Merge branch 'linus' into sched/core
[linux-2.6.git] / kernel / sched_fair.c
index 593424f..e7d67a9 100644 (file)
 
 #include <linux/latencytop.h>
 #include <linux/sched.h>
+#include <linux/cpumask.h>
 
 /*
  * Targeted preemption latency for CPU-bound tasks:
- * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
+ * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  *
  * NOTE: this latency value is not the same as the concept of
  * 'timeslice length' - timeslices in CFS are of variable length
@@ -52,15 +53,15 @@ enum sched_tunable_scaling sysctl_sched_tunable_scaling
 
 /*
  * Minimal preemption granularity for CPU-bound tasks:
- * (default: 2 msec * (1 + ilog(ncpus)), units: nanoseconds)
+ * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  */
-unsigned int sysctl_sched_min_granularity = 2000000ULL;
-unsigned int normalized_sysctl_sched_min_granularity = 2000000ULL;
+unsigned int sysctl_sched_min_granularity = 750000ULL;
+unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
 
 /*
  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  */
-static unsigned int sched_nr_latency = 3;
+static unsigned int sched_nr_latency = 8;
 
 /*
  * After fork, child runs first. If set to 0 (default) then
@@ -69,14 +70,6 @@ static unsigned int sched_nr_latency = 3;
 unsigned int sysctl_sched_child_runs_first __read_mostly;
 
 /*
- * sys_sched_yield() compat mode
- *
- * This option switches the agressive yield implementation of the
- * old scheduler back on.
- */
-unsigned int __read_mostly sysctl_sched_compat_yield;
-
-/*
  * SCHED_OTHER wake-up granularity.
  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  *
@@ -89,6 +82,13 @@ unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
 
 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
 
+/*
+ * The exponential sliding  window over which load is averaged for shares
+ * distribution.
+ * (default: 10msec)
+ */
+unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
+
 static const struct sched_class fair_sched_class;
 
 /**************************************************************
@@ -143,6 +143,36 @@ static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
        return cfs_rq->tg->cfs_rq[this_cpu];
 }
 
+static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
+{
+       if (!cfs_rq->on_list) {
+               /*
+                * Ensure we either appear before our parent (if already
+                * enqueued) or force our parent to appear after us when it is
+                * enqueued.  The fact that we always enqueue bottom-up
+                * reduces this to two cases.
+                */
+               if (cfs_rq->tg->parent &&
+                   cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
+                       list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
+                               &rq_of(cfs_rq)->leaf_cfs_rq_list);
+               } else {
+                       list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
+                               &rq_of(cfs_rq)->leaf_cfs_rq_list);
+               }
+
+               cfs_rq->on_list = 1;
+       }
+}
+
+static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
+{
+       if (cfs_rq->on_list) {
+               list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
+               cfs_rq->on_list = 0;
+       }
+}
+
 /* Iterate thr' all leaf cfs_rq's on a runqueue */
 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
        list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
@@ -246,6 +276,14 @@ static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
        return &cpu_rq(this_cpu)->cfs;
 }
 
+static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
+{
+}
+
+static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
+{
+}
+
 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
                for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
 
@@ -320,6 +358,10 @@ static void update_min_vruntime(struct cfs_rq *cfs_rq)
        }
 
        cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
+#ifndef CONFIG_64BIT
+       smp_wmb();
+       cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
+#endif
 }
 
 /*
@@ -374,7 +416,7 @@ static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
        rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
 }
 
-static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
+static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
 {
        struct rb_node *left = cfs_rq->rb_leftmost;
 
@@ -384,6 +426,17 @@ static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
        return rb_entry(left, struct sched_entity, run_node);
 }
 
+static struct sched_entity *__pick_next_entity(struct sched_entity *se)
+{
+       struct rb_node *next = rb_next(&se->run_node);
+
+       if (!next)
+               return NULL;
+
+       return rb_entry(next, struct sched_entity, run_node);
+}
+
+#ifdef CONFIG_SCHED_DEBUG
 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
 {
        struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
@@ -398,7 +451,6 @@ static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  * Scheduling class statistics methods:
  */
 
-#ifdef CONFIG_SCHED_DEBUG
 int sched_proc_update_handler(struct ctl_table *table, int write,
                void __user *buffer, size_t *lenp,
                loff_t *ppos)
@@ -417,7 +469,6 @@ int sched_proc_update_handler(struct ctl_table *table, int write,
        WRT_SYSCTL(sched_min_granularity);
        WRT_SYSCTL(sched_latency);
        WRT_SYSCTL(sched_wakeup_granularity);
-       WRT_SYSCTL(sched_shares_ratelimit);
 #undef WRT_SYSCTL
 
        return 0;
@@ -495,6 +546,9 @@ static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
        return calc_delta_fair(sched_slice(cfs_rq, se), se);
 }
 
+static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
+static void update_cfs_shares(struct cfs_rq *cfs_rq);
+
 /*
  * Update the current task's runtime statistics. Skip current tasks that
  * are not in our scheduling class.
@@ -514,12 +568,16 @@ __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
 
        curr->vruntime += delta_exec_weighted;
        update_min_vruntime(cfs_rq);
+
+#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
+       cfs_rq->load_unacc_exec_time += delta_exec;
+#endif
 }
 
 static void update_curr(struct cfs_rq *cfs_rq)
 {
        struct sched_entity *curr = cfs_rq->curr;
-       u64 now = rq_of(cfs_rq)->clock;
+       u64 now = rq_of(cfs_rq)->clock_task;
        unsigned long delta_exec;
 
        if (unlikely(!curr))
@@ -602,7 +660,7 @@ update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
        /*
         * We are starting a new run period:
         */
-       se->exec_start = rq_of(cfs_rq)->clock;
+       se->exec_start = rq_of(cfs_rq)->clock_task;
 }
 
 /**************************************************
@@ -633,7 +691,6 @@ account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
                list_add(&se->group_node, &cfs_rq->tasks);
        }
        cfs_rq->nr_running++;
-       se->on_rq = 1;
 }
 
 static void
@@ -647,9 +704,164 @@ account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
                list_del_init(&se->group_node);
        }
        cfs_rq->nr_running--;
-       se->on_rq = 0;
 }
 
+#ifdef CONFIG_FAIR_GROUP_SCHED
+# ifdef CONFIG_SMP
+static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
+                                           int global_update)
+{
+       struct task_group *tg = cfs_rq->tg;
+       long load_avg;
+
+       load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
+       load_avg -= cfs_rq->load_contribution;
+
+       if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
+               atomic_add(load_avg, &tg->load_weight);
+               cfs_rq->load_contribution += load_avg;
+       }
+}
+
+static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
+{
+       u64 period = sysctl_sched_shares_window;
+       u64 now, delta;
+       unsigned long load = cfs_rq->load.weight;
+
+       if (cfs_rq->tg == &root_task_group)
+               return;
+
+       now = rq_of(cfs_rq)->clock_task;
+       delta = now - cfs_rq->load_stamp;
+
+       /* truncate load history at 4 idle periods */
+       if (cfs_rq->load_stamp > cfs_rq->load_last &&
+           now - cfs_rq->load_last > 4 * period) {
+               cfs_rq->load_period = 0;
+               cfs_rq->load_avg = 0;
+               delta = period - 1;
+       }
+
+       cfs_rq->load_stamp = now;
+       cfs_rq->load_unacc_exec_time = 0;
+       cfs_rq->load_period += delta;
+       if (load) {
+               cfs_rq->load_last = now;
+               cfs_rq->load_avg += delta * load;
+       }
+
+       /* consider updating load contribution on each fold or truncate */
+       if (global_update || cfs_rq->load_period > period
+           || !cfs_rq->load_period)
+               update_cfs_rq_load_contribution(cfs_rq, global_update);
+
+       while (cfs_rq->load_period > period) {
+               /*
+                * Inline assembly required to prevent the compiler
+                * optimising this loop into a divmod call.
+                * See __iter_div_u64_rem() for another example of this.
+                */
+               asm("" : "+rm" (cfs_rq->load_period));
+               cfs_rq->load_period /= 2;
+               cfs_rq->load_avg /= 2;
+       }
+
+       if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
+               list_del_leaf_cfs_rq(cfs_rq);
+}
+
+static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
+{
+       long load_weight, load, shares;
+
+       load = cfs_rq->load.weight;
+
+       load_weight = atomic_read(&tg->load_weight);
+       load_weight += load;
+       load_weight -= cfs_rq->load_contribution;
+
+       shares = (tg->shares * load);
+       if (load_weight)
+               shares /= load_weight;
+
+       if (shares < MIN_SHARES)
+               shares = MIN_SHARES;
+       if (shares > tg->shares)
+               shares = tg->shares;
+
+       return shares;
+}
+
+static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
+{
+       if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
+               update_cfs_load(cfs_rq, 0);
+               update_cfs_shares(cfs_rq);
+       }
+}
+# else /* CONFIG_SMP */
+static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
+{
+}
+
+static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
+{
+       return tg->shares;
+}
+
+static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
+{
+}
+# endif /* CONFIG_SMP */
+static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
+                           unsigned long weight)
+{
+       if (se->on_rq) {
+               /* commit outstanding execution time */
+               if (cfs_rq->curr == se)
+                       update_curr(cfs_rq);
+               account_entity_dequeue(cfs_rq, se);
+       }
+
+       update_load_set(&se->load, weight);
+
+       if (se->on_rq)
+               account_entity_enqueue(cfs_rq, se);
+}
+
+static void update_cfs_shares(struct cfs_rq *cfs_rq)
+{
+       struct task_group *tg;
+       struct sched_entity *se;
+       long shares;
+
+       tg = cfs_rq->tg;
+       se = tg->se[cpu_of(rq_of(cfs_rq))];
+       if (!se)
+               return;
+#ifndef CONFIG_SMP
+       if (likely(se->load.weight == tg->shares))
+               return;
+#endif
+       shares = calc_cfs_shares(cfs_rq, tg);
+
+       reweight_entity(cfs_rq_of(se), se, shares);
+}
+#else /* CONFIG_FAIR_GROUP_SCHED */
+static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
+{
+}
+
+static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
+{
+}
+
+static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
+{
+}
+#endif /* CONFIG_FAIR_GROUP_SCHED */
+
 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
 #ifdef CONFIG_SCHEDSTATS
@@ -771,7 +983,9 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
         * Update run-time statistics of the 'current'.
         */
        update_curr(cfs_rq);
+       update_cfs_load(cfs_rq, 0);
        account_entity_enqueue(cfs_rq, se);
+       update_cfs_shares(cfs_rq);
 
        if (flags & ENQUEUE_WAKEUP) {
                place_entity(cfs_rq, se, 0);
@@ -782,21 +996,55 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
        check_spread(cfs_rq, se);
        if (se != cfs_rq->curr)
                __enqueue_entity(cfs_rq, se);
+       se->on_rq = 1;
+
+       if (cfs_rq->nr_running == 1)
+               list_add_leaf_cfs_rq(cfs_rq);
+}
+
+static void __clear_buddies_last(struct sched_entity *se)
+{
+       for_each_sched_entity(se) {
+               struct cfs_rq *cfs_rq = cfs_rq_of(se);
+               if (cfs_rq->last == se)
+                       cfs_rq->last = NULL;
+               else
+                       break;
+       }
 }
 
-static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
+static void __clear_buddies_next(struct sched_entity *se)
 {
-       if (!se || cfs_rq->last == se)
-               cfs_rq->last = NULL;
+       for_each_sched_entity(se) {
+               struct cfs_rq *cfs_rq = cfs_rq_of(se);
+               if (cfs_rq->next == se)
+                       cfs_rq->next = NULL;
+               else
+                       break;
+       }
+}
 
-       if (!se || cfs_rq->next == se)
-               cfs_rq->next = NULL;
+static void __clear_buddies_skip(struct sched_entity *se)
+{
+       for_each_sched_entity(se) {
+               struct cfs_rq *cfs_rq = cfs_rq_of(se);
+               if (cfs_rq->skip == se)
+                       cfs_rq->skip = NULL;
+               else
+                       break;
+       }
 }
 
 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
-       for_each_sched_entity(se)
-               __clear_buddies(cfs_rq_of(se), se);
+       if (cfs_rq->last == se)
+               __clear_buddies_last(se);
+
+       if (cfs_rq->next == se)
+               __clear_buddies_next(se);
+
+       if (cfs_rq->skip == se)
+               __clear_buddies_skip(se);
 }
 
 static void
@@ -825,8 +1073,9 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 
        if (se != cfs_rq->curr)
                __dequeue_entity(cfs_rq, se);
+       se->on_rq = 0;
+       update_cfs_load(cfs_rq, 0);
        account_entity_dequeue(cfs_rq, se);
-       update_min_vruntime(cfs_rq);
 
        /*
         * Normalize the entity after updating the min_vruntime because the
@@ -835,6 +1084,9 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
         */
        if (!(flags & DEQUEUE_SLEEP))
                se->vruntime -= cfs_rq->min_vruntime;
+
+       update_min_vruntime(cfs_rq);
+       update_cfs_shares(cfs_rq);
 }
 
 /*
@@ -869,9 +1121,12 @@ check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
                return;
 
        if (cfs_rq->nr_running > 1) {
-               struct sched_entity *se = __pick_next_entity(cfs_rq);
+               struct sched_entity *se = __pick_first_entity(cfs_rq);
                s64 delta = curr->vruntime - se->vruntime;
 
+               if (delta < 0)
+                       return;
+
                if (delta > ideal_runtime)
                        resched_task(rq_of(cfs_rq)->curr);
        }
@@ -910,13 +1165,27 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 static int
 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
 
+/*
+ * Pick the next process, keeping these things in mind, in this order:
+ * 1) keep things fair between processes/task groups
+ * 2) pick the "next" process, since someone really wants that to run
+ * 3) pick the "last" process, for cache locality
+ * 4) do not run the "skip" process, if something else is available
+ */
 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
 {
-       struct sched_entity *se = __pick_next_entity(cfs_rq);
+       struct sched_entity *se = __pick_first_entity(cfs_rq);
        struct sched_entity *left = se;
 
-       if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
-               se = cfs_rq->next;
+       /*
+        * Avoid running the skip buddy, if running something else can
+        * be done without getting too unfair.
+        */
+       if (cfs_rq->skip == se) {
+               struct sched_entity *second = __pick_next_entity(se);
+               if (second && wakeup_preempt_entity(second, left) < 1)
+                       se = second;
+       }
 
        /*
         * Prefer last buddy, try to return the CPU to a preempted task.
@@ -924,6 +1193,12 @@ static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
        if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
                se = cfs_rq->last;
 
+       /*
+        * Someone really wants this to run. If it's not unfair, run it.
+        */
+       if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
+               se = cfs_rq->next;
+
        clear_buddies(cfs_rq, se);
 
        return se;
@@ -955,6 +1230,11 @@ entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
         */
        update_curr(cfs_rq);
 
+       /*
+        * Update share accounting for long-running entities.
+        */
+       update_entity_shares_tick(cfs_rq);
+
 #ifdef CONFIG_SCHED_HRTICK
        /*
         * queued ticks are scheduled to match the slice, so don't bother
@@ -1055,9 +1335,18 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
                flags = ENQUEUE_WAKEUP;
        }
 
+       for_each_sched_entity(se) {
+               struct cfs_rq *cfs_rq = cfs_rq_of(se);
+
+               update_cfs_load(cfs_rq, 0);
+               update_cfs_shares(cfs_rq);
+       }
+
        hrtick_update(rq);
 }
 
+static void set_next_buddy(struct sched_entity *se);
+
 /*
  * The dequeue_task method is called before nr_running is
  * decreased. We remove the task from the rbtree and
@@ -1067,73 +1356,56 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
 {
        struct cfs_rq *cfs_rq;
        struct sched_entity *se = &p->se;
+       int task_sleep = flags & DEQUEUE_SLEEP;
 
        for_each_sched_entity(se) {
                cfs_rq = cfs_rq_of(se);
                dequeue_entity(cfs_rq, se, flags);
+
                /* Don't dequeue parent if it has other entities besides us */
-               if (cfs_rq->load.weight)
+               if (cfs_rq->load.weight) {
+                       /*
+                        * Bias pick_next to pick a task from this cfs_rq, as
+                        * p is sleeping when it is within its sched_slice.
+                        */
+                       if (task_sleep && parent_entity(se))
+                               set_next_buddy(parent_entity(se));
                        break;
+               }
                flags |= DEQUEUE_SLEEP;
        }
 
-       hrtick_update(rq);
-}
-
-/*
- * sched_yield() support is very simple - we dequeue and enqueue.
- *
- * If compat_yield is turned on then we requeue to the end of the tree.
- */
-static void yield_task_fair(struct rq *rq)
-{
-       struct task_struct *curr = rq->curr;
-       struct cfs_rq *cfs_rq = task_cfs_rq(curr);
-       struct sched_entity *rightmost, *se = &curr->se;
-
-       /*
-        * Are we the only task in the tree?
-        */
-       if (unlikely(cfs_rq->nr_running == 1))
-               return;
-
-       clear_buddies(cfs_rq, se);
-
-       if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
-               update_rq_clock(rq);
-               /*
-                * Update run-time statistics of the 'current'.
-                */
-               update_curr(cfs_rq);
+       for_each_sched_entity(se) {
+               struct cfs_rq *cfs_rq = cfs_rq_of(se);
 
-               return;
+               update_cfs_load(cfs_rq, 0);
+               update_cfs_shares(cfs_rq);
        }
-       /*
-        * Find the rightmost entry in the rbtree:
-        */
-       rightmost = __pick_last_entity(cfs_rq);
-       /*
-        * Already in the rightmost position?
-        */
-       if (unlikely(!rightmost || entity_before(rightmost, se)))
-               return;
 
-       /*
-        * Minimally necessary key value to be last in the tree:
-        * Upon rescheduling, sched_class::put_prev_task() will place
-        * 'current' within the tree based on its new key value.
-        */
-       se->vruntime = rightmost->vruntime + 1;
+       hrtick_update(rq);
 }
 
 #ifdef CONFIG_SMP
 
-static void task_waking_fair(struct rq *rq, struct task_struct *p)
+static void task_waking_fair(struct task_struct *p)
 {
        struct sched_entity *se = &p->se;
        struct cfs_rq *cfs_rq = cfs_rq_of(se);
+       u64 min_vruntime;
 
-       se->vruntime -= cfs_rq->min_vruntime;
+#ifndef CONFIG_64BIT
+       u64 min_vruntime_copy;
+
+       do {
+               min_vruntime_copy = cfs_rq->min_vruntime_copy;
+               smp_rmb();
+               min_vruntime = cfs_rq->min_vruntime;
+       } while (min_vruntime != min_vruntime_copy);
+#else
+       min_vruntime = cfs_rq->min_vruntime;
+#endif
+
+       se->vruntime -= min_vruntime;
 }
 
 #ifdef CONFIG_FAIR_GROUP_SCHED
@@ -1143,67 +1415,36 @@ static void task_waking_fair(struct rq *rq, struct task_struct *p)
  * Adding load to a group doesn't make a group heavier, but can cause movement
  * of group shares between cpus. Assuming the shares were perfectly aligned one
  * can calculate the shift in shares.
- *
- * The problem is that perfectly aligning the shares is rather expensive, hence
- * we try to avoid doing that too often - see update_shares(), which ratelimits
- * this change.
- *
- * We compensate this by not only taking the current delta into account, but
- * also considering the delta between when the shares were last adjusted and
- * now.
- *
- * We still saw a performance dip, some tracing learned us that between
- * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
- * significantly. Therefore try to bias the error in direction of failing
- * the affine wakeup.
- *
  */
-static long effective_load(struct task_group *tg, int cpu,
-               long wl, long wg)
+static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
 {
        struct sched_entity *se = tg->se[cpu];
 
        if (!tg->parent)
                return wl;
 
-       /*
-        * By not taking the decrease of shares on the other cpu into
-        * account our error leans towards reducing the affine wakeups.
-        */
-       if (!wl && sched_feat(ASYM_EFF_LOAD))
-               return wl;
-
        for_each_sched_entity(se) {
-               long S, rw, s, a, b;
-               long more_w;
-
-               /*
-                * Instead of using this increment, also add the difference
-                * between when the shares were last updated and now.
-                */
-               more_w = se->my_q->load.weight - se->my_q->rq_weight;
-               wl += more_w;
-               wg += more_w;
+               long lw, w;
 
-               S = se->my_q->tg->shares;
-               s = se->my_q->shares;
-               rw = se->my_q->rq_weight;
+               tg = se->my_q->tg;
+               w = se->my_q->load.weight;
 
-               a = S*(rw + wl);
-               b = S*rw + s*wg;
+               /* use this cpu's instantaneous contribution */
+               lw = atomic_read(&tg->load_weight);
+               lw -= se->my_q->load_contribution;
+               lw += w + wg;
 
-               wl = s*(a-b);
+               wl += w;
 
-               if (likely(b))
-                       wl /= b;
+               if (lw > 0 && wl < lw)
+                       wl = (wl * tg->shares) / lw;
+               else
+                       wl = tg->shares;
 
-               /*
-                * Assume the group is already running and will
-                * thus already be accounted for in the weight.
-                *
-                * That is, moving shares between CPUs, does not
-                * alter the group weight.
-                */
+               /* zero point is MIN_SHARES */
+               if (wl < MIN_SHARES)
+                       wl = MIN_SHARES;
+               wl -= se->load.weight;
                wg = 0;
        }
 
@@ -1222,7 +1463,7 @@ static inline unsigned long effective_load(struct task_group *tg, int cpu,
 
 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
 {
-       unsigned long this_load, load;
+       s64 this_load, load;
        int idx, this_cpu, prev_cpu;
        unsigned long tl_per_task;
        struct task_group *tg;
@@ -1260,8 +1501,8 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
         * Otherwise check if either cpus are near enough in load to allow this
         * task to be woken on this_cpu.
         */
-       if (this_load) {
-               unsigned long this_eff_load, prev_eff_load;
+       if (this_load > 0) {
+               s64 this_eff_load, prev_eff_load;
 
                this_eff_load = 100;
                this_eff_load *= power_of(prev_cpu);
@@ -1311,7 +1552,7 @@ static struct sched_group *
 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
                  int this_cpu, int load_idx)
 {
-       struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
+       struct sched_group *idlest = NULL, *group = sd->groups;
        unsigned long min_load = ULONG_MAX, this_load = 0;
        int imbalance = 100 + (sd->imbalance_pct-100)/2;
 
@@ -1342,11 +1583,10 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p,
                }
 
                /* Adjust by relative CPU power of the group */
-               avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
+               avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
 
                if (local_group) {
                        this_load = avg_load;
-                       this = group;
                } else if (avg_load < min_load) {
                        min_load = avg_load;
                        idlest = group;
@@ -1408,6 +1648,7 @@ static int select_idle_sibling(struct task_struct *p, int target)
        /*
         * Otherwise, iterate the domains and find an elegible idle cpu.
         */
+       rcu_read_lock();
        for_each_domain(target, sd) {
                if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
                        break;
@@ -1427,6 +1668,7 @@ static int select_idle_sibling(struct task_struct *p, int target)
                    cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
                        break;
        }
+       rcu_read_unlock();
 
        return target;
 }
@@ -1443,7 +1685,7 @@ static int select_idle_sibling(struct task_struct *p, int target)
  * preempt must be disabled.
  */
 static int
-select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
+select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
 {
        struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
        int cpu = smp_processor_id();
@@ -1459,6 +1701,7 @@ select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_
                new_cpu = prev_cpu;
        }
 
+       rcu_read_lock();
        for_each_domain(cpu, tmp) {
                if (!(tmp->flags & SD_LOAD_BALANCE))
                        continue;
@@ -1478,7 +1721,7 @@ select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_
                                nr_running += cpu_rq(i)->cfs.nr_running;
                        }
 
-                       capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
+                       capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
 
                        if (tmp->flags & SD_POWERSAVINGS_BALANCE)
                                nr_running /= 2;
@@ -1507,28 +1750,12 @@ select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_
                        sd = tmp;
        }
 
-#ifdef CONFIG_FAIR_GROUP_SCHED
-       if (sched_feat(LB_SHARES_UPDATE)) {
-               /*
-                * Pick the largest domain to update shares over
-                */
-               tmp = sd;
-               if (affine_sd && (!tmp || affine_sd->span_weight > sd->span_weight))
-                       tmp = affine_sd;
-
-               if (tmp) {
-                       raw_spin_unlock(&rq->lock);
-                       update_shares(tmp);
-                       raw_spin_lock(&rq->lock);
-               }
-       }
-#endif
-
        if (affine_sd) {
                if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
-                       return select_idle_sibling(p, cpu);
-               else
-                       return select_idle_sibling(p, prev_cpu);
+                       prev_cpu = cpu;
+
+               new_cpu = select_idle_sibling(p, prev_cpu);
+               goto unlock;
        }
 
        while (sd) {
@@ -1569,6 +1796,8 @@ select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_
                }
                /* while loop will break here if sd == NULL */
        }
+unlock:
+       rcu_read_unlock();
 
        return new_cpu;
 }
@@ -1592,10 +1821,7 @@ wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
         * This is especially important for buddies when the leftmost
         * task is higher priority than the buddy.
         */
-       if (unlikely(se->load.weight != NICE_0_LOAD))
-               gran = calc_delta_fair(gran, se);
-
-       return gran;
+       return calc_delta_fair(gran, se);
 }
 
 /*
@@ -1629,18 +1855,26 @@ wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
 
 static void set_last_buddy(struct sched_entity *se)
 {
-       if (likely(task_of(se)->policy != SCHED_IDLE)) {
-               for_each_sched_entity(se)
-                       cfs_rq_of(se)->last = se;
-       }
+       if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
+               return;
+
+       for_each_sched_entity(se)
+               cfs_rq_of(se)->last = se;
 }
 
 static void set_next_buddy(struct sched_entity *se)
 {
-       if (likely(task_of(se)->policy != SCHED_IDLE)) {
-               for_each_sched_entity(se)
-                       cfs_rq_of(se)->next = se;
-       }
+       if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
+               return;
+
+       for_each_sched_entity(se)
+               cfs_rq_of(se)->next = se;
+}
+
+static void set_skip_buddy(struct sched_entity *se)
+{
+       for_each_sched_entity(se)
+               cfs_rq_of(se)->skip = se;
 }
 
 /*
@@ -1652,18 +1886,15 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_
        struct sched_entity *se = &curr->se, *pse = &p->se;
        struct cfs_rq *cfs_rq = task_cfs_rq(curr);
        int scale = cfs_rq->nr_running >= sched_nr_latency;
-
-       if (unlikely(rt_prio(p->prio)))
-               goto preempt;
-
-       if (unlikely(p->sched_class != &fair_sched_class))
-               return;
+       int next_buddy_marked = 0;
 
        if (unlikely(se == pse))
                return;
 
-       if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
+       if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
                set_next_buddy(pse);
+               next_buddy_marked = 1;
+       }
 
        /*
         * We can come here with TIF_NEED_RESCHED already set from new task
@@ -1672,16 +1903,18 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_
        if (test_tsk_need_resched(curr))
                return;
 
+       /* Idle tasks are by definition preempted by non-idle tasks. */
+       if (unlikely(curr->policy == SCHED_IDLE) &&
+           likely(p->policy != SCHED_IDLE))
+               goto preempt;
+
        /*
-        * Batch and idle tasks do not preempt (their preemption is driven by
-        * the tick):
+        * Batch and idle tasks do not preempt non-idle tasks (their preemption
+        * is driven by the tick):
         */
        if (unlikely(p->policy != SCHED_NORMAL))
                return;
 
-       /* Idle tasks are by definition preempted by everybody. */
-       if (unlikely(curr->policy == SCHED_IDLE))
-               goto preempt;
 
        if (!sched_feat(WAKEUP_PREEMPT))
                return;
@@ -1689,8 +1922,15 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_
        update_curr(cfs_rq);
        find_matching_se(&se, &pse);
        BUG_ON(!pse);
-       if (wakeup_preempt_entity(se, pse) == 1)
+       if (wakeup_preempt_entity(se, pse) == 1) {
+               /*
+                * Bias pick_next to pick the sched entity that is
+                * triggering this preemption.
+                */
+               if (!next_buddy_marked)
+                       set_next_buddy(pse);
                goto preempt;
+       }
 
        return;
 
@@ -1747,6 +1987,51 @@ static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
        }
 }
 
+/*
+ * sched_yield() is very simple
+ *
+ * The magic of dealing with the ->skip buddy is in pick_next_entity.
+ */
+static void yield_task_fair(struct rq *rq)
+{
+       struct task_struct *curr = rq->curr;
+       struct cfs_rq *cfs_rq = task_cfs_rq(curr);
+       struct sched_entity *se = &curr->se;
+
+       /*
+        * Are we the only task in the tree?
+        */
+       if (unlikely(rq->nr_running == 1))
+               return;
+
+       clear_buddies(cfs_rq, se);
+
+       if (curr->policy != SCHED_BATCH) {
+               update_rq_clock(rq);
+               /*
+                * Update run-time statistics of the 'current'.
+                */
+               update_curr(cfs_rq);
+       }
+
+       set_skip_buddy(se);
+}
+
+static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
+{
+       struct sched_entity *se = &p->se;
+
+       if (!se->on_rq)
+               return false;
+
+       /* Tell the scheduler that we'd really like pse to run next. */
+       set_next_buddy(se);
+
+       yield_task_fair(rq);
+
+       return true;
+}
+
 #ifdef CONFIG_SMP
 /**************************************************
  * Fair scheduling class load-balancing methods:
@@ -1797,7 +2082,7 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
         * 2) too many balance attempts have failed.
         */
 
-       tsk_cache_hot = task_hot(p, rq->clock, sd);
+       tsk_cache_hot = task_hot(p, rq->clock_task, sd);
        if (!tsk_cache_hot ||
                sd->nr_balance_failed > sd->cache_nice_tries) {
 #ifdef CONFIG_SCHEDSTATS
@@ -1856,23 +2141,22 @@ static unsigned long
 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
              unsigned long max_load_move, struct sched_domain *sd,
              enum cpu_idle_type idle, int *all_pinned,
-             int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
+             struct cfs_rq *busiest_cfs_rq)
 {
-       int loops = 0, pulled = 0, pinned = 0;
+       int loops = 0, pulled = 0;
        long rem_load_move = max_load_move;
        struct task_struct *p, *n;
 
        if (max_load_move == 0)
                goto out;
 
-       pinned = 1;
-
        list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
                if (loops++ > sysctl_sched_nr_migrate)
                        break;
 
                if ((p->se.load.weight >> 1) > rem_load_move ||
-                   !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
+                   !can_migrate_task(p, busiest, this_cpu, sd, idle,
+                                     all_pinned))
                        continue;
 
                pull_task(busiest, p, this_rq, this_cpu);
@@ -1895,9 +2179,6 @@ balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
                 */
                if (rem_load_move <= 0)
                        break;
-
-               if (p->prio < *this_best_prio)
-                       *this_best_prio = p->prio;
        }
 out:
        /*
@@ -1907,18 +2188,57 @@ out:
         */
        schedstat_add(sd, lb_gained[idle], pulled);
 
-       if (all_pinned)
-               *all_pinned = pinned;
-
        return max_load_move - rem_load_move;
 }
 
 #ifdef CONFIG_FAIR_GROUP_SCHED
+/*
+ * update tg->load_weight by folding this cpu's load_avg
+ */
+static int update_shares_cpu(struct task_group *tg, int cpu)
+{
+       struct cfs_rq *cfs_rq;
+       unsigned long flags;
+       struct rq *rq;
+
+       if (!tg->se[cpu])
+               return 0;
+
+       rq = cpu_rq(cpu);
+       cfs_rq = tg->cfs_rq[cpu];
+
+       raw_spin_lock_irqsave(&rq->lock, flags);
+
+       update_rq_clock(rq);
+       update_cfs_load(cfs_rq, 1);
+
+       /*
+        * We need to update shares after updating tg->load_weight in
+        * order to adjust the weight of groups with long running tasks.
+        */
+       update_cfs_shares(cfs_rq);
+
+       raw_spin_unlock_irqrestore(&rq->lock, flags);
+
+       return 0;
+}
+
+static void update_shares(int cpu)
+{
+       struct cfs_rq *cfs_rq;
+       struct rq *rq = cpu_rq(cpu);
+
+       rcu_read_lock();
+       for_each_leaf_cfs_rq(rq, cfs_rq)
+               update_shares_cpu(cfs_rq->tg, cpu);
+       rcu_read_unlock();
+}
+
 static unsigned long
 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
                  unsigned long max_load_move,
                  struct sched_domain *sd, enum cpu_idle_type idle,
-                 int *all_pinned, int *this_best_prio)
+                 int *all_pinned)
 {
        long rem_load_move = max_load_move;
        int busiest_cpu = cpu_of(busiest);
@@ -1943,7 +2263,7 @@ load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
                rem_load = div_u64(rem_load, busiest_h_load + 1);
 
                moved_load = balance_tasks(this_rq, this_cpu, busiest,
-                               rem_load, sd, idle, all_pinned, this_best_prio,
+                               rem_load, sd, idle, all_pinned,
                                busiest_cfs_rq);
 
                if (!moved_load)
@@ -1961,15 +2281,19 @@ load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
        return max_load_move - rem_load_move;
 }
 #else
+static inline void update_shares(int cpu)
+{
+}
+
 static unsigned long
 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
                  unsigned long max_load_move,
                  struct sched_domain *sd, enum cpu_idle_type idle,
-                 int *all_pinned, int *this_best_prio)
+                 int *all_pinned)
 {
        return balance_tasks(this_rq, this_cpu, busiest,
                        max_load_move, sd, idle, all_pinned,
-                       this_best_prio, &busiest->cfs);
+                       &busiest->cfs);
 }
 #endif
 
@@ -1986,12 +2310,11 @@ static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
                      int *all_pinned)
 {
        unsigned long total_load_moved = 0, load_moved;
-       int this_best_prio = this_rq->curr->prio;
 
        do {
                load_moved = load_balance_fair(this_rq, this_cpu, busiest,
                                max_load_move - total_load_moved,
-                               sd, idle, all_pinned, &this_best_prio);
+                               sd, idle, all_pinned);
 
                total_load_moved += load_moved;
 
@@ -2029,12 +2352,17 @@ struct sd_lb_stats {
        unsigned long this_load;
        unsigned long this_load_per_task;
        unsigned long this_nr_running;
+       unsigned long this_has_capacity;
+       unsigned int  this_idle_cpus;
 
        /* Statistics of the busiest group */
+       unsigned int  busiest_idle_cpus;
        unsigned long max_load;
        unsigned long busiest_load_per_task;
        unsigned long busiest_nr_running;
        unsigned long busiest_group_capacity;
+       unsigned long busiest_has_capacity;
+       unsigned int  busiest_group_weight;
 
        int group_imb; /* Is there imbalance in this sd */
 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
@@ -2056,7 +2384,10 @@ struct sg_lb_stats {
        unsigned long sum_nr_running; /* Nr tasks running in the group */
        unsigned long sum_weighted_load; /* Weighted load of group's tasks */
        unsigned long group_capacity;
+       unsigned long idle_cpus;
+       unsigned long group_weight;
        int group_imb; /* Is there an imbalance in the group ? */
+       int group_has_capacity; /* Is there extra capacity in the group? */
 };
 
 /**
@@ -2238,7 +2569,7 @@ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
 
 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
 {
-       return SCHED_LOAD_SCALE;
+       return SCHED_POWER_SCALE;
 }
 
 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
@@ -2266,15 +2597,19 @@ unsigned long scale_rt_power(int cpu)
        struct rq *rq = cpu_rq(cpu);
        u64 total, available;
 
-       sched_avg_update(rq);
-
        total = sched_avg_period() + (rq->clock - rq->age_stamp);
-       available = total - rq->rt_avg;
 
-       if (unlikely((s64)total < SCHED_LOAD_SCALE))
-               total = SCHED_LOAD_SCALE;
+       if (unlikely(total < rq->rt_avg)) {
+               /* Ensures that power won't end up being negative */
+               available = 0;
+       } else {
+               available = total - rq->rt_avg;
+       }
+
+       if (unlikely((s64)total < SCHED_POWER_SCALE))
+               total = SCHED_POWER_SCALE;
 
-       total >>= SCHED_LOAD_SHIFT;
+       total >>= SCHED_POWER_SHIFT;
 
        return div_u64(available, total);
 }
@@ -2282,7 +2617,7 @@ unsigned long scale_rt_power(int cpu)
 static void update_cpu_power(struct sched_domain *sd, int cpu)
 {
        unsigned long weight = sd->span_weight;
-       unsigned long power = SCHED_LOAD_SCALE;
+       unsigned long power = SCHED_POWER_SCALE;
        struct sched_group *sdg = sd->groups;
 
        if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
@@ -2291,26 +2626,26 @@ static void update_cpu_power(struct sched_domain *sd, int cpu)
                else
                        power *= default_scale_smt_power(sd, cpu);
 
-               power >>= SCHED_LOAD_SHIFT;
+               power >>= SCHED_POWER_SHIFT;
        }
 
-       sdg->cpu_power_orig = power;
+       sdg->sgp->power_orig = power;
 
        if (sched_feat(ARCH_POWER))
                power *= arch_scale_freq_power(sd, cpu);
        else
                power *= default_scale_freq_power(sd, cpu);
 
-       power >>= SCHED_LOAD_SHIFT;
+       power >>= SCHED_POWER_SHIFT;
 
        power *= scale_rt_power(cpu);
-       power >>= SCHED_LOAD_SHIFT;
+       power >>= SCHED_POWER_SHIFT;
 
        if (!power)
                power = 1;
 
        cpu_rq(cpu)->cpu_power = power;
-       sdg->cpu_power = power;
+       sdg->sgp->power = power;
 }
 
 static void update_group_power(struct sched_domain *sd, int cpu)
@@ -2328,11 +2663,11 @@ static void update_group_power(struct sched_domain *sd, int cpu)
 
        group = child->groups;
        do {
-               power += group->cpu_power;
+               power += group->sgp->power;
                group = group->next;
        } while (group != child->groups);
 
-       sdg->cpu_power = power;
+       sdg->sgp->power = power;
 }
 
 /*
@@ -2346,15 +2681,15 @@ static inline int
 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
 {
        /*
-        * Only siblings can have significantly less than SCHED_LOAD_SCALE
+        * Only siblings can have significantly less than SCHED_POWER_SCALE
         */
-       if (sd->level != SD_LV_SIBLING)
+       if (!(sd->flags & SD_SHARE_CPUPOWER))
                return 0;
 
        /*
         * If ~90% of the cpu_power is still there, we're good.
         */
-       if (group->cpu_power * 32 < group->cpu_power_orig * 29)
+       if (group->sgp->power * 32 > group->sgp->power_orig * 29)
                return 1;
 
        return 0;
@@ -2367,7 +2702,6 @@ fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  * @this_cpu: Cpu for which load balance is currently performed.
  * @idle: Idle status of this_cpu
  * @load_idx: Load index of sched_domain of this_cpu for load calc.
- * @sd_idle: Idle status of the sched_domain containing group.
  * @local_group: Does group contain this_cpu.
  * @cpus: Set of cpus considered for load balancing.
  * @balance: Should we balance.
@@ -2375,11 +2709,11 @@ fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  */
 static inline void update_sg_lb_stats(struct sched_domain *sd,
                        struct sched_group *group, int this_cpu,
-                       enum cpu_idle_type idle, int load_idx, int *sd_idle,
+                       enum cpu_idle_type idle, int load_idx,
                        int local_group, const struct cpumask *cpus,
                        int *balance, struct sg_lb_stats *sgs)
 {
-       unsigned long load, max_cpu_load, min_cpu_load;
+       unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
        int i;
        unsigned int balance_cpu = -1, first_idle_cpu = 0;
        unsigned long avg_load_per_task = 0;
@@ -2390,13 +2724,11 @@ static inline void update_sg_lb_stats(struct sched_domain *sd,
        /* Tally up the load of all CPUs in the group */
        max_cpu_load = 0;
        min_cpu_load = ~0UL;
+       max_nr_running = 0;
 
        for_each_cpu_and(i, sched_group_cpus(group), cpus) {
                struct rq *rq = cpu_rq(i);
 
-               if (*sd_idle && rq->nr_running)
-                       *sd_idle = 0;
-
                /* Bias balancing toward cpus of our domain */
                if (local_group) {
                        if (idle_cpu(i) && !first_idle_cpu) {
@@ -2407,8 +2739,10 @@ static inline void update_sg_lb_stats(struct sched_domain *sd,
                        load = target_load(i, load_idx);
                } else {
                        load = source_load(i, load_idx);
-                       if (load > max_cpu_load)
+                       if (load > max_cpu_load) {
                                max_cpu_load = load;
+                               max_nr_running = rq->nr_running;
+                       }
                        if (min_cpu_load > load)
                                min_cpu_load = load;
                }
@@ -2416,7 +2750,8 @@ static inline void update_sg_lb_stats(struct sched_domain *sd,
                sgs->group_load += load;
                sgs->sum_nr_running += rq->nr_running;
                sgs->sum_weighted_load += weighted_cpuload(i);
-
+               if (idle_cpu(i))
+                       sgs->idle_cpus++;
        }
 
        /*
@@ -2425,20 +2760,20 @@ static inline void update_sg_lb_stats(struct sched_domain *sd,
         * domains. In the newly idle case, we will allow all the cpu's
         * to do the newly idle load balance.
         */
-       if (idle != CPU_NEWLY_IDLE && local_group &&
-           balance_cpu != this_cpu) {
-               *balance = 0;
-               return;
+       if (idle != CPU_NEWLY_IDLE && local_group) {
+               if (balance_cpu != this_cpu) {
+                       *balance = 0;
+                       return;
+               }
+               update_group_power(sd, this_cpu);
        }
 
-       update_group_power(sd, this_cpu);
-
        /* Adjust by relative CPU power of the group */
-       sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
+       sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
 
        /*
         * Consider the group unbalanced when the imbalance is larger
-        * than the average weight of two tasks.
+        * than the average weight of a task.
         *
         * APZ: with cgroup the avg task weight can vary wildly and
         *      might not be a suitable number - should we keep a
@@ -2448,13 +2783,17 @@ static inline void update_sg_lb_stats(struct sched_domain *sd,
        if (sgs->sum_nr_running)
                avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
 
-       if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
+       if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
                sgs->group_imb = 1;
 
-       sgs->group_capacity =
-               DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
+       sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
+                                               SCHED_POWER_SCALE);
        if (!sgs->group_capacity)
                sgs->group_capacity = fix_small_capacity(sd, group);
+       sgs->group_weight = group->group_weight;
+
+       if (sgs->group_capacity > sgs->sum_nr_running)
+               sgs->group_has_capacity = 1;
 }
 
 /**
@@ -2462,7 +2801,8 @@ static inline void update_sg_lb_stats(struct sched_domain *sd,
  * @sd: sched_domain whose statistics are to be checked
  * @sds: sched_domain statistics
  * @sg: sched_group candidate to be checked for being the busiest
- * @sds: sched_group statistics
+ * @sgs: sched_group statistics
+ * @this_cpu: the current cpu
  *
  * Determine if @sg is a busier group than the previously selected
  * busiest group.
@@ -2504,15 +2844,13 @@ static bool update_sd_pick_busiest(struct sched_domain *sd,
  * @sd: sched_domain whose statistics are to be updated.
  * @this_cpu: Cpu for which load balance is currently performed.
  * @idle: Idle status of this_cpu
- * @sd_idle: Idle status of the sched_domain containing sg.
  * @cpus: Set of cpus considered for load balancing.
  * @balance: Should we balance.
  * @sds: variable to hold the statistics for this sched_domain.
  */
 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
-                       enum cpu_idle_type idle, int *sd_idle,
-                       const struct cpumask *cpus, int *balance,
-                       struct sd_lb_stats *sds)
+                       enum cpu_idle_type idle, const struct cpumask *cpus,
+                       int *balance, struct sd_lb_stats *sds)
 {
        struct sched_domain *child = sd->child;
        struct sched_group *sg = sd->groups;
@@ -2530,21 +2868,26 @@ static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
 
                local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
                memset(&sgs, 0, sizeof(sgs));
-               update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
+               update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
                                local_group, cpus, balance, &sgs);
 
                if (local_group && !(*balance))
                        return;
 
                sds->total_load += sgs.group_load;
-               sds->total_pwr += sg->cpu_power;
+               sds->total_pwr += sg->sgp->power;
 
                /*
                 * In case the child domain prefers tasks go to siblings
                 * first, lower the sg capacity to one so that we'll try
-                * and move all the excess tasks away.
+                * and move all the excess tasks away. We lower the capacity
+                * of a group only if the local group has the capacity to fit
+                * these excess tasks, i.e. nr_running < group_capacity. The
+                * extra check prevents the case where you always pull from the
+                * heaviest group when it is already under-utilized (possible
+                * with a large weight task outweighs the tasks on the system).
                 */
-               if (prefer_sibling)
+               if (prefer_sibling && !local_group && sds->this_has_capacity)
                        sgs.group_capacity = min(sgs.group_capacity, 1UL);
 
                if (local_group) {
@@ -2552,12 +2895,17 @@ static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
                        sds->this = sg;
                        sds->this_nr_running = sgs.sum_nr_running;
                        sds->this_load_per_task = sgs.sum_weighted_load;
+                       sds->this_has_capacity = sgs.group_has_capacity;
+                       sds->this_idle_cpus = sgs.idle_cpus;
                } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
                        sds->max_load = sgs.avg_load;
                        sds->busiest = sg;
                        sds->busiest_nr_running = sgs.sum_nr_running;
+                       sds->busiest_idle_cpus = sgs.idle_cpus;
                        sds->busiest_group_capacity = sgs.group_capacity;
                        sds->busiest_load_per_task = sgs.sum_weighted_load;
+                       sds->busiest_has_capacity = sgs.group_has_capacity;
+                       sds->busiest_group_weight = sgs.group_weight;
                        sds->group_imb = sgs.group_imb;
                }
 
@@ -2566,7 +2914,7 @@ static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
        } while (sg != sd->groups);
 }
 
-int __weak arch_sd_sibiling_asym_packing(void)
+int __weak arch_sd_sibling_asym_packing(void)
 {
        return 0*SD_ASYM_PACKING;
 }
@@ -2588,13 +2936,13 @@ int __weak arch_sd_sibiling_asym_packing(void)
  * assuming lower CPU number will be equivalent to lower a SMT thread
  * number.
  *
+ * Returns 1 when packing is required and a task should be moved to
+ * this CPU.  The amount of the imbalance is returned in *imbalance.
+ *
  * @sd: The sched_domain whose packing is to be checked.
  * @sds: Statistics of the sched_domain which is to be packed
  * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  * @imbalance: returns amount of imbalanced due to packing.
- *
- * Returns 1 when packing is required and a task should be moved to
- * this CPU.  The amount of the imbalance is returned in *imbalance.
  */
 static int check_asym_packing(struct sched_domain *sd,
                              struct sd_lb_stats *sds,
@@ -2612,8 +2960,8 @@ static int check_asym_packing(struct sched_domain *sd,
        if (this_cpu > busiest_cpu)
                return 0;
 
-       *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
-                                      SCHED_LOAD_SCALE);
+       *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
+                                      SCHED_POWER_SCALE);
        return 1;
 }
 
@@ -2642,8 +2990,8 @@ static inline void fix_small_imbalance(struct sd_lb_stats *sds,
                        cpu_avg_load_per_task(this_cpu);
 
        scaled_busy_load_per_task = sds->busiest_load_per_task
-                                                * SCHED_LOAD_SCALE;
-       scaled_busy_load_per_task /= sds->busiest->cpu_power;
+                                        * SCHED_POWER_SCALE;
+       scaled_busy_load_per_task /= sds->busiest->sgp->power;
 
        if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
                        (scaled_busy_load_per_task * imbn)) {
@@ -2657,30 +3005,30 @@ static inline void fix_small_imbalance(struct sd_lb_stats *sds,
         * moving them.
         */
 
-       pwr_now += sds->busiest->cpu_power *
+       pwr_now += sds->busiest->sgp->power *
                        min(sds->busiest_load_per_task, sds->max_load);
-       pwr_now += sds->this->cpu_power *
+       pwr_now += sds->this->sgp->power *
                        min(sds->this_load_per_task, sds->this_load);
-       pwr_now /= SCHED_LOAD_SCALE;
+       pwr_now /= SCHED_POWER_SCALE;
 
        /* Amount of load we'd subtract */
-       tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
-               sds->busiest->cpu_power;
+       tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
+               sds->busiest->sgp->power;
        if (sds->max_load > tmp)
-               pwr_move += sds->busiest->cpu_power *
+               pwr_move += sds->busiest->sgp->power *
                        min(sds->busiest_load_per_task, sds->max_load - tmp);
 
        /* Amount of load we'd add */
-       if (sds->max_load * sds->busiest->cpu_power <
-               sds->busiest_load_per_task * SCHED_LOAD_SCALE)
-               tmp = (sds->max_load * sds->busiest->cpu_power) /
-                       sds->this->cpu_power;
+       if (sds->max_load * sds->busiest->sgp->power <
+               sds->busiest_load_per_task * SCHED_POWER_SCALE)
+               tmp = (sds->max_load * sds->busiest->sgp->power) /
+                       sds->this->sgp->power;
        else
-               tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
-                       sds->this->cpu_power;
-       pwr_move += sds->this->cpu_power *
+               tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
+                       sds->this->sgp->power;
+       pwr_move += sds->this->sgp->power *
                        min(sds->this_load_per_task, sds->this_load + tmp);
-       pwr_move /= SCHED_LOAD_SCALE;
+       pwr_move /= SCHED_POWER_SCALE;
 
        /* Move if we gain throughput */
        if (pwr_move > pwr_now)
@@ -2722,9 +3070,9 @@ static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
                load_above_capacity = (sds->busiest_nr_running -
                                                sds->busiest_group_capacity);
 
-               load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
+               load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
 
-               load_above_capacity /= sds->busiest->cpu_power;
+               load_above_capacity /= sds->busiest->sgp->power;
        }
 
        /*
@@ -2740,13 +3088,13 @@ static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
        max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
 
        /* How much load to actually move to equalise the imbalance */
-       *imbalance = min(max_pull * sds->busiest->cpu_power,
-               (sds->avg_load - sds->this_load) * sds->this->cpu_power)
-                       / SCHED_LOAD_SCALE;
+       *imbalance = min(max_pull * sds->busiest->sgp->power,
+               (sds->avg_load - sds->this_load) * sds->this->sgp->power)
+                       / SCHED_POWER_SCALE;
 
        /*
         * if *imbalance is less than the average load per runnable task
-        * there is no gaurantee that any tasks will be moved so we'll have
+        * there is no guarantee that any tasks will be moved so we'll have
         * a think about bumping its value to force at least one task to be
         * moved
         */
@@ -2754,6 +3102,7 @@ static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
                return fix_small_imbalance(sds, this_cpu, imbalance);
 
 }
+
 /******* find_busiest_group() helpers end here *********************/
 
 /**
@@ -2771,7 +3120,6 @@ static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  * @imbalance: Variable which stores amount of weighted load which should
  *             be moved to restore balance/put a group to idle.
  * @idle: The idle status of this_cpu.
- * @sd_idle: The idleness of sd
  * @cpus: The set of CPUs under consideration for load-balancing.
  * @balance: Pointer to a variable indicating if this_cpu
  *     is the appropriate cpu to perform load balancing at this_level.
@@ -2784,7 +3132,7 @@ static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
 static struct sched_group *
 find_busiest_group(struct sched_domain *sd, int this_cpu,
                   unsigned long *imbalance, enum cpu_idle_type idle,
-                  int *sd_idle, const struct cpumask *cpus, int *balance)
+                  const struct cpumask *cpus, int *balance)
 {
        struct sd_lb_stats sds;
 
@@ -2794,17 +3142,11 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
         * Compute the various statistics relavent for load balancing at
         * this level.
         */
-       update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
-                                       balance, &sds);
+       update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
 
-       /* Cases where imbalance does not exist from POV of this_cpu */
-       /* 1) this_cpu is not the appropriate cpu to perform load balancing
-        *    at this level.
-        * 2) There is no busy sibling group to pull from.
-        * 3) This group is the busiest group.
-        * 4) This group is more busy than the avg busieness at this
-        *    sched_domain.
-        * 5) The imbalance is within the specified limit.
+       /*
+        * this_cpu is not the appropriate cpu to perform load balancing at
+        * this level.
         */
        if (!(*balance))
                goto ret;
@@ -2813,20 +3155,59 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
            check_asym_packing(sd, &sds, this_cpu, imbalance))
                return sds.busiest;
 
+       /* There is no busy sibling group to pull tasks from */
        if (!sds.busiest || sds.busiest_nr_running == 0)
                goto out_balanced;
 
+       sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
+
+       /*
+        * If the busiest group is imbalanced the below checks don't
+        * work because they assumes all things are equal, which typically
+        * isn't true due to cpus_allowed constraints and the like.
+        */
+       if (sds.group_imb)
+               goto force_balance;
+
+       /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
+       if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
+                       !sds.busiest_has_capacity)
+               goto force_balance;
+
+       /*
+        * If the local group is more busy than the selected busiest group
+        * don't try and pull any tasks.
+        */
        if (sds.this_load >= sds.max_load)
                goto out_balanced;
 
-       sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
-
+       /*
+        * Don't pull any tasks if this group is already above the domain
+        * average load.
+        */
        if (sds.this_load >= sds.avg_load)
                goto out_balanced;
 
-       if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
-               goto out_balanced;
+       if (idle == CPU_IDLE) {
+               /*
+                * This cpu is idle. If the busiest group load doesn't
+                * have more tasks than the number of available cpu's and
+                * there is no imbalance between this and busiest group
+                * wrt to idle cpu's, it is balanced.
+                */
+               if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
+                   sds.busiest_nr_running <= sds.busiest_group_weight)
+                       goto out_balanced;
+       } else {
+               /*
+                * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
+                * imbalance_pct to be conservative.
+                */
+               if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
+                       goto out_balanced;
+       }
 
+force_balance:
        /* Looks like there is an imbalance. Compute it */
        calculate_imbalance(&sds, this_cpu, imbalance);
        return sds.busiest;
@@ -2857,7 +3238,8 @@ find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
 
        for_each_cpu(i, sched_group_cpus(group)) {
                unsigned long power = power_of(i);
-               unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
+               unsigned long capacity = DIV_ROUND_CLOSEST(power,
+                                                          SCHED_POWER_SCALE);
                unsigned long wl;
 
                if (!capacity)
@@ -2882,7 +3264,7 @@ find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
                 * the load can be moved away from the cpu that is potentially
                 * running at a lower capacity.
                 */
-               wl = (wl * SCHED_LOAD_SCALE) / power;
+               wl = (wl * SCHED_POWER_SCALE) / power;
 
                if (wl > max_load) {
                        max_load = wl;
@@ -2902,7 +3284,7 @@ find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
 /* Working cpumask for load_balance and load_balance_newidle. */
 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
 
-static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
+static int need_active_balance(struct sched_domain *sd, int idle,
                               int busiest_cpu, int this_cpu)
 {
        if (idle == CPU_NEWLY_IDLE) {
@@ -2934,10 +3316,6 @@ static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
                 * move_tasks() will succeed.  ld_moved will be true and this
                 * active balance code will not be triggered.
                 */
-               if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
-                   !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
-                       return 0;
-
                if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
                        return 0;
        }
@@ -2955,7 +3333,7 @@ static int load_balance(int this_cpu, struct rq *this_rq,
                        struct sched_domain *sd, enum cpu_idle_type idle,
                        int *balance)
 {
-       int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
+       int ld_moved, all_pinned = 0, active_balance = 0;
        struct sched_group *group;
        unsigned long imbalance;
        struct rq *busiest;
@@ -2964,21 +3342,10 @@ static int load_balance(int this_cpu, struct rq *this_rq,
 
        cpumask_copy(cpus, cpu_active_mask);
 
-       /*
-        * When power savings policy is enabled for the parent domain, idle
-        * sibling can pick up load irrespective of busy siblings. In this case,
-        * let the state of idle sibling percolate up as CPU_IDLE, instead of
-        * portraying it as CPU_NOT_IDLE.
-        */
-       if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
-           !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
-               sd_idle = 1;
-
        schedstat_inc(sd, lb_count[idle]);
 
 redo:
-       update_shares(sd);
-       group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
+       group = find_busiest_group(sd, this_cpu, &imbalance, idle,
                                   cpus, balance);
 
        if (*balance == 0)
@@ -3007,6 +3374,7 @@ redo:
                 * still unbalanced. ld_moved simply stays zero, so it is
                 * correctly treated as an imbalance.
                 */
+               all_pinned = 1;
                local_irq_save(flags);
                double_rq_lock(this_rq, busiest);
                ld_moved = move_tasks(this_rq, this_cpu, busiest,
@@ -3031,10 +3399,16 @@ redo:
 
        if (!ld_moved) {
                schedstat_inc(sd, lb_failed[idle]);
-               sd->nr_balance_failed++;
+               /*
+                * Increment the failure counter only on periodic balance.
+                * We do not want newidle balance, which can be very
+                * frequent, pollute the failure counter causing
+                * excessive cache_hot migrations and active balances.
+                */
+               if (idle != CPU_NEWLY_IDLE)
+                       sd->nr_balance_failed++;
 
-               if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
-                                       this_cpu)) {
+               if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
                        raw_spin_lock_irqsave(&busiest->lock, flags);
 
                        /* don't kick the active_load_balance_cpu_stop,
@@ -3089,10 +3463,6 @@ redo:
                        sd->balance_interval *= 2;
        }
 
-       if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
-           !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
-               ld_moved = -1;
-
        goto out;
 
 out_balanced:
@@ -3106,14 +3476,8 @@ out_one_pinned:
                        (sd->balance_interval < sd->max_interval))
                sd->balance_interval *= 2;
 
-       if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
-           !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
-               ld_moved = -1;
-       else
-               ld_moved = 0;
+       ld_moved = 0;
 out:
-       if (ld_moved)
-               update_shares(sd);
        return ld_moved;
 }
 
@@ -3137,6 +3501,8 @@ static void idle_balance(int this_cpu, struct rq *this_rq)
         */
        raw_spin_unlock(&this_rq->lock);
 
+       update_shares(this_cpu);
+       rcu_read_lock();
        for_each_domain(this_cpu, sd) {
                unsigned long interval;
                int balance = 1;
@@ -3158,6 +3524,7 @@ static void idle_balance(int this_cpu, struct rq *this_rq)
                        break;
                }
        }
+       rcu_read_unlock();
 
        raw_spin_lock(&this_rq->lock);
 
@@ -3206,6 +3573,7 @@ static int active_load_balance_cpu_stop(void *data)
        double_lock_balance(busiest_rq, target_rq);
 
        /* Search for an sd spanning us and the target CPU. */
+       rcu_read_lock();
        for_each_domain(target_cpu, sd) {
                if ((sd->flags & SD_LOAD_BALANCE) &&
                    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
@@ -3221,6 +3589,7 @@ static int active_load_balance_cpu_stop(void *data)
                else
                        schedstat_inc(sd, alb_failed);
        }
+       rcu_read_unlock();
        double_unlock_balance(busiest_rq, target_rq);
 out_unlock:
        busiest_rq->active_balance = 0;
@@ -3347,6 +3716,7 @@ static int find_new_ilb(int cpu)
 {
        struct sched_domain *sd;
        struct sched_group *ilb_group;
+       int ilb = nr_cpu_ids;
 
        /*
         * Have idle load balancer selection from semi-idle packages only
@@ -3362,20 +3732,25 @@ static int find_new_ilb(int cpu)
        if (cpumask_weight(nohz.idle_cpus_mask) < 2)
                goto out_done;
 
+       rcu_read_lock();
        for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
                ilb_group = sd->groups;
 
                do {
-                       if (is_semi_idle_group(ilb_group))
-                               return cpumask_first(nohz.grp_idle_mask);
+                       if (is_semi_idle_group(ilb_group)) {
+                               ilb = cpumask_first(nohz.grp_idle_mask);
+                               goto unlock;
+                       }
 
                        ilb_group = ilb_group->next;
 
                } while (ilb_group != sd->groups);
        }
+unlock:
+       rcu_read_unlock();
 
 out_done:
-       return nr_cpu_ids;
+       return ilb;
 }
 #else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
 static inline int find_new_ilb(int call_cpu)
@@ -3490,6 +3865,17 @@ void select_nohz_load_balancer(int stop_tick)
 
 static DEFINE_SPINLOCK(balancing);
 
+static unsigned long __read_mostly max_load_balance_interval = HZ/10;
+
+/*
+ * Scale the max load_balance interval with the number of CPUs in the system.
+ * This trades load-balance latency on larger machines for less cross talk.
+ */
+static void update_max_interval(void)
+{
+       max_load_balance_interval = HZ*num_online_cpus()/10;
+}
+
 /*
  * It checks each scheduling domain to see if it is due to be balanced,
  * and initiates a balancing operation if so.
@@ -3507,6 +3893,9 @@ static void rebalance_domains(int cpu, enum cpu_idle_type idle)
        int update_next_balance = 0;
        int need_serialize;
 
+       update_shares(cpu);
+
+       rcu_read_lock();
        for_each_domain(cpu, sd) {
                if (!(sd->flags & SD_LOAD_BALANCE))
                        continue;
@@ -3517,10 +3906,7 @@ static void rebalance_domains(int cpu, enum cpu_idle_type idle)
 
                /* scale ms to jiffies */
                interval = msecs_to_jiffies(interval);
-               if (unlikely(!interval))
-                       interval = 1;
-               if (interval > HZ*NR_CPUS/10)
-                       interval = HZ*NR_CPUS/10;
+               interval = clamp(interval, 1UL, max_load_balance_interval);
 
                need_serialize = sd->flags & SD_SERIALIZE;
 
@@ -3533,8 +3919,7 @@ static void rebalance_domains(int cpu, enum cpu_idle_type idle)
                        if (load_balance(cpu, rq, sd, idle, &balance)) {
                                /*
                                 * We've pulled tasks over so either we're no
-                                * longer idle, or one of our SMT siblings is
-                                * not idle.
+                                * longer idle.
                                 */
                                idle = CPU_NOT_IDLE;
                        }
@@ -3556,6 +3941,7 @@ out:
                if (!balance)
                        break;
        }
+       rcu_read_unlock();
 
        /*
         * next_balance will be updated only when there is a need.
@@ -3595,6 +3981,7 @@ static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
                }
 
                raw_spin_lock_irq(&this_rq->lock);
+               update_rq_clock(this_rq);
                update_cpu_load(this_rq);
                raw_spin_unlock_irq(&this_rq->lock);
 
@@ -3629,7 +4016,7 @@ static inline int nohz_kick_needed(struct rq *rq, int cpu)
        if (time_before(now, nohz.next_balance))
                return 0;
 
-       if (!rq->nr_running)
+       if (rq->idle_at_tick)
                return 0;
 
        first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
@@ -3748,8 +4135,13 @@ static void task_fork_fair(struct task_struct *p)
 
        raw_spin_lock_irqsave(&rq->lock, flags);
 
-       if (unlikely(task_cpu(p) != this_cpu))
+       update_rq_clock(rq);
+
+       if (unlikely(task_cpu(p) != this_cpu)) {
+               rcu_read_lock();
                __set_task_cpu(p, this_cpu);
+               rcu_read_unlock();
+       }
 
        update_curr(cfs_rq);
 
@@ -3775,33 +4167,62 @@ static void task_fork_fair(struct task_struct *p)
  * Priority of the task has changed. Check to see if we preempt
  * the current task.
  */
-static void prio_changed_fair(struct rq *rq, struct task_struct *p,
-                             int oldprio, int running)
+static void
+prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
 {
+       if (!p->se.on_rq)
+               return;
+
        /*
         * Reschedule if we are currently running on this runqueue and
         * our priority decreased, or if we are not currently running on
         * this runqueue and our priority is higher than the current's
         */
-       if (running) {
+       if (rq->curr == p) {
                if (p->prio > oldprio)
                        resched_task(rq->curr);
        } else
                check_preempt_curr(rq, p, 0);
 }
 
+static void switched_from_fair(struct rq *rq, struct task_struct *p)
+{
+       struct sched_entity *se = &p->se;
+       struct cfs_rq *cfs_rq = cfs_rq_of(se);
+
+       /*
+        * Ensure the task's vruntime is normalized, so that when its
+        * switched back to the fair class the enqueue_entity(.flags=0) will
+        * do the right thing.
+        *
+        * If it was on_rq, then the dequeue_entity(.flags=0) will already
+        * have normalized the vruntime, if it was !on_rq, then only when
+        * the task is sleeping will it still have non-normalized vruntime.
+        */
+       if (!se->on_rq && p->state != TASK_RUNNING) {
+               /*
+                * Fix up our vruntime so that the current sleep doesn't
+                * cause 'unlimited' sleep bonus.
+                */
+               place_entity(cfs_rq, se, 0);
+               se->vruntime -= cfs_rq->min_vruntime;
+       }
+}
+
 /*
  * We switched to the sched_fair class.
  */
-static void switched_to_fair(struct rq *rq, struct task_struct *p,
-                            int running)
+static void switched_to_fair(struct rq *rq, struct task_struct *p)
 {
+       if (!p->se.on_rq)
+               return;
+
        /*
         * We were most likely switched from sched_rt, so
         * kick off the schedule if running, otherwise just see
         * if we can still preempt the current task.
         */
-       if (running)
+       if (rq->curr == p)
                resched_task(rq->curr);
        else
                check_preempt_curr(rq, p, 0);
@@ -3821,13 +4242,26 @@ static void set_curr_task_fair(struct rq *rq)
 }
 
 #ifdef CONFIG_FAIR_GROUP_SCHED
-static void moved_group_fair(struct task_struct *p, int on_rq)
+static void task_move_group_fair(struct task_struct *p, int on_rq)
 {
-       struct cfs_rq *cfs_rq = task_cfs_rq(p);
-
-       update_curr(cfs_rq);
+       /*
+        * If the task was not on the rq at the time of this cgroup movement
+        * it must have been asleep, sleeping tasks keep their ->vruntime
+        * absolute on their old rq until wakeup (needed for the fair sleeper
+        * bonus in place_entity()).
+        *
+        * If it was on the rq, we've just 'preempted' it, which does convert
+        * ->vruntime to a relative base.
+        *
+        * Make sure both cases convert their relative position when migrating
+        * to another cgroup's rq. This does somewhat interfere with the
+        * fair sleeper stuff for the first placement, but who cares.
+        */
+       if (!on_rq)
+               p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
+       set_task_rq(p, task_cpu(p));
        if (!on_rq)
-               place_entity(cfs_rq, &p->se, 1);
+               p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
 }
 #endif
 
@@ -3854,6 +4288,7 @@ static const struct sched_class fair_sched_class = {
        .enqueue_task           = enqueue_task_fair,
        .dequeue_task           = dequeue_task_fair,
        .yield_task             = yield_task_fair,
+       .yield_to_task          = yield_to_task_fair,
 
        .check_preempt_curr     = check_preempt_wakeup,
 
@@ -3874,12 +4309,13 @@ static const struct sched_class fair_sched_class = {
        .task_fork              = task_fork_fair,
 
        .prio_changed           = prio_changed_fair,
+       .switched_from          = switched_from_fair,
        .switched_to            = switched_to_fair,
 
        .get_rr_interval        = get_rr_interval_fair,
 
 #ifdef CONFIG_FAIR_GROUP_SCHED
-       .moved_group            = moved_group_fair,
+       .task_move_group        = task_move_group_fair,
 #endif
 };