_work_cwq(work);
+               if (unlikely(!cwq || gcwq != cwq->gcwq))
+                       goto already_gone;
+       } else if (wait_executing) {
+               worker = find_worker_executing_work(gcwq, work);
+               if (!worker)
+                       goto already_gone;
+               cwq = worker->current_cwq;
+       } else
+               goto already_gone;
+
+       insert_wq_barrier(cwq, barr, work, worker);
+       spin_unlock_irq(&gcwq->lock);
+
+       lock_map_acquire(&cwq->wq->lockdep_map);
+       lock_map_release(&cwq->wq->lockdep_map);
+       return true;
+already_gone:
+       spin_unlock_irq(&gcwq->lock);
+       return false;
+}
+
+/**
+ * flush_work - wait for a work to finish executing the last queueing instance
+ * @work: the work to flush
+ *
+ * Wait until @work has finished execution.  This function considers
+ * only the last queueing instance of @work.  If @work has been
+ * enqueued across different CPUs on a non-reentrant workqueue or on
+ * multiple workqueues, @work might still be executing on return on
+ * some of the CPUs from earlier queueing.
+ *
+ * If @work was queued only on a non-reentrant, ordered or unbound
+ * workqueue, @work is guaranteed to be idle on return if it hasn't
+ * been requeued since flush started.
+ *
+ * RETURNS:
+ * %true if flush_work() waited for the work to finish execution,
+ * %false if it was already idle.
+ */
+bool flush_work(struct work_struct *work)
+{
+       struct wq_barrier barr;
+
+       if (start_flush_work(work, &barr, true)) {
+               wait_for_completion(&barr.done);
+               destroy_work_on_stack(&barr.work);
+               return true;
+       } else
+               return false;
+}
+EXPORT_SYMBOL_GPL(flush_work);
+
+static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
 {
-       struct cpu_workqueue_struct *cwq;
-       struct list_head *prev;
        struct wq_barrier barr;
+       struct worker *worker;
+
+       spin_lock_irq(&gcwq->lock);
+
+       worker = find_worker_executing_work(gcwq, work);
+       if (unlikely(worker))
+               insert_wq_barrier(worker->current_cwq, &barr, work, worker);
+
+       spin_unlock_irq(&gcwq->lock);
+
+       if (unlikely(worker)) {
+               wait_for_completion(&barr.done);
+               destroy_work_on_stack(&barr.work);
+               return true;
+       } else
+               return false;
+}
+
+static bool wait_on_work(struct work_struct *work)
+{
+       bool ret = false;
+       int cpu;
 
        might_sleep();
-       cwq = get_wq_data(work);
-       if (!cwq)
-               return 0;
 
-       lock_map_acquire(&cwq->wq->lockdep_map);
-       lock_map_release(&cwq->wq->lockdep_map);
+       lock_map_acquire(&work->lockdep_map);
+       lock_map_release(&work->lockdep_map);
 
-       prev = NULL;
-       spin_lock_irq(&cwq->lock);
-       if (!list_empty(&work->entry)) {
-               /*
-                * See the comment near try_to_grab_pending()->smp_rmb().
-                * If it was re-queued under us we are not going to wait.
-                */
-               smp_rmb();
-               if (unlikely(cwq != get_wq_data(work)))
-                       goto out;
-               prev = &work->entry;
-       } else {
-               if (cwq->current_work != work)
-                       goto out;
-               prev = &cwq->worklist;
+       for_each_gcwq_cpu(cpu)
+               ret |= wait_on_cpu_work(get_gcwq(cpu), work);
+       return ret;
+}
+
+/**
+ * flush_work_sync - wait until a work has finished execution
+ * @work: the work to flush
+ *
+ * Wait until @work has finished execution.  On return, it's
+ * guaranteed that all queueing instances of @work which happened
+ * before this function is called are finished.  In other words, if
+ * @work hasn't been requeued since this function was called, @work is
+ * guaranteed to be idle on return.
+ *
+ * RETURNS:
+ * %true if flush_work_sync() waited for the work to finish execution,
+ * %false if it was already idle.
+ */
+bool flush_work_sync(struct work_struct *work)
+{
+       struct wq_barrier barr;
+       bool pending, waited;
+
+       /* we'll wait for executions separately, queue barr only if pending */
+       pending = start_flush_work(work, &barr, false);
+
+       /* wait for executions to finish */
+       waited = wait_on_work(work);
+
+       /* wait for the pending one */
+       if (pending) {
+               wait_for_completion(&barr.done);
+               destroy_work_on_stack(&barr.work);
        }
-       insert_wq_barrier(cwq, &barr, prev->next);
-out:
-       spin_unlock_irq(&cwq->lock);
-       if (!prev)
-               return 0;
 
-       wait_for_completion(&barr.done);
-       return 1;
+       return pending || waited;
 }
-EXPORT_SYMBOL_GPL(flush_work);
+EXPORT_SYMBOL_GPL(flush_work_sync);
 
 /*
  * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
@@ -478,80 +2466,43 @@ EXPORT_SYMBOL_GPL(flush_work);
  */
 static int try_to_grab_pending(struct work_struct *work)
 {
-       struct cpu_workqueue_struct *cwq;
+       struct global_cwq *gcwq;
        int ret = -1;
 
-       if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
+       if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
                return 0;
 
        /*
         * The queueing is in progress, or it is already queued. Try to
         * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
         */
-
-       cwq = get_wq_data(work);
-       if (!cwq)
+       gcwq = get_work_gcwq(work);
+       if (!gcwq)
                return ret;
 
-       spin_lock_irq(&cwq->lock);
+       spin_lock_irq(&gcwq->lock);
        if (!list_empty(&work->entry)) {
                /*
-                * This work is queued, but perhaps we locked the wrong cwq.
+                * This work is queued, but perhaps we locked the wrong gcwq.
                 * In that case we must see the new value after rmb(), see
                 * insert_work()->wmb().
                 */
                smp_rmb();
-               if (cwq == get_wq_data(work)) {
+               if (gcwq == get_work_gcwq(work)) {
+                       debug_work_deactivate(work);
                        list_del_init(&work->entry);
+                       cwq_dec_nr_in_flight(get_work_cwq(work),
+                               get_work_color(work),
+                               *work_data_bits(work) & WORK_STRUCT_DELAYED);
                        ret = 1;
                }
        }
-       spin_unlock_irq(&cwq->lock);
+       spin_unlock_irq(&gcwq->lock);
 
        return ret;
 }
 
-static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
-                               struct work_struct *work)
-{
-       struct wq_barrier barr;
-       int running = 0;
-
-       spin_lock_irq(&cwq->lock);
-       if (unlikely(cwq->current_work == work)) {
-               insert_wq_barrier(cwq, &barr, cwq->worklist.next);
-               running = 1;
-       }
-       spin_unlock_irq(&cwq->lock);
-
-       if (unlikely(running))
-               wait_for_completion(&barr.done);
-}
-
-static void wait_on_work(struct work_struct *work)
-{
-       struct cpu_workqueue_struct *cwq;
-       struct workqueue_struct *wq;
-       const struct cpumask *cpu_map;
-       int cpu;
-
-       might_sleep();
-
-       lock_map_acquire(&work->lockdep_map);
-       lock_map_release(&work->lockdep_map);
-
-       cwq = get_wq_data(work);
-       if (!cwq)
-               return;
-
-       wq = cwq->wq;
-       cpu_map = wq_cpu_map(wq);
-
-       for_each_cpu_mask_nr(cpu, *cpu_map)
-               wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
-}
-
-static int __cancel_work_timer(struct work_struct *work,
+static bool __cancel_work_timer(struct work_struct *work,
                                struct timer_list* timer)
 {
        int ret;
@@ -563,63 +2514,105 @@ static int __cancel_work_timer(struct work_struct *work,
                wait_on_work(work);
        } while (unlikely(ret < 0));
 
-       work_clear_pending(work);
+       clear_work_data(work);
        return ret;
 }
 
 /**
- * cancel_work_sync - block until a work_struct's callback has terminated
- * @work: the work which is to be flushed
+ * cancel_work_sync - cancel a work and wait for it to finish
+ * @work: the work to cancel
  *
- * Returns true if @work was pending.
+ * Cancel @work and wait for its execution to finish.  This function
+ * can be used even if the work re-queues itself or migrates to
+ * another workqueue.  On return from this function, @work is
+ * guaranteed to be not pending or executing on any CPU.
  *
- * cancel_work_sync() will cancel the work if it is queued. If the work's
- * callback appears to be running, cancel_work_sync() will block until it
- * has completed.
+ * cancel_work_sync(&delayed_work->work) must not be used for
+ * delayed_work's.  Use cancel_delayed_work_sync() instead.
  *
- * It is possible to use this function if the work re-queues itself. It can
- * cancel the work even if it migrates to another workqueue, however in that
- * case it only guarantees that work->func() has completed on the last queued
- * workqueue.
- *
- * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
- * pending, otherwise it goes into a busy-wait loop until the timer expires.
- *
- * The caller must ensure that workqueue_struct on which this work was last
+ * The caller must ensure that the workqueue on which @work was last
  * queued can't be destroyed before this function returns.
+ *
+ * RETURNS:
+ * %true if @work was pending, %false otherwise.
  */
-int cancel_work_sync(struct work_struct *work)
+bool cancel_work_sync(struct work_struct *work)
 {
        return __cancel_work_timer(work, NULL);
 }
 EXPORT_SYMBOL_GPL(cancel_work_sync);
 
 /**
- * cancel_delayed_work_sync - reliably kill off a delayed work.
- * @dwork: the delayed work struct
+ * flush_delayed_work - wait for a dwork to finish executing the last queueing
+ * @dwork: the delayed work to flush
+ *
+ * Delayed timer is cancelled and the pending work is queued for
+ * immediate execution.  Like flush_work(), this function only
+ * considers the last queueing instance of @dwork.
+ *
+ * RETURNS:
+ * %true if flush_work() waited for the work to finish execution,
+ * %false if it was already idle.
+ */
+bool flush_delayed_work(struct delayed_work *dwork)
+{
+       if (del_timer_sync(&dwork->timer))
+               __queue_work(raw_smp_processor_id(),
+                            get_work_cwq(&dwork->work)->wq, &dwork->work);
+       return flush_work(&dwork->work);
+}
+EXPORT_SYMBOL(flush_delayed_work);
+
+/**
+ * flush_delayed_work_sync - wait for a dwork to finish
+ * @dwork: the delayed work to flush
+ *
+ * Delayed timer is cancelled and the pending work is queued for
+ * execution immediately.  Other than timer handling, its behavior
+ * is identical to flush_work_sync().
+ *
+ * RETURNS:
+ * %true if flush_work_sync() waited for the work to finish execution,
+ * %false if it was already idle.
+ */
+bool flush_delayed_work_sync(struct delayed_work *dwork)
+{
+       if (del_timer_sync(&dwork->timer))
+               __queue_work(raw_smp_processor_id(),
+                            get_work_cwq(&dwork->work)->wq, &dwork->work);
+       return flush_work_sync(&dwork->work);
+}
+EXPORT_SYMBOL(flush_delayed_work_sync);
+
+/**
+ * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
+ * @dwork: the delayed work cancel
  *
- * Returns true if @dwork was pending.
+ * This is cancel_work_sync() for delayed works.
  *
- * It is possible to use this function if @dwork rearms itself via queue_work()
- * or queue_delayed_work(). See also the comment for cancel_work_sync().
+ * RETURNS:
+ * %true if @dwork was pending, %false otherwise.
  */
-int cancel_delayed_work_sync(struct delayed_work *dwork)
+bool cancel_delayed_work_sync(struct delayed_work *dwork)
 {
        return __cancel_work_timer(&dwork->work, &dwork->timer);
 }
 EXPORT_SYMBOL(cancel_delayed_work_sync);
 
-static struct workqueue_struct *keventd_wq __read_mostly;
-
 /**
  * schedule_work - put work task in global workqueue
  * @work: job to be done
  *
- * This puts a job in the kernel-global workqueue.
+ * Returns zero if @work was already on the kernel-global workqueue and
+ * non-zero otherwise.
+ *
+ * This puts a job in the kernel-global workqueue if it was not already
+ * queued and leaves it in the same position on the kernel-global
+ * workqueue otherwise.
  */
 int schedule_work(struct work_struct *work)
 {
-       return queue_work(keventd_wq, work);
+       return queue_work(system_wq, work);
 }
 EXPORT_SYMBOL(schedule_work);
 
@@ -632,7 +2625,7 @@ EXPORT_SYMBOL(schedule_work);
  */
 int schedule_work_on(int cpu, struct work_struct *work)
 {
-       return queue_work_on(cpu, keventd_wq, work);
+       return queue_work_on(cpu, system_wq, work);
 }
 EXPORT_SYMBOL(schedule_work_on);
 
@@ -647,7 +2640,7 @@ EXPORT_SYMBOL(schedule_work_on);
 int schedule_delayed_work(struct delayed_work *dwork,
                                        unsigned long delay)
 {
-       return queue_delayed_work(keventd_wq, dwork, delay);
+       return queue_delayed_work(system_wq, dwork, delay);
 }
 EXPORT_SYMBOL(schedule_delayed_work);
 
@@ -663,328 +2656,817 @@ EXPORT_SYMBOL(schedule_delayed_work);
 int schedule_delayed_work_on(int cpu,
                        struct delayed_work *dwork, unsigned long delay)
 {
-       return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
+       return queue_delayed_work_on(cpu, system_wq, dwork, delay);
 }
 EXPORT_SYMBOL(schedule_delayed_work_on);
 
 /**
- * schedule_on_each_cpu - call a function on each online CPU from keventd
+ * schedule_on_each_cpu - execute a function synchronously on each online CPU
  * @func: the function to call
  *
- * Returns zero on success.
- * Returns -ve errno on failure.
- *
+ * schedule_on_each_cpu() executes @func on each online CPU using the
+ * system workqueue and blocks until all CPUs have completed.
  * schedule_on_each_cpu() is very slow.
+ *
+ * RETURNS:
+ * 0 on success, -errno on failure.
  */
 int schedule_on_each_cpu(work_func_t func)
 {
        int cpu;
-       struct work_struct *works;
+       struct work_struct __percpu *works;
+
+       works = alloc_percpu(struct work_struct);
+       if (!works)
+               return -ENOMEM;
+
+       get_online_cpus();
+
+       for_each_online_cpu(cpu) {
+               struct work_struct *work = per_cpu_ptr(works, cpu);
+
+               INIT_WORK(work, func);
+               schedule_work_on(cpu, work);
+       }
+
+       for_each_online_cpu(cpu)
+               flush_work(per_cpu_ptr(works, cpu));
+
+       put_online_cpus();
+       free_percpu(works);
+       return 0;
+}
+
+/**
+ * flush_scheduled_work - ensure that any scheduled work has run to completion.
+ *
+ * Forces execution of the kernel-global workqueue and blocks until its
+ * completion.
+ *
+ * Think twice before calling this function!  It's very easy to get into
+ * trouble if you don't take great care.  Either of the following situations
+ * will lead to deadlock:
+ *
+ *     One of the work items currently on the workqueue needs to acquire
+ *     a lock held by your code or its caller.
+ *
+ *     Your code is running in the context of a work routine.
+ *
+ * They will be detected by lockdep when they occur, but the first might not
+ * occur very often.  It depends on what work items are on the workqueue and
+ * what locks they need, which you have no control over.
+ *
+ * In most situations flushing the entire workqueue is overkill; you merely
+ * need to know that a particular work item isn't queued and isn't running.
+ * In such cases you should use cancel_delayed_work_sync() or
+ * cancel_work_sync() instead.
+ */
+void flush_scheduled_work(void)
+{
+       flush_workqueue(system_wq);
+}
+EXPORT_SYMBOL(flush_scheduled_work);
+
+/**
+ * execute_in_process_context - reliably execute the routine with user context
+ * @fn:                the function to execute
+ * @ew:                guaranteed storage for the execute work structure (must
+ *             be available when the work executes)
+ *
+ * Executes the function immediately if process context is available,
+ * otherwise schedules the function for delayed execution.
+ *
+ * Returns:    0 - function was executed
+ *             1 - function was scheduled for execution
+ */
+int execute_in_process_context(work_func_t fn, struct execute_work *ew)
+{
+       if (!in_interrupt()) {
+               fn(&ew->work);
+               return 0;
+       }
+
+       INIT_WORK(&ew->work, fn);
+       schedule_work(&ew->work);
+
+       return 1;
+}
+EXPORT_SYMBOL_GPL(execute_in_process_context);
+
+int keventd_up(void)
+{
+       return system_wq != NULL;
+}
+
+static int alloc_cwqs(struct workqueue_struct *wq)
+{
+       /*
+        * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
+        * Make sure that the alignment isn't lower than that of
+        * unsigned long long.
+        */
+       const size_t size = sizeof(struct cpu_workqueue_struct);
+       const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
+                                  __alignof__(unsigned long long));
+#ifdef CONFIG_SMP
+       bool percpu = !(wq->flags & WQ_UNBOUND);
+#else
+       bool percpu = false;
+#endif
+
+       if (percpu)
+               wq->cpu_wq.pcpu = __alloc_percpu(size, align);
+       else {
+               void *ptr;
+
+               /*
+                * Allocate enough room to align cwq and put an extra
+                * pointer at the end pointing back to the originally
+                * allocated pointer which will be used for free.
+                */
+               ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
+               if (ptr) {
+                       wq->cpu_wq.single = PTR_ALIGN(ptr, align);
+                       *(void **)(wq->cpu_wq.single + 1) = ptr;
+               }
+       }
+
+       /* just in case, make sure it's actually aligned
+        * - this is affected by PERCPU() alignment in vmlinux.lds.S
+        */
+       BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
+       return wq->cpu_wq.v ? 0 : -ENOMEM;
+}
+
+static void free_cwqs(struct workqueue_struct *wq)
+{
+#ifdef CONFIG_SMP
+       bool percpu = !(wq->flags & WQ_UNBOUND);
+#else
+       bool percpu = false;
+#endif
+
+       if (percpu)
+               free_percpu(wq->cpu_wq.pcpu);
+       else if (wq->cpu_wq.single) {
+               /* the pointer to free is stored right after the cwq */
+               kfree(*(void **)(wq->cpu_wq.single + 1));
+       }
+}
+
+static int wq_clamp_max_active(int max_active, unsigned int flags,
+                              const char *name)
+{
+       int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
+
+       if (max_active < 1 || max_active > lim)
+               printk(KERN_WARNING "workqueue: max_active %d requested for %s "
+                      "is out of range, clamping between %d and %d\n",
+                      max_active, name, 1, lim);
+
+       return clamp_val(max_active, 1, lim);
+}
+
+struct workqueue_struct *__alloc_workqueue_key(const char *name,
+                                              unsigned int flags,
+                                              int max_active,
+                                              struct lock_class_key *key,
+                                              const char *lock_name)
+{
+       struct workqueue_struct *wq;
+       unsigned int cpu;
+
+       /*
+        * Workqueues which may be used during memory reclaim should
+        * have a rescuer to guarantee forward progress.
+        */
+       if (flags & WQ_MEM_RECLAIM)
+               flags |= WQ_RESCUER;
+
+       /*
+        * Unbound workqueues aren't concurrency managed and should be
+        * dispatched to workers immediately.
+        */
+       if (flags & WQ_UNBOUND)
+               flags |= WQ_HIGHPRI;
+
+       max_active = max_active ?: WQ_DFL_ACTIVE;
+       max_active = wq_clamp_max_active(max_active, flags, name);
+
+       wq = kzalloc(sizeof(*wq), GFP_KERNEL);
+       if (!wq)
+               goto err;
+
+       wq->flags = flags;
+       wq->saved_max_active = max_active;
+       mutex_init(&wq->flush_mutex);
+       atomic_set(&wq->nr_cwqs_to_flush, 0);
+       INIT_LIST_HEAD(&wq->flusher_queue);
+       INIT_LIST_HEAD(&wq->flusher_overflow);
+
+       wq->name = name;
+       lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
+       INIT_LIST_HEAD(&wq->list);
+
+       if (alloc_cwqs(wq) < 0)
+               goto err;
+
+       for_each_cwq_cpu(cpu, wq) {
+               struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
+               struct global_cwq *gcwq = get_gcwq(cpu);
+
+               BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
+               cwq->gcwq = gcwq;
+               cwq->wq = wq;
+               cwq->flush_color = -1;
+               cwq->max_active = max_active;
+               INIT_LIST_HEAD(&cwq->delayed_works);
+       }
+
+       if (flags & WQ_RESCUER) {
+               struct worker *rescuer;
+
+               if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
+                       goto err;
+
+               wq->rescuer = rescuer = alloc_worker();
+               if (!rescuer)
+                       goto err;
+
+               rescuer->task = kthread_create(rescuer_thread, wq, "%s", name);
+               if (IS_ERR(rescuer->task))
+                       goto err;
+
+               rescuer->task->flags |= PF_THREAD_BOUND;
+               wake_up_process(rescuer->task);
+       }
+
+       /*
+        * workqueue_lock protects global freeze state and workqueues
+        * list.  Grab it, set max_active accordingly and add the new
+        * workqueue to workqueues list.
+        */
+       spin_lock(&workqueue_lock);
+
+       if (workqueue_freezing && wq->flags & WQ_FREEZEABLE)
+               for_each_cwq_cpu(cpu, wq)
+                       get_cwq(cpu, wq)->max_active = 0;
+
+       list_add(&wq->list, &workqueues);
+
+       spin_unlock(&workqueue_lock);
+
+       return wq;
+err:
+       if (wq) {
+               free_cwqs(wq);
+               free_mayday_mask(wq->mayday_mask);
+               kfree(wq->rescuer);
+               kfree(wq);
+       }
+       return NULL;
+}
+EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
+
+/**
+ * destroy_workqueue - safely terminate a workqueue
+ * @wq: target workqueue
+ *
+ * Safely destroy a workqueue. All work currently pending will be done first.
+ */
+void destroy_workqueue(struct workqueue_struct *wq)
+{
+       unsigned int cpu;
+
+       wq->flags |= WQ_DYING;
+       flush_workqueue(wq);
+
+       /*
+        * wq list is used to freeze wq, remove from list after
+        * flushing is complete in case freeze races us.
+        */
+       spin_lock(&workqueue_lock);
+       list_del(&wq->list);
+       spin_unlock(&workqueue_lock);
+
+       /* sanity check */
+       for_each_cwq_cpu(cpu, wq) {
+               struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
+               int i;
+
+               for (i = 0; i < WORK_NR_COLORS; i++)
+                       BUG_ON(cwq->nr_in_flight[i]);
+               BUG_ON(cwq->nr_active);
+               BUG_ON(!list_empty(&cwq->delayed_works));
+       }
+
+       if (wq->flags & WQ_RESCUER) {
+               kthread_stop(wq->rescuer->task);
+               free_mayday_mask(wq->mayday_mask);
+               kfree(wq->rescuer);
+       }
+
+       free_cwqs(wq);
+       kfree(wq);
+}
+EXPORT_SYMBOL_GPL(destroy_workqueue);
+
+/**
+ * workqueue_set_max_active - adjust max_active of a workqueue
+ * @wq: target workqueue
+ * @max_active: new max_active value.
+ *
+ * Set max_active of @wq to @max_active.
+ *
+ * CONTEXT:
+ * Don't call from IRQ context.
+ */
+void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
+{
+       unsigned int cpu;
+
+       max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
+
+       spin_lock(&workqueue_lock);
 
-       works = alloc_percpu(struct work_struct);
-       if (!works)
-               return -ENOMEM;
+       wq->saved_max_active = max_active;
 
-       get_online_cpus();
-       for_each_online_cpu(cpu) {
-               struct work_struct *work = per_cpu_ptr(works, cpu);
+       for_each_cwq_cpu(cpu, wq) {
+               struct global_cwq *gcwq = get_gcwq(cpu);
 
-               INIT_WORK(work, func);
-               schedule_work_on(cpu, work);
+               spin_lock_irq(&gcwq->lock);
+
+               if (!(wq->flags & WQ_FREEZEABLE) ||
+                   !(gcwq->flags & GCWQ_FREEZING))
+                       get_cwq(gcwq->cpu, wq)->max_active = max_active;
+
+               spin_unlock_irq(&gcwq->lock);
        }
-       for_each_online_cpu(cpu)
-               flush_work(per_cpu_ptr(works, cpu));
-       put_online_cpus();
-       free_percpu(works);
-       return 0;
-}
 
-void flush_scheduled_work(void)
-{
-       flush_workqueue(keventd_wq);
+       spin_unlock(&workqueue_lock);
 }
-EXPORT_SYMBOL(flush_scheduled_work);
+EXPORT_SYMBOL_GPL(workqueue_set_max_active);
 
 /**
- * execute_in_process_context - reliably execute the routine with user context
- * @fn:                the function to execute
- * @ew:                guaranteed storage for the execute work structure (must
- *             be available when the work executes)
+ * workqueue_congested - test whether a workqueue is congested
+ * @cpu: CPU in question
+ * @wq: target workqueue
  *
- * Executes the function immediately if process context is available,
- * otherwise schedules the function for delayed execution.
+ * Test whether @wq's cpu workqueue for @cpu is congested.  There is
+ * no synchronization around this function and the test result is
+ * unreliable and only useful as advisory hints or for debugging.
  *
- * Returns:    0 - function was executed
- *             1 - function was scheduled for execution
+ * RETURNS:
+ * %true if congested, %false otherwise.
  */
-int execute_in_process_context(work_func_t fn, struct execute_work *ew)
+bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
 {
-       if (!in_interrupt()) {
-               fn(&ew->work);
-               return 0;
-       }
-
-       INIT_WORK(&ew->work, fn);
-       schedule_work(&ew->work);
+       struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
 
-       return 1;
+       return !list_empty(&cwq->delayed_works);
 }
-EXPORT_SYMBOL_GPL(execute_in_process_context);
+EXPORT_SYMBOL_GPL(workqueue_congested);
 
-int keventd_up(void)
+/**
+ * work_cpu - return the last known associated cpu for @work
+ * @work: the work of interest
+ *
+ * RETURNS:
+ * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
+ */
+unsigned int work_cpu(struct work_struct *work)
 {
-       return keventd_wq != NULL;
+       struct global_cwq *gcwq = get_work_gcwq(work);
+
+       return gcwq ? gcwq->cpu : WORK_CPU_NONE;
 }
+EXPORT_SYMBOL_GPL(work_cpu);
 
-int current_is_keventd(void)
+/**
+ * work_busy - test whether a work is currently pending or running
+ * @work: the work to be tested
+ *
+ * Test whether @work is currently pending or running.  There is no
+ * synchronization around this function and the test result is
+ * unreliable and only useful as advisory hints or for debugging.
+ * Especially for reentrant wqs, the pending state might hide the
+ * running state.
+ *
+ * RETURNS:
+ * OR'd bitmask of WORK_BUSY_* bits.
+ */
+unsigned int work_busy(struct work_struct *work)
 {
-       struct cpu_workqueue_struct *cwq;
-       int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
-       int ret = 0;
+       struct global_cwq *gcwq = get_work_gcwq(work);
+       unsigned long flags;
+       unsigned int ret = 0;
 
-       BUG_ON(!keventd_wq);
+       if (!gcwq)
+               return false;
 
-       cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
-       if (current == cwq->thread)
-               ret = 1;
+       spin_lock_irqsave(&gcwq->lock, flags);
 
-       return ret;
+       if (work_pending(work))
+               ret |= WORK_BUSY_PENDING;
+       if (find_worker_executing_work(gcwq, work))
+               ret |= WORK_BUSY_RUNNING;
 
+       spin_unlock_irqrestore(&gcwq->lock, flags);
+
+       return ret;
 }
+EXPORT_SYMBOL_GPL(work_busy);
 
-static struct cpu_workqueue_struct *
-init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
-{
-       struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
+/*
+ * CPU hotplug.
+ *
+ * There are two challenges in supporting CPU hotplug.  Firstly, there
+ * are a lot of assumptions on strong associations among work, cwq and
+ * gcwq which make migrating pending and scheduled works very
+ * difficult to implement without impacting hot paths.  Secondly,
+ * gcwqs serve mix of short, long and very long running works making
+ * blocked draining impractical.
+ *
+ * This is solved by allowing a gcwq to be detached from CPU, running
+ * it with unbound (rogue) workers and allowing it to be reattached
+ * later if the cpu comes back online.  A separate thread is created
+ * to govern a gcwq in such state and is called the trustee of the
+ * gcwq.
+ *
+ * Trustee states and their descriptions.
+ *
+ * START       Command state used on startup.  On CPU_DOWN_PREPARE, a
+ *             new trustee is started with this state.
+ *
+ * IN_CHARGE   Once started, trustee will enter this state after
+ *             assuming the manager role and making all existing
+ *             workers rogue.  DOWN_PREPARE waits for trustee to
+ *             enter this state.  After reaching IN_CHARGE, trustee
+ *             tries to execute the pending worklist until it's empty
+ *             and the state is set to BUTCHER, or the state is set
+ *             to RELEASE.
+ *
+ * BUTCHER     Command state which is set by the cpu callback after
+ *             the cpu has went down.  Once this state is set trustee
+ *             knows that there will be no new works on the worklist
+ *             and once the worklist is empty it can proceed to
+ *             killing idle workers.
+ *
+ * RELEASE     Command state which is set by the cpu callback if the
+ *             cpu down has been canceled or it has come online
+ *             again.  After recognizing this state, trustee stops
+ *             trying to drain or butcher and clears ROGUE, rebinds
+ *             all remaining workers back to the cpu and releases
+ *             manager role.
+ *
+ * DONE                Trustee will enter this state after BUTCHER or RELEASE
+ *             is complete.
+ *
+ *          trustee                 CPU                draining
+ *         took over                down               complete
+ * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
+ *                        |                     |                  ^
+ *                        | CPU is back online  v   return workers |
+ *                         ----------------> RELEASE --------------
+ */
 
-       cwq->wq = wq;
-       spin_lock_init(&cwq->lock);
-       INIT_LIST_HEAD(&cwq->worklist);
-       init_waitqueue_head(&cwq->more_work);
+/**
+ * trustee_wait_event_timeout - timed event wait for trustee
+ * @cond: condition to wait for
+ * @timeout: timeout in jiffies
+ *
+ * wait_event_timeout() for trustee to use.  Handles locking and
+ * checks for RELEASE request.
+ *
+ * CONTEXT:
+ * spin_lock_irq(gcwq->lock) which may be released and regrabbed
+ * multiple times.  To be used by trustee.
+ *
+ * RETURNS:
+ * Positive indicating left time if @cond is satisfied, 0 if timed
+ * out, -1 if canceled.
+ */
+#define trustee_wait_event_timeout(cond, timeout) ({                   \
+       long __ret = (timeout);                                         \
+       while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \
+              __ret) {                                                 \
+               spin_unlock_irq(&gcwq->lock);                           \
+               __wait_event_timeout(gcwq->trustee_wait, (cond) ||      \
+                       (gcwq->trustee_state == TRUSTEE_RELEASE),       \
+                       __ret);                                         \
+               spin_lock_irq(&gcwq->lock);                             \
+       }                                                               \
+       gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret);          \
+})
 
-       return cwq;
-}
+/**
+ * trustee_wait_event - event wait for trustee
+ * @cond: condition to wait for
+ *
+ * wait_event() for trustee to use.  Automatically handles locking and
+ * checks for CANCEL request.
+ *
+ * CONTEXT:
+ * spin_lock_irq(gcwq->lock) which may be released and regrabbed
+ * multiple times.  To be used by trustee.
+ *
+ * RETURNS:
+ * 0 if @cond is satisfied, -1 if canceled.
+ */
+#define trustee_wait_event(cond) ({                                    \
+       long __ret1;                                                    \
+       __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
+       __ret1 < 0 ? -1 : 0;                                            \
+})
 
-static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
+static int __cpuinit trustee_thread(void *__gcwq)
 {
-       struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
-       struct workqueue_struct *wq = cwq->wq;
-       const char *fmt = is_wq_single_threaded(wq) ? "%s" : "%s/%d";
-       struct task_struct *p;
+       struct global_cwq *gcwq = __gcwq;
+       struct worker *worker;
+       struct work_struct *work;
+       struct hlist_node *pos;
+       long rc;
+       int i;
 
-       p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
+       BUG_ON(gcwq->cpu != smp_processor_id());
+
+       spin_lock_irq(&gcwq->lock);
        /*
-        * Nobody can add the work_struct to this cwq,
-        *      if (caller is __create_workqueue)
-        *              nobody should see this wq
-        *      else // caller is CPU_UP_PREPARE
-        *              cpu is not on cpu_online_map
-        * so we can abort safely.
+        * Claim the manager position and make all workers rogue.
+        * Trustee must be bound to the target cpu and can't be
+        * cancelled.
         */
-       if (IS_ERR(p))
-               return PTR_ERR(p);
-       if (cwq->wq->rt)
-               sched_setscheduler_nocheck(p, SCHED_FIFO, &param);
-       cwq->thread = p;
+       BUG_ON(gcwq->cpu != smp_processor_id());
+       rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
+       BUG_ON(rc < 0);
 
-       return 0;
-}
+       gcwq->flags |= GCWQ_MANAGING_WORKERS;
 
-static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
-{
-       struct task_struct *p = cwq->thread;
+       list_for_each_entry(worker, &gcwq->idle_list, entry)
+               worker->flags |= WORKER_ROGUE;
 
-       if (p != NULL) {
-               if (cpu >= 0)
-                       kthread_bind(p, cpu);
-               wake_up_process(p);
-       }
-}
+       for_each_busy_worker(worker, i, pos, gcwq)
+               worker->flags |= WORKER_ROGUE;
 
-struct workqueue_struct *__create_workqueue_key(const char *name,
-                                               int singlethread,
-                                               int freezeable,
-                                               int rt,
-                                               struct lock_class_key *key,
-                                               const char *lock_name)
-{
-       struct workqueue_struct *wq;
-       struct cpu_workqueue_struct *cwq;
-       int err = 0, cpu;
+       /*
+        * Call schedule() so that we cross rq->lock and thus can
+        * guarantee sched callbacks see the rogue flag.  This is
+        * necessary as scheduler callbacks may be invoked from other
+        * cpus.
+        */
+       spin_unlock_irq(&gcwq->lock);
+       schedule();
+       spin_lock_irq(&gcwq->lock);
 
-       wq = kzalloc(sizeof(*wq), GFP_KERNEL);
-       if (!wq)
-               return NULL;
+       /*
+        * Sched callbacks are disabled now.  Zap nr_running.  After
+        * this, nr_running stays zero and need_more_worker() and
+        * keep_working() are always true as long as the worklist is
+        * not empty.
+        */
+       atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
 
-       wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
-       if (!wq->cpu_wq) {
-               kfree(wq);
-               return NULL;
-       }
+       spin_unlock_irq(&gcwq->lock);
+       del_timer_sync(&gcwq->idle_timer);
+       spin_lock_irq(&gcwq->lock);
 
-       wq->name = name;
-       lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
-       wq->singlethread = singlethread;
-       wq->freezeable = freezeable;
-       wq->rt = rt;
-       INIT_LIST_HEAD(&wq->list);
+       /*
+        * We're now in charge.  Notify and proceed to drain.  We need
+        * to keep the gcwq running during the whole CPU down
+        * procedure as other cpu hotunplug callbacks may need to
+        * flush currently running tasks.
+        */
+       gcwq->trustee_state = TRUSTEE_IN_CHARGE;
+       wake_up_all(&gcwq->trustee_wait);
 
-       if (singlethread) {
-               cwq = init_cpu_workqueue(wq, singlethread_cpu);
-               err = create_workqueue_thread(cwq, singlethread_cpu);
-               start_workqueue_thread(cwq, -1);
-       } else {
-               cpu_maps_update_begin();
-               /*
-                * We must place this wq on list even if the code below fails.
-                * cpu_down(cpu) can remove cpu from cpu_populated_map before
-                * destroy_workqueue() takes the lock, in that case we leak
-                * cwq[cpu]->thread.
-                */
-               spin_lock(&workqueue_lock);
-               list_add(&wq->list, &workqueues);
-               spin_unlock(&workqueue_lock);
-               /*
-                * We must initialize cwqs for each possible cpu even if we
-                * are going to call destroy_workqueue() finally. Otherwise
-                * cpu_up() can hit the uninitialized cwq once we drop the
-                * lock.
-                */
-               for_each_possible_cpu(cpu) {
-                       cwq = init_cpu_workqueue(wq, cpu);
-                       if (err || !cpu_online(cpu))
-                               continue;
-                       err = create_workqueue_thread(cwq, cpu);
-                       start_workqueue_thread(cwq, cpu);
+       /*
+        * The original cpu is in the process of dying and may go away
+        * anytime now.  When that happens, we and all workers would
+        * be migrated to other cpus.  Try draining any left work.  We
+        * want to get it over with ASAP - spam rescuers, wake up as
+        * many idlers as necessary and create new ones till the
+        * worklist is empty.  Note that if the gcwq is frozen, there
+        * may be frozen works in freezeable cwqs.  Don't declare
+        * completion while frozen.
+        */
+       while (gcwq->nr_workers != gcwq->nr_idle ||
+              gcwq->flags & GCWQ_FREEZING ||
+              gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
+               int nr_works = 0;
+
+               list_for_each_entry(work, &gcwq->worklist, entry) {
+                       send_mayday(work);
+                       nr_works++;
+               }
+
+               list_for_each_entry(worker, &gcwq->idle_list, entry) {
+                       if (!nr_works--)
+                               break;
+                       wake_up_process(worker->task);
                }
-               cpu_maps_update_done();
-       }
 
-       if (err) {
-               destroy_workqueue(wq);
-               wq = NULL;
+               if (need_to_create_worker(gcwq)) {
+                       spin_unlock_irq(&gcwq->lock);
+                       worker = create_worker(gcwq, false);
+                       spin_lock_irq(&gcwq->lock);
+                       if (worker) {
+                               worker->flags |= WORKER_ROGUE;
+                               start_worker(worker);
+                       }
+               }
+
+               /* give a breather */
+               if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
+                       break;
        }
-       return wq;
-}
-EXPORT_SYMBOL_GPL(__create_workqueue_key);
 
-static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq)
-{
        /*
-        * Our caller is either destroy_workqueue() or CPU_POST_DEAD,
-        * cpu_add_remove_lock protects cwq->thread.
+        * Either all works have been scheduled and cpu is down, or
+        * cpu down has already been canceled.  Wait for and butcher
+        * all workers till we're canceled.
         */
-       if (cwq->thread == NULL)
-               return;
-
-       lock_map_acquire(&cwq->wq->lockdep_map);
-       lock_map_release(&cwq->wq->lockdep_map);
+       do {
+               rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
+               while (!list_empty(&gcwq->idle_list))
+                       destroy_worker(list_first_entry(&gcwq->idle_list,
+                                                       struct worker, entry));
+       } while (gcwq->nr_workers && rc >= 0);
 
-       flush_cpu_workqueue(cwq);
        /*
-        * If the caller is CPU_POST_DEAD and cwq->worklist was not empty,
-        * a concurrent flush_workqueue() can insert a barrier after us.
-        * However, in that case run_workqueue() won't return and check
-        * kthread_should_stop() until it flushes all work_struct's.
-        * When ->worklist becomes empty it is safe to exit because no
-        * more work_structs can be queued on this cwq: flush_workqueue
-        * checks list_empty(), and a "normal" queue_work() can't use
-        * a dead CPU.
+        * At this point, either draining has completed and no worker
+        * is left, or cpu down has been canceled or the cpu is being
+        * brought back up.  There shouldn't be any idle one left.
+        * Tell the remaining busy ones to rebind once it finishes the
+        * currently scheduled works by scheduling the rebind_work.
         */
-       kthread_stop(cwq->thread);
-       cwq->thread = NULL;
+       WARN_ON(!list_empty(&gcwq->idle_list));
+
+       for_each_busy_worker(worker, i, pos, gcwq) {
+               struct work_struct *rebind_work = &worker->rebind_work;
+
+               /*
+                * Rebind_work may race with future cpu hotplug
+                * operations.  Use a separate flag to mark that
+                * rebinding is scheduled.
+                */
+               worker->flags |= WORKER_REBIND;
+               worker->flags &= ~WORKER_ROGUE;
+
+               /* queue rebind_work, wq doesn't matter, use the default one */
+               if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
+                                    work_data_bits(rebind_work)))
+                       continue;
+
+               debug_work_activate(rebind_work);
+               insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
+                           worker->scheduled.next,
+                           work_color_to_flags(WORK_NO_COLOR));
+       }
+
+       /* relinquish manager role */
+       gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
+
+       /* notify completion */
+       gcwq->trustee = NULL;
+       gcwq->trustee_state = TRUSTEE_DONE;
+       wake_up_all(&gcwq->trustee_wait);
+       spin_unlock_irq(&gcwq->lock);
+       return 0;
 }
 
 /**
- * destroy_workqueue - safely terminate a workqueue
- * @wq: target workqueue
+ * wait_trustee_state - wait for trustee to enter the specified state
+ * @gcwq: gcwq the trustee of interest belongs to
+ * @state: target state to wait for
  *
- * Safely destroy a workqueue. All work currently pending will be done first.
+ * Wait for the trustee to reach @state.  DONE is already matched.
+ *
+ * CONTEXT:
+ * spin_lock_irq(gcwq->lock) which may be released and regrabbed
+ * multiple times.  To be used by cpu_callback.
  */
-void destroy_workqueue(struct workqueue_struct *wq)
+static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
+__releases(&gcwq->lock)
+__acquires(&gcwq->lock)
 {
-       const struct cpumask *cpu_map = wq_cpu_map(wq);
-       int cpu;
-
-       cpu_maps_update_begin();
-       spin_lock(&workqueue_lock);
-       list_del(&wq->list);
-       spin_unlock(&workqueue_lock);
-
-       for_each_cpu_mask_nr(cpu, *cpu_map)
-               cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu));
-       cpu_maps_update_done();
-
-       free_percpu(wq->cpu_wq);
-       kfree(wq);
+       if (!(gcwq->trustee_state == state ||
+             gcwq->trustee_state == TRUSTEE_DONE)) {
+               spin_unlock_irq(&gcwq->lock);
+               __wait_event(gcwq->trustee_wait,
+                            gcwq->trustee_state == state ||
+                            gcwq->trustee_state == TRUSTEE_DONE);
+               spin_lock_irq(&gcwq->lock);
+       }
 }
-EXPORT_SYMBOL_GPL(destroy_workqueue);
 
 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
                                                unsigned long action,
                                                void *hcpu)
 {
        unsigned int cpu = (unsigned long)hcpu;
-       struct cpu_workqueue_struct *cwq;
-       struct workqueue_struct *wq;
-       int ret = NOTIFY_OK;
+       struct global_cwq *gcwq = get_gcwq(cpu);
+       struct task_struct *new_trustee = NULL;
+       struct worker *uninitialized_var(new_worker);
+       unsigned long flags;
 
        action &= ~CPU_TASKS_FROZEN;
 
        switch (action) {
+       case CPU_DOWN_PREPARE:
+               new_trustee = kthread_create(trustee_thread, gcwq,
+                                            "workqueue_trustee/%d\n", cpu);
+               if (IS_ERR(new_trustee))
+                       return notifier_from_errno(PTR_ERR(new_trustee));
+               kthread_bind(new_trustee, cpu);
+               /* fall through */
        case CPU_UP_PREPARE:
-               cpumask_set_cpu(cpu, cpu_populated_map);
-       }
-undo:
-       list_for_each_entry(wq, &workqueues, list) {
-               cwq = per_cpu_ptr(wq->cpu_wq, cpu);
-
-               switch (action) {
-               case CPU_UP_PREPARE:
-                       if (!create_workqueue_thread(cwq, cpu))
-                               break;
-                       printk(KERN_ERR "workqueue [%s] for %i failed\n",
-                               wq->name, cpu);
-                       action = CPU_UP_CANCELED;
-                       ret = NOTIFY_BAD;
-                       goto undo;
-
-               case CPU_ONLINE:
-                       start_workqueue_thread(cwq, cpu);
-                       break;
-
-               case CPU_UP_CANCELED:
-                       start_workqueue_thread(cwq, -1);
-               case CPU_POST_DEAD:
-                       cleanup_workqueue_thread(cwq);
-                       break;
+               BUG_ON(gcwq->first_idle);
+               new_worker = create_worker(gcwq, false);
+               if (!new_worker) {
+                       if (new_trustee)
+                               kthread_stop(new_trustee);
+                       return NOTIFY_BAD;
                }
        }
 
+       /* some are called w/ irq disabled, don't disturb irq status */
+       spin_lock_irqsave(&gcwq->lock, flags);
+
        switch (action) {
-       case CPU_UP_CANCELED:
+       case CPU_DOWN_PREPARE:
+               /* initialize trustee and tell it to acquire the gcwq */
+               BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
+               gcwq->trustee = new_trustee;
+               gcwq->trustee_state = TRUSTEE_START;
+               wake_up_process(gcwq->trustee);
+               wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
+               /* fall through */
+       case CPU_UP_PREPARE:
+               BUG_ON(gcwq->first_idle);
+               gcwq->first_idle = new_worker;
+               break;
+
+       case CPU_DYING:
+               /*
+                * Before this, the trustee and all workers except for
+                * the ones which are still executing works from
+                * before the last CPU down must be on the cpu.  After
+                * this, they'll all be diasporas.
+                */
+               gcwq->flags |= GCWQ_DISASSOCIATED;
+               break;
+
        case CPU_POST_DEAD:
-               cpumask_clear_cpu(cpu, cpu_populated_map);
+               gcwq->trustee_state = TRUSTEE_BUTCHER;
+               /* fall through */
+       case CPU_UP_CANCELED:
+               destroy_worker(gcwq->first_idle);
+               gcwq->first_idle = NULL;
+               break;
+
+       case CPU_DOWN_FAILED:
+       case CPU_ONLINE:
+               gcwq->flags &= ~GCWQ_DISASSOCIATED;
+               if (gcwq->trustee_state != TRUSTEE_DONE) {
+                       gcwq->trustee_state = TRUSTEE_RELEASE;
+                       wake_up_process(gcwq->trustee);
+                       wait_trustee_state(gcwq, TRUSTEE_DONE);
+               }
+
+               /*
+                * Trustee is done and there might be no worker left.
+                * Put the first_idle in and request a real manager to
+                * take a look.
+                */
+               spin_unlock_irq(&gcwq->lock);
+               kthread_bind(gcwq->first_idle->task, cpu);
+               spin_lock_irq(&gcwq->lock);
+               gcwq->flags |= GCWQ_MANAGE_WORKERS;
+               start_worker(gcwq->first_idle);
+               gcwq->first_idle = NULL;
+               break;
        }
 
-       return ret;
+       spin_unlock_irqrestore(&gcwq->lock, flags);
+
+       return notifier_from_errno(0);
 }
 
 #ifdef CONFIG_SMP
-static struct workqueue_struct *work_on_cpu_wq __read_mostly;
 
 struct work_for_cpu {
-       struct work_struct work;
+       struct completion completion;
        long (*fn)(void *);
        void *arg;
        long ret;
 };
 
-static void do_work_for_cpu(struct work_struct *w)
+static int do_work_for_cpu(void *_wfc)
 {
-       struct work_for_cpu *wfc = container_of(w, struct work_for_cpu, work);
-
+       struct work_for_cpu *wfc = _wfc;
        wfc->ret = wfc->fn(wfc->arg);
+       complete(&wfc->completion);
+       return 0;
 }
 
 /**
@@ -995,34 +3477,222 @@ static void do_work_for_cpu(struct work_struct *w)
  *
  * This will return the value @fn returns.
  * It is up to the caller to ensure that the cpu doesn't go offline.
+ * The caller must not hold any locks which would prevent @fn from completing.
  */
 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
 {
-       struct work_for_cpu wfc;
-
-       INIT_WORK(&wfc.work, do_work_for_cpu);
-       wfc.fn = fn;
-       wfc.arg = arg;
-       queue_work_on(cpu, work_on_cpu_wq, &wfc.work);
-       flush_work(&wfc.work);
-
+       struct task_struct *sub_thread;
+       struct work_for_cpu wfc = {
+               .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
+               .fn = fn,
+               .arg = arg,
+       };
+
+       sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
+       if (IS_ERR(sub_thread))
+               return PTR_ERR(sub_thread);
+       kthread_bind(sub_thread, cpu);
+       wake_up_process(sub_thread);
+       wait_for_completion(&wfc.completion);
        return wfc.ret;
 }
 EXPORT_SYMBOL_GPL(work_on_cpu);
 #endif /* CONFIG_SMP */
 
-void __init init_workqueues(void)
+#ifdef CONFIG_FREEZER
+
+/**
+ * freeze_workqueues_begin - begin freezing workqueues
+ *
+ * Start freezing workqueues.  After this function returns, all
+ * freezeable workqueues will queue new works to their frozen_works
+ * list instead of gcwq->worklist.
+ *
+ * CONTEXT:
+ * Grabs and releases workqueue_lock and gcwq->lock's.
+ */
+void freeze_workqueues_begin(void)
 {
-       alloc_cpumask_var(&cpu_populated_map, GFP_KERNEL);
+       unsigned int cpu;
 
-       cpumask_copy(cpu_populated_map, cpu_online_mask);
-       singlethread_cpu = cpumask_first(cpu_possible_mask);
-       cpu_singlethread_map = cpumask_of(singlethread_cpu);
-       hotcpu_notifier(workqueue_cpu_callback, 0);
-       keventd_wq = create_workqueue("events");
-       BUG_ON(!keventd_wq);
-#ifdef CONFIG_SMP
-       work_on_cpu_wq = create_workqueue("work_on_cpu");
-       BUG_ON(!work_on_cpu_wq);
-#endif
+       spin_lock(&workqueue_lock);
+
+       BUG_ON(workqueue_freezing);
+       workqueue_freezing = true;
+
+       for_each_gcwq_cpu(cpu) {
+               struct global_cwq *gcwq = get_gcwq(cpu);
+               struct workqueue_struct *wq;
+
+               spin_lock_irq(&gcwq->lock);
+
+               BUG_ON(gcwq->flags & GCWQ_FREEZING);
+               gcwq->flags |= GCWQ_FREEZING;
+
+               list_for_each_entry(wq, &workqueues, list) {
+                       struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
+
+                       if (cwq && wq->flags & WQ_FREEZEABLE)
+                               cwq->max_active = 0;
+               }
+
+               spin_unlock_irq(&gcwq->lock);
+       }
+
+       spin_unlock(&workqueue_lock);
+}
+
+/**
+ * freeze_workqueues_busy - are freezeable workqueues still busy?
+ *
+ * Check whether freezing is complete.  This function must be called
+ * between freeze_workqueues_begin() and thaw_workqueues().
+ *
+ * CONTEXT:
+ * Grabs and releases workqueue_lock.
+ *
+ * RETURNS:
+ * %true if some freezeable workqueues are still busy.  %false if
+ * freezing is complete.
+ */
+bool freeze_workqueues_busy(void)
+{
+       unsigned int cpu;
+       bool busy = false;
+
+       spin_lock(&workqueue_lock);
+
+       BUG_ON(!workqueue_freezing);
+
+       for_each_gcwq_cpu(cpu) {
+               struct workqueue_struct *wq;
+               /*
+                * nr_active is monotonically decreasing.  It's safe
+                * to peek without lock.
+                */
+               list_for_each_entry(wq, &workqueues, list) {
+                       struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
+
+                       if (!cwq || !(wq->flags & WQ_FREEZEABLE))
+                               continue;
+
+                       BUG_ON(cwq->nr_active < 0);
+                       if (cwq->nr_active) {
+                               busy = true;
+                               goto out_unlock;
+                       }
+               }
+       }
+out_unlock:
+       spin_unlock(&workqueue_lock);
+       return busy;
+}
+
+/**
+ * thaw_workqueues - thaw workqueues
+ *
+ * Thaw workqueues.  Normal queueing is restored and all collected
+ * frozen works are transferred to their respective gcwq worklists.
+ *
+ * CONTEXT:
+ * Grabs and releases workqueue_lock and gcwq->lock's.
+ */
+void thaw_workqueues(void)
+{
+       unsigned int cpu;
+
+       spin_lock(&workqueue_lock);
+
+       if (!workqueue_freezing)
+               goto out_unlock;
+
+       for_each_gcwq_cpu(cpu) {
+               struct global_cwq *gcwq = get_gcwq(cpu);
+               struct workqueue_struct *wq;
+
+               spin_lock_irq(&gcwq->lock);
+
+               BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
+               gcwq->flags &= ~GCWQ_FREEZING;
+
+               list_for_each_entry(wq, &workqueues, list) {
+                       struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
+
+                       if (!cwq || !(wq->flags & WQ_FREEZEABLE))
+                               continue;
+
+                       /* restore max_active and repopulate worklist */
+                       cwq->max_active = wq->saved_max_active;
+
+                       while (!list_empty(&cwq->delayed_works) &&
+                              cwq->nr_active < cwq->max_active)
+                               cwq_activate_first_delayed(cwq);
+               }
+
+               wake_up_worker(gcwq);
+
+               spin_unlock_irq(&gcwq->lock);
+       }
+
+       workqueue_freezing = false;
+out_unlock:
+       spin_unlock(&workqueue_lock);
+}
+#endif /* CONFIG_FREEZER */
+
+static int __init init_workqueues(void)
+{
+       unsigned int cpu;
+       int i;
+
+       cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
+
+       /* initialize gcwqs */
+       for_each_gcwq_cpu(cpu) {
+               struct global_cwq *gcwq = get_gcwq(cpu);
+
+               spin_lock_init(&gcwq->lock);
+               INIT_LIST_HEAD(&gcwq->worklist);
+               gcwq->cpu = cpu;
+               gcwq->flags |= GCWQ_DISASSOCIATED;
+
+               INIT_LIST_HEAD(&gcwq->idle_list);
+               for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
+                       INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
+
+               init_timer_deferrable(&gcwq->idle_timer);
+               gcwq->idle_timer.function = idle_worker_timeout;
+               gcwq->idle_timer.data = (unsigned long)gcwq;
+
+               setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
+                           (unsigned long)gcwq);
+
+               ida_init(&gcwq->worker_ida);
+
+               gcwq->trustee_state = TRUSTEE_DONE;
+               init_waitqueue_head(&gcwq->trustee_wait);
+       }
+
+       /* create the initial worker */
+       for_each_online_gcwq_cpu(cpu) {
+               struct global_cwq *gcwq = get_gcwq(cpu);
+               struct worker *worker;
+
+               if (cpu != WORK_CPU_UNBOUND)
+                       gcwq->flags &= ~GCWQ_DISASSOCIATED;
+               worker = create_worker(gcwq, true);
+               BUG_ON(!worker);
+               spin_lock_irq(&gcwq->lock);
+               start_worker(worker);
+               spin_unlock_irq(&gcwq->lock);
+       }
+
+       system_wq = alloc_workqueue("events", 0, 0);
+       system_long_wq = alloc_workqueue("events_long", 0, 0);
+       system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
+       system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
+                                           WQ_UNBOUND_MAX_ACTIVE);
+       BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq);
+       return 0;
 }
+early_initcall(init_workqueues);