]> nv-tegra.nvidia Code Review - linux-2.6.git/blobdiff - kernel/futex.c
ASoC: soc-cache: Introduce raw bulk write support
[linux-2.6.git] / kernel / futex.c
index 99f8acce08bf62cd03ae042d9eab50d8342a7401..b766d28accd6be8dc2b735de11aa004514b8f91b 100644 (file)
  *  PRIVATE futexes by Eric Dumazet
  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  *
+ *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
+ *  Copyright (C) IBM Corporation, 2009
+ *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
+ *
  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  *  enough at me, Linus for the original (flawed) idea, Matthew
  *  Kirkwood for proof-of-concept implementation.
@@ -64,6 +68,14 @@ int __read_mostly futex_cmpxchg_enabled;
 
 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
 
+/*
+ * Futex flags used to encode options to functions and preserve them across
+ * restarts.
+ */
+#define FLAGS_SHARED           0x01
+#define FLAGS_CLOCKRT          0x02
+#define FLAGS_HAS_TIMEOUT      0x04
+
 /*
  * Priority Inheritance state:
  */
@@ -85,36 +97,50 @@ struct futex_pi_state {
        union futex_key key;
 };
 
-/*
- * We use this hashed waitqueue instead of a normal wait_queue_t, so
+/**
+ * struct futex_q - The hashed futex queue entry, one per waiting task
+ * @list:              priority-sorted list of tasks waiting on this futex
+ * @task:              the task waiting on the futex
+ * @lock_ptr:          the hash bucket lock
+ * @key:               the key the futex is hashed on
+ * @pi_state:          optional priority inheritance state
+ * @rt_waiter:         rt_waiter storage for use with requeue_pi
+ * @requeue_pi_key:    the requeue_pi target futex key
+ * @bitset:            bitset for the optional bitmasked wakeup
+ *
+ * We use this hashed waitqueue, instead of a normal wait_queue_t, so
  * we can wake only the relevant ones (hashed queues may be shared).
  *
  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
- * The order of wakup is always to make the first condition true, then
- * wake up q->waiter, then make the second condition true.
+ * The order of wakeup is always to make the first condition true, then
+ * the second.
+ *
+ * PI futexes are typically woken before they are removed from the hash list via
+ * the rt_mutex code. See unqueue_me_pi().
  */
 struct futex_q {
        struct plist_node list;
-       /* There can only be a single waiter */
-       wait_queue_head_t waiter;
 
-       /* Which hash list lock to use: */
+       struct task_struct *task;
        spinlock_t *lock_ptr;
-
-       /* Key which the futex is hashed on: */
        union futex_key key;
-
-       /* Optional priority inheritance state: */
        struct futex_pi_state *pi_state;
-       struct task_struct *task;
-
-       /* Bitset for the optional bitmasked wakeup */
+       struct rt_mutex_waiter *rt_waiter;
+       union futex_key *requeue_pi_key;
        u32 bitset;
 };
 
+static const struct futex_q futex_q_init = {
+       /* list gets initialized in queue_me()*/
+       .key = FUTEX_KEY_INIT,
+       .bitset = FUTEX_BITSET_MATCH_ANY
+};
+
 /*
- * Split the global futex_lock into every hash list lock.
+ * Hash buckets are shared by all the futex_keys that hash to the same
+ * location.  Each key may have multiple futex_q structures, one for each task
+ * waiting on a futex.
  */
 struct futex_hash_bucket {
        spinlock_t lock;
@@ -139,7 +165,8 @@ static struct futex_hash_bucket *hash_futex(union futex_key *key)
  */
 static inline int match_futex(union futex_key *key1, union futex_key *key2)
 {
-       return (key1->both.word == key2->both.word
+       return (key1 && key2
+               && key1->both.word == key2->both.word
                && key1->both.ptr == key2->both.ptr
                && key1->both.offset == key2->both.offset);
 }
@@ -156,7 +183,7 @@ static void get_futex_key_refs(union futex_key *key)
 
        switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
        case FUT_OFF_INODE:
-               atomic_inc(&key->shared.inode->i_count);
+               ihold(key->shared.inode);
                break;
        case FUT_OFF_MMSHARED:
                atomic_inc(&key->private.mm->mm_count);
@@ -170,8 +197,11 @@ static void get_futex_key_refs(union futex_key *key)
  */
 static void drop_futex_key_refs(union futex_key *key)
 {
-       if (!key->both.ptr)
+       if (!key->both.ptr) {
+               /* If we're here then we tried to put a key we failed to get */
+               WARN_ON_ONCE(1);
                return;
+       }
 
        switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
        case FUT_OFF_INODE:
@@ -184,11 +214,10 @@ static void drop_futex_key_refs(union futex_key *key)
 }
 
 /**
- * get_futex_key - Get parameters which are the keys for a futex.
- * @uaddr: virtual address of the futex
- * @shared: NULL for a PROCESS_PRIVATE futex,
- *     &current->mm->mmap_sem for a PROCESS_SHARED futex
- * @key: address where result is stored.
+ * get_futex_key() - Get parameters which are the keys for a futex
+ * @uaddr:     virtual address of the futex
+ * @fshared:   0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
+ * @key:       address where result is stored.
  *
  * Returns a negative error code or 0
  * The key words are stored in *key on success.
@@ -197,15 +226,14 @@ static void drop_futex_key_refs(union futex_key *key)
  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
  * We can usually work out the index without swapping in the page.
  *
- * fshared is NULL for PROCESS_PRIVATE futexes
- * For other futexes, it points to &current->mm->mmap_sem and
- * caller must have taken the reader lock. but NOT any spinlocks.
+ * lock_page() might sleep, the caller should not hold a spinlock.
  */
-static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
+static int
+get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
 {
        unsigned long address = (unsigned long)uaddr;
        struct mm_struct *mm = current->mm;
-       struct page *page;
+       struct page *page, *page_head;
        int err;
 
        /*
@@ -233,14 +261,50 @@ static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
        }
 
 again:
-       err = get_user_pages_fast(address, 1, 0, &page);
+       err = get_user_pages_fast(address, 1, 1, &page);
        if (err < 0)
                return err;
 
-       lock_page(page);
-       if (!page->mapping) {
-               unlock_page(page);
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+       page_head = page;
+       if (unlikely(PageTail(page))) {
+               put_page(page);
+               /* serialize against __split_huge_page_splitting() */
+               local_irq_disable();
+               if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
+                       page_head = compound_head(page);
+                       /*
+                        * page_head is valid pointer but we must pin
+                        * it before taking the PG_lock and/or
+                        * PG_compound_lock. The moment we re-enable
+                        * irqs __split_huge_page_splitting() can
+                        * return and the head page can be freed from
+                        * under us. We can't take the PG_lock and/or
+                        * PG_compound_lock on a page that could be
+                        * freed from under us.
+                        */
+                       if (page != page_head) {
+                               get_page(page_head);
+                               put_page(page);
+                       }
+                       local_irq_enable();
+               } else {
+                       local_irq_enable();
+                       goto again;
+               }
+       }
+#else
+       page_head = compound_head(page);
+       if (page != page_head) {
+               get_page(page_head);
                put_page(page);
+       }
+#endif
+
+       lock_page(page_head);
+       if (!page_head->mapping) {
+               unlock_page(page_head);
+               put_page(page_head);
                goto again;
        }
 
@@ -251,29 +315,72 @@ again:
         * it's a read-only handle, it's expected that futexes attach to
         * the object not the particular process.
         */
-       if (PageAnon(page)) {
+       if (PageAnon(page_head)) {
                key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
                key->private.mm = mm;
                key->private.address = address;
        } else {
                key->both.offset |= FUT_OFF_INODE; /* inode-based key */
-               key->shared.inode = page->mapping->host;
-               key->shared.pgoff = page->index;
+               key->shared.inode = page_head->mapping->host;
+               key->shared.pgoff = page_head->index;
        }
 
        get_futex_key_refs(key);
 
-       unlock_page(page);
-       put_page(page);
+       unlock_page(page_head);
+       put_page(page_head);
        return 0;
 }
 
-static inline
-void put_futex_key(int fshared, union futex_key *key)
+static inline void put_futex_key(union futex_key *key)
 {
        drop_futex_key_refs(key);
 }
 
+/**
+ * fault_in_user_writeable() - Fault in user address and verify RW access
+ * @uaddr:     pointer to faulting user space address
+ *
+ * Slow path to fixup the fault we just took in the atomic write
+ * access to @uaddr.
+ *
+ * We have no generic implementation of a non-destructive write to the
+ * user address. We know that we faulted in the atomic pagefault
+ * disabled section so we can as well avoid the #PF overhead by
+ * calling get_user_pages() right away.
+ */
+static int fault_in_user_writeable(u32 __user *uaddr)
+{
+       struct mm_struct *mm = current->mm;
+       int ret;
+
+       down_read(&mm->mmap_sem);
+       ret = get_user_pages(current, mm, (unsigned long)uaddr,
+                            1, 1, 0, NULL, NULL);
+       up_read(&mm->mmap_sem);
+
+       return ret < 0 ? ret : 0;
+}
+
+/**
+ * futex_top_waiter() - Return the highest priority waiter on a futex
+ * @hb:                the hash bucket the futex_q's reside in
+ * @key:       the futex key (to distinguish it from other futex futex_q's)
+ *
+ * Must be called with the hb lock held.
+ */
+static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
+                                       union futex_key *key)
+{
+       struct futex_q *this;
+
+       plist_for_each_entry(this, &hb->chain, list) {
+               if (match_futex(&this->key, key))
+                       return this;
+       }
+       return NULL;
+}
+
 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
 {
        u32 curval;
@@ -296,41 +403,6 @@ static int get_futex_value_locked(u32 *dest, u32 __user *from)
        return ret ? -EFAULT : 0;
 }
 
-/*
- * Fault handling.
- */
-static int futex_handle_fault(unsigned long address, int attempt)
-{
-       struct vm_area_struct * vma;
-       struct mm_struct *mm = current->mm;
-       int ret = -EFAULT;
-
-       if (attempt > 2)
-               return ret;
-
-       down_read(&mm->mmap_sem);
-       vma = find_vma(mm, address);
-       if (vma && address >= vma->vm_start &&
-           (vma->vm_flags & VM_WRITE)) {
-               int fault;
-               fault = handle_mm_fault(mm, vma, address, 1);
-               if (unlikely((fault & VM_FAULT_ERROR))) {
-#if 0
-                       /* XXX: let's do this when we verify it is OK */
-                       if (ret & VM_FAULT_OOM)
-                               ret = -ENOMEM;
-#endif
-               } else {
-                       ret = 0;
-                       if (fault & VM_FAULT_MAJOR)
-                               current->maj_flt++;
-                       else
-                               current->min_flt++;
-               }
-       }
-       up_read(&mm->mmap_sem);
-       return ret;
-}
 
 /*
  * PI code:
@@ -378,9 +450,9 @@ static void free_pi_state(struct futex_pi_state *pi_state)
         * and has cleaned up the pi_state already
         */
        if (pi_state->owner) {
-               spin_lock_irq(&pi_state->owner->pi_lock);
+               raw_spin_lock_irq(&pi_state->owner->pi_lock);
                list_del_init(&pi_state->list);
-               spin_unlock_irq(&pi_state->owner->pi_lock);
+               raw_spin_unlock_irq(&pi_state->owner->pi_lock);
 
                rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
        }
@@ -409,9 +481,7 @@ static struct task_struct * futex_find_get_task(pid_t pid)
 
        rcu_read_lock();
        p = find_task_by_vpid(pid);
-       if (!p || ((current->euid != p->euid) && (current->euid != p->uid)))
-               p = ERR_PTR(-ESRCH);
-       else
+       if (p)
                get_task_struct(p);
 
        rcu_read_unlock();
@@ -438,18 +508,18 @@ void exit_pi_state_list(struct task_struct *curr)
         * pi_state_list anymore, but we have to be careful
         * versus waiters unqueueing themselves:
         */
-       spin_lock_irq(&curr->pi_lock);
+       raw_spin_lock_irq(&curr->pi_lock);
        while (!list_empty(head)) {
 
                next = head->next;
                pi_state = list_entry(next, struct futex_pi_state, list);
                key = pi_state->key;
                hb = hash_futex(&key);
-               spin_unlock_irq(&curr->pi_lock);
+               raw_spin_unlock_irq(&curr->pi_lock);
 
                spin_lock(&hb->lock);
 
-               spin_lock_irq(&curr->pi_lock);
+               raw_spin_lock_irq(&curr->pi_lock);
                /*
                 * We dropped the pi-lock, so re-check whether this
                 * task still owns the PI-state:
@@ -463,15 +533,15 @@ void exit_pi_state_list(struct task_struct *curr)
                WARN_ON(list_empty(&pi_state->list));
                list_del_init(&pi_state->list);
                pi_state->owner = NULL;
-               spin_unlock_irq(&curr->pi_lock);
+               raw_spin_unlock_irq(&curr->pi_lock);
 
                rt_mutex_unlock(&pi_state->pi_mutex);
 
                spin_unlock(&hb->lock);
 
-               spin_lock_irq(&curr->pi_lock);
+               raw_spin_lock_irq(&curr->pi_lock);
        }
-       spin_unlock_irq(&curr->pi_lock);
+       raw_spin_unlock_irq(&curr->pi_lock);
 }
 
 static int
@@ -494,14 +564,31 @@ lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
                         */
                        pi_state = this->pi_state;
                        /*
-                        * Userspace might have messed up non PI and PI futexes
+                        * Userspace might have messed up non-PI and PI futexes
                         */
                        if (unlikely(!pi_state))
                                return -EINVAL;
 
                        WARN_ON(!atomic_read(&pi_state->refcount));
-                       WARN_ON(pid && pi_state->owner &&
-                               pi_state->owner->pid != pid);
+
+                       /*
+                        * When pi_state->owner is NULL then the owner died
+                        * and another waiter is on the fly. pi_state->owner
+                        * is fixed up by the task which acquires
+                        * pi_state->rt_mutex.
+                        *
+                        * We do not check for pid == 0 which can happen when
+                        * the owner died and robust_list_exit() cleared the
+                        * TID.
+                        */
+                       if (pid && pi_state->owner) {
+                               /*
+                                * Bail out if user space manipulated the
+                                * futex value.
+                                */
+                               if (pid != task_pid_vnr(pi_state->owner))
+                                       return -EINVAL;
+                       }
 
                        atomic_inc(&pi_state->refcount);
                        *ps = pi_state;
@@ -517,8 +604,8 @@ lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
        if (!pid)
                return -ESRCH;
        p = futex_find_get_task(pid);
-       if (IS_ERR(p))
-               return PTR_ERR(p);
+       if (!p)
+               return -ESRCH;
 
        /*
         * We need to look at the task state flags to figure out,
@@ -526,7 +613,7 @@ lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
         * change of the task flags, we do this protected by
         * p->pi_lock:
         */
-       spin_lock_irq(&p->pi_lock);
+       raw_spin_lock_irq(&p->pi_lock);
        if (unlikely(p->flags & PF_EXITING)) {
                /*
                 * The task is on the way out. When PF_EXITPIDONE is
@@ -535,7 +622,7 @@ lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
                 */
                int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
 
-               spin_unlock_irq(&p->pi_lock);
+               raw_spin_unlock_irq(&p->pi_lock);
                put_task_struct(p);
                return ret;
        }
@@ -554,7 +641,7 @@ lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
        WARN_ON(!list_empty(&pi_state->list));
        list_add(&pi_state->list, &p->pi_state_list);
        pi_state->owner = p;
-       spin_unlock_irq(&p->pi_lock);
+       raw_spin_unlock_irq(&p->pi_lock);
 
        put_task_struct(p);
 
@@ -563,29 +650,160 @@ lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
        return 0;
 }
 
+/**
+ * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
+ * @uaddr:             the pi futex user address
+ * @hb:                        the pi futex hash bucket
+ * @key:               the futex key associated with uaddr and hb
+ * @ps:                        the pi_state pointer where we store the result of the
+ *                     lookup
+ * @task:              the task to perform the atomic lock work for.  This will
+ *                     be "current" except in the case of requeue pi.
+ * @set_waiters:       force setting the FUTEX_WAITERS bit (1) or not (0)
+ *
+ * Returns:
+ *  0 - ready to wait
+ *  1 - acquired the lock
+ * <0 - error
+ *
+ * The hb->lock and futex_key refs shall be held by the caller.
+ */
+static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
+                               union futex_key *key,
+                               struct futex_pi_state **ps,
+                               struct task_struct *task, int set_waiters)
+{
+       int lock_taken, ret, ownerdied = 0;
+       u32 uval, newval, curval;
+
+retry:
+       ret = lock_taken = 0;
+
+       /*
+        * To avoid races, we attempt to take the lock here again
+        * (by doing a 0 -> TID atomic cmpxchg), while holding all
+        * the locks. It will most likely not succeed.
+        */
+       newval = task_pid_vnr(task);
+       if (set_waiters)
+               newval |= FUTEX_WAITERS;
+
+       curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
+
+       if (unlikely(curval == -EFAULT))
+               return -EFAULT;
+
+       /*
+        * Detect deadlocks.
+        */
+       if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
+               return -EDEADLK;
+
+       /*
+        * Surprise - we got the lock. Just return to userspace:
+        */
+       if (unlikely(!curval))
+               return 1;
+
+       uval = curval;
+
+       /*
+        * Set the FUTEX_WAITERS flag, so the owner will know it has someone
+        * to wake at the next unlock.
+        */
+       newval = curval | FUTEX_WAITERS;
+
+       /*
+        * There are two cases, where a futex might have no owner (the
+        * owner TID is 0): OWNER_DIED. We take over the futex in this
+        * case. We also do an unconditional take over, when the owner
+        * of the futex died.
+        *
+        * This is safe as we are protected by the hash bucket lock !
+        */
+       if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
+               /* Keep the OWNER_DIED bit */
+               newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
+               ownerdied = 0;
+               lock_taken = 1;
+       }
+
+       curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
+
+       if (unlikely(curval == -EFAULT))
+               return -EFAULT;
+       if (unlikely(curval != uval))
+               goto retry;
+
+       /*
+        * We took the lock due to owner died take over.
+        */
+       if (unlikely(lock_taken))
+               return 1;
+
+       /*
+        * We dont have the lock. Look up the PI state (or create it if
+        * we are the first waiter):
+        */
+       ret = lookup_pi_state(uval, hb, key, ps);
+
+       if (unlikely(ret)) {
+               switch (ret) {
+               case -ESRCH:
+                       /*
+                        * No owner found for this futex. Check if the
+                        * OWNER_DIED bit is set to figure out whether
+                        * this is a robust futex or not.
+                        */
+                       if (get_futex_value_locked(&curval, uaddr))
+                               return -EFAULT;
+
+                       /*
+                        * We simply start over in case of a robust
+                        * futex. The code above will take the futex
+                        * and return happy.
+                        */
+                       if (curval & FUTEX_OWNER_DIED) {
+                               ownerdied = 1;
+                               goto retry;
+                       }
+               default:
+                       break;
+               }
+       }
+
+       return ret;
+}
+
 /*
  * The hash bucket lock must be held when this is called.
  * Afterwards, the futex_q must not be accessed.
  */
 static void wake_futex(struct futex_q *q)
 {
-       plist_del(&q->list, &q->list.plist);
+       struct task_struct *p = q->task;
+
        /*
-        * The lock in wake_up_all() is a crucial memory barrier after the
-        * plist_del() and also before assigning to q->lock_ptr.
+        * We set q->lock_ptr = NULL _before_ we wake up the task. If
+        * a non-futex wake up happens on another CPU then the task
+        * might exit and p would dereference a non-existing task
+        * struct. Prevent this by holding a reference on p across the
+        * wake up.
         */
-       wake_up(&q->waiter);
+       get_task_struct(p);
+
+       plist_del(&q->list, &q->list.plist);
        /*
-        * The waiting task can free the futex_q as soon as this is written,
-        * without taking any locks.  This must come last.
-        *
-        * A memory barrier is required here to prevent the following store
-        * to lock_ptr from getting ahead of the wakeup. Clearing the lock
-        * at the end of wake_up_all() does not prevent this store from
-        * moving.
+        * The waiting task can free the futex_q as soon as
+        * q->lock_ptr = NULL is written, without taking any locks. A
+        * memory barrier is required here to prevent the following
+        * store to lock_ptr from getting ahead of the plist_del.
         */
        smp_wmb();
        q->lock_ptr = NULL;
+
+       wake_up_state(p, TASK_NORMAL);
+       put_task_struct(p);
 }
 
 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
@@ -597,14 +815,20 @@ static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
        if (!pi_state)
                return -EINVAL;
 
-       spin_lock(&pi_state->pi_mutex.wait_lock);
+       /*
+        * If current does not own the pi_state then the futex is
+        * inconsistent and user space fiddled with the futex value.
+        */
+       if (pi_state->owner != current)
+               return -EINVAL;
+
+       raw_spin_lock(&pi_state->pi_mutex.wait_lock);
        new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
 
        /*
-        * This happens when we have stolen the lock and the original
-        * pending owner did not enqueue itself back on the rt_mutex.
-        * Thats not a tragedy. We know that way, that a lock waiter
-        * is on the fly. We make the futex_q waiter the pending owner.
+        * It is possible that the next waiter (the one that brought
+        * this owner to the kernel) timed out and is no longer
+        * waiting on the lock.
         */
        if (!new_owner)
                new_owner = this->task;
@@ -626,23 +850,23 @@ static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
                else if (curval != uval)
                        ret = -EINVAL;
                if (ret) {
-                       spin_unlock(&pi_state->pi_mutex.wait_lock);
+                       raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
                        return ret;
                }
        }
 
-       spin_lock_irq(&pi_state->owner->pi_lock);
+       raw_spin_lock_irq(&pi_state->owner->pi_lock);
        WARN_ON(list_empty(&pi_state->list));
        list_del_init(&pi_state->list);
-       spin_unlock_irq(&pi_state->owner->pi_lock);
+       raw_spin_unlock_irq(&pi_state->owner->pi_lock);
 
-       spin_lock_irq(&new_owner->pi_lock);
+       raw_spin_lock_irq(&new_owner->pi_lock);
        WARN_ON(!list_empty(&pi_state->list));
        list_add(&pi_state->list, &new_owner->pi_state_list);
        pi_state->owner = new_owner;
-       spin_unlock_irq(&new_owner->pi_lock);
+       raw_spin_unlock_irq(&new_owner->pi_lock);
 
-       spin_unlock(&pi_state->pi_mutex.wait_lock);
+       raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
        rt_mutex_unlock(&pi_state->pi_mutex);
 
        return 0;
@@ -682,11 +906,19 @@ double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
        }
 }
 
+static inline void
+double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
+{
+       spin_unlock(&hb1->lock);
+       if (hb1 != hb2)
+               spin_unlock(&hb2->lock);
+}
+
 /*
- * Wake up all waiters hashed on the physical page that is mapped
- * to this virtual address:
+ * Wake up waiters matching bitset queued on this futex (uaddr).
  */
-static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
+static int
+futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
 {
        struct futex_hash_bucket *hb;
        struct futex_q *this, *next;
@@ -697,7 +929,7 @@ static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
        if (!bitset)
                return -EINVAL;
 
-       ret = get_futex_key(uaddr, fshared, &key);
+       ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
        if (unlikely(ret != 0))
                goto out;
 
@@ -707,7 +939,7 @@ static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
 
        plist_for_each_entry_safe(this, next, head, list) {
                if (match_futex (&this->key, &key)) {
-                       if (this->pi_state) {
+                       if (this->pi_state || this->rt_waiter) {
                                ret = -EINVAL;
                                break;
                        }
@@ -723,8 +955,8 @@ static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
        }
 
        spin_unlock(&hb->lock);
+       put_futex_key(&key);
 out:
-       put_futex_key(fshared, &key);
        return ret;
 }
 
@@ -733,36 +965,32 @@ out:
  * to this virtual address:
  */
 static int
-futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
+futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
              int nr_wake, int nr_wake2, int op)
 {
        union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
        struct futex_hash_bucket *hb1, *hb2;
        struct plist_head *head;
        struct futex_q *this, *next;
-       int ret, op_ret, attempt = 0;
+       int ret, op_ret;
 
-retryfull:
-       ret = get_futex_key(uaddr1, fshared, &key1);
+retry:
+       ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
        if (unlikely(ret != 0))
                goto out;
-       ret = get_futex_key(uaddr2, fshared, &key2);
+       ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
        if (unlikely(ret != 0))
-               goto out;
+               goto out_put_key1;
 
        hb1 = hash_futex(&key1);
        hb2 = hash_futex(&key2);
 
-retry:
+retry_private:
        double_lock_hb(hb1, hb2);
-
        op_ret = futex_atomic_op_inuser(op, uaddr2);
        if (unlikely(op_ret < 0)) {
-               u32 dummy;
 
-               spin_unlock(&hb1->lock);
-               if (hb1 != hb2)
-                       spin_unlock(&hb2->lock);
+               double_unlock_hb(hb1, hb2);
 
 #ifndef CONFIG_MMU
                /*
@@ -770,34 +998,24 @@ retry:
                 * but we might get them from range checking
                 */
                ret = op_ret;
-               goto out;
+               goto out_put_keys;
 #endif
 
                if (unlikely(op_ret != -EFAULT)) {
                        ret = op_ret;
-                       goto out;
-               }
-
-               /*
-                * futex_atomic_op_inuser needs to both read and write
-                * *(int __user *)uaddr2, but we can't modify it
-                * non-atomically.  Therefore, if get_user below is not
-                * enough, we need to handle the fault ourselves, while
-                * still holding the mmap_sem.
-                */
-               if (attempt++) {
-                       ret = futex_handle_fault((unsigned long)uaddr2,
-                                                attempt);
-                       if (ret)
-                               goto out;
-                       goto retry;
+                       goto out_put_keys;
                }
 
-               ret = get_user(dummy, uaddr2);
+               ret = fault_in_user_writeable(uaddr2);
                if (ret)
-                       return ret;
+                       goto out_put_keys;
 
-               goto retryfull;
+               if (!(flags & FLAGS_SHARED))
+                       goto retry_private;
+
+               put_futex_key(&key2);
+               put_futex_key(&key1);
+               goto retry;
        }
 
        head = &hb1->chain;
@@ -824,58 +1042,234 @@ retry:
                ret += op_ret;
        }
 
-       spin_unlock(&hb1->lock);
-       if (hb1 != hb2)
-               spin_unlock(&hb2->lock);
+       double_unlock_hb(hb1, hb2);
+out_put_keys:
+       put_futex_key(&key2);
+out_put_key1:
+       put_futex_key(&key1);
 out:
-       put_futex_key(fshared, &key2);
-       put_futex_key(fshared, &key1);
-
        return ret;
 }
 
-/*
- * Requeue all waiters hashed on one physical page to another
- * physical page.
+/**
+ * requeue_futex() - Requeue a futex_q from one hb to another
+ * @q:         the futex_q to requeue
+ * @hb1:       the source hash_bucket
+ * @hb2:       the target hash_bucket
+ * @key2:      the new key for the requeued futex_q
  */
-static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
-                        int nr_wake, int nr_requeue, u32 *cmpval)
+static inline
+void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
+                  struct futex_hash_bucket *hb2, union futex_key *key2)
 {
-       union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
-       struct futex_hash_bucket *hb1, *hb2;
-       struct plist_head *head1;
-       struct futex_q *this, *next;
-       int ret, drop_count = 0;
 
- retry:
-       ret = get_futex_key(uaddr1, fshared, &key1);
-       if (unlikely(ret != 0))
-               goto out;
-       ret = get_futex_key(uaddr2, fshared, &key2);
-       if (unlikely(ret != 0))
-               goto out;
+       /*
+        * If key1 and key2 hash to the same bucket, no need to
+        * requeue.
+        */
+       if (likely(&hb1->chain != &hb2->chain)) {
+               plist_del(&q->list, &hb1->chain);
+               plist_add(&q->list, &hb2->chain);
+               q->lock_ptr = &hb2->lock;
+#ifdef CONFIG_DEBUG_PI_LIST
+               q->list.plist.spinlock = &hb2->lock;
+#endif
+       }
+       get_futex_key_refs(key2);
+       q->key = *key2;
+}
 
-       hb1 = hash_futex(&key1);
-       hb2 = hash_futex(&key2);
+/**
+ * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
+ * @q:         the futex_q
+ * @key:       the key of the requeue target futex
+ * @hb:                the hash_bucket of the requeue target futex
+ *
+ * During futex_requeue, with requeue_pi=1, it is possible to acquire the
+ * target futex if it is uncontended or via a lock steal.  Set the futex_q key
+ * to the requeue target futex so the waiter can detect the wakeup on the right
+ * futex, but remove it from the hb and NULL the rt_waiter so it can detect
+ * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
+ * to protect access to the pi_state to fixup the owner later.  Must be called
+ * with both q->lock_ptr and hb->lock held.
+ */
+static inline
+void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
+                          struct futex_hash_bucket *hb)
+{
+       get_futex_key_refs(key);
+       q->key = *key;
 
-       double_lock_hb(hb1, hb2);
+       WARN_ON(plist_node_empty(&q->list));
+       plist_del(&q->list, &q->list.plist);
 
-       if (likely(cmpval != NULL)) {
-               u32 curval;
+       WARN_ON(!q->rt_waiter);
+       q->rt_waiter = NULL;
 
-               ret = get_futex_value_locked(&curval, uaddr1);
+       q->lock_ptr = &hb->lock;
+#ifdef CONFIG_DEBUG_PI_LIST
+       q->list.plist.spinlock = &hb->lock;
+#endif
 
-               if (unlikely(ret)) {
-                       spin_unlock(&hb1->lock);
-                       if (hb1 != hb2)
-                               spin_unlock(&hb2->lock);
+       wake_up_state(q->task, TASK_NORMAL);
+}
 
-                       ret = get_user(curval, uaddr1);
+/**
+ * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
+ * @pifutex:           the user address of the to futex
+ * @hb1:               the from futex hash bucket, must be locked by the caller
+ * @hb2:               the to futex hash bucket, must be locked by the caller
+ * @key1:              the from futex key
+ * @key2:              the to futex key
+ * @ps:                        address to store the pi_state pointer
+ * @set_waiters:       force setting the FUTEX_WAITERS bit (1) or not (0)
+ *
+ * Try and get the lock on behalf of the top waiter if we can do it atomically.
+ * Wake the top waiter if we succeed.  If the caller specified set_waiters,
+ * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
+ * hb1 and hb2 must be held by the caller.
+ *
+ * Returns:
+ *  0 - failed to acquire the lock atomicly
+ *  1 - acquired the lock
+ * <0 - error
+ */
+static int futex_proxy_trylock_atomic(u32 __user *pifutex,
+                                struct futex_hash_bucket *hb1,
+                                struct futex_hash_bucket *hb2,
+                                union futex_key *key1, union futex_key *key2,
+                                struct futex_pi_state **ps, int set_waiters)
+{
+       struct futex_q *top_waiter = NULL;
+       u32 curval;
+       int ret;
 
-                       if (!ret)
-                               goto retry;
+       if (get_futex_value_locked(&curval, pifutex))
+               return -EFAULT;
 
-                       return ret;
+       /*
+        * Find the top_waiter and determine if there are additional waiters.
+        * If the caller intends to requeue more than 1 waiter to pifutex,
+        * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
+        * as we have means to handle the possible fault.  If not, don't set
+        * the bit unecessarily as it will force the subsequent unlock to enter
+        * the kernel.
+        */
+       top_waiter = futex_top_waiter(hb1, key1);
+
+       /* There are no waiters, nothing for us to do. */
+       if (!top_waiter)
+               return 0;
+
+       /* Ensure we requeue to the expected futex. */
+       if (!match_futex(top_waiter->requeue_pi_key, key2))
+               return -EINVAL;
+
+       /*
+        * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
+        * the contended case or if set_waiters is 1.  The pi_state is returned
+        * in ps in contended cases.
+        */
+       ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
+                                  set_waiters);
+       if (ret == 1)
+               requeue_pi_wake_futex(top_waiter, key2, hb2);
+
+       return ret;
+}
+
+/**
+ * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
+ * @uaddr1:    source futex user address
+ * @flags:     futex flags (FLAGS_SHARED, etc.)
+ * @uaddr2:    target futex user address
+ * @nr_wake:   number of waiters to wake (must be 1 for requeue_pi)
+ * @nr_requeue:        number of waiters to requeue (0-INT_MAX)
+ * @cmpval:    @uaddr1 expected value (or %NULL)
+ * @requeue_pi:        if we are attempting to requeue from a non-pi futex to a
+ *             pi futex (pi to pi requeue is not supported)
+ *
+ * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
+ * uaddr2 atomically on behalf of the top waiter.
+ *
+ * Returns:
+ * >=0 - on success, the number of tasks requeued or woken
+ *  <0 - on error
+ */
+static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
+                        u32 __user *uaddr2, int nr_wake, int nr_requeue,
+                        u32 *cmpval, int requeue_pi)
+{
+       union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
+       int drop_count = 0, task_count = 0, ret;
+       struct futex_pi_state *pi_state = NULL;
+       struct futex_hash_bucket *hb1, *hb2;
+       struct plist_head *head1;
+       struct futex_q *this, *next;
+       u32 curval2;
+
+       if (requeue_pi) {
+               /*
+                * requeue_pi requires a pi_state, try to allocate it now
+                * without any locks in case it fails.
+                */
+               if (refill_pi_state_cache())
+                       return -ENOMEM;
+               /*
+                * requeue_pi must wake as many tasks as it can, up to nr_wake
+                * + nr_requeue, since it acquires the rt_mutex prior to
+                * returning to userspace, so as to not leave the rt_mutex with
+                * waiters and no owner.  However, second and third wake-ups
+                * cannot be predicted as they involve race conditions with the
+                * first wake and a fault while looking up the pi_state.  Both
+                * pthread_cond_signal() and pthread_cond_broadcast() should
+                * use nr_wake=1.
+                */
+               if (nr_wake != 1)
+                       return -EINVAL;
+       }
+
+retry:
+       if (pi_state != NULL) {
+               /*
+                * We will have to lookup the pi_state again, so free this one
+                * to keep the accounting correct.
+                */
+               free_pi_state(pi_state);
+               pi_state = NULL;
+       }
+
+       ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
+       if (unlikely(ret != 0))
+               goto out;
+       ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
+       if (unlikely(ret != 0))
+               goto out_put_key1;
+
+       hb1 = hash_futex(&key1);
+       hb2 = hash_futex(&key2);
+
+retry_private:
+       double_lock_hb(hb1, hb2);
+
+       if (likely(cmpval != NULL)) {
+               u32 curval;
+
+               ret = get_futex_value_locked(&curval, uaddr1);
+
+               if (unlikely(ret)) {
+                       double_unlock_hb(hb1, hb2);
+
+                       ret = get_user(curval, uaddr1);
+                       if (ret)
+                               goto out_put_keys;
+
+                       if (!(flags & FLAGS_SHARED))
+                               goto retry_private;
+
+                       put_futex_key(&key2);
+                       put_futex_key(&key1);
+                       goto retry;
                }
                if (curval != *cmpval) {
                        ret = -EAGAIN;
@@ -883,57 +1277,144 @@ static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
                }
        }
 
+       if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
+               /*
+                * Attempt to acquire uaddr2 and wake the top waiter. If we
+                * intend to requeue waiters, force setting the FUTEX_WAITERS
+                * bit.  We force this here where we are able to easily handle
+                * faults rather in the requeue loop below.
+                */
+               ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
+                                                &key2, &pi_state, nr_requeue);
+
+               /*
+                * At this point the top_waiter has either taken uaddr2 or is
+                * waiting on it.  If the former, then the pi_state will not
+                * exist yet, look it up one more time to ensure we have a
+                * reference to it.
+                */
+               if (ret == 1) {
+                       WARN_ON(pi_state);
+                       drop_count++;
+                       task_count++;
+                       ret = get_futex_value_locked(&curval2, uaddr2);
+                       if (!ret)
+                               ret = lookup_pi_state(curval2, hb2, &key2,
+                                                     &pi_state);
+               }
+
+               switch (ret) {
+               case 0:
+                       break;
+               case -EFAULT:
+                       double_unlock_hb(hb1, hb2);
+                       put_futex_key(&key2);
+                       put_futex_key(&key1);
+                       ret = fault_in_user_writeable(uaddr2);
+                       if (!ret)
+                               goto retry;
+                       goto out;
+               case -EAGAIN:
+                       /* The owner was exiting, try again. */
+                       double_unlock_hb(hb1, hb2);
+                       put_futex_key(&key2);
+                       put_futex_key(&key1);
+                       cond_resched();
+                       goto retry;
+               default:
+                       goto out_unlock;
+               }
+       }
+
        head1 = &hb1->chain;
        plist_for_each_entry_safe(this, next, head1, list) {
-               if (!match_futex (&this->key, &key1))
+               if (task_count - nr_wake >= nr_requeue)
+                       break;
+
+               if (!match_futex(&this->key, &key1))
                        continue;
-               if (++ret <= nr_wake) {
+
+               /*
+                * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
+                * be paired with each other and no other futex ops.
+                */
+               if ((requeue_pi && !this->rt_waiter) ||
+                   (!requeue_pi && this->rt_waiter)) {
+                       ret = -EINVAL;
+                       break;
+               }
+
+               /*
+                * Wake nr_wake waiters.  For requeue_pi, if we acquired the
+                * lock, we already woke the top_waiter.  If not, it will be
+                * woken by futex_unlock_pi().
+                */
+               if (++task_count <= nr_wake && !requeue_pi) {
                        wake_futex(this);
-               } else {
-                       /*
-                        * If key1 and key2 hash to the same bucket, no need to
-                        * requeue.
-                        */
-                       if (likely(head1 != &hb2->chain)) {
-                               plist_del(&this->list, &hb1->chain);
-                               plist_add(&this->list, &hb2->chain);
-                               this->lock_ptr = &hb2->lock;
-#ifdef CONFIG_DEBUG_PI_LIST
-                               this->list.plist.lock = &hb2->lock;
-#endif
-                       }
-                       this->key = key2;
-                       get_futex_key_refs(&key2);
-                       drop_count++;
+                       continue;
+               }
 
-                       if (ret - nr_wake >= nr_requeue)
-                               break;
+               /* Ensure we requeue to the expected futex for requeue_pi. */
+               if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
+                       ret = -EINVAL;
+                       break;
+               }
+
+               /*
+                * Requeue nr_requeue waiters and possibly one more in the case
+                * of requeue_pi if we couldn't acquire the lock atomically.
+                */
+               if (requeue_pi) {
+                       /* Prepare the waiter to take the rt_mutex. */
+                       atomic_inc(&pi_state->refcount);
+                       this->pi_state = pi_state;
+                       ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
+                                                       this->rt_waiter,
+                                                       this->task, 1);
+                       if (ret == 1) {
+                               /* We got the lock. */
+                               requeue_pi_wake_futex(this, &key2, hb2);
+                               drop_count++;
+                               continue;
+                       } else if (ret) {
+                               /* -EDEADLK */
+                               this->pi_state = NULL;
+                               free_pi_state(pi_state);
+                               goto out_unlock;
+                       }
                }
+               requeue_futex(this, hb1, hb2, &key2);
+               drop_count++;
        }
 
 out_unlock:
-       spin_unlock(&hb1->lock);
-       if (hb1 != hb2)
-               spin_unlock(&hb2->lock);
+       double_unlock_hb(hb1, hb2);
 
-       /* drop_futex_key_refs() must be called outside the spinlocks. */
+       /*
+        * drop_futex_key_refs() must be called outside the spinlocks. During
+        * the requeue we moved futex_q's from the hash bucket at key1 to the
+        * one at key2 and updated their key pointer.  We no longer need to
+        * hold the references to key1.
+        */
        while (--drop_count >= 0)
                drop_futex_key_refs(&key1);
 
+out_put_keys:
+       put_futex_key(&key2);
+out_put_key1:
+       put_futex_key(&key1);
 out:
-       put_futex_key(fshared, &key2);
-       put_futex_key(fshared, &key1);
-       return ret;
+       if (pi_state != NULL)
+               free_pi_state(pi_state);
+       return ret ? ret : task_count;
 }
 
 /* The key must be already stored in q->key. */
 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
+       __acquires(&hb->lock)
 {
        struct futex_hash_bucket *hb;
 
-       init_waitqueue_head(&q->waiter);
-
-       get_futex_key_refs(&q->key);
        hb = hash_futex(&q->key);
        q->lock_ptr = &hb->lock;
 
@@ -941,7 +1422,27 @@ static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
        return hb;
 }
 
+static inline void
+queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
+       __releases(&hb->lock)
+{
+       spin_unlock(&hb->lock);
+}
+
+/**
+ * queue_me() - Enqueue the futex_q on the futex_hash_bucket
+ * @q: The futex_q to enqueue
+ * @hb:        The destination hash bucket
+ *
+ * The hb->lock must be held by the caller, and is released here. A call to
+ * queue_me() is typically paired with exactly one call to unqueue_me().  The
+ * exceptions involve the PI related operations, which may use unqueue_me_pi()
+ * or nothing if the unqueue is done as part of the wake process and the unqueue
+ * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
+ * an example).
+ */
 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
+       __releases(&hb->lock)
 {
        int prio;
 
@@ -957,33 +1458,31 @@ static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
 
        plist_node_init(&q->list, prio);
 #ifdef CONFIG_DEBUG_PI_LIST
-       q->list.plist.lock = &hb->lock;
+       q->list.plist.spinlock = &hb->lock;
 #endif
        plist_add(&q->list, &hb->chain);
        q->task = current;
        spin_unlock(&hb->lock);
 }
 
-static inline void
-queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
-{
-       spin_unlock(&hb->lock);
-       drop_futex_key_refs(&q->key);
-}
-
-/*
- * queue_me and unqueue_me must be called as a pair, each
- * exactly once.  They are called with the hashed spinlock held.
+/**
+ * unqueue_me() - Remove the futex_q from its futex_hash_bucket
+ * @q: The futex_q to unqueue
+ *
+ * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
+ * be paired with exactly one earlier call to queue_me().
+ *
+ * Returns:
+ *   1 - if the futex_q was still queued (and we removed unqueued it)
+ *   0 - if the futex_q was already removed by the waking thread
  */
-
-/* Return 1 if we were still queued (ie. 0 means we were woken) */
 static int unqueue_me(struct futex_q *q)
 {
        spinlock_t *lock_ptr;
        int ret = 0;
 
        /* In the common case we don't take the spinlock, which is nice. */
- retry:
+retry:
        lock_ptr = q->lock_ptr;
        barrier();
        if (lock_ptr != NULL) {
@@ -1024,6 +1523,7 @@ static int unqueue_me(struct futex_q *q)
  * and dropped here.
  */
 static void unqueue_me_pi(struct futex_q *q)
+       __releases(q->lock_ptr)
 {
        WARN_ON(plist_node_empty(&q->list));
        plist_del(&q->list, &q->list.plist);
@@ -1033,8 +1533,6 @@ static void unqueue_me_pi(struct futex_q *q)
        q->pi_state = NULL;
 
        spin_unlock(q->lock_ptr);
-
-       drop_futex_key_refs(&q->key);
 }
 
 /*
@@ -1044,13 +1542,13 @@ static void unqueue_me_pi(struct futex_q *q)
  * private futexes.
  */
 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
-                               struct task_struct *newowner, int fshared)
+                               struct task_struct *newowner)
 {
        u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
        struct futex_pi_state *pi_state = q->pi_state;
        struct task_struct *oldowner = pi_state->owner;
        u32 uval, curval, newval;
-       int ret, attempt = 0;
+       int ret;
 
        /* Owner died? */
        if (!pi_state->owner)
@@ -1063,11 +1561,9 @@ static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
         * in the user space variable. This must be atomic as we have
         * to preserve the owner died bit here.
         *
-        * Note: We write the user space value _before_ changing the
-        * pi_state because we can fault here. Imagine swapped out
-        * pages or a fork, which was running right before we acquired
-        * mmap_sem, that marked all the anonymous memory readonly for
-        * cow.
+        * Note: We write the user space value _before_ changing the pi_state
+        * because we can fault here. Imagine swapped out pages or a fork
+        * that marked all the anonymous memory readonly for cow.
         *
         * Modifying pi_state _before_ the user space value would
         * leave the pi_state in an inconsistent state when we fault
@@ -1096,18 +1592,18 @@ retry:
         * itself.
         */
        if (pi_state->owner != NULL) {
-               spin_lock_irq(&pi_state->owner->pi_lock);
+               raw_spin_lock_irq(&pi_state->owner->pi_lock);
                WARN_ON(list_empty(&pi_state->list));
                list_del_init(&pi_state->list);
-               spin_unlock_irq(&pi_state->owner->pi_lock);
+               raw_spin_unlock_irq(&pi_state->owner->pi_lock);
        }
 
        pi_state->owner = newowner;
 
-       spin_lock_irq(&newowner->pi_lock);
+       raw_spin_lock_irq(&newowner->pi_lock);
        WARN_ON(!list_empty(&pi_state->list));
        list_add(&pi_state->list, &newowner->pi_state_list);
-       spin_unlock_irq(&newowner->pi_lock);
+       raw_spin_unlock_irq(&newowner->pi_lock);
        return 0;
 
        /*
@@ -1123,7 +1619,7 @@ retry:
 handle_fault:
        spin_unlock(q->lock_ptr);
 
-       ret = futex_handle_fault((unsigned long)uaddr, attempt++);
+       ret = fault_in_user_writeable(uaddr);
 
        spin_lock(q->lock_ptr);
 
@@ -1139,42 +1635,145 @@ handle_fault:
        goto retry;
 }
 
-/*
- * In case we must use restart_block to restart a futex_wait,
- * we encode in the 'flags' shared capability
- */
-#define FLAGS_SHARED           0x01
-#define FLAGS_CLOCKRT          0x02
-
 static long futex_wait_restart(struct restart_block *restart);
 
-static int futex_wait(u32 __user *uaddr, int fshared,
-                     u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
+/**
+ * fixup_owner() - Post lock pi_state and corner case management
+ * @uaddr:     user address of the futex
+ * @q:         futex_q (contains pi_state and access to the rt_mutex)
+ * @locked:    if the attempt to take the rt_mutex succeeded (1) or not (0)
+ *
+ * After attempting to lock an rt_mutex, this function is called to cleanup
+ * the pi_state owner as well as handle race conditions that may allow us to
+ * acquire the lock. Must be called with the hb lock held.
+ *
+ * Returns:
+ *  1 - success, lock taken
+ *  0 - success, lock not taken
+ * <0 - on error (-EFAULT)
+ */
+static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
 {
-       struct task_struct *curr = current;
-       DECLARE_WAITQUEUE(wait, curr);
-       struct futex_hash_bucket *hb;
-       struct futex_q q;
-       u32 uval;
-       int ret;
-       struct hrtimer_sleeper t;
-       int rem = 0;
+       struct task_struct *owner;
+       int ret = 0;
 
-       if (!bitset)
-               return -EINVAL;
+       if (locked) {
+               /*
+                * Got the lock. We might not be the anticipated owner if we
+                * did a lock-steal - fix up the PI-state in that case:
+                */
+               if (q->pi_state->owner != current)
+                       ret = fixup_pi_state_owner(uaddr, q, current);
+               goto out;
+       }
 
-       q.pi_state = NULL;
-       q.bitset = bitset;
- retry:
-       q.key = FUTEX_KEY_INIT;
-       ret = get_futex_key(uaddr, fshared, &q.key);
-       if (unlikely(ret != 0))
-               goto out_release_sem;
+       /*
+        * Catch the rare case, where the lock was released when we were on the
+        * way back before we locked the hash bucket.
+        */
+       if (q->pi_state->owner == current) {
+               /*
+                * Try to get the rt_mutex now. This might fail as some other
+                * task acquired the rt_mutex after we removed ourself from the
+                * rt_mutex waiters list.
+                */
+               if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
+                       locked = 1;
+                       goto out;
+               }
 
-       hb = queue_lock(&q);
+               /*
+                * pi_state is incorrect, some other task did a lock steal and
+                * we returned due to timeout or signal without taking the
+                * rt_mutex. Too late. We can access the rt_mutex_owner without
+                * locking, as the other task is now blocked on the hash bucket
+                * lock. Fix the state up.
+                */
+               owner = rt_mutex_owner(&q->pi_state->pi_mutex);
+               ret = fixup_pi_state_owner(uaddr, q, owner);
+               goto out;
+       }
 
        /*
-        * Access the page AFTER the futex is queued.
+        * Paranoia check. If we did not take the lock, then we should not be
+        * the owner, nor the pending owner, of the rt_mutex.
+        */
+       if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
+               printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
+                               "pi-state %p\n", ret,
+                               q->pi_state->pi_mutex.owner,
+                               q->pi_state->owner);
+
+out:
+       return ret ? ret : locked;
+}
+
+/**
+ * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
+ * @hb:                the futex hash bucket, must be locked by the caller
+ * @q:         the futex_q to queue up on
+ * @timeout:   the prepared hrtimer_sleeper, or null for no timeout
+ */
+static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
+                               struct hrtimer_sleeper *timeout)
+{
+       /*
+        * The task state is guaranteed to be set before another task can
+        * wake it. set_current_state() is implemented using set_mb() and
+        * queue_me() calls spin_unlock() upon completion, both serializing
+        * access to the hash list and forcing another memory barrier.
+        */
+       set_current_state(TASK_INTERRUPTIBLE);
+       queue_me(q, hb);
+
+       /* Arm the timer */
+       if (timeout) {
+               hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
+               if (!hrtimer_active(&timeout->timer))
+                       timeout->task = NULL;
+       }
+
+       /*
+        * If we have been removed from the hash list, then another task
+        * has tried to wake us, and we can skip the call to schedule().
+        */
+       if (likely(!plist_node_empty(&q->list))) {
+               /*
+                * If the timer has already expired, current will already be
+                * flagged for rescheduling. Only call schedule if there
+                * is no timeout, or if it has yet to expire.
+                */
+               if (!timeout || timeout->task)
+                       schedule();
+       }
+       __set_current_state(TASK_RUNNING);
+}
+
+/**
+ * futex_wait_setup() - Prepare to wait on a futex
+ * @uaddr:     the futex userspace address
+ * @val:       the expected value
+ * @flags:     futex flags (FLAGS_SHARED, etc.)
+ * @q:         the associated futex_q
+ * @hb:                storage for hash_bucket pointer to be returned to caller
+ *
+ * Setup the futex_q and locate the hash_bucket.  Get the futex value and
+ * compare it with the expected value.  Handle atomic faults internally.
+ * Return with the hb lock held and a q.key reference on success, and unlocked
+ * with no q.key reference on failure.
+ *
+ * Returns:
+ *  0 - uaddr contains val and hb has been locked
+ * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
+ */
+static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
+                          struct futex_q *q, struct futex_hash_bucket **hb)
+{
+       u32 uval;
+       int ret;
+
+       /*
+        * Access the page AFTER the hash-bucket is locked.
         * Order is important:
         *
         *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
@@ -1189,137 +1788,130 @@ static int futex_wait(u32 __user *uaddr, int fshared,
         * A consequence is that futex_wait() can return zero and absorb
         * a wakeup when *uaddr != val on entry to the syscall.  This is
         * rare, but normal.
-        *
-        * for shared futexes, we hold the mmap semaphore, so the mapping
-        * cannot have changed since we looked it up in get_futex_key.
         */
+retry:
+       ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key);
+       if (unlikely(ret != 0))
+               return ret;
+
+retry_private:
+       *hb = queue_lock(q);
+
        ret = get_futex_value_locked(&uval, uaddr);
 
-       if (unlikely(ret)) {
-               queue_unlock(&q, hb);
+       if (ret) {
+               queue_unlock(q, *hb);
 
                ret = get_user(uval, uaddr);
+               if (ret)
+                       goto out;
 
-               if (!ret)
-                       goto retry;
-               return ret;
-       }
-       ret = -EWOULDBLOCK;
-       if (uval != val)
-               goto out_unlock_release_sem;
+               if (!(flags & FLAGS_SHARED))
+                       goto retry_private;
 
-       /* Only actually queue if *uaddr contained val.  */
-       queue_me(&q, hb);
+               put_futex_key(&q->key);
+               goto retry;
+       }
 
-       /*
-        * There might have been scheduling since the queue_me(), as we
-        * cannot hold a spinlock across the get_user() in case it
-        * faults, and we cannot just set TASK_INTERRUPTIBLE state when
-        * queueing ourselves into the futex hash.  This code thus has to
-        * rely on the futex_wake() code removing us from hash when it
-        * wakes us up.
-        */
+       if (uval != val) {
+               queue_unlock(q, *hb);
+               ret = -EWOULDBLOCK;
+       }
 
-       /* add_wait_queue is the barrier after __set_current_state. */
-       __set_current_state(TASK_INTERRUPTIBLE);
-       add_wait_queue(&q.waiter, &wait);
-       /*
-        * !plist_node_empty() is safe here without any lock.
-        * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
-        */
-       if (likely(!plist_node_empty(&q.list))) {
-               if (!abs_time)
-                       schedule();
-               else {
-                       unsigned long slack;
-                       slack = current->timer_slack_ns;
-                       if (rt_task(current))
-                               slack = 0;
-                       hrtimer_init_on_stack(&t.timer,
-                                             clockrt ? CLOCK_REALTIME :
-                                             CLOCK_MONOTONIC,
-                                             HRTIMER_MODE_ABS);
-                       hrtimer_init_sleeper(&t, current);
-                       hrtimer_set_expires_range_ns(&t.timer, *abs_time, slack);
-
-                       hrtimer_start_expires(&t.timer, HRTIMER_MODE_ABS);
-                       if (!hrtimer_active(&t.timer))
-                               t.task = NULL;
+out:
+       if (ret)
+               put_futex_key(&q->key);
+       return ret;
+}
 
-                       /*
-                        * the timer could have already expired, in which
-                        * case current would be flagged for rescheduling.
-                        * Don't bother calling schedule.
-                        */
-                       if (likely(t.task))
-                               schedule();
+static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
+                     ktime_t *abs_time, u32 bitset)
+{
+       struct hrtimer_sleeper timeout, *to = NULL;
+       struct restart_block *restart;
+       struct futex_hash_bucket *hb;
+       struct futex_q q = futex_q_init;
+       int ret;
 
-                       hrtimer_cancel(&t.timer);
+       if (!bitset)
+               return -EINVAL;
+       q.bitset = bitset;
 
-                       /* Flag if a timeout occured */
-                       rem = (t.task == NULL);
+       if (abs_time) {
+               to = &timeout;
 
-                       destroy_hrtimer_on_stack(&t.timer);
-               }
+               hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
+                                     CLOCK_REALTIME : CLOCK_MONOTONIC,
+                                     HRTIMER_MODE_ABS);
+               hrtimer_init_sleeper(to, current);
+               hrtimer_set_expires_range_ns(&to->timer, *abs_time,
+                                            current->timer_slack_ns);
        }
-       __set_current_state(TASK_RUNNING);
 
+retry:
        /*
-        * NOTE: we don't remove ourselves from the waitqueue because
-        * we are the only user of it.
+        * Prepare to wait on uaddr. On success, holds hb lock and increments
+        * q.key refs.
         */
+       ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
+       if (ret)
+               goto out;
+
+       /* queue_me and wait for wakeup, timeout, or a signal. */
+       futex_wait_queue_me(hb, &q, to);
 
        /* If we were woken (and unqueued), we succeeded, whatever. */
+       ret = 0;
+       /* unqueue_me() drops q.key ref */
        if (!unqueue_me(&q))
-               return 0;
-       if (rem)
-               return -ETIMEDOUT;
+               goto out;
+       ret = -ETIMEDOUT;
+       if (to && !to->task)
+               goto out;
 
        /*
-        * We expect signal_pending(current), but another thread may
-        * have handled it for us already.
+        * We expect signal_pending(current), but we might be the
+        * victim of a spurious wakeup as well.
         */
+       if (!signal_pending(current))
+               goto retry;
+
+       ret = -ERESTARTSYS;
        if (!abs_time)
-               return -ERESTARTSYS;
-       else {
-               struct restart_block *restart;
-               restart = &current_thread_info()->restart_block;
-               restart->fn = futex_wait_restart;
-               restart->futex.uaddr = (u32 *)uaddr;
-               restart->futex.val = val;
-               restart->futex.time = abs_time->tv64;
-               restart->futex.bitset = bitset;
-               restart->futex.flags = 0;
-
-               if (fshared)
-                       restart->futex.flags |= FLAGS_SHARED;
-               if (clockrt)
-                       restart->futex.flags |= FLAGS_CLOCKRT;
-               return -ERESTART_RESTARTBLOCK;
-       }
+               goto out;
 
- out_unlock_release_sem:
-       queue_unlock(&q, hb);
+       restart = &current_thread_info()->restart_block;
+       restart->fn = futex_wait_restart;
+       restart->futex.uaddr = uaddr;
+       restart->futex.val = val;
+       restart->futex.time = abs_time->tv64;
+       restart->futex.bitset = bitset;
+       restart->futex.flags = flags;
 
- out_release_sem:
-       put_futex_key(fshared, &q.key);
+       ret = -ERESTART_RESTARTBLOCK;
+
+out:
+       if (to) {
+               hrtimer_cancel(&to->timer);
+               destroy_hrtimer_on_stack(&to->timer);
+       }
        return ret;
 }
 
 
 static long futex_wait_restart(struct restart_block *restart)
 {
-       u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
-       int fshared = 0;
-       ktime_t t;
+       u32 __user *uaddr = restart->futex.uaddr;
+       ktime_t t, *tp = NULL;
 
-       t.tv64 = restart->futex.time;
+       if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
+               t.tv64 = restart->futex.time;
+               tp = &t;
+       }
        restart->fn = do_no_restart_syscall;
-       if (restart->futex.flags & FLAGS_SHARED)
-               fshared = 1;
-       return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
-                               restart->futex.bitset,
-                               restart->futex.flags & FLAGS_CLOCKRT);
+
+       return (long)futex_wait(uaddr, restart->futex.flags,
+                               restart->futex.val, tp, restart->futex.bitset);
 }
 
 
@@ -1329,15 +1921,13 @@ static long futex_wait_restart(struct restart_block *restart)
  * if there are waiters then it will block, it does PI, etc. (Due to
  * races the kernel might see a 0 value of the futex too.)
  */
-static int futex_lock_pi(u32 __user *uaddr, int fshared,
-                        int detect, ktime_t *time, int trylock)
+static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
+                        ktime_t *time, int trylock)
 {
        struct hrtimer_sleeper timeout, *to = NULL;
-       struct task_struct *curr = current;
        struct futex_hash_bucket *hb;
-       u32 uval, newval, curval;
-       struct futex_q q;
-       int ret, lock_taken, ownerdied = 0, attempt = 0;
+       struct futex_q q = futex_q_init;
+       int res, ret;
 
        if (refill_pi_state_cache())
                return -ENOMEM;
@@ -1350,120 +1940,34 @@ static int futex_lock_pi(u32 __user *uaddr, int fshared,
                hrtimer_set_expires(&to->timer, *time);
        }
 
-       q.pi_state = NULL;
- retry:
-       q.key = FUTEX_KEY_INIT;
-       ret = get_futex_key(uaddr, fshared, &q.key);
+retry:
+       ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key);
        if (unlikely(ret != 0))
-               goto out_release_sem;
+               goto out;
 
- retry_unlocked:
+retry_private:
        hb = queue_lock(&q);
 
- retry_locked:
-       ret = lock_taken = 0;
-
-       /*
-        * To avoid races, we attempt to take the lock here again
-        * (by doing a 0 -> TID atomic cmpxchg), while holding all
-        * the locks. It will most likely not succeed.
-        */
-       newval = task_pid_vnr(current);
-
-       curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
-
-       if (unlikely(curval == -EFAULT))
-               goto uaddr_faulted;
-
-       /*
-        * Detect deadlocks. In case of REQUEUE_PI this is a valid
-        * situation and we return success to user space.
-        */
-       if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
-               ret = -EDEADLK;
-               goto out_unlock_release_sem;
-       }
-
-       /*
-        * Surprise - we got the lock. Just return to userspace:
-        */
-       if (unlikely(!curval))
-               goto out_unlock_release_sem;
-
-       uval = curval;
-
-       /*
-        * Set the WAITERS flag, so the owner will know it has someone
-        * to wake at next unlock
-        */
-       newval = curval | FUTEX_WAITERS;
-
-       /*
-        * There are two cases, where a futex might have no owner (the
-        * owner TID is 0): OWNER_DIED. We take over the futex in this
-        * case. We also do an unconditional take over, when the owner
-        * of the futex died.
-        *
-        * This is safe as we are protected by the hash bucket lock !
-        */
-       if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
-               /* Keep the OWNER_DIED bit */
-               newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
-               ownerdied = 0;
-               lock_taken = 1;
-       }
-
-       curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
-
-       if (unlikely(curval == -EFAULT))
-               goto uaddr_faulted;
-       if (unlikely(curval != uval))
-               goto retry_locked;
-
-       /*
-        * We took the lock due to owner died take over.
-        */
-       if (unlikely(lock_taken))
-               goto out_unlock_release_sem;
-
-       /*
-        * We dont have the lock. Look up the PI state (or create it if
-        * we are the first waiter):
-        */
-       ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
-
+       ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
        if (unlikely(ret)) {
                switch (ret) {
-
+               case 1:
+                       /* We got the lock. */
+                       ret = 0;
+                       goto out_unlock_put_key;
+               case -EFAULT:
+                       goto uaddr_faulted;
                case -EAGAIN:
                        /*
                         * Task is exiting and we just wait for the
                         * exit to complete.
                         */
                        queue_unlock(&q, hb);
+                       put_futex_key(&q.key);
                        cond_resched();
                        goto retry;
-
-               case -ESRCH:
-                       /*
-                        * No owner found for this futex. Check if the
-                        * OWNER_DIED bit is set to figure out whether
-                        * this is a robust futex or not.
-                        */
-                       if (get_futex_value_locked(&curval, uaddr))
-                               goto uaddr_faulted;
-
-                       /*
-                        * We simply start over in case of a robust
-                        * futex. The code above will take the futex
-                        * and return happy.
-                        */
-                       if (curval & FUTEX_OWNER_DIED) {
-                               ownerdied = 1;
-                               goto retry_locked;
-                       }
                default:
-                       goto out_unlock_release_sem;
+                       goto out_unlock_put_key;
                }
        }
 
@@ -1485,109 +1989,52 @@ static int futex_lock_pi(u32 __user *uaddr, int fshared,
        }
 
        spin_lock(q.lock_ptr);
+       /*
+        * Fixup the pi_state owner and possibly acquire the lock if we
+        * haven't already.
+        */
+       res = fixup_owner(uaddr, &q, !ret);
+       /*
+        * If fixup_owner() returned an error, proprogate that.  If it acquired
+        * the lock, clear our -ETIMEDOUT or -EINTR.
+        */
+       if (res)
+               ret = (res < 0) ? res : 0;
 
-       if (!ret) {
-               /*
-                * Got the lock. We might not be the anticipated owner
-                * if we did a lock-steal - fix up the PI-state in
-                * that case:
-                */
-               if (q.pi_state->owner != curr)
-                       ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
-       } else {
-               /*
-                * Catch the rare case, where the lock was released
-                * when we were on the way back before we locked the
-                * hash bucket.
-                */
-               if (q.pi_state->owner == curr) {
-                       /*
-                        * Try to get the rt_mutex now. This might
-                        * fail as some other task acquired the
-                        * rt_mutex after we removed ourself from the
-                        * rt_mutex waiters list.
-                        */
-                       if (rt_mutex_trylock(&q.pi_state->pi_mutex))
-                               ret = 0;
-                       else {
-                               /*
-                                * pi_state is incorrect, some other
-                                * task did a lock steal and we
-                                * returned due to timeout or signal
-                                * without taking the rt_mutex. Too
-                                * late. We can access the
-                                * rt_mutex_owner without locking, as
-                                * the other task is now blocked on
-                                * the hash bucket lock. Fix the state
-                                * up.
-                                */
-                               struct task_struct *owner;
-                               int res;
-
-                               owner = rt_mutex_owner(&q.pi_state->pi_mutex);
-                               res = fixup_pi_state_owner(uaddr, &q, owner,
-                                                          fshared);
-
-                               /* propagate -EFAULT, if the fixup failed */
-                               if (res)
-                                       ret = res;
-                       }
-               } else {
-                       /*
-                        * Paranoia check. If we did not take the lock
-                        * in the trylock above, then we should not be
-                        * the owner of the rtmutex, neither the real
-                        * nor the pending one:
-                        */
-                       if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
-                               printk(KERN_ERR "futex_lock_pi: ret = %d "
-                                      "pi-mutex: %p pi-state %p\n", ret,
-                                      q.pi_state->pi_mutex.owner,
-                                      q.pi_state->owner);
-               }
-       }
+       /*
+        * If fixup_owner() faulted and was unable to handle the fault, unlock
+        * it and return the fault to userspace.
+        */
+       if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
+               rt_mutex_unlock(&q.pi_state->pi_mutex);
 
        /* Unqueue and drop the lock */
        unqueue_me_pi(&q);
 
-       if (to)
-               destroy_hrtimer_on_stack(&to->timer);
-       return ret != -EINTR ? ret : -ERESTARTNOINTR;
+       goto out_put_key;
 
- out_unlock_release_sem:
+out_unlock_put_key:
        queue_unlock(&q, hb);
 
- out_release_sem:
-       put_futex_key(fshared, &q.key);
+out_put_key:
+       put_futex_key(&q.key);
+out:
        if (to)
                destroy_hrtimer_on_stack(&to->timer);
-       return ret;
+       return ret != -EINTR ? ret : -ERESTARTNOINTR;
 
- uaddr_faulted:
-       /*
-        * We have to r/w  *(int __user *)uaddr, but we can't modify it
-        * non-atomically.  Therefore, if get_user below is not
-        * enough, we need to handle the fault ourselves, while
-        * still holding the mmap_sem.
-        *
-        * ... and hb->lock. :-) --ANK
-        */
+uaddr_faulted:
        queue_unlock(&q, hb);
 
-       if (attempt++) {
-               ret = futex_handle_fault((unsigned long)uaddr, attempt);
-               if (ret)
-                       goto out_release_sem;
-               goto retry_unlocked;
-       }
+       ret = fault_in_user_writeable(uaddr);
+       if (ret)
+               goto out_put_key;
 
-       ret = get_user(uval, uaddr);
-       if (!ret && (uval != -EFAULT))
-               goto retry;
+       if (!(flags & FLAGS_SHARED))
+               goto retry_private;
 
-       if (to)
-               destroy_hrtimer_on_stack(&to->timer);
-       return ret;
+       put_futex_key(&q.key);
+       goto retry;
 }
 
 /*
@@ -1595,14 +2042,14 @@ static int futex_lock_pi(u32 __user *uaddr, int fshared,
  * This is the in-kernel slowpath: we look up the PI state (if any),
  * and do the rt-mutex unlock.
  */
-static int futex_unlock_pi(u32 __user *uaddr, int fshared)
+static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
 {
        struct futex_hash_bucket *hb;
        struct futex_q *this, *next;
        u32 uval;
        struct plist_head *head;
        union futex_key key = FUTEX_KEY_INIT;
-       int ret, attempt = 0;
+       int ret;
 
 retry:
        if (get_user(uval, uaddr))
@@ -1613,12 +2060,11 @@ retry:
        if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
                return -EPERM;
 
-       ret = get_futex_key(uaddr, fshared, &key);
+       ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
        if (unlikely(ret != 0))
                goto out;
 
        hb = hash_futex(&key);
-retry_unlocked:
        spin_lock(&hb->lock);
 
        /*
@@ -1669,34 +2115,244 @@ retry_unlocked:
 
 out_unlock:
        spin_unlock(&hb->lock);
-out:
-       put_futex_key(fshared, &key);
+       put_futex_key(&key);
 
+out:
        return ret;
 
 pi_faulted:
+       spin_unlock(&hb->lock);
+       put_futex_key(&key);
+
+       ret = fault_in_user_writeable(uaddr);
+       if (!ret)
+               goto retry;
+
+       return ret;
+}
+
+/**
+ * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
+ * @hb:                the hash_bucket futex_q was original enqueued on
+ * @q:         the futex_q woken while waiting to be requeued
+ * @key2:      the futex_key of the requeue target futex
+ * @timeout:   the timeout associated with the wait (NULL if none)
+ *
+ * Detect if the task was woken on the initial futex as opposed to the requeue
+ * target futex.  If so, determine if it was a timeout or a signal that caused
+ * the wakeup and return the appropriate error code to the caller.  Must be
+ * called with the hb lock held.
+ *
+ * Returns
+ *  0 - no early wakeup detected
+ * <0 - -ETIMEDOUT or -ERESTARTNOINTR
+ */
+static inline
+int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
+                                  struct futex_q *q, union futex_key *key2,
+                                  struct hrtimer_sleeper *timeout)
+{
+       int ret = 0;
+
        /*
-        * We have to r/w  *(int __user *)uaddr, but we can't modify it
-        * non-atomically.  Therefore, if get_user below is not
-        * enough, we need to handle the fault ourselves, while
-        * still holding the mmap_sem.
-        *
-        * ... and hb->lock. --ANK
+        * With the hb lock held, we avoid races while we process the wakeup.
+        * We only need to hold hb (and not hb2) to ensure atomicity as the
+        * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
+        * It can't be requeued from uaddr2 to something else since we don't
+        * support a PI aware source futex for requeue.
         */
+       if (!match_futex(&q->key, key2)) {
+               WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
+               /*
+                * We were woken prior to requeue by a timeout or a signal.
+                * Unqueue the futex_q and determine which it was.
+                */
+               plist_del(&q->list, &q->list.plist);
+
+               /* Handle spurious wakeups gracefully */
+               ret = -EWOULDBLOCK;
+               if (timeout && !timeout->task)
+                       ret = -ETIMEDOUT;
+               else if (signal_pending(current))
+                       ret = -ERESTARTNOINTR;
+       }
+       return ret;
+}
+
+/**
+ * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
+ * @uaddr:     the futex we initially wait on (non-pi)
+ * @flags:     futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
+ *             the same type, no requeueing from private to shared, etc.
+ * @val:       the expected value of uaddr
+ * @abs_time:  absolute timeout
+ * @bitset:    32 bit wakeup bitset set by userspace, defaults to all
+ * @clockrt:   whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
+ * @uaddr2:    the pi futex we will take prior to returning to user-space
+ *
+ * The caller will wait on uaddr and will be requeued by futex_requeue() to
+ * uaddr2 which must be PI aware.  Normal wakeup will wake on uaddr2 and
+ * complete the acquisition of the rt_mutex prior to returning to userspace.
+ * This ensures the rt_mutex maintains an owner when it has waiters; without
+ * one, the pi logic wouldn't know which task to boost/deboost, if there was a
+ * need to.
+ *
+ * We call schedule in futex_wait_queue_me() when we enqueue and return there
+ * via the following:
+ * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
+ * 2) wakeup on uaddr2 after a requeue
+ * 3) signal
+ * 4) timeout
+ *
+ * If 3, cleanup and return -ERESTARTNOINTR.
+ *
+ * If 2, we may then block on trying to take the rt_mutex and return via:
+ * 5) successful lock
+ * 6) signal
+ * 7) timeout
+ * 8) other lock acquisition failure
+ *
+ * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
+ *
+ * If 4 or 7, we cleanup and return with -ETIMEDOUT.
+ *
+ * Returns:
+ *  0 - On success
+ * <0 - On error
+ */
+static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
+                                u32 val, ktime_t *abs_time, u32 bitset,
+                                u32 __user *uaddr2)
+{
+       struct hrtimer_sleeper timeout, *to = NULL;
+       struct rt_mutex_waiter rt_waiter;
+       struct rt_mutex *pi_mutex = NULL;
+       struct futex_hash_bucket *hb;
+       union futex_key key2 = FUTEX_KEY_INIT;
+       struct futex_q q = futex_q_init;
+       int res, ret;
+
+       if (!bitset)
+               return -EINVAL;
+
+       if (abs_time) {
+               to = &timeout;
+               hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
+                                     CLOCK_REALTIME : CLOCK_MONOTONIC,
+                                     HRTIMER_MODE_ABS);
+               hrtimer_init_sleeper(to, current);
+               hrtimer_set_expires_range_ns(&to->timer, *abs_time,
+                                            current->timer_slack_ns);
+       }
+
+       /*
+        * The waiter is allocated on our stack, manipulated by the requeue
+        * code while we sleep on uaddr.
+        */
+       debug_rt_mutex_init_waiter(&rt_waiter);
+       rt_waiter.task = NULL;
+
+       ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
+       if (unlikely(ret != 0))
+               goto out;
+
+       q.bitset = bitset;
+       q.rt_waiter = &rt_waiter;
+       q.requeue_pi_key = &key2;
+
+       /*
+        * Prepare to wait on uaddr. On success, increments q.key (key1) ref
+        * count.
+        */
+       ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
+       if (ret)
+               goto out_key2;
+
+       /* Queue the futex_q, drop the hb lock, wait for wakeup. */
+       futex_wait_queue_me(hb, &q, to);
+
+       spin_lock(&hb->lock);
+       ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
        spin_unlock(&hb->lock);
+       if (ret)
+               goto out_put_keys;
 
-       if (attempt++) {
-               ret = futex_handle_fault((unsigned long)uaddr, attempt);
-               if (ret)
-                       goto out;
-               uval = 0;
-               goto retry_unlocked;
+       /*
+        * In order for us to be here, we know our q.key == key2, and since
+        * we took the hb->lock above, we also know that futex_requeue() has
+        * completed and we no longer have to concern ourselves with a wakeup
+        * race with the atomic proxy lock acquisition by the requeue code. The
+        * futex_requeue dropped our key1 reference and incremented our key2
+        * reference count.
+        */
+
+       /* Check if the requeue code acquired the second futex for us. */
+       if (!q.rt_waiter) {
+               /*
+                * Got the lock. We might not be the anticipated owner if we
+                * did a lock-steal - fix up the PI-state in that case.
+                */
+               if (q.pi_state && (q.pi_state->owner != current)) {
+                       spin_lock(q.lock_ptr);
+                       ret = fixup_pi_state_owner(uaddr2, &q, current);
+                       spin_unlock(q.lock_ptr);
+               }
+       } else {
+               /*
+                * We have been woken up by futex_unlock_pi(), a timeout, or a
+                * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
+                * the pi_state.
+                */
+               WARN_ON(!&q.pi_state);
+               pi_mutex = &q.pi_state->pi_mutex;
+               ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
+               debug_rt_mutex_free_waiter(&rt_waiter);
+
+               spin_lock(q.lock_ptr);
+               /*
+                * Fixup the pi_state owner and possibly acquire the lock if we
+                * haven't already.
+                */
+               res = fixup_owner(uaddr2, &q, !ret);
+               /*
+                * If fixup_owner() returned an error, proprogate that.  If it
+                * acquired the lock, clear -ETIMEDOUT or -EINTR.
+                */
+               if (res)
+                       ret = (res < 0) ? res : 0;
+
+               /* Unqueue and drop the lock. */
+               unqueue_me_pi(&q);
        }
 
-       ret = get_user(uval, uaddr);
-       if (!ret && (uval != -EFAULT))
-               goto retry;
+       /*
+        * If fixup_pi_state_owner() faulted and was unable to handle the
+        * fault, unlock the rt_mutex and return the fault to userspace.
+        */
+       if (ret == -EFAULT) {
+               if (rt_mutex_owner(pi_mutex) == current)
+                       rt_mutex_unlock(pi_mutex);
+       } else if (ret == -EINTR) {
+               /*
+                * We've already been requeued, but cannot restart by calling
+                * futex_lock_pi() directly. We could restart this syscall, but
+                * it would detect that the user space "val" changed and return
+                * -EWOULDBLOCK.  Save the overhead of the restart and return
+                * -EWOULDBLOCK directly.
+                */
+               ret = -EWOULDBLOCK;
+       }
 
+out_put_keys:
+       put_futex_key(&q.key);
+out_key2:
+       put_futex_key(&key2);
+
+out:
+       if (to) {
+               hrtimer_cancel(&to->timer);
+               destroy_hrtimer_on_stack(&to->timer);
+       }
        return ret;
 }
 
@@ -1716,13 +2372,12 @@ pi_faulted:
  */
 
 /**
- * sys_set_robust_list - set the robust-futex list head of a task
- * @head: pointer to the list-head
- * @len: length of the list-head, as userspace expects
+ * sys_set_robust_list() - Set the robust-futex list head of a task
+ * @head:      pointer to the list-head
+ * @len:       length of the list-head, as userspace expects
  */
-asmlinkage long
-sys_set_robust_list(struct robust_list_head __user *head,
-                   size_t len)
+SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
+               size_t, len)
 {
        if (!futex_cmpxchg_enabled)
                return -ENOSYS;
@@ -1738,17 +2393,18 @@ sys_set_robust_list(struct robust_list_head __user *head,
 }
 
 /**
- * sys_get_robust_list - get the robust-futex list head of a task
- * @pid: pid of the process [zero for current task]
- * @head_ptr: pointer to a list-head pointer, the kernel fills it in
- * @len_ptr: pointer to a length field, the kernel fills in the header size
+ * sys_get_robust_list() - Get the robust-futex list head of a task
+ * @pid:       pid of the process [zero for current task]
+ * @head_ptr:  pointer to a list-head pointer, the kernel fills it in
+ * @len_ptr:   pointer to a length field, the kernel fills in the header size
  */
-asmlinkage long
-sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
-                   size_t __user *len_ptr)
+SYSCALL_DEFINE3(get_robust_list, int, pid,
+               struct robust_list_head __user * __user *, head_ptr,
+               size_t __user *, len_ptr)
 {
        struct robust_list_head __user *head;
        unsigned long ret;
+       const struct cred *cred = current_cred(), *pcred;
 
        if (!futex_cmpxchg_enabled)
                return -ENOSYS;
@@ -1764,8 +2420,10 @@ sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
                if (!p)
                        goto err_unlock;
                ret = -EPERM;
-               if ((current->euid != p->euid) && (current->euid != p->uid) &&
-                               !capable(CAP_SYS_PTRACE))
+               pcred = __task_cred(p);
+               if (cred->euid != pcred->euid &&
+                   cred->euid != pcred->uid &&
+                   !capable(CAP_SYS_PTRACE))
                        goto err_unlock;
                head = p->robust_list;
                rcu_read_unlock();
@@ -1828,7 +2486,7 @@ retry:
  */
 static inline int fetch_robust_entry(struct robust_list __user **entry,
                                     struct robust_list __user * __user *head,
-                                    int *pi)
+                                    unsigned int *pi)
 {
        unsigned long uentry;
 
@@ -1851,7 +2509,8 @@ void exit_robust_list(struct task_struct *curr)
 {
        struct robust_list_head __user *head = curr->robust_list;
        struct robust_list __user *entry, *next_entry, *pending;
-       unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
+       unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
+       unsigned int uninitialized_var(next_pi);
        unsigned long futex_offset;
        int rc;
 
@@ -1912,48 +2571,57 @@ void exit_robust_list(struct task_struct *curr)
 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
                u32 __user *uaddr2, u32 val2, u32 val3)
 {
-       int clockrt, ret = -ENOSYS;
-       int cmd = op & FUTEX_CMD_MASK;
-       int fshared = 0;
+       int ret = -ENOSYS, cmd = op & FUTEX_CMD_MASK;
+       unsigned int flags = 0;
 
        if (!(op & FUTEX_PRIVATE_FLAG))
-               fshared = 1;
+               flags |= FLAGS_SHARED;
 
-       clockrt = op & FUTEX_CLOCK_REALTIME;
-       if (clockrt && cmd != FUTEX_WAIT_BITSET)
-               return -ENOSYS;
+       if (op & FUTEX_CLOCK_REALTIME) {
+               flags |= FLAGS_CLOCKRT;
+               if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
+                       return -ENOSYS;
+       }
 
        switch (cmd) {
        case FUTEX_WAIT:
                val3 = FUTEX_BITSET_MATCH_ANY;
        case FUTEX_WAIT_BITSET:
-               ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
+               ret = futex_wait(uaddr, flags, val, timeout, val3);
                break;
        case FUTEX_WAKE:
                val3 = FUTEX_BITSET_MATCH_ANY;
        case FUTEX_WAKE_BITSET:
-               ret = futex_wake(uaddr, fshared, val, val3);
+               ret = futex_wake(uaddr, flags, val, val3);
                break;
        case FUTEX_REQUEUE:
-               ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
+               ret = futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
                break;
        case FUTEX_CMP_REQUEUE:
-               ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
+               ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
                break;
        case FUTEX_WAKE_OP:
-               ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
+               ret = futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
                break;
        case FUTEX_LOCK_PI:
                if (futex_cmpxchg_enabled)
-                       ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
+                       ret = futex_lock_pi(uaddr, flags, val, timeout, 0);
                break;
        case FUTEX_UNLOCK_PI:
                if (futex_cmpxchg_enabled)
-                       ret = futex_unlock_pi(uaddr, fshared);
+                       ret = futex_unlock_pi(uaddr, flags);
                break;
        case FUTEX_TRYLOCK_PI:
                if (futex_cmpxchg_enabled)
-                       ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
+                       ret = futex_lock_pi(uaddr, flags, 0, timeout, 1);
+               break;
+       case FUTEX_WAIT_REQUEUE_PI:
+               val3 = FUTEX_BITSET_MATCH_ANY;
+               ret = futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
+                                           uaddr2);
+               break;
+       case FUTEX_CMP_REQUEUE_PI:
+               ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
                break;
        default:
                ret = -ENOSYS;
@@ -1962,9 +2630,9 @@ long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
 }
 
 
-asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
-                         struct timespec __user *utime, u32 __user *uaddr2,
-                         u32 val3)
+SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
+               struct timespec __user *, utime, u32 __user *, uaddr2,
+               u32, val3)
 {
        struct timespec ts;
        ktime_t t, *tp = NULL;
@@ -1972,7 +2640,8 @@ asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
        int cmd = op & FUTEX_CMD_MASK;
 
        if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
-                     cmd == FUTEX_WAIT_BITSET)) {
+                     cmd == FUTEX_WAIT_BITSET ||
+                     cmd == FUTEX_WAIT_REQUEUE_PI)) {
                if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
                        return -EFAULT;
                if (!timespec_valid(&ts))
@@ -1984,11 +2653,11 @@ asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
                tp = &t;
        }
        /*
-        * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
+        * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
         * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
         */
        if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
-           cmd == FUTEX_WAKE_OP)
+           cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
                val2 = (u32) (unsigned long) utime;
 
        return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
@@ -2006,7 +2675,7 @@ static int __init futex_init(void)
         * of the complex code paths. Also we want to prevent
         * registration of robust lists in that case. NULL is
         * guaranteed to fault and we get -EFAULT on functional
-        * implementation, the non functional ones will return
+        * implementation, the non-functional ones will return
         * -ENOSYS.
         */
        curval = cmpxchg_futex_value_locked(NULL, 0, 0);