]> nv-tegra.nvidia Code Review - linux-2.6.git/blobdiff - kernel/cgroup.c
PM: Add user-space wake lock api.
[linux-2.6.git] / kernel / cgroup.c
index a7267bfd3765b930f5b544bbcaf8df23fab3cd06..1d2b6ceea95d9d268191a76fd486e7958cc2d05c 100644 (file)
@@ -4,6 +4,10 @@
  *  Based originally on the cpuset system, extracted by Paul Menage
  *  Copyright (C) 2006 Google, Inc
  *
+ *  Notifications support
+ *  Copyright (C) 2009 Nokia Corporation
+ *  Author: Kirill A. Shutemov
+ *
  *  Copyright notices from the original cpuset code:
  *  --------------------------------------------------
  *  Copyright (C) 2003 BULL SA.
  */
 
 #include <linux/cgroup.h>
+#include <linux/cred.h>
+#include <linux/ctype.h>
 #include <linux/errno.h>
 #include <linux/fs.h>
+#include <linux/init_task.h>
 #include <linux/kernel.h>
 #include <linux/list.h>
 #include <linux/mm.h>
 #include <linux/string.h>
 #include <linux/sort.h>
 #include <linux/kmod.h>
+#include <linux/module.h>
 #include <linux/delayacct.h>
 #include <linux/cgroupstats.h>
 #include <linux/hash.h>
 #include <linux/namei.h>
+#include <linux/pid_namespace.h>
+#include <linux/idr.h>
+#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
+#include <linux/eventfd.h>
+#include <linux/poll.h>
+#include <linux/flex_array.h> /* used in cgroup_attach_proc */
 
-#include <asm/atomic.h>
+#include <linux/atomic.h>
 
 static DEFINE_MUTEX(cgroup_mutex);
 
-/* Generate an array of cgroup subsystem pointers */
+/*
+ * Generate an array of cgroup subsystem pointers. At boot time, this is
+ * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
+ * registered after that. The mutable section of this array is protected by
+ * cgroup_mutex.
+ */
 #define SUBSYS(_x) &_x ## _subsys,
-
-static struct cgroup_subsys *subsys[] = {
+static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
 #include <linux/cgroup_subsys.h>
 };
 
+#define MAX_CGROUP_ROOT_NAMELEN 64
+
 /*
  * A cgroupfs_root represents the root of a cgroup hierarchy,
  * and may be associated with a superblock to form an active
@@ -72,6 +92,9 @@ struct cgroupfs_root {
         */
        unsigned long subsys_bits;
 
+       /* Unique id for this hierarchy. */
+       int hierarchy_id;
+
        /* The bitmask of subsystems currently attached to this hierarchy */
        unsigned long actual_subsys_bits;
 
@@ -92,6 +115,9 @@ struct cgroupfs_root {
 
        /* The path to use for release notifications. */
        char release_agent_path[PATH_MAX];
+
+       /* The name for this hierarchy - may be empty */
+       char name[MAX_CGROUP_ROOT_NAMELEN];
 };
 
 /*
@@ -114,7 +140,7 @@ struct css_id {
         * is called after synchronize_rcu(). But for safe use, css_is_removed()
         * css_tryget() should be used for avoiding race.
         */
-       struct cgroup_subsys_state *css;
+       struct cgroup_subsys_state __rcu *css;
        /*
         * ID of this css.
         */
@@ -133,12 +159,45 @@ struct css_id {
        unsigned short stack[0]; /* Array of Length (depth+1) */
 };
 
+/*
+ * cgroup_event represents events which userspace want to receive.
+ */
+struct cgroup_event {
+       /*
+        * Cgroup which the event belongs to.
+        */
+       struct cgroup *cgrp;
+       /*
+        * Control file which the event associated.
+        */
+       struct cftype *cft;
+       /*
+        * eventfd to signal userspace about the event.
+        */
+       struct eventfd_ctx *eventfd;
+       /*
+        * Each of these stored in a list by the cgroup.
+        */
+       struct list_head list;
+       /*
+        * All fields below needed to unregister event when
+        * userspace closes eventfd.
+        */
+       poll_table pt;
+       wait_queue_head_t *wqh;
+       wait_queue_t wait;
+       struct work_struct remove;
+};
 
 /* The list of hierarchy roots */
 
 static LIST_HEAD(roots);
 static int root_count;
 
+static DEFINE_IDA(hierarchy_ida);
+static int next_hierarchy_id;
+static DEFINE_SPINLOCK(hierarchy_id_lock);
+
 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
 #define dummytop (&rootnode.top_cgroup)
 
@@ -149,6 +208,20 @@ static int root_count;
  */
 static int need_forkexit_callback __read_mostly;
 
+#ifdef CONFIG_PROVE_LOCKING
+int cgroup_lock_is_held(void)
+{
+       return lockdep_is_held(&cgroup_mutex);
+}
+#else /* #ifdef CONFIG_PROVE_LOCKING */
+int cgroup_lock_is_held(void)
+{
+       return mutex_is_locked(&cgroup_mutex);
+}
+#endif /* #else #ifdef CONFIG_PROVE_LOCKING */
+
+EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
+
 /* convenient tests for these bits */
 inline int cgroup_is_removed(const struct cgroup *cgrp)
 {
@@ -173,6 +246,11 @@ static int notify_on_release(const struct cgroup *cgrp)
        return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
 }
 
+static int clone_children(const struct cgroup *cgrp)
+{
+       return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
+}
+
 /*
  * for_each_subsys() allows you to iterate on each subsystem attached to
  * an active hierarchy
@@ -199,6 +277,7 @@ struct cg_cgroup_link {
         * cgroup, anchored on cgroup->css_sets
         */
        struct list_head cgrp_link_list;
+       struct cgroup *cgrp;
        /*
         * List running through cg_cgroup_links pointing at a
         * single css_set object, anchored on css_set->cg_links
@@ -217,7 +296,8 @@ struct cg_cgroup_link {
 static struct css_set init_css_set;
 static struct cg_cgroup_link init_css_set_link;
 
-static int cgroup_subsys_init_idr(struct cgroup_subsys *ss);
+static int cgroup_init_idr(struct cgroup_subsys *ss,
+                          struct cgroup_subsys_state *css);
 
 /* css_set_lock protects the list of css_set objects, and the
  * chain of tasks off each css_set.  Nests outside task->alloc_lock
@@ -225,8 +305,11 @@ static int cgroup_subsys_init_idr(struct cgroup_subsys *ss);
 static DEFINE_RWLOCK(css_set_lock);
 static int css_set_count;
 
-/* hash table for cgroup groups. This improves the performance to
- * find an existing css_set */
+/*
+ * hash table for cgroup groups. This improves the performance to find
+ * an existing css_set. This hash doesn't (currently) take into
+ * account cgroups in empty hierarchies.
+ */
 #define CSS_SET_HASH_BITS      7
 #define CSS_SET_TABLE_SIZE     (1 << CSS_SET_HASH_BITS)
 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
@@ -252,42 +335,10 @@ static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
  * compiled into their kernel but not actually in use */
 static int use_task_css_set_links __read_mostly;
 
-/* When we create or destroy a css_set, the operation simply
- * takes/releases a reference count on all the cgroups referenced
- * by subsystems in this css_set. This can end up multiple-counting
- * some cgroups, but that's OK - the ref-count is just a
- * busy/not-busy indicator; ensuring that we only count each cgroup
- * once would require taking a global lock to ensure that no
- * subsystems moved between hierarchies while we were doing so.
- *
- * Possible TODO: decide at boot time based on the number of
- * registered subsystems and the number of CPUs or NUMA nodes whether
- * it's better for performance to ref-count every subsystem, or to
- * take a global lock and only add one ref count to each hierarchy.
- */
-
-/*
- * unlink a css_set from the list and free it
- */
-static void unlink_css_set(struct css_set *cg)
+static void __put_css_set(struct css_set *cg, int taskexit)
 {
        struct cg_cgroup_link *link;
        struct cg_cgroup_link *saved_link;
-
-       hlist_del(&cg->hlist);
-       css_set_count--;
-
-       list_for_each_entry_safe(link, saved_link, &cg->cg_links,
-                                cg_link_list) {
-               list_del(&link->cg_link_list);
-               list_del(&link->cgrp_link_list);
-               kfree(link);
-       }
-}
-
-static void __put_css_set(struct css_set *cg, int taskexit)
-{
-       int i;
        /*
         * Ensure that the refcount doesn't hit zero while any readers
         * can see it. Similar to atomic_dec_and_lock(), but for an
@@ -300,21 +351,28 @@ static void __put_css_set(struct css_set *cg, int taskexit)
                write_unlock(&css_set_lock);
                return;
        }
-       unlink_css_set(cg);
-       write_unlock(&css_set_lock);
 
-       rcu_read_lock();
-       for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
-               struct cgroup *cgrp = rcu_dereference(cg->subsys[i]->cgroup);
+       /* This css_set is dead. unlink it and release cgroup refcounts */
+       hlist_del(&cg->hlist);
+       css_set_count--;
+
+       list_for_each_entry_safe(link, saved_link, &cg->cg_links,
+                                cg_link_list) {
+               struct cgroup *cgrp = link->cgrp;
+               list_del(&link->cg_link_list);
+               list_del(&link->cgrp_link_list);
                if (atomic_dec_and_test(&cgrp->count) &&
                    notify_on_release(cgrp)) {
                        if (taskexit)
                                set_bit(CGRP_RELEASABLE, &cgrp->flags);
                        check_for_release(cgrp);
                }
+
+               kfree(link);
        }
-       rcu_read_unlock();
-       kfree(cg);
+
+       write_unlock(&css_set_lock);
+       kfree_rcu(cg, rcu_head);
 }
 
 /*
@@ -335,6 +393,78 @@ static inline void put_css_set_taskexit(struct css_set *cg)
        __put_css_set(cg, 1);
 }
 
+/*
+ * compare_css_sets - helper function for find_existing_css_set().
+ * @cg: candidate css_set being tested
+ * @old_cg: existing css_set for a task
+ * @new_cgrp: cgroup that's being entered by the task
+ * @template: desired set of css pointers in css_set (pre-calculated)
+ *
+ * Returns true if "cg" matches "old_cg" except for the hierarchy
+ * which "new_cgrp" belongs to, for which it should match "new_cgrp".
+ */
+static bool compare_css_sets(struct css_set *cg,
+                            struct css_set *old_cg,
+                            struct cgroup *new_cgrp,
+                            struct cgroup_subsys_state *template[])
+{
+       struct list_head *l1, *l2;
+
+       if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
+               /* Not all subsystems matched */
+               return false;
+       }
+
+       /*
+        * Compare cgroup pointers in order to distinguish between
+        * different cgroups in heirarchies with no subsystems. We
+        * could get by with just this check alone (and skip the
+        * memcmp above) but on most setups the memcmp check will
+        * avoid the need for this more expensive check on almost all
+        * candidates.
+        */
+
+       l1 = &cg->cg_links;
+       l2 = &old_cg->cg_links;
+       while (1) {
+               struct cg_cgroup_link *cgl1, *cgl2;
+               struct cgroup *cg1, *cg2;
+
+               l1 = l1->next;
+               l2 = l2->next;
+               /* See if we reached the end - both lists are equal length. */
+               if (l1 == &cg->cg_links) {
+                       BUG_ON(l2 != &old_cg->cg_links);
+                       break;
+               } else {
+                       BUG_ON(l2 == &old_cg->cg_links);
+               }
+               /* Locate the cgroups associated with these links. */
+               cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
+               cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
+               cg1 = cgl1->cgrp;
+               cg2 = cgl2->cgrp;
+               /* Hierarchies should be linked in the same order. */
+               BUG_ON(cg1->root != cg2->root);
+
+               /*
+                * If this hierarchy is the hierarchy of the cgroup
+                * that's changing, then we need to check that this
+                * css_set points to the new cgroup; if it's any other
+                * hierarchy, then this css_set should point to the
+                * same cgroup as the old css_set.
+                */
+               if (cg1->root == new_cgrp->root) {
+                       if (cg1 != new_cgrp)
+                               return false;
+               } else {
+                       if (cg1 != cg2)
+                               return false;
+               }
+       }
+       return true;
+}
+
 /*
  * find_existing_css_set() is a helper for
  * find_css_set(), and checks to see whether an existing
@@ -359,8 +489,11 @@ static struct css_set *find_existing_css_set(
        struct hlist_node *node;
        struct css_set *cg;
 
-       /* Built the set of subsystem state objects that we want to
-        * see in the new css_set */
+       /*
+        * Build the set of subsystem state objects that we want to see in the
+        * new css_set. while subsystems can change globally, the entries here
+        * won't change, so no need for locking.
+        */
        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
                if (root->subsys_bits & (1UL << i)) {
                        /* Subsystem is in this hierarchy. So we want
@@ -376,10 +509,11 @@ static struct css_set *find_existing_css_set(
 
        hhead = css_set_hash(template);
        hlist_for_each_entry(cg, node, hhead, hlist) {
-               if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
-                       /* All subsystems matched */
-                       return cg;
-               }
+               if (!compare_css_sets(cg, oldcg, cgrp, template))
+                       continue;
+
+               /* This css_set matches what we need */
+               return cg;
        }
 
        /* No existing cgroup group matched */
@@ -433,8 +567,14 @@ static void link_css_set(struct list_head *tmp_cg_links,
        link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
                                cgrp_link_list);
        link->cg = cg;
+       link->cgrp = cgrp;
+       atomic_inc(&cgrp->count);
        list_move(&link->cgrp_link_list, &cgrp->css_sets);
-       list_add(&link->cg_link_list, &cg->cg_links);
+       /*
+        * Always add links to the tail of the list so that the list
+        * is sorted by order of hierarchy creation
+        */
+       list_add_tail(&link->cg_link_list, &cg->cg_links);
 }
 
 /*
@@ -449,11 +589,11 @@ static struct css_set *find_css_set(
 {
        struct css_set *res;
        struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
-       int i;
 
        struct list_head tmp_cg_links;
 
        struct hlist_head *hhead;
+       struct cg_cgroup_link *link;
 
        /* First see if we already have a cgroup group that matches
         * the desired set */
@@ -487,20 +627,12 @@ static struct css_set *find_css_set(
 
        write_lock(&css_set_lock);
        /* Add reference counts and links from the new css_set. */
-       for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
-               struct cgroup *cgrp = res->subsys[i]->cgroup;
-               struct cgroup_subsys *ss = subsys[i];
-               atomic_inc(&cgrp->count);
-               /*
-                * We want to add a link once per cgroup, so we
-                * only do it for the first subsystem in each
-                * hierarchy
-                */
-               if (ss->root->subsys_list.next == &ss->sibling)
-                       link_css_set(&tmp_cg_links, res, cgrp);
+       list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
+               struct cgroup *c = link->cgrp;
+               if (c->root == cgrp->root)
+                       c = cgrp;
+               link_css_set(&tmp_cg_links, res, c);
        }
-       if (list_empty(&rootnode.subsys_list))
-               link_css_set(&tmp_cg_links, res, dummytop);
 
        BUG_ON(!list_empty(&tmp_cg_links));
 
@@ -515,6 +647,41 @@ static struct css_set *find_css_set(
        return res;
 }
 
+/*
+ * Return the cgroup for "task" from the given hierarchy. Must be
+ * called with cgroup_mutex held.
+ */
+static struct cgroup *task_cgroup_from_root(struct task_struct *task,
+                                           struct cgroupfs_root *root)
+{
+       struct css_set *css;
+       struct cgroup *res = NULL;
+
+       BUG_ON(!mutex_is_locked(&cgroup_mutex));
+       read_lock(&css_set_lock);
+       /*
+        * No need to lock the task - since we hold cgroup_mutex the
+        * task can't change groups, so the only thing that can happen
+        * is that it exits and its css is set back to init_css_set.
+        */
+       css = task->cgroups;
+       if (css == &init_css_set) {
+               res = &root->top_cgroup;
+       } else {
+               struct cg_cgroup_link *link;
+               list_for_each_entry(link, &css->cg_links, cg_link_list) {
+                       struct cgroup *c = link->cgrp;
+                       if (c->root == root) {
+                               res = c;
+                               break;
+                       }
+               }
+       }
+       read_unlock(&css_set_lock);
+       BUG_ON(!res);
+       return res;
+}
+
 /*
  * There is one global cgroup mutex. We also require taking
  * task_lock() when dereferencing a task's cgroup subsys pointers.
@@ -573,6 +740,7 @@ void cgroup_lock(void)
 {
        mutex_lock(&cgroup_mutex);
 }
+EXPORT_SYMBOL_GPL(cgroup_lock);
 
 /**
  * cgroup_unlock - release lock on cgroup changes
@@ -583,6 +751,7 @@ void cgroup_unlock(void)
 {
        mutex_unlock(&cgroup_mutex);
 }
+EXPORT_SYMBOL_GPL(cgroup_unlock);
 
 /*
  * A couple of forward declarations required, due to cyclic reference loop:
@@ -592,12 +761,14 @@ void cgroup_unlock(void)
  */
 
 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
+static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
 static int cgroup_populate_dir(struct cgroup *cgrp);
-static struct inode_operations cgroup_dir_inode_operations;
-static struct file_operations proc_cgroupstats_operations;
+static const struct inode_operations cgroup_dir_inode_operations;
+static const struct file_operations proc_cgroupstats_operations;
 
 static struct backing_dev_info cgroup_backing_dev_info = {
+       .name           = "cgroup",
        .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK,
 };
 
@@ -609,6 +780,7 @@ static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
        struct inode *inode = new_inode(sb);
 
        if (inode) {
+               inode->i_ino = get_next_ino();
                inode->i_mode = mode;
                inode->i_uid = current_fsuid();
                inode->i_gid = current_fsgid();
@@ -633,14 +805,8 @@ static int cgroup_call_pre_destroy(struct cgroup *cgrp)
                        if (ret)
                                break;
                }
-       return ret;
-}
-
-static void free_cgroup_rcu(struct rcu_head *obj)
-{
-       struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
 
-       kfree(cgrp);
+       return ret;
 }
 
 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
@@ -674,11 +840,22 @@ static void cgroup_diput(struct dentry *dentry, struct inode *inode)
                 */
                deactivate_super(cgrp->root->sb);
 
-               call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
+               /*
+                * if we're getting rid of the cgroup, refcount should ensure
+                * that there are no pidlists left.
+                */
+               BUG_ON(!list_empty(&cgrp->pidlists));
+
+               kfree_rcu(cgrp, rcu_head);
        }
        iput(inode);
 }
 
+static int cgroup_delete(const struct dentry *d)
+{
+       return 1;
+}
+
 static void remove_dir(struct dentry *d)
 {
        struct dentry *parent = dget(d->d_parent);
@@ -693,25 +870,29 @@ static void cgroup_clear_directory(struct dentry *dentry)
        struct list_head *node;
 
        BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
-       spin_lock(&dcache_lock);
+       spin_lock(&dentry->d_lock);
        node = dentry->d_subdirs.next;
        while (node != &dentry->d_subdirs) {
                struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
+
+               spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
                list_del_init(node);
                if (d->d_inode) {
                        /* This should never be called on a cgroup
                         * directory with child cgroups */
                        BUG_ON(d->d_inode->i_mode & S_IFDIR);
-                       d = dget_locked(d);
-                       spin_unlock(&dcache_lock);
+                       dget_dlock(d);
+                       spin_unlock(&d->d_lock);
+                       spin_unlock(&dentry->d_lock);
                        d_delete(d);
                        simple_unlink(dentry->d_inode, d);
                        dput(d);
-                       spin_lock(&dcache_lock);
-               }
+                       spin_lock(&dentry->d_lock);
+               } else
+                       spin_unlock(&d->d_lock);
                node = dentry->d_subdirs.next;
        }
-       spin_unlock(&dcache_lock);
+       spin_unlock(&dentry->d_lock);
 }
 
 /*
@@ -719,11 +900,16 @@ static void cgroup_clear_directory(struct dentry *dentry)
  */
 static void cgroup_d_remove_dir(struct dentry *dentry)
 {
+       struct dentry *parent;
+
        cgroup_clear_directory(dentry);
 
-       spin_lock(&dcache_lock);
+       parent = dentry->d_parent;
+       spin_lock(&parent->d_lock);
+       spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
        list_del_init(&dentry->d_u.d_child);
-       spin_unlock(&dcache_lock);
+       spin_unlock(&dentry->d_lock);
+       spin_unlock(&parent->d_lock);
        remove_dir(dentry);
 }
 
@@ -733,16 +919,32 @@ static void cgroup_d_remove_dir(struct dentry *dentry)
  * reference to css->refcnt. In general, this refcnt is expected to goes down
  * to zero, soon.
  *
- * CGRP_WAIT_ON_RMDIR flag is modified under cgroup's inode->i_mutex;
+ * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
  */
 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
 
-static void cgroup_wakeup_rmdir_waiters(const struct cgroup *cgrp)
+static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
 {
-       if (unlikely(test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
+       if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
                wake_up_all(&cgroup_rmdir_waitq);
 }
 
+void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
+{
+       css_get(css);
+}
+
+void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
+{
+       cgroup_wakeup_rmdir_waiter(css->cgroup);
+       css_put(css);
+}
+
+/*
+ * Call with cgroup_mutex held. Drops reference counts on modules, including
+ * any duplicate ones that parse_cgroupfs_options took. If this function
+ * returns an error, no reference counts are touched.
+ */
 static int rebind_subsystems(struct cgroupfs_root *root,
                              unsigned long final_bits)
 {
@@ -750,6 +952,8 @@ static int rebind_subsystems(struct cgroupfs_root *root,
        struct cgroup *cgrp = &root->top_cgroup;
        int i;
 
+       BUG_ON(!mutex_is_locked(&cgroup_mutex));
+
        removed_bits = root->actual_subsys_bits & ~final_bits;
        added_bits = final_bits & ~root->actual_subsys_bits;
        /* Check that any added subsystems are currently free */
@@ -758,6 +962,12 @@ static int rebind_subsystems(struct cgroupfs_root *root,
                struct cgroup_subsys *ss = subsys[i];
                if (!(bit & added_bits))
                        continue;
+               /*
+                * Nobody should tell us to do a subsys that doesn't exist:
+                * parse_cgroupfs_options should catch that case and refcounts
+                * ensure that subsystems won't disappear once selected.
+                */
+               BUG_ON(ss == NULL);
                if (ss->root != &rootnode) {
                        /* Subsystem isn't free */
                        return -EBUSY;
@@ -777,6 +987,7 @@ static int rebind_subsystems(struct cgroupfs_root *root,
                unsigned long bit = 1UL << i;
                if (bit & added_bits) {
                        /* We're binding this subsystem to this hierarchy */
+                       BUG_ON(ss == NULL);
                        BUG_ON(cgrp->subsys[i]);
                        BUG_ON(!dummytop->subsys[i]);
                        BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
@@ -788,8 +999,10 @@ static int rebind_subsystems(struct cgroupfs_root *root,
                        if (ss->bind)
                                ss->bind(ss, cgrp);
                        mutex_unlock(&ss->hierarchy_mutex);
+                       /* refcount was already taken, and we're keeping it */
                } else if (bit & removed_bits) {
                        /* We're removing this subsystem */
+                       BUG_ON(ss == NULL);
                        BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
                        BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
                        mutex_lock(&ss->hierarchy_mutex);
@@ -800,9 +1013,20 @@ static int rebind_subsystems(struct cgroupfs_root *root,
                        subsys[i]->root = &rootnode;
                        list_move(&ss->sibling, &rootnode.subsys_list);
                        mutex_unlock(&ss->hierarchy_mutex);
+                       /* subsystem is now free - drop reference on module */
+                       module_put(ss->module);
                } else if (bit & final_bits) {
                        /* Subsystem state should already exist */
+                       BUG_ON(ss == NULL);
                        BUG_ON(!cgrp->subsys[i]);
+                       /*
+                        * a refcount was taken, but we already had one, so
+                        * drop the extra reference.
+                        */
+                       module_put(ss->module);
+#ifdef CONFIG_MODULE_UNLOAD
+                       BUG_ON(ss->module && !module_refcount(ss->module));
+#endif
                } else {
                        /* Subsystem state shouldn't exist */
                        BUG_ON(cgrp->subsys[i]);
@@ -826,6 +1050,10 @@ static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
                seq_puts(seq, ",noprefix");
        if (strlen(root->release_agent_path))
                seq_printf(seq, ",release_agent=%s", root->release_agent_path);
+       if (clone_children(&root->top_cgroup))
+               seq_puts(seq, ",clone_children");
+       if (strlen(root->name))
+               seq_printf(seq, ",name=%s", root->name);
        mutex_unlock(&cgroup_mutex);
        return 0;
 }
@@ -834,65 +1062,204 @@ struct cgroup_sb_opts {
        unsigned long subsys_bits;
        unsigned long flags;
        char *release_agent;
+       bool clone_children;
+       char *name;
+       /* User explicitly requested empty subsystem */
+       bool none;
+
+       struct cgroupfs_root *new_root;
+
 };
 
-/* Convert a hierarchy specifier into a bitmask of subsystems and
- * flags. */
-static int parse_cgroupfs_options(char *data,
-                                    struct cgroup_sb_opts *opts)
+/*
+ * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
+ * with cgroup_mutex held to protect the subsys[] array. This function takes
+ * refcounts on subsystems to be used, unless it returns error, in which case
+ * no refcounts are taken.
+ */
+static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
 {
-       char *token, *o = data ?: "all";
+       char *token, *o = data;
+       bool all_ss = false, one_ss = false;
+       unsigned long mask = (unsigned long)-1;
+       int i;
+       bool module_pin_failed = false;
 
-       opts->subsys_bits = 0;
-       opts->flags = 0;
-       opts->release_agent = NULL;
+       BUG_ON(!mutex_is_locked(&cgroup_mutex));
+
+#ifdef CONFIG_CPUSETS
+       mask = ~(1UL << cpuset_subsys_id);
+#endif
+
+       memset(opts, 0, sizeof(*opts));
 
        while ((token = strsep(&o, ",")) != NULL) {
                if (!*token)
                        return -EINVAL;
+               if (!strcmp(token, "none")) {
+                       /* Explicitly have no subsystems */
+                       opts->none = true;
+                       continue;
+               }
                if (!strcmp(token, "all")) {
-                       /* Add all non-disabled subsystems */
-                       int i;
-                       opts->subsys_bits = 0;
-                       for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
-                               struct cgroup_subsys *ss = subsys[i];
-                               if (!ss->disabled)
-                                       opts->subsys_bits |= 1ul << i;
-                       }
-               } else if (!strcmp(token, "noprefix")) {
+                       /* Mutually exclusive option 'all' + subsystem name */
+                       if (one_ss)
+                               return -EINVAL;
+                       all_ss = true;
+                       continue;
+               }
+               if (!strcmp(token, "noprefix")) {
                        set_bit(ROOT_NOPREFIX, &opts->flags);
-               } else if (!strncmp(token, "release_agent=", 14)) {
+                       continue;
+               }
+               if (!strcmp(token, "clone_children")) {
+                       opts->clone_children = true;
+                       continue;
+               }
+               if (!strncmp(token, "release_agent=", 14)) {
                        /* Specifying two release agents is forbidden */
                        if (opts->release_agent)
                                return -EINVAL;
-                       opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
+                       opts->release_agent =
+                               kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
                        if (!opts->release_agent)
                                return -ENOMEM;
-                       strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
-                       opts->release_agent[PATH_MAX - 1] = 0;
-               } else {
-                       struct cgroup_subsys *ss;
-                       int i;
-                       for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
-                               ss = subsys[i];
-                               if (!strcmp(token, ss->name)) {
-                                       if (!ss->disabled)
-                                               set_bit(i, &opts->subsys_bits);
-                                       break;
-                               }
+                       continue;
+               }
+               if (!strncmp(token, "name=", 5)) {
+                       const char *name = token + 5;
+                       /* Can't specify an empty name */
+                       if (!strlen(name))
+                               return -EINVAL;
+                       /* Must match [\w.-]+ */
+                       for (i = 0; i < strlen(name); i++) {
+                               char c = name[i];
+                               if (isalnum(c))
+                                       continue;
+                               if ((c == '.') || (c == '-') || (c == '_'))
+                                       continue;
+                               return -EINVAL;
                        }
-                       if (i == CGROUP_SUBSYS_COUNT)
-                               return -ENOENT;
+                       /* Specifying two names is forbidden */
+                       if (opts->name)
+                               return -EINVAL;
+                       opts->name = kstrndup(name,
+                                             MAX_CGROUP_ROOT_NAMELEN - 1,
+                                             GFP_KERNEL);
+                       if (!opts->name)
+                               return -ENOMEM;
+
+                       continue;
+               }
+
+               for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
+                       struct cgroup_subsys *ss = subsys[i];
+                       if (ss == NULL)
+                               continue;
+                       if (strcmp(token, ss->name))
+                               continue;
+                       if (ss->disabled)
+                               continue;
+
+                       /* Mutually exclusive option 'all' + subsystem name */
+                       if (all_ss)
+                               return -EINVAL;
+                       set_bit(i, &opts->subsys_bits);
+                       one_ss = true;
+
+                       break;
+               }
+               if (i == CGROUP_SUBSYS_COUNT)
+                       return -ENOENT;
+       }
+
+       /*
+        * If the 'all' option was specified select all the subsystems,
+        * otherwise 'all, 'none' and a subsystem name options were not
+        * specified, let's default to 'all'
+        */
+       if (all_ss || (!all_ss && !one_ss && !opts->none)) {
+               for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
+                       struct cgroup_subsys *ss = subsys[i];
+                       if (ss == NULL)
+                               continue;
+                       if (ss->disabled)
+                               continue;
+                       set_bit(i, &opts->subsys_bits);
                }
        }
 
-       /* We can't have an empty hierarchy */
-       if (!opts->subsys_bits)
+       /* Consistency checks */
+
+       /*
+        * Option noprefix was introduced just for backward compatibility
+        * with the old cpuset, so we allow noprefix only if mounting just
+        * the cpuset subsystem.
+        */
+       if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
+           (opts->subsys_bits & mask))
+               return -EINVAL;
+
+
+       /* Can't specify "none" and some subsystems */
+       if (opts->subsys_bits && opts->none)
+               return -EINVAL;
+
+       /*
+        * We either have to specify by name or by subsystems. (So all
+        * empty hierarchies must have a name).
+        */
+       if (!opts->subsys_bits && !opts->name)
                return -EINVAL;
 
+       /*
+        * Grab references on all the modules we'll need, so the subsystems
+        * don't dance around before rebind_subsystems attaches them. This may
+        * take duplicate reference counts on a subsystem that's already used,
+        * but rebind_subsystems handles this case.
+        */
+       for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
+               unsigned long bit = 1UL << i;
+
+               if (!(bit & opts->subsys_bits))
+                       continue;
+               if (!try_module_get(subsys[i]->module)) {
+                       module_pin_failed = true;
+                       break;
+               }
+       }
+       if (module_pin_failed) {
+               /*
+                * oops, one of the modules was going away. this means that we
+                * raced with a module_delete call, and to the user this is
+                * essentially a "subsystem doesn't exist" case.
+                */
+               for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
+                       /* drop refcounts only on the ones we took */
+                       unsigned long bit = 1UL << i;
+
+                       if (!(bit & opts->subsys_bits))
+                               continue;
+                       module_put(subsys[i]->module);
+               }
+               return -ENOENT;
+       }
+
        return 0;
 }
 
+static void drop_parsed_module_refcounts(unsigned long subsys_bits)
+{
+       int i;
+       for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
+               unsigned long bit = 1UL << i;
+
+               if (!(bit & subsys_bits))
+                       continue;
+               module_put(subsys[i]->module);
+       }
+}
+
 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
 {
        int ret = 0;
@@ -908,15 +1275,19 @@ static int cgroup_remount(struct super_block *sb, int *flags, char *data)
        if (ret)
                goto out_unlock;
 
-       /* Don't allow flags to change at remount */
-       if (opts.flags != root->flags) {
+       /* Don't allow flags or name to change at remount */
+       if (opts.flags != root->flags ||
+           (opts.name && strcmp(opts.name, root->name))) {
                ret = -EINVAL;
+               drop_parsed_module_refcounts(opts.subsys_bits);
                goto out_unlock;
        }
 
        ret = rebind_subsystems(root, opts.subsys_bits);
-       if (ret)
+       if (ret) {
+               drop_parsed_module_refcounts(opts.subsys_bits);
                goto out_unlock;
+       }
 
        /* (re)populate subsystem files */
        cgroup_populate_dir(cgrp);
@@ -925,12 +1296,13 @@ static int cgroup_remount(struct super_block *sb, int *flags, char *data)
                strcpy(root->release_agent_path, opts.release_agent);
  out_unlock:
        kfree(opts.release_agent);
+       kfree(opts.name);
        mutex_unlock(&cgroup_mutex);
        mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
        return ret;
 }
 
-static struct super_operations cgroup_ops = {
+static const struct super_operations cgroup_ops = {
        .statfs = simple_statfs,
        .drop_inode = generic_delete_inode,
        .show_options = cgroup_show_options,
@@ -943,8 +1315,12 @@ static void init_cgroup_housekeeping(struct cgroup *cgrp)
        INIT_LIST_HEAD(&cgrp->children);
        INIT_LIST_HEAD(&cgrp->css_sets);
        INIT_LIST_HEAD(&cgrp->release_list);
-       init_rwsem(&cgrp->pids_mutex);
+       INIT_LIST_HEAD(&cgrp->pidlists);
+       mutex_init(&cgrp->pidlist_mutex);
+       INIT_LIST_HEAD(&cgrp->event_list);
+       spin_lock_init(&cgrp->event_list_lock);
 }
+
 static void init_cgroup_root(struct cgroupfs_root *root)
 {
        struct cgroup *cgrp = &root->top_cgroup;
@@ -956,37 +1332,112 @@ static void init_cgroup_root(struct cgroupfs_root *root)
        init_cgroup_housekeeping(cgrp);
 }
 
+static bool init_root_id(struct cgroupfs_root *root)
+{
+       int ret = 0;
+
+       do {
+               if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
+                       return false;
+               spin_lock(&hierarchy_id_lock);
+               /* Try to allocate the next unused ID */
+               ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
+                                       &root->hierarchy_id);
+               if (ret == -ENOSPC)
+                       /* Try again starting from 0 */
+                       ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
+               if (!ret) {
+                       next_hierarchy_id = root->hierarchy_id + 1;
+               } else if (ret != -EAGAIN) {
+                       /* Can only get here if the 31-bit IDR is full ... */
+                       BUG_ON(ret);
+               }
+               spin_unlock(&hierarchy_id_lock);
+       } while (ret);
+       return true;
+}
+
 static int cgroup_test_super(struct super_block *sb, void *data)
 {
-       struct cgroupfs_root *new = data;
+       struct cgroup_sb_opts *opts = data;
        struct cgroupfs_root *root = sb->s_fs_info;
 
-       /* First check subsystems */
-       if (new->subsys_bits != root->subsys_bits)
-           return 0;
+       /* If we asked for a name then it must match */
+       if (opts->name && strcmp(opts->name, root->name))
+               return 0;
 
-       /* Next check flags */
-       if (new->flags != root->flags)
+       /*
+        * If we asked for subsystems (or explicitly for no
+        * subsystems) then they must match
+        */
+       if ((opts->subsys_bits || opts->none)
+           && (opts->subsys_bits != root->subsys_bits))
                return 0;
 
        return 1;
 }
 
-static int cgroup_set_super(struct super_block *sb, void *data)
+static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
 {
-       int ret;
-       struct cgroupfs_root *root = data;
+       struct cgroupfs_root *root;
 
-       ret = set_anon_super(sb, NULL);
-       if (ret)
-               return ret;
+       if (!opts->subsys_bits && !opts->none)
+               return NULL;
 
-       sb->s_fs_info = root;
-       root->sb = sb;
+       root = kzalloc(sizeof(*root), GFP_KERNEL);
+       if (!root)
+               return ERR_PTR(-ENOMEM);
 
-       sb->s_blocksize = PAGE_CACHE_SIZE;
-       sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
-       sb->s_magic = CGROUP_SUPER_MAGIC;
+       if (!init_root_id(root)) {
+               kfree(root);
+               return ERR_PTR(-ENOMEM);
+       }
+       init_cgroup_root(root);
+
+       root->subsys_bits = opts->subsys_bits;
+       root->flags = opts->flags;
+       if (opts->release_agent)
+               strcpy(root->release_agent_path, opts->release_agent);
+       if (opts->name)
+               strcpy(root->name, opts->name);
+       if (opts->clone_children)
+               set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
+       return root;
+}
+
+static void cgroup_drop_root(struct cgroupfs_root *root)
+{
+       if (!root)
+               return;
+
+       BUG_ON(!root->hierarchy_id);
+       spin_lock(&hierarchy_id_lock);
+       ida_remove(&hierarchy_ida, root->hierarchy_id);
+       spin_unlock(&hierarchy_id_lock);
+       kfree(root);
+}
+
+static int cgroup_set_super(struct super_block *sb, void *data)
+{
+       int ret;
+       struct cgroup_sb_opts *opts = data;
+
+       /* If we don't have a new root, we can't set up a new sb */
+       if (!opts->new_root)
+               return -EINVAL;
+
+       BUG_ON(!opts->subsys_bits && !opts->none);
+
+       ret = set_anon_super(sb, NULL);
+       if (ret)
+               return ret;
+
+       sb->s_fs_info = opts->new_root;
+       opts->new_root->sb = sb;
+
+       sb->s_blocksize = PAGE_CACHE_SIZE;
+       sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
+       sb->s_magic = CGROUP_SUPER_MAGIC;
        sb->s_op = &cgroup_ops;
 
        return 0;
@@ -994,6 +1445,11 @@ static int cgroup_set_super(struct super_block *sb, void *data)
 
 static int cgroup_get_rootdir(struct super_block *sb)
 {
+       static const struct dentry_operations cgroup_dops = {
+               .d_iput = cgroup_diput,
+               .d_delete = cgroup_delete,
+       };
+
        struct inode *inode =
                cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
        struct dentry *dentry;
@@ -1011,56 +1467,56 @@ static int cgroup_get_rootdir(struct super_block *sb)
                return -ENOMEM;
        }
        sb->s_root = dentry;
+       /* for everything else we want ->d_op set */
+       sb->s_d_op = &cgroup_dops;
        return 0;
 }
 
-static int cgroup_get_sb(struct file_system_type *fs_type,
+static struct dentry *cgroup_mount(struct file_system_type *fs_type,
                         int flags, const char *unused_dev_name,
-                        void *data, struct vfsmount *mnt)
+                        void *data)
 {
        struct cgroup_sb_opts opts;
+       struct cgroupfs_root *root;
        int ret = 0;
        struct super_block *sb;
-       struct cgroupfs_root *root;
-       struct list_head tmp_cg_links;
+       struct cgroupfs_root *new_root;
 
        /* First find the desired set of subsystems */
+       mutex_lock(&cgroup_mutex);
        ret = parse_cgroupfs_options(data, &opts);
-       if (ret) {
-               kfree(opts.release_agent);
-               return ret;
-       }
-
-       root = kzalloc(sizeof(*root), GFP_KERNEL);
-       if (!root) {
-               kfree(opts.release_agent);
-               return -ENOMEM;
-       }
+       mutex_unlock(&cgroup_mutex);
+       if (ret)
+               goto out_err;
 
-       init_cgroup_root(root);
-       root->subsys_bits = opts.subsys_bits;
-       root->flags = opts.flags;
-       if (opts.release_agent) {
-               strcpy(root->release_agent_path, opts.release_agent);
-               kfree(opts.release_agent);
+       /*
+        * Allocate a new cgroup root. We may not need it if we're
+        * reusing an existing hierarchy.
+        */
+       new_root = cgroup_root_from_opts(&opts);
+       if (IS_ERR(new_root)) {
+               ret = PTR_ERR(new_root);
+               goto drop_modules;
        }
+       opts.new_root = new_root;
 
-       sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
-
+       /* Locate an existing or new sb for this hierarchy */
+       sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
        if (IS_ERR(sb)) {
-               kfree(root);
-               return PTR_ERR(sb);
+               ret = PTR_ERR(sb);
+               cgroup_drop_root(opts.new_root);
+               goto drop_modules;
        }
 
-       if (sb->s_fs_info != root) {
-               /* Reusing an existing superblock */
-               BUG_ON(sb->s_root == NULL);
-               kfree(root);
-               root = NULL;
-       } else {
-               /* New superblock */
+       root = sb->s_fs_info;
+       BUG_ON(!root);
+       if (root == opts.new_root) {
+               /* We used the new root structure, so this is a new hierarchy */
+               struct list_head tmp_cg_links;
                struct cgroup *root_cgrp = &root->top_cgroup;
                struct inode *inode;
+               struct cgroupfs_root *existing_root;
+               const struct cred *cred;
                int i;
 
                BUG_ON(sb->s_root != NULL);
@@ -1073,6 +1529,18 @@ static int cgroup_get_sb(struct file_system_type *fs_type,
                mutex_lock(&inode->i_mutex);
                mutex_lock(&cgroup_mutex);
 
+               if (strlen(root->name)) {
+                       /* Check for name clashes with existing mounts */
+                       for_each_active_root(existing_root) {
+                               if (!strcmp(existing_root->name, root->name)) {
+                                       ret = -EBUSY;
+                                       mutex_unlock(&cgroup_mutex);
+                                       mutex_unlock(&inode->i_mutex);
+                                       goto drop_new_super;
+                               }
+                       }
+               }
+
                /*
                 * We're accessing css_set_count without locking
                 * css_set_lock here, but that's OK - it can only be
@@ -1091,8 +1559,14 @@ static int cgroup_get_sb(struct file_system_type *fs_type,
                if (ret == -EBUSY) {
                        mutex_unlock(&cgroup_mutex);
                        mutex_unlock(&inode->i_mutex);
-                       goto free_cg_links;
+                       free_cg_links(&tmp_cg_links);
+                       goto drop_new_super;
                }
+               /*
+                * There must be no failure case after here, since rebinding
+                * takes care of subsystems' refcounts, which are explicitly
+                * dropped in the failure exit path.
+                */
 
                /* EBUSY should be the only error here */
                BUG_ON(ret);
@@ -1122,19 +1596,33 @@ static int cgroup_get_sb(struct file_system_type *fs_type,
                BUG_ON(!list_empty(&root_cgrp->children));
                BUG_ON(root->number_of_cgroups != 1);
 
+               cred = override_creds(&init_cred);
                cgroup_populate_dir(root_cgrp);
-               mutex_unlock(&inode->i_mutex);
+               revert_creds(cred);
                mutex_unlock(&cgroup_mutex);
+               mutex_unlock(&inode->i_mutex);
+       } else {
+               /*
+                * We re-used an existing hierarchy - the new root (if
+                * any) is not needed
+                */
+               cgroup_drop_root(opts.new_root);
+               /* no subsys rebinding, so refcounts don't change */
+               drop_parsed_module_refcounts(opts.subsys_bits);
        }
 
-       simple_set_mnt(mnt, sb);
-       return 0;
+       kfree(opts.release_agent);
+       kfree(opts.name);
+       return dget(sb->s_root);
 
- free_cg_links:
-       free_cg_links(&tmp_cg_links);
  drop_new_super:
        deactivate_locked_super(sb);
-       return ret;
+ drop_modules:
+       drop_parsed_module_refcounts(opts.subsys_bits);
+ out_err:
+       kfree(opts.release_agent);
+       kfree(opts.name);
+       return ERR_PTR(ret);
 }
 
 static void cgroup_kill_sb(struct super_block *sb) {
@@ -1179,15 +1667,17 @@ static void cgroup_kill_sb(struct super_block *sb) {
        mutex_unlock(&cgroup_mutex);
 
        kill_litter_super(sb);
-       kfree(root);
+       cgroup_drop_root(root);
 }
 
 static struct file_system_type cgroup_fs_type = {
        .name = "cgroup",
-       .get_sb = cgroup_get_sb,
+       .mount = cgroup_mount,
        .kill_sb = cgroup_kill_sb,
 };
 
+static struct kobject *cgroup_kobj;
+
 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
 {
        return dentry->d_fsdata;
@@ -1211,7 +1701,8 @@ static inline struct cftype *__d_cft(struct dentry *dentry)
 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
 {
        char *start;
-       struct dentry *dentry = rcu_dereference(cgrp->dentry);
+       struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
+                                                     cgroup_lock_is_held());
 
        if (!dentry || cgrp == dummytop) {
                /*
@@ -1227,13 +1718,16 @@ int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
        *--start = '\0';
        for (;;) {
                int len = dentry->d_name.len;
+
                if ((start -= len) < buf)
                        return -ENAMETOOLONG;
-               memcpy(start, cgrp->dentry->d_name.name, len);
+               memcpy(start, dentry->d_name.name, len);
                cgrp = cgrp->parent;
                if (!cgrp)
                        break;
-               dentry = rcu_dereference(cgrp->dentry);
+
+               dentry = rcu_dereference_check(cgrp->dentry,
+                                              cgroup_lock_is_held());
                if (!cgrp->parent)
                        continue;
                if (--start < buf)
@@ -1243,26 +1737,76 @@ int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
        memmove(buf, start, buf + buflen - start);
        return 0;
 }
+EXPORT_SYMBOL_GPL(cgroup_path);
 
 /*
- * Return the first subsystem attached to a cgroup's hierarchy, and
- * its subsystem id.
+ * cgroup_task_migrate - move a task from one cgroup to another.
+ *
+ * 'guarantee' is set if the caller promises that a new css_set for the task
+ * will already exist. If not set, this function might sleep, and can fail with
+ * -ENOMEM. Otherwise, it can only fail with -ESRCH.
  */
-
-static void get_first_subsys(const struct cgroup *cgrp,
-                       struct cgroup_subsys_state **css, int *subsys_id)
+static int cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
+                              struct task_struct *tsk, bool guarantee)
 {
-       const struct cgroupfs_root *root = cgrp->root;
-       const struct cgroup_subsys *test_ss;
-       BUG_ON(list_empty(&root->subsys_list));
-       test_ss = list_entry(root->subsys_list.next,
-                            struct cgroup_subsys, sibling);
-       if (css) {
-               *css = cgrp->subsys[test_ss->subsys_id];
-               BUG_ON(!*css);
+       struct css_set *oldcg;
+       struct css_set *newcg;
+
+       /*
+        * get old css_set. we need to take task_lock and refcount it, because
+        * an exiting task can change its css_set to init_css_set and drop its
+        * old one without taking cgroup_mutex.
+        */
+       task_lock(tsk);
+       oldcg = tsk->cgroups;
+       get_css_set(oldcg);
+       task_unlock(tsk);
+
+       /* locate or allocate a new css_set for this task. */
+       if (guarantee) {
+               /* we know the css_set we want already exists. */
+               struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
+               read_lock(&css_set_lock);
+               newcg = find_existing_css_set(oldcg, cgrp, template);
+               BUG_ON(!newcg);
+               get_css_set(newcg);
+               read_unlock(&css_set_lock);
+       } else {
+               might_sleep();
+               /* find_css_set will give us newcg already referenced. */
+               newcg = find_css_set(oldcg, cgrp);
+               if (!newcg) {
+                       put_css_set(oldcg);
+                       return -ENOMEM;
+               }
        }
-       if (subsys_id)
-               *subsys_id = test_ss->subsys_id;
+       put_css_set(oldcg);
+
+       /* if PF_EXITING is set, the tsk->cgroups pointer is no longer safe. */
+       task_lock(tsk);
+       if (tsk->flags & PF_EXITING) {
+               task_unlock(tsk);
+               put_css_set(newcg);
+               return -ESRCH;
+       }
+       rcu_assign_pointer(tsk->cgroups, newcg);
+       task_unlock(tsk);
+
+       /* Update the css_set linked lists if we're using them */
+       write_lock(&css_set_lock);
+       if (!list_empty(&tsk->cg_list))
+               list_move(&tsk->cg_list, &newcg->tasks);
+       write_unlock(&css_set_lock);
+
+       /*
+        * We just gained a reference on oldcg by taking it from the task. As
+        * trading it for newcg is protected by cgroup_mutex, we're safe to drop
+        * it here; it will be freed under RCU.
+        */
+       put_css_set(oldcg);
+
+       set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
+       return 0;
 }
 
 /**
@@ -1275,131 +1819,469 @@ static void get_first_subsys(const struct cgroup *cgrp,
  */
 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
 {
-       int retval = 0;
-       struct cgroup_subsys *ss;
+       int retval;
+       struct cgroup_subsys *ss, *failed_ss = NULL;
        struct cgroup *oldcgrp;
-       struct css_set *cg;
-       struct css_set *newcg;
        struct cgroupfs_root *root = cgrp->root;
-       int subsys_id;
-
-       get_first_subsys(cgrp, NULL, &subsys_id);
 
        /* Nothing to do if the task is already in that cgroup */
-       oldcgrp = task_cgroup(tsk, subsys_id);
+       oldcgrp = task_cgroup_from_root(tsk, root);
        if (cgrp == oldcgrp)
                return 0;
 
        for_each_subsys(root, ss) {
                if (ss->can_attach) {
                        retval = ss->can_attach(ss, cgrp, tsk);
-                       if (retval)
-                               return retval;
+                       if (retval) {
+                               /*
+                                * Remember on which subsystem the can_attach()
+                                * failed, so that we only call cancel_attach()
+                                * against the subsystems whose can_attach()
+                                * succeeded. (See below)
+                                */
+                               failed_ss = ss;
+                               goto out;
+                       }
+               }
+               if (ss->can_attach_task) {
+                       retval = ss->can_attach_task(cgrp, tsk);
+                       if (retval) {
+                               failed_ss = ss;
+                               goto out;
+                       }
                }
        }
 
-       task_lock(tsk);
-       cg = tsk->cgroups;
-       get_css_set(cg);
-       task_unlock(tsk);
+       retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, false);
+       if (retval)
+               goto out;
+
+       for_each_subsys(root, ss) {
+               if (ss->pre_attach)
+                       ss->pre_attach(cgrp);
+               if (ss->attach_task)
+                       ss->attach_task(cgrp, tsk);
+               if (ss->attach)
+                       ss->attach(ss, cgrp, oldcgrp, tsk);
+       }
+
+       synchronize_rcu();
+
        /*
-        * Locate or allocate a new css_set for this task,
-        * based on its final set of cgroups
+        * wake up rmdir() waiter. the rmdir should fail since the cgroup
+        * is no longer empty.
         */
+       cgroup_wakeup_rmdir_waiter(cgrp);
+out:
+       if (retval) {
+               for_each_subsys(root, ss) {
+                       if (ss == failed_ss)
+                               /*
+                                * This subsystem was the one that failed the
+                                * can_attach() check earlier, so we don't need
+                                * to call cancel_attach() against it or any
+                                * remaining subsystems.
+                                */
+                               break;
+                       if (ss->cancel_attach)
+                               ss->cancel_attach(ss, cgrp, tsk);
+               }
+       }
+       return retval;
+}
+
+/**
+ * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
+ * @from: attach to all cgroups of a given task
+ * @tsk: the task to be attached
+ */
+int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
+{
+       struct cgroupfs_root *root;
+       int retval = 0;
+
+       cgroup_lock();
+       for_each_active_root(root) {
+               struct cgroup *from_cg = task_cgroup_from_root(from, root);
+
+               retval = cgroup_attach_task(from_cg, tsk);
+               if (retval)
+                       break;
+       }
+       cgroup_unlock();
+
+       return retval;
+}
+EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
+
+/*
+ * cgroup_attach_proc works in two stages, the first of which prefetches all
+ * new css_sets needed (to make sure we have enough memory before committing
+ * to the move) and stores them in a list of entries of the following type.
+ * TODO: possible optimization: use css_set->rcu_head for chaining instead
+ */
+struct cg_list_entry {
+       struct css_set *cg;
+       struct list_head links;
+};
+
+static bool css_set_check_fetched(struct cgroup *cgrp,
+                                 struct task_struct *tsk, struct css_set *cg,
+                                 struct list_head *newcg_list)
+{
+       struct css_set *newcg;
+       struct cg_list_entry *cg_entry;
+       struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
+
+       read_lock(&css_set_lock);
+       newcg = find_existing_css_set(cg, cgrp, template);
+       if (newcg)
+               get_css_set(newcg);
+       read_unlock(&css_set_lock);
+
+       /* doesn't exist at all? */
+       if (!newcg)
+               return false;
+       /* see if it's already in the list */
+       list_for_each_entry(cg_entry, newcg_list, links) {
+               if (cg_entry->cg == newcg) {
+                       put_css_set(newcg);
+                       return true;
+               }
+       }
+
+       /* not found */
+       put_css_set(newcg);
+       return false;
+}
+
+/*
+ * Find the new css_set and store it in the list in preparation for moving the
+ * given task to the given cgroup. Returns 0 or -ENOMEM.
+ */
+static int css_set_prefetch(struct cgroup *cgrp, struct css_set *cg,
+                           struct list_head *newcg_list)
+{
+       struct css_set *newcg;
+       struct cg_list_entry *cg_entry;
+
+       /* ensure a new css_set will exist for this thread */
        newcg = find_css_set(cg, cgrp);
-       put_css_set(cg);
        if (!newcg)
                return -ENOMEM;
+       /* add it to the list */
+       cg_entry = kmalloc(sizeof(struct cg_list_entry), GFP_KERNEL);
+       if (!cg_entry) {
+               put_css_set(newcg);
+               return -ENOMEM;
+       }
+       cg_entry->cg = newcg;
+       list_add(&cg_entry->links, newcg_list);
+       return 0;
+}
 
-       task_lock(tsk);
-       if (tsk->flags & PF_EXITING) {
+/**
+ * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
+ * @cgrp: the cgroup to attach to
+ * @leader: the threadgroup leader task_struct of the group to be attached
+ *
+ * Call holding cgroup_mutex and the threadgroup_fork_lock of the leader. Will
+ * take task_lock of each thread in leader's threadgroup individually in turn.
+ */
+int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
+{
+       int retval, i, group_size;
+       struct cgroup_subsys *ss, *failed_ss = NULL;
+       bool cancel_failed_ss = false;
+       /* guaranteed to be initialized later, but the compiler needs this */
+       struct cgroup *oldcgrp = NULL;
+       struct css_set *oldcg;
+       struct cgroupfs_root *root = cgrp->root;
+       /* threadgroup list cursor and array */
+       struct task_struct *tsk;
+       struct flex_array *group;
+       /*
+        * we need to make sure we have css_sets for all the tasks we're
+        * going to move -before- we actually start moving them, so that in
+        * case we get an ENOMEM we can bail out before making any changes.
+        */
+       struct list_head newcg_list;
+       struct cg_list_entry *cg_entry, *temp_nobe;
+
+       /*
+        * step 0: in order to do expensive, possibly blocking operations for
+        * every thread, we cannot iterate the thread group list, since it needs
+        * rcu or tasklist locked. instead, build an array of all threads in the
+        * group - threadgroup_fork_lock prevents new threads from appearing,
+        * and if threads exit, this will just be an over-estimate.
+        */
+       group_size = get_nr_threads(leader);
+       /* flex_array supports very large thread-groups better than kmalloc. */
+       group = flex_array_alloc(sizeof(struct task_struct *), group_size,
+                                GFP_KERNEL);
+       if (!group)
+               return -ENOMEM;
+       /* pre-allocate to guarantee space while iterating in rcu read-side. */
+       retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
+       if (retval)
+               goto out_free_group_list;
+
+       /* prevent changes to the threadgroup list while we take a snapshot. */
+       rcu_read_lock();
+       if (!thread_group_leader(leader)) {
+               /*
+                * a race with de_thread from another thread's exec() may strip
+                * us of our leadership, making while_each_thread unsafe to use
+                * on this task. if this happens, there is no choice but to
+                * throw this task away and try again (from cgroup_procs_write);
+                * this is "double-double-toil-and-trouble-check locking".
+                */
+               rcu_read_unlock();
+               retval = -EAGAIN;
+               goto out_free_group_list;
+       }
+       /* take a reference on each task in the group to go in the array. */
+       tsk = leader;
+       i = 0;
+       do {
+               /* as per above, nr_threads may decrease, but not increase. */
+               BUG_ON(i >= group_size);
+               get_task_struct(tsk);
+               /*
+                * saying GFP_ATOMIC has no effect here because we did prealloc
+                * earlier, but it's good form to communicate our expectations.
+                */
+               retval = flex_array_put_ptr(group, i, tsk, GFP_ATOMIC);
+               BUG_ON(retval != 0);
+               i++;
+       } while_each_thread(leader, tsk);
+       /* remember the number of threads in the array for later. */
+       group_size = i;
+       rcu_read_unlock();
+
+       /*
+        * step 1: check that we can legitimately attach to the cgroup.
+        */
+       for_each_subsys(root, ss) {
+               if (ss->can_attach) {
+                       retval = ss->can_attach(ss, cgrp, leader);
+                       if (retval) {
+                               failed_ss = ss;
+                               goto out_cancel_attach;
+                       }
+               }
+               /* a callback to be run on every thread in the threadgroup. */
+               if (ss->can_attach_task) {
+                       /* run on each task in the threadgroup. */
+                       for (i = 0; i < group_size; i++) {
+                               tsk = flex_array_get_ptr(group, i);
+                               retval = ss->can_attach_task(cgrp, tsk);
+                               if (retval) {
+                                       failed_ss = ss;
+                                       cancel_failed_ss = true;
+                                       goto out_cancel_attach;
+                               }
+                       }
+               }
+       }
+
+       /*
+        * step 2: make sure css_sets exist for all threads to be migrated.
+        * we use find_css_set, which allocates a new one if necessary.
+        */
+       INIT_LIST_HEAD(&newcg_list);
+       for (i = 0; i < group_size; i++) {
+               tsk = flex_array_get_ptr(group, i);
+               /* nothing to do if this task is already in the cgroup */
+               oldcgrp = task_cgroup_from_root(tsk, root);
+               if (cgrp == oldcgrp)
+                       continue;
+               /* get old css_set pointer */
+               task_lock(tsk);
+               if (tsk->flags & PF_EXITING) {
+                       /* ignore this task if it's going away */
+                       task_unlock(tsk);
+                       continue;
+               }
+               oldcg = tsk->cgroups;
+               get_css_set(oldcg);
                task_unlock(tsk);
-               put_css_set(newcg);
-               return -ESRCH;
+               /* see if the new one for us is already in the list? */
+               if (css_set_check_fetched(cgrp, tsk, oldcg, &newcg_list)) {
+                       /* was already there, nothing to do. */
+                       put_css_set(oldcg);
+               } else {
+                       /* we don't already have it. get new one. */
+                       retval = css_set_prefetch(cgrp, oldcg, &newcg_list);
+                       put_css_set(oldcg);
+                       if (retval)
+                               goto out_list_teardown;
+               }
        }
-       rcu_assign_pointer(tsk->cgroups, newcg);
-       task_unlock(tsk);
 
-       /* Update the css_set linked lists if we're using them */
-       write_lock(&css_set_lock);
-       if (!list_empty(&tsk->cg_list)) {
-               list_del(&tsk->cg_list);
-               list_add(&tsk->cg_list, &newcg->tasks);
+       /*
+        * step 3: now that we're guaranteed success wrt the css_sets, proceed
+        * to move all tasks to the new cgroup, calling ss->attach_task for each
+        * one along the way. there are no failure cases after here, so this is
+        * the commit point.
+        */
+       for_each_subsys(root, ss) {
+               if (ss->pre_attach)
+                       ss->pre_attach(cgrp);
        }
-       write_unlock(&css_set_lock);
+       for (i = 0; i < group_size; i++) {
+               tsk = flex_array_get_ptr(group, i);
+               /* leave current thread as it is if it's already there */
+               oldcgrp = task_cgroup_from_root(tsk, root);
+               if (cgrp == oldcgrp)
+                       continue;
+               /* attach each task to each subsystem */
+               for_each_subsys(root, ss) {
+                       if (ss->attach_task)
+                               ss->attach_task(cgrp, tsk);
+               }
+               /* if the thread is PF_EXITING, it can just get skipped. */
+               retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, true);
+               BUG_ON(retval != 0 && retval != -ESRCH);
+       }
+       /* nothing is sensitive to fork() after this point. */
 
+       /*
+        * step 4: do expensive, non-thread-specific subsystem callbacks.
+        * TODO: if ever a subsystem needs to know the oldcgrp for each task
+        * being moved, this call will need to be reworked to communicate that.
+        */
        for_each_subsys(root, ss) {
                if (ss->attach)
-                       ss->attach(ss, cgrp, oldcgrp, tsk);
+                       ss->attach(ss, cgrp, oldcgrp, leader);
        }
-       set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
-       synchronize_rcu();
-       put_css_set(cg);
 
        /*
-        * wake up rmdir() waiter. the rmdir should fail since the cgroup
-        * is no longer empty.
+        * step 5: success! and cleanup
         */
-       cgroup_wakeup_rmdir_waiters(cgrp);
-       return 0;
+       synchronize_rcu();
+       cgroup_wakeup_rmdir_waiter(cgrp);
+       retval = 0;
+out_list_teardown:
+       /* clean up the list of prefetched css_sets. */
+       list_for_each_entry_safe(cg_entry, temp_nobe, &newcg_list, links) {
+               list_del(&cg_entry->links);
+               put_css_set(cg_entry->cg);
+               kfree(cg_entry);
+       }
+out_cancel_attach:
+       /* same deal as in cgroup_attach_task */
+       if (retval) {
+               for_each_subsys(root, ss) {
+                       if (ss == failed_ss) {
+                               if (cancel_failed_ss && ss->cancel_attach)
+                                       ss->cancel_attach(ss, cgrp, leader);
+                               break;
+                       }
+                       if (ss->cancel_attach)
+                               ss->cancel_attach(ss, cgrp, leader);
+               }
+       }
+       /* clean up the array of referenced threads in the group. */
+       for (i = 0; i < group_size; i++) {
+               tsk = flex_array_get_ptr(group, i);
+               put_task_struct(tsk);
+       }
+out_free_group_list:
+       flex_array_free(group);
+       return retval;
 }
 
 /*
- * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
- * held. May take task_lock of task
+ * Find the task_struct of the task to attach by vpid and pass it along to the
+ * function to attach either it or all tasks in its threadgroup. Will take
+ * cgroup_mutex; may take task_lock of task.
  */
-static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
+static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
 {
        struct task_struct *tsk;
        const struct cred *cred = current_cred(), *tcred;
        int ret;
 
+       if (!cgroup_lock_live_group(cgrp))
+               return -ENODEV;
+
        if (pid) {
                rcu_read_lock();
                tsk = find_task_by_vpid(pid);
-               if (!tsk || tsk->flags & PF_EXITING) {
+               if (!tsk) {
+                       rcu_read_unlock();
+                       cgroup_unlock();
+                       return -ESRCH;
+               }
+               if (threadgroup) {
+                       /*
+                        * RCU protects this access, since tsk was found in the
+                        * tid map. a race with de_thread may cause group_leader
+                        * to stop being the leader, but cgroup_attach_proc will
+                        * detect it later.
+                        */
+                       tsk = tsk->group_leader;
+               } else if (tsk->flags & PF_EXITING) {
+                       /* optimization for the single-task-only case */
                        rcu_read_unlock();
+                       cgroup_unlock();
                        return -ESRCH;
                }
 
+               /*
+                * even if we're attaching all tasks in the thread group, we
+                * only need to check permissions on one of them.
+                */
                tcred = __task_cred(tsk);
                if (cred->euid &&
                    cred->euid != tcred->uid &&
                    cred->euid != tcred->suid) {
                        rcu_read_unlock();
+                       cgroup_unlock();
                        return -EACCES;
                }
                get_task_struct(tsk);
                rcu_read_unlock();
        } else {
-               tsk = current;
+               if (threadgroup)
+                       tsk = current->group_leader;
+               else
+                       tsk = current;
                get_task_struct(tsk);
        }
 
-       ret = cgroup_attach_task(cgrp, tsk);
+       if (threadgroup) {
+               threadgroup_fork_write_lock(tsk);
+               ret = cgroup_attach_proc(cgrp, tsk);
+               threadgroup_fork_write_unlock(tsk);
+       } else {
+               ret = cgroup_attach_task(cgrp, tsk);
+       }
        put_task_struct(tsk);
+       cgroup_unlock();
        return ret;
 }
 
 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
+{
+       return attach_task_by_pid(cgrp, pid, false);
+}
+
+static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
 {
        int ret;
-       if (!cgroup_lock_live_group(cgrp))
-               return -ENODEV;
-       ret = attach_task_by_pid(cgrp, pid);
-       cgroup_unlock();
+       do {
+               /*
+                * attach_proc fails with -EAGAIN if threadgroup leadership
+                * changes in the middle of the operation, in which case we need
+                * to find the task_struct for the new leader and start over.
+                */
+               ret = attach_task_by_pid(cgrp, tgid, true);
+       } while (ret == -EAGAIN);
        return ret;
 }
 
-/* The various types of files and directories in a cgroup file system */
-enum cgroup_filetype {
-       FILE_ROOT,
-       FILE_DIR,
-       FILE_TASKLIST,
-       FILE_NOTIFY_ON_RELEASE,
-       FILE_RELEASE_AGENT,
-};
-
 /**
  * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
  * @cgrp: the cgroup to be checked for liveness
@@ -1416,11 +2298,14 @@ bool cgroup_lock_live_group(struct cgroup *cgrp)
        }
        return true;
 }
+EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
 
 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
                                      const char *buffer)
 {
        BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
+       if (strlen(buffer) >= PATH_MAX)
+               return -EINVAL;
        if (!cgroup_lock_live_group(cgrp))
                return -ENODEV;
        strcpy(cgrp->root->release_agent_path, buffer);
@@ -1459,14 +2344,13 @@ static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
                return -EFAULT;
 
        buffer[nbytes] = 0;     /* nul-terminate */
-       strstrip(buffer);
        if (cft->write_u64) {
-               u64 val = simple_strtoull(buffer, &end, 0);
+               u64 val = simple_strtoull(strstrip(buffer), &end, 0);
                if (*end)
                        return -EINVAL;
                retval = cft->write_u64(cgrp, cft, val);
        } else {
-               s64 val = simple_strtoll(buffer, &end, 0);
+               s64 val = simple_strtoll(strstrip(buffer), &end, 0);
                if (*end)
                        return -EINVAL;
                retval = cft->write_s64(cgrp, cft, val);
@@ -1502,8 +2386,7 @@ static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
        }
 
        buffer[nbytes] = 0;     /* nul-terminate */
-       strstrip(buffer);
-       retval = cft->write_string(cgrp, cft, buffer);
+       retval = cft->write_string(cgrp, cft, strstrip(buffer));
        if (!retval)
                retval = nbytes;
 out:
@@ -1612,7 +2495,7 @@ static int cgroup_seqfile_release(struct inode *inode, struct file *file)
        return single_release(inode, file);
 }
 
-static struct file_operations cgroup_seqfile_operations = {
+static const struct file_operations cgroup_seqfile_operations = {
        .read = seq_read,
        .write = cgroup_file_write,
        .llseek = seq_lseek,
@@ -1671,7 +2554,7 @@ static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
        return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
 }
 
-static struct file_operations cgroup_file_operations = {
+static const struct file_operations cgroup_file_operations = {
        .read = cgroup_file_read,
        .write = cgroup_file_write,
        .llseek = generic_file_llseek,
@@ -1679,20 +2562,34 @@ static struct file_operations cgroup_file_operations = {
        .release = cgroup_file_release,
 };
 
-static struct inode_operations cgroup_dir_inode_operations = {
-       .lookup = simple_lookup,
+static const struct inode_operations cgroup_dir_inode_operations = {
+       .lookup = cgroup_lookup,
        .mkdir = cgroup_mkdir,
        .rmdir = cgroup_rmdir,
        .rename = cgroup_rename,
 };
 
+static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
+{
+       if (dentry->d_name.len > NAME_MAX)
+               return ERR_PTR(-ENAMETOOLONG);
+       d_add(dentry, NULL);
+       return NULL;
+}
+
+/*
+ * Check if a file is a control file
+ */
+static inline struct cftype *__file_cft(struct file *file)
+{
+       if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
+               return ERR_PTR(-EINVAL);
+       return __d_cft(file->f_dentry);
+}
+
 static int cgroup_create_file(struct dentry *dentry, mode_t mode,
                                struct super_block *sb)
 {
-       static const struct dentry_operations cgroup_dops = {
-               .d_iput = cgroup_diput,
-       };
-
        struct inode *inode;
 
        if (!dentry)
@@ -1718,7 +2615,6 @@ static int cgroup_create_file(struct dentry *dentry, mode_t mode,
                inode->i_size = 0;
                inode->i_fop = &cgroup_file_operations;
        }
-       dentry->d_op = &cgroup_dops;
        d_instantiate(dentry, inode);
        dget(dentry);   /* Extra count - pin the dentry in core */
        return 0;
@@ -1805,6 +2701,7 @@ int cgroup_add_file(struct cgroup *cgrp,
                error = PTR_ERR(dentry);
        return error;
 }
+EXPORT_SYMBOL_GPL(cgroup_add_file);
 
 int cgroup_add_files(struct cgroup *cgrp,
                        struct cgroup_subsys *subsys,
@@ -1819,6 +2716,7 @@ int cgroup_add_files(struct cgroup *cgrp,
        }
        return 0;
 }
+EXPORT_SYMBOL_GPL(cgroup_add_files);
 
 /**
  * cgroup_task_count - count the number of tasks in a cgroup.
@@ -1844,7 +2742,7 @@ int cgroup_task_count(const struct cgroup *cgrp)
  * the start of a css_set
  */
 static void cgroup_advance_iter(struct cgroup *cgrp,
-                                         struct cgroup_iter *it)
+                               struct cgroup_iter *it)
 {
        struct list_head *l = it->cg_link;
        struct cg_cgroup_link *link;
@@ -2097,37 +2995,203 @@ int cgroup_scan_tasks(struct cgroup_scanner *scan)
 }
 
 /*
- * Stuff for reading the 'tasks' file.
- *
- * Reading this file can return large amounts of data if a cgroup has
- * *lots* of attached tasks. So it may need several calls to read(),
- * but we cannot guarantee that the information we produce is correct
- * unless we produce it entirely atomically.
- *
+ * Stuff for reading the 'tasks'/'procs' files.
+ *
+ * Reading this file can return large amounts of data if a cgroup has
+ * *lots* of attached tasks. So it may need several calls to read(),
+ * but we cannot guarantee that the information we produce is correct
+ * unless we produce it entirely atomically.
+ *
+ */
+
+/*
+ * The following two functions "fix" the issue where there are more pids
+ * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
+ * TODO: replace with a kernel-wide solution to this problem
+ */
+#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
+static void *pidlist_allocate(int count)
+{
+       if (PIDLIST_TOO_LARGE(count))
+               return vmalloc(count * sizeof(pid_t));
+       else
+               return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
+}
+static void pidlist_free(void *p)
+{
+       if (is_vmalloc_addr(p))
+               vfree(p);
+       else
+               kfree(p);
+}
+static void *pidlist_resize(void *p, int newcount)
+{
+       void *newlist;
+       /* note: if new alloc fails, old p will still be valid either way */
+       if (is_vmalloc_addr(p)) {
+               newlist = vmalloc(newcount * sizeof(pid_t));
+               if (!newlist)
+                       return NULL;
+               memcpy(newlist, p, newcount * sizeof(pid_t));
+               vfree(p);
+       } else {
+               newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
+       }
+       return newlist;
+}
+
+/*
+ * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
+ * If the new stripped list is sufficiently smaller and there's enough memory
+ * to allocate a new buffer, will let go of the unneeded memory. Returns the
+ * number of unique elements.
+ */
+/* is the size difference enough that we should re-allocate the array? */
+#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
+static int pidlist_uniq(pid_t **p, int length)
+{
+       int src, dest = 1;
+       pid_t *list = *p;
+       pid_t *newlist;
+
+       /*
+        * we presume the 0th element is unique, so i starts at 1. trivial
+        * edge cases first; no work needs to be done for either
+        */
+       if (length == 0 || length == 1)
+               return length;
+       /* src and dest walk down the list; dest counts unique elements */
+       for (src = 1; src < length; src++) {
+               /* find next unique element */
+               while (list[src] == list[src-1]) {
+                       src++;
+                       if (src == length)
+                               goto after;
+               }
+               /* dest always points to where the next unique element goes */
+               list[dest] = list[src];
+               dest++;
+       }
+after:
+       /*
+        * if the length difference is large enough, we want to allocate a
+        * smaller buffer to save memory. if this fails due to out of memory,
+        * we'll just stay with what we've got.
+        */
+       if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
+               newlist = pidlist_resize(list, dest);
+               if (newlist)
+                       *p = newlist;
+       }
+       return dest;
+}
+
+static int cmppid(const void *a, const void *b)
+{
+       return *(pid_t *)a - *(pid_t *)b;
+}
+
+/*
+ * find the appropriate pidlist for our purpose (given procs vs tasks)
+ * returns with the lock on that pidlist already held, and takes care
+ * of the use count, or returns NULL with no locks held if we're out of
+ * memory.
  */
+static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
+                                                 enum cgroup_filetype type)
+{
+       struct cgroup_pidlist *l;
+       /* don't need task_nsproxy() if we're looking at ourself */
+       struct pid_namespace *ns = current->nsproxy->pid_ns;
+
+       /*
+        * We can't drop the pidlist_mutex before taking the l->mutex in case
+        * the last ref-holder is trying to remove l from the list at the same
+        * time. Holding the pidlist_mutex precludes somebody taking whichever
+        * list we find out from under us - compare release_pid_array().
+        */
+       mutex_lock(&cgrp->pidlist_mutex);
+       list_for_each_entry(l, &cgrp->pidlists, links) {
+               if (l->key.type == type && l->key.ns == ns) {
+                       /* make sure l doesn't vanish out from under us */
+                       down_write(&l->mutex);
+                       mutex_unlock(&cgrp->pidlist_mutex);
+                       return l;
+               }
+       }
+       /* entry not found; create a new one */
+       l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
+       if (!l) {
+               mutex_unlock(&cgrp->pidlist_mutex);
+               return l;
+       }
+       init_rwsem(&l->mutex);
+       down_write(&l->mutex);
+       l->key.type = type;
+       l->key.ns = get_pid_ns(ns);
+       l->use_count = 0; /* don't increment here */
+       l->list = NULL;
+       l->owner = cgrp;
+       list_add(&l->links, &cgrp->pidlists);
+       mutex_unlock(&cgrp->pidlist_mutex);
+       return l;
+}
 
 /*
- * Load into 'pidarray' up to 'npids' of the tasks using cgroup
- * 'cgrp'.  Return actual number of pids loaded.  No need to
- * task_lock(p) when reading out p->cgroup, since we're in an RCU
- * read section, so the css_set can't go away, and is
- * immutable after creation.
+ * Load a cgroup's pidarray with either procs' tgids or tasks' pids
  */
-static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
+static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
+                             struct cgroup_pidlist **lp)
 {
-       int n = 0, pid;
+       pid_t *array;
+       int length;
+       int pid, n = 0; /* used for populating the array */
        struct cgroup_iter it;
        struct task_struct *tsk;
+       struct cgroup_pidlist *l;
+
+       /*
+        * If cgroup gets more users after we read count, we won't have
+        * enough space - tough.  This race is indistinguishable to the
+        * caller from the case that the additional cgroup users didn't
+        * show up until sometime later on.
+        */
+       length = cgroup_task_count(cgrp);
+       array = pidlist_allocate(length);
+       if (!array)
+               return -ENOMEM;
+       /* now, populate the array */
        cgroup_iter_start(cgrp, &it);
        while ((tsk = cgroup_iter_next(cgrp, &it))) {
-               if (unlikely(n == npids))
+               if (unlikely(n == length))
                        break;
-               pid = task_pid_vnr(tsk);
-               if (pid > 0)
-                       pidarray[n++] = pid;
+               /* get tgid or pid for procs or tasks file respectively */
+               if (type == CGROUP_FILE_PROCS)
+                       pid = task_tgid_vnr(tsk);
+               else
+                       pid = task_pid_vnr(tsk);
+               if (pid > 0) /* make sure to only use valid results */
+                       array[n++] = pid;
        }
        cgroup_iter_end(cgrp, &it);
-       return n;
+       length = n;
+       /* now sort & (if procs) strip out duplicates */
+       sort(array, length, sizeof(pid_t), cmppid, NULL);
+       if (type == CGROUP_FILE_PROCS)
+               length = pidlist_uniq(&array, length);
+       l = cgroup_pidlist_find(cgrp, type);
+       if (!l) {
+               pidlist_free(array);
+               return -ENOMEM;
+       }
+       /* store array, freeing old if necessary - lock already held */
+       pidlist_free(l->list);
+       l->list = array;
+       l->length = length;
+       l->use_count++;
+       up_write(&l->mutex);
+       *lp = l;
+       return 0;
 }
 
 /**
@@ -2184,19 +3248,14 @@ err:
        return ret;
 }
 
-static int cmppid(const void *a, const void *b)
-{
-       return *(pid_t *)a - *(pid_t *)b;
-}
-
 
 /*
- * seq_file methods for the "tasks" file. The seq_file position is the
+ * seq_file methods for the tasks/procs files. The seq_file position is the
  * next pid to display; the seq_file iterator is a pointer to the pid
- * in the cgroup->tasks_pids array.
+ * in the cgroup->l->list array.
  */
 
-static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
+static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
 {
        /*
         * Initially we receive a position value that corresponds to
@@ -2204,46 +3263,45 @@ static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
         * after a seek to the start). Use a binary-search to find the
         * next pid to display, if any
         */
-       struct cgroup *cgrp = s->private;
+       struct cgroup_pidlist *l = s->private;
        int index = 0, pid = *pos;
        int *iter;
 
-       down_read(&cgrp->pids_mutex);
+       down_read(&l->mutex);
        if (pid) {
-               int end = cgrp->pids_length;
+               int end = l->length;
 
                while (index < end) {
                        int mid = (index + end) / 2;
-                       if (cgrp->tasks_pids[mid] == pid) {
+                       if (l->list[mid] == pid) {
                                index = mid;
                                break;
-                       } else if (cgrp->tasks_pids[mid] <= pid)
+                       } else if (l->list[mid] <= pid)
                                index = mid + 1;
                        else
                                end = mid;
                }
        }
        /* If we're off the end of the array, we're done */
-       if (index >= cgrp->pids_length)
+       if (index >= l->length)
                return NULL;
        /* Update the abstract position to be the actual pid that we found */
-       iter = cgrp->tasks_pids + index;
+       iter = l->list + index;
        *pos = *iter;
        return iter;
 }
 
-static void cgroup_tasks_stop(struct seq_file *s, void *v)
+static void cgroup_pidlist_stop(struct seq_file *s, void *v)
 {
-       struct cgroup *cgrp = s->private;
-       up_read(&cgrp->pids_mutex);
+       struct cgroup_pidlist *l = s->private;
+       up_read(&l->mutex);
 }
 
-static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
+static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
 {
-       struct cgroup *cgrp = s->private;
-       int *p = v;
-       int *end = cgrp->tasks_pids + cgrp->pids_length;
-
+       struct cgroup_pidlist *l = s->private;
+       pid_t *p = v;
+       pid_t *end = l->list + l->length;
        /*
         * Advance to the next pid in the array. If this goes off the
         * end, we're done
@@ -2257,98 +3315,107 @@ static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
        }
 }
 
-static int cgroup_tasks_show(struct seq_file *s, void *v)
+static int cgroup_pidlist_show(struct seq_file *s, void *v)
 {
        return seq_printf(s, "%d\n", *(int *)v);
 }
 
-static struct seq_operations cgroup_tasks_seq_operations = {
-       .start = cgroup_tasks_start,
-       .stop = cgroup_tasks_stop,
-       .next = cgroup_tasks_next,
-       .show = cgroup_tasks_show,
+/*
+ * seq_operations functions for iterating on pidlists through seq_file -
+ * independent of whether it's tasks or procs
+ */
+static const struct seq_operations cgroup_pidlist_seq_operations = {
+       .start = cgroup_pidlist_start,
+       .stop = cgroup_pidlist_stop,
+       .next = cgroup_pidlist_next,
+       .show = cgroup_pidlist_show,
 };
 
-static void release_cgroup_pid_array(struct cgroup *cgrp)
+static void cgroup_release_pid_array(struct cgroup_pidlist *l)
 {
-       down_write(&cgrp->pids_mutex);
-       BUG_ON(!cgrp->pids_use_count);
-       if (!--cgrp->pids_use_count) {
-               kfree(cgrp->tasks_pids);
-               cgrp->tasks_pids = NULL;
-               cgrp->pids_length = 0;
+       /*
+        * the case where we're the last user of this particular pidlist will
+        * have us remove it from the cgroup's list, which entails taking the
+        * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
+        * pidlist_mutex, we have to take pidlist_mutex first.
+        */
+       mutex_lock(&l->owner->pidlist_mutex);
+       down_write(&l->mutex);
+       BUG_ON(!l->use_count);
+       if (!--l->use_count) {
+               /* we're the last user if refcount is 0; remove and free */
+               list_del(&l->links);
+               mutex_unlock(&l->owner->pidlist_mutex);
+               pidlist_free(l->list);
+               put_pid_ns(l->key.ns);
+               up_write(&l->mutex);
+               kfree(l);
+               return;
        }
-       up_write(&cgrp->pids_mutex);
+       mutex_unlock(&l->owner->pidlist_mutex);
+       up_write(&l->mutex);
 }
 
-static int cgroup_tasks_release(struct inode *inode, struct file *file)
+static int cgroup_pidlist_release(struct inode *inode, struct file *file)
 {
-       struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
-
+       struct cgroup_pidlist *l;
        if (!(file->f_mode & FMODE_READ))
                return 0;
-
-       release_cgroup_pid_array(cgrp);
+       /*
+        * the seq_file will only be initialized if the file was opened for
+        * reading; hence we check if it's not null only in that case.
+        */
+       l = ((struct seq_file *)file->private_data)->private;
+       cgroup_release_pid_array(l);
        return seq_release(inode, file);
 }
 
-static struct file_operations cgroup_tasks_operations = {
+static const struct file_operations cgroup_pidlist_operations = {
        .read = seq_read,
        .llseek = seq_lseek,
        .write = cgroup_file_write,
-       .release = cgroup_tasks_release,
+       .release = cgroup_pidlist_release,
 };
 
 /*
- * Handle an open on 'tasks' file.  Prepare an array containing the
- * process id's of tasks currently attached to the cgroup being opened.
+ * The following functions handle opens on a file that displays a pidlist
+ * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
+ * in the cgroup.
  */
-
-static int cgroup_tasks_open(struct inode *unused, struct file *file)
+/* helper function for the two below it */
+static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
 {
        struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
-       pid_t *pidarray;
-       int npids;
+       struct cgroup_pidlist *l;
        int retval;
 
        /* Nothing to do for write-only files */
        if (!(file->f_mode & FMODE_READ))
                return 0;
 
-       /*
-        * If cgroup gets more users after we read count, we won't have
-        * enough space - tough.  This race is indistinguishable to the
-        * caller from the case that the additional cgroup users didn't
-        * show up until sometime later on.
-        */
-       npids = cgroup_task_count(cgrp);
-       pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
-       if (!pidarray)
-               return -ENOMEM;
-       npids = pid_array_load(pidarray, npids, cgrp);
-       sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
-
-       /*
-        * Store the array in the cgroup, freeing the old
-        * array if necessary
-        */
-       down_write(&cgrp->pids_mutex);
-       kfree(cgrp->tasks_pids);
-       cgrp->tasks_pids = pidarray;
-       cgrp->pids_length = npids;
-       cgrp->pids_use_count++;
-       up_write(&cgrp->pids_mutex);
-
-       file->f_op = &cgroup_tasks_operations;
+       /* have the array populated */
+       retval = pidlist_array_load(cgrp, type, &l);
+       if (retval)
+               return retval;
+       /* configure file information */
+       file->f_op = &cgroup_pidlist_operations;
 
-       retval = seq_open(file, &cgroup_tasks_seq_operations);
+       retval = seq_open(file, &cgroup_pidlist_seq_operations);
        if (retval) {
-               release_cgroup_pid_array(cgrp);
+               cgroup_release_pid_array(l);
                return retval;
        }
-       ((struct seq_file *)file->private_data)->private = cgrp;
+       ((struct seq_file *)file->private_data)->private = l;
        return 0;
 }
+static int cgroup_tasks_open(struct inode *unused, struct file *file)
+{
+       return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
+}
+static int cgroup_procs_open(struct inode *unused, struct file *file)
+{
+       return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
+}
 
 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
                                            struct cftype *cft)
@@ -2368,24 +3435,225 @@ static int cgroup_write_notify_on_release(struct cgroup *cgrp,
        return 0;
 }
 
+/*
+ * Unregister event and free resources.
+ *
+ * Gets called from workqueue.
+ */
+static void cgroup_event_remove(struct work_struct *work)
+{
+       struct cgroup_event *event = container_of(work, struct cgroup_event,
+                       remove);
+       struct cgroup *cgrp = event->cgrp;
+
+       event->cft->unregister_event(cgrp, event->cft, event->eventfd);
+
+       eventfd_ctx_put(event->eventfd);
+       kfree(event);
+       dput(cgrp->dentry);
+}
+
+/*
+ * Gets called on POLLHUP on eventfd when user closes it.
+ *
+ * Called with wqh->lock held and interrupts disabled.
+ */
+static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
+               int sync, void *key)
+{
+       struct cgroup_event *event = container_of(wait,
+                       struct cgroup_event, wait);
+       struct cgroup *cgrp = event->cgrp;
+       unsigned long flags = (unsigned long)key;
+
+       if (flags & POLLHUP) {
+               __remove_wait_queue(event->wqh, &event->wait);
+               spin_lock(&cgrp->event_list_lock);
+               list_del(&event->list);
+               spin_unlock(&cgrp->event_list_lock);
+               /*
+                * We are in atomic context, but cgroup_event_remove() may
+                * sleep, so we have to call it in workqueue.
+                */
+               schedule_work(&event->remove);
+       }
+
+       return 0;
+}
+
+static void cgroup_event_ptable_queue_proc(struct file *file,
+               wait_queue_head_t *wqh, poll_table *pt)
+{
+       struct cgroup_event *event = container_of(pt,
+                       struct cgroup_event, pt);
+
+       event->wqh = wqh;
+       add_wait_queue(wqh, &event->wait);
+}
+
+/*
+ * Parse input and register new cgroup event handler.
+ *
+ * Input must be in format '<event_fd> <control_fd> <args>'.
+ * Interpretation of args is defined by control file implementation.
+ */
+static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
+                                     const char *buffer)
+{
+       struct cgroup_event *event = NULL;
+       unsigned int efd, cfd;
+       struct file *efile = NULL;
+       struct file *cfile = NULL;
+       char *endp;
+       int ret;
+
+       efd = simple_strtoul(buffer, &endp, 10);
+       if (*endp != ' ')
+               return -EINVAL;
+       buffer = endp + 1;
+
+       cfd = simple_strtoul(buffer, &endp, 10);
+       if ((*endp != ' ') && (*endp != '\0'))
+               return -EINVAL;
+       buffer = endp + 1;
+
+       event = kzalloc(sizeof(*event), GFP_KERNEL);
+       if (!event)
+               return -ENOMEM;
+       event->cgrp = cgrp;
+       INIT_LIST_HEAD(&event->list);
+       init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
+       init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
+       INIT_WORK(&event->remove, cgroup_event_remove);
+
+       efile = eventfd_fget(efd);
+       if (IS_ERR(efile)) {
+               ret = PTR_ERR(efile);
+               goto fail;
+       }
+
+       event->eventfd = eventfd_ctx_fileget(efile);
+       if (IS_ERR(event->eventfd)) {
+               ret = PTR_ERR(event->eventfd);
+               goto fail;
+       }
+
+       cfile = fget(cfd);
+       if (!cfile) {
+               ret = -EBADF;
+               goto fail;
+       }
+
+       /* the process need read permission on control file */
+       /* AV: shouldn't we check that it's been opened for read instead? */
+       ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
+       if (ret < 0)
+               goto fail;
+
+       event->cft = __file_cft(cfile);
+       if (IS_ERR(event->cft)) {
+               ret = PTR_ERR(event->cft);
+               goto fail;
+       }
+
+       if (!event->cft->register_event || !event->cft->unregister_event) {
+               ret = -EINVAL;
+               goto fail;
+       }
+
+       ret = event->cft->register_event(cgrp, event->cft,
+                       event->eventfd, buffer);
+       if (ret)
+               goto fail;
+
+       if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
+               event->cft->unregister_event(cgrp, event->cft, event->eventfd);
+               ret = 0;
+               goto fail;
+       }
+
+       /*
+        * Events should be removed after rmdir of cgroup directory, but before
+        * destroying subsystem state objects. Let's take reference to cgroup
+        * directory dentry to do that.
+        */
+       dget(cgrp->dentry);
+
+       spin_lock(&cgrp->event_list_lock);
+       list_add(&event->list, &cgrp->event_list);
+       spin_unlock(&cgrp->event_list_lock);
+
+       fput(cfile);
+       fput(efile);
+
+       return 0;
+
+fail:
+       if (cfile)
+               fput(cfile);
+
+       if (event && event->eventfd && !IS_ERR(event->eventfd))
+               eventfd_ctx_put(event->eventfd);
+
+       if (!IS_ERR_OR_NULL(efile))
+               fput(efile);
+
+       kfree(event);
+
+       return ret;
+}
+
+static u64 cgroup_clone_children_read(struct cgroup *cgrp,
+                                   struct cftype *cft)
+{
+       return clone_children(cgrp);
+}
+
+static int cgroup_clone_children_write(struct cgroup *cgrp,
+                                    struct cftype *cft,
+                                    u64 val)
+{
+       if (val)
+               set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
+       else
+               clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
+       return 0;
+}
+
 /*
  * for the common functions, 'private' gives the type of file
  */
+/* for hysterical raisins, we can't put this on the older files */
+#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
 static struct cftype files[] = {
        {
                .name = "tasks",
                .open = cgroup_tasks_open,
                .write_u64 = cgroup_tasks_write,
-               .release = cgroup_tasks_release,
-               .private = FILE_TASKLIST,
+               .release = cgroup_pidlist_release,
+               .mode = S_IRUGO | S_IWUSR,
+       },
+       {
+               .name = CGROUP_FILE_GENERIC_PREFIX "procs",
+               .open = cgroup_procs_open,
+               .write_u64 = cgroup_procs_write,
+               .release = cgroup_pidlist_release,
                .mode = S_IRUGO | S_IWUSR,
        },
-
        {
                .name = "notify_on_release",
                .read_u64 = cgroup_read_notify_on_release,
                .write_u64 = cgroup_write_notify_on_release,
-               .private = FILE_NOTIFY_ON_RELEASE,
+       },
+       {
+               .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
+               .write_string = cgroup_write_event_control,
+               .mode = S_IWUGO,
+       },
+       {
+               .name = "cgroup.clone_children",
+               .read_u64 = cgroup_clone_children_read,
+               .write_u64 = cgroup_clone_children_write,
        },
 };
 
@@ -2394,7 +3662,6 @@ static struct cftype cft_release_agent = {
        .read_seq_string = cgroup_release_agent_show,
        .write_string = cgroup_release_agent_write,
        .max_write_len = PATH_MAX,
-       .private = FILE_RELEASE_AGENT,
 };
 
 static int cgroup_populate_dir(struct cgroup *cgrp)
@@ -2452,8 +3719,14 @@ static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
        /* We need to take each hierarchy_mutex in a consistent order */
        int i;
 
+       /*
+        * No worry about a race with rebind_subsystems that might mess up the
+        * locking order, since both parties are under cgroup_mutex.
+        */
        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
                struct cgroup_subsys *ss = subsys[i];
+               if (ss == NULL)
+                       continue;
                if (ss->root == root)
                        mutex_lock(&ss->hierarchy_mutex);
        }
@@ -2465,6 +3738,8 @@ static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
 
        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
                struct cgroup_subsys *ss = subsys[i];
+               if (ss == NULL)
+                       continue;
                if (ss->root == root)
                        mutex_unlock(&ss->hierarchy_mutex);
        }
@@ -2509,17 +3784,25 @@ static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
        if (notify_on_release(parent))
                set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
 
+       if (clone_children(parent))
+               set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
+
        for_each_subsys(root, ss) {
                struct cgroup_subsys_state *css = ss->create(ss, cgrp);
+
                if (IS_ERR(css)) {
                        err = PTR_ERR(css);
                        goto err_destroy;
                }
                init_cgroup_css(css, ss, cgrp);
-               if (ss->use_id)
-                       if (alloc_css_id(ss, parent, cgrp))
+               if (ss->use_id) {
+                       err = alloc_css_id(ss, parent, cgrp);
+                       if (err)
                                goto err_destroy;
+               }
                /* At error, ->destroy() callback has to free assigned ID. */
+               if (clone_children(parent) && ss->post_clone)
+                       ss->post_clone(ss, cgrp);
        }
 
        cgroup_lock_hierarchy(root);
@@ -2585,11 +3868,16 @@ static int cgroup_has_css_refs(struct cgroup *cgrp)
         * synchronization other than RCU, and the subsystem linked
         * list isn't RCU-safe */
        int i;
+       /*
+        * We won't need to lock the subsys array, because the subsystems
+        * we're concerned about aren't going anywhere since our cgroup root
+        * has a reference on them.
+        */
        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
                struct cgroup_subsys *ss = subsys[i];
                struct cgroup_subsys_state *css;
-               /* Skip subsystems not in this hierarchy */
-               if (ss->root != cgrp->root)
+               /* Skip subsystems not present or not in this hierarchy */
+               if (ss == NULL || ss->root != cgrp->root)
                        continue;
                css = cgrp->subsys[ss->subsys_id];
                /* When called from check_for_release() it's possible
@@ -2663,6 +3951,7 @@ static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
        struct dentry *d;
        struct cgroup *parent;
        DEFINE_WAIT(wait);
+       struct cgroup_event *event, *tmp;
        int ret;
 
        /* the vfs holds both inode->i_mutex already */
@@ -2678,34 +3967,43 @@ again:
        }
        mutex_unlock(&cgroup_mutex);
 
+       /*
+        * In general, subsystem has no css->refcnt after pre_destroy(). But
+        * in racy cases, subsystem may have to get css->refcnt after
+        * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
+        * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
+        * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
+        * and subsystem's reference count handling. Please see css_get/put
+        * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
+        */
+       set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
+
        /*
         * Call pre_destroy handlers of subsys. Notify subsystems
         * that rmdir() request comes.
         */
        ret = cgroup_call_pre_destroy(cgrp);
-       if (ret)
+       if (ret) {
+               clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
                return ret;
+       }
 
        mutex_lock(&cgroup_mutex);
        parent = cgrp->parent;
        if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
+               clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
                mutex_unlock(&cgroup_mutex);
                return -EBUSY;
        }
-       /*
-        * css_put/get is provided for subsys to grab refcnt to css. In typical
-        * case, subsystem has no reference after pre_destroy(). But, under
-        * hierarchy management, some *temporal* refcnt can be hold.
-        * To avoid returning -EBUSY to a user, waitqueue is used. If subsys
-        * is really busy, it should return -EBUSY at pre_destroy(). wake_up
-        * is called when css_put() is called and refcnt goes down to 0.
-        */
-       set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
        prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
-
        if (!cgroup_clear_css_refs(cgrp)) {
                mutex_unlock(&cgroup_mutex);
-               schedule();
+               /*
+                * Because someone may call cgroup_wakeup_rmdir_waiter() before
+                * prepare_to_wait(), we need to check this flag.
+                */
+               if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
+                       schedule();
                finish_wait(&cgroup_rmdir_waitq, &wait);
                clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
                if (signal_pending(current))
@@ -2719,59 +4017,260 @@ again:
        spin_lock(&release_list_lock);
        set_bit(CGRP_REMOVED, &cgrp->flags);
        if (!list_empty(&cgrp->release_list))
-               list_del(&cgrp->release_list);
+               list_del_init(&cgrp->release_list);
        spin_unlock(&release_list_lock);
 
-       cgroup_lock_hierarchy(cgrp->root);
-       /* delete this cgroup from parent->children */
-       list_del(&cgrp->sibling);
-       cgroup_unlock_hierarchy(cgrp->root);
+       cgroup_lock_hierarchy(cgrp->root);
+       /* delete this cgroup from parent->children */
+       list_del_init(&cgrp->sibling);
+       cgroup_unlock_hierarchy(cgrp->root);
+
+       d = dget(cgrp->dentry);
+
+       cgroup_d_remove_dir(d);
+       dput(d);
+
+       set_bit(CGRP_RELEASABLE, &parent->flags);
+       check_for_release(parent);
+
+       /*
+        * Unregister events and notify userspace.
+        * Notify userspace about cgroup removing only after rmdir of cgroup
+        * directory to avoid race between userspace and kernelspace
+        */
+       spin_lock(&cgrp->event_list_lock);
+       list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
+               list_del(&event->list);
+               remove_wait_queue(event->wqh, &event->wait);
+               eventfd_signal(event->eventfd, 1);
+               schedule_work(&event->remove);
+       }
+       spin_unlock(&cgrp->event_list_lock);
+
+       mutex_unlock(&cgroup_mutex);
+       return 0;
+}
+
+static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
+{
+       struct cgroup_subsys_state *css;
+
+       printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
+
+       /* Create the top cgroup state for this subsystem */
+       list_add(&ss->sibling, &rootnode.subsys_list);
+       ss->root = &rootnode;
+       css = ss->create(ss, dummytop);
+       /* We don't handle early failures gracefully */
+       BUG_ON(IS_ERR(css));
+       init_cgroup_css(css, ss, dummytop);
+
+       /* Update the init_css_set to contain a subsys
+        * pointer to this state - since the subsystem is
+        * newly registered, all tasks and hence the
+        * init_css_set is in the subsystem's top cgroup. */
+       init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
+
+       need_forkexit_callback |= ss->fork || ss->exit;
+
+       /* At system boot, before all subsystems have been
+        * registered, no tasks have been forked, so we don't
+        * need to invoke fork callbacks here. */
+       BUG_ON(!list_empty(&init_task.tasks));
+
+       mutex_init(&ss->hierarchy_mutex);
+       lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
+       ss->active = 1;
+
+       /* this function shouldn't be used with modular subsystems, since they
+        * need to register a subsys_id, among other things */
+       BUG_ON(ss->module);
+}
+
+/**
+ * cgroup_load_subsys: load and register a modular subsystem at runtime
+ * @ss: the subsystem to load
+ *
+ * This function should be called in a modular subsystem's initcall. If the
+ * subsystem is built as a module, it will be assigned a new subsys_id and set
+ * up for use. If the subsystem is built-in anyway, work is delegated to the
+ * simpler cgroup_init_subsys.
+ */
+int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
+{
+       int i;
+       struct cgroup_subsys_state *css;
+
+       /* check name and function validity */
+       if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
+           ss->create == NULL || ss->destroy == NULL)
+               return -EINVAL;
+
+       /*
+        * we don't support callbacks in modular subsystems. this check is
+        * before the ss->module check for consistency; a subsystem that could
+        * be a module should still have no callbacks even if the user isn't
+        * compiling it as one.
+        */
+       if (ss->fork || ss->exit)
+               return -EINVAL;
+
+       /*
+        * an optionally modular subsystem is built-in: we want to do nothing,
+        * since cgroup_init_subsys will have already taken care of it.
+        */
+       if (ss->module == NULL) {
+               /* a few sanity checks */
+               BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
+               BUG_ON(subsys[ss->subsys_id] != ss);
+               return 0;
+       }
+
+       /*
+        * need to register a subsys id before anything else - for example,
+        * init_cgroup_css needs it.
+        */
+       mutex_lock(&cgroup_mutex);
+       /* find the first empty slot in the array */
+       for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
+               if (subsys[i] == NULL)
+                       break;
+       }
+       if (i == CGROUP_SUBSYS_COUNT) {
+               /* maximum number of subsystems already registered! */
+               mutex_unlock(&cgroup_mutex);
+               return -EBUSY;
+       }
+       /* assign ourselves the subsys_id */
+       ss->subsys_id = i;
+       subsys[i] = ss;
+
+       /*
+        * no ss->create seems to need anything important in the ss struct, so
+        * this can happen first (i.e. before the rootnode attachment).
+        */
+       css = ss->create(ss, dummytop);
+       if (IS_ERR(css)) {
+               /* failure case - need to deassign the subsys[] slot. */
+               subsys[i] = NULL;
+               mutex_unlock(&cgroup_mutex);
+               return PTR_ERR(css);
+       }
+
+       list_add(&ss->sibling, &rootnode.subsys_list);
+       ss->root = &rootnode;
 
-       spin_lock(&cgrp->dentry->d_lock);
-       d = dget(cgrp->dentry);
-       spin_unlock(&d->d_lock);
+       /* our new subsystem will be attached to the dummy hierarchy. */
+       init_cgroup_css(css, ss, dummytop);
+       /* init_idr must be after init_cgroup_css because it sets css->id. */
+       if (ss->use_id) {
+               int ret = cgroup_init_idr(ss, css);
+               if (ret) {
+                       dummytop->subsys[ss->subsys_id] = NULL;
+                       ss->destroy(ss, dummytop);
+                       subsys[i] = NULL;
+                       mutex_unlock(&cgroup_mutex);
+                       return ret;
+               }
+       }
 
-       cgroup_d_remove_dir(d);
-       dput(d);
+       /*
+        * Now we need to entangle the css into the existing css_sets. unlike
+        * in cgroup_init_subsys, there are now multiple css_sets, so each one
+        * will need a new pointer to it; done by iterating the css_set_table.
+        * furthermore, modifying the existing css_sets will corrupt the hash
+        * table state, so each changed css_set will need its hash recomputed.
+        * this is all done under the css_set_lock.
+        */
+       write_lock(&css_set_lock);
+       for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
+               struct css_set *cg;
+               struct hlist_node *node, *tmp;
+               struct hlist_head *bucket = &css_set_table[i], *new_bucket;
+
+               hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
+                       /* skip entries that we already rehashed */
+                       if (cg->subsys[ss->subsys_id])
+                               continue;
+                       /* remove existing entry */
+                       hlist_del(&cg->hlist);
+                       /* set new value */
+                       cg->subsys[ss->subsys_id] = css;
+                       /* recompute hash and restore entry */
+                       new_bucket = css_set_hash(cg->subsys);
+                       hlist_add_head(&cg->hlist, new_bucket);
+               }
+       }
+       write_unlock(&css_set_lock);
 
-       set_bit(CGRP_RELEASABLE, &parent->flags);
-       check_for_release(parent);
+       mutex_init(&ss->hierarchy_mutex);
+       lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
+       ss->active = 1;
 
+       /* success! */
        mutex_unlock(&cgroup_mutex);
        return 0;
 }
+EXPORT_SYMBOL_GPL(cgroup_load_subsys);
 
-static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
+/**
+ * cgroup_unload_subsys: unload a modular subsystem
+ * @ss: the subsystem to unload
+ *
+ * This function should be called in a modular subsystem's exitcall. When this
+ * function is invoked, the refcount on the subsystem's module will be 0, so
+ * the subsystem will not be attached to any hierarchy.
+ */
+void cgroup_unload_subsys(struct cgroup_subsys *ss)
 {
-       struct cgroup_subsys_state *css;
+       struct cg_cgroup_link *link;
+       struct hlist_head *hhead;
 
-       printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
+       BUG_ON(ss->module == NULL);
 
-       /* Create the top cgroup state for this subsystem */
-       list_add(&ss->sibling, &rootnode.subsys_list);
-       ss->root = &rootnode;
-       css = ss->create(ss, dummytop);
-       /* We don't handle early failures gracefully */
-       BUG_ON(IS_ERR(css));
-       init_cgroup_css(css, ss, dummytop);
+       /*
+        * we shouldn't be called if the subsystem is in use, and the use of
+        * try_module_get in parse_cgroupfs_options should ensure that it
+        * doesn't start being used while we're killing it off.
+        */
+       BUG_ON(ss->root != &rootnode);
 
-       /* Update the init_css_set to contain a subsys
-        * pointer to this state - since the subsystem is
-        * newly registered, all tasks and hence the
-        * init_css_set is in the subsystem's top cgroup. */
-       init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
+       mutex_lock(&cgroup_mutex);
+       /* deassign the subsys_id */
+       BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
+       subsys[ss->subsys_id] = NULL;
 
-       need_forkexit_callback |= ss->fork || ss->exit;
+       /* remove subsystem from rootnode's list of subsystems */
+       list_del_init(&ss->sibling);
 
-       /* At system boot, before all subsystems have been
-        * registered, no tasks have been forked, so we don't
-        * need to invoke fork callbacks here. */
-       BUG_ON(!list_empty(&init_task.tasks));
+       /*
+        * disentangle the css from all css_sets attached to the dummytop. as
+        * in loading, we need to pay our respects to the hashtable gods.
+        */
+       write_lock(&css_set_lock);
+       list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
+               struct css_set *cg = link->cg;
+
+               hlist_del(&cg->hlist);
+               BUG_ON(!cg->subsys[ss->subsys_id]);
+               cg->subsys[ss->subsys_id] = NULL;
+               hhead = css_set_hash(cg->subsys);
+               hlist_add_head(&cg->hlist, hhead);
+       }
+       write_unlock(&css_set_lock);
 
-       mutex_init(&ss->hierarchy_mutex);
-       lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
-       ss->active = 1;
+       /*
+        * remove subsystem's css from the dummytop and free it - need to free
+        * before marking as null because ss->destroy needs the cgrp->subsys
+        * pointer to find their state. note that this also takes care of
+        * freeing the css_id.
+        */
+       ss->destroy(ss, dummytop);
+       dummytop->subsys[ss->subsys_id] = NULL;
+
+       mutex_unlock(&cgroup_mutex);
 }
+EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
 
 /**
  * cgroup_init_early - cgroup initialization at system boot
@@ -2792,6 +4291,7 @@ int __init cgroup_init_early(void)
        init_task.cgroups = &init_css_set;
 
        init_css_set_link.cg = &init_css_set;
+       init_css_set_link.cgrp = dummytop;
        list_add(&init_css_set_link.cgrp_link_list,
                 &rootnode.top_cgroup.css_sets);
        list_add(&init_css_set_link.cg_link_list,
@@ -2800,7 +4300,8 @@ int __init cgroup_init_early(void)
        for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
                INIT_HLIST_HEAD(&css_set_table[i]);
 
-       for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
+       /* at bootup time, we don't worry about modular subsystems */
+       for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
                struct cgroup_subsys *ss = subsys[i];
 
                BUG_ON(!ss->name);
@@ -2835,21 +4336,31 @@ int __init cgroup_init(void)
        if (err)
                return err;
 
-       for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
+       /* at bootup time, we don't worry about modular subsystems */
+       for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
                struct cgroup_subsys *ss = subsys[i];
                if (!ss->early_init)
                        cgroup_init_subsys(ss);
                if (ss->use_id)
-                       cgroup_subsys_init_idr(ss);
+                       cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
        }
 
        /* Add init_css_set to the hash table */
        hhead = css_set_hash(init_css_set.subsys);
        hlist_add_head(&init_css_set.hlist, hhead);
+       BUG_ON(!init_root_id(&rootnode));
+
+       cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
+       if (!cgroup_kobj) {
+               err = -ENOMEM;
+               goto out;
+       }
 
        err = register_filesystem(&cgroup_fs_type);
-       if (err < 0)
+       if (err < 0) {
+               kobject_put(cgroup_kobj);
                goto out;
+       }
 
        proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
 
@@ -2899,15 +4410,16 @@ static int proc_cgroup_show(struct seq_file *m, void *v)
        for_each_active_root(root) {
                struct cgroup_subsys *ss;
                struct cgroup *cgrp;
-               int subsys_id;
                int count = 0;
 
-               seq_printf(m, "%lu:", root->subsys_bits);
+               seq_printf(m, "%d:", root->hierarchy_id);
                for_each_subsys(root, ss)
                        seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
+               if (strlen(root->name))
+                       seq_printf(m, "%sname=%s", count ? "," : "",
+                                  root->name);
                seq_putc(m, ':');
-               get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
-               cgrp = task_cgroup(tsk, subsys_id);
+               cgrp = task_cgroup_from_root(tsk, root);
                retval = cgroup_path(cgrp, buf, PAGE_SIZE);
                if (retval < 0)
                        goto out_unlock;
@@ -2930,7 +4442,7 @@ static int cgroup_open(struct inode *inode, struct file *file)
        return single_open(file, proc_cgroup_show, pid);
 }
 
-struct file_operations proc_cgroup_operations = {
+const struct file_operations proc_cgroup_operations = {
        .open           = cgroup_open,
        .read           = seq_read,
        .llseek         = seq_lseek,
@@ -2943,11 +4455,18 @@ static int proc_cgroupstats_show(struct seq_file *m, void *v)
        int i;
 
        seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
+       /*
+        * ideally we don't want subsystems moving around while we do this.
+        * cgroup_mutex is also necessary to guarantee an atomic snapshot of
+        * subsys/hierarchy state.
+        */
        mutex_lock(&cgroup_mutex);
        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
                struct cgroup_subsys *ss = subsys[i];
-               seq_printf(m, "%s\t%lu\t%d\t%d\n",
-                          ss->name, ss->root->subsys_bits,
+               if (ss == NULL)
+                       continue;
+               seq_printf(m, "%s\t%d\t%d\t%d\n",
+                          ss->name, ss->root->hierarchy_id,
                           ss->root->number_of_cgroups, !ss->disabled);
        }
        mutex_unlock(&cgroup_mutex);
@@ -2959,7 +4478,7 @@ static int cgroupstats_open(struct inode *inode, struct file *file)
        return single_open(file, proc_cgroupstats_show, NULL);
 }
 
-static struct file_operations proc_cgroupstats_operations = {
+static const struct file_operations proc_cgroupstats_operations = {
        .open = cgroupstats_open,
        .read = seq_read,
        .llseek = seq_lseek,
@@ -3003,7 +4522,12 @@ void cgroup_fork_callbacks(struct task_struct *child)
 {
        if (need_forkexit_callback) {
                int i;
-               for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
+               /*
+                * forkexit callbacks are only supported for builtin
+                * subsystems, and the builtin section of the subsys array is
+                * immutable, so we don't need to lock the subsys array here.
+                */
+               for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
                        struct cgroup_subsys *ss = subsys[i];
                        if (ss->fork)
                                ss->fork(ss, child);
@@ -3068,16 +4592,8 @@ void cgroup_post_fork(struct task_struct *child)
  */
 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
 {
-       int i;
        struct css_set *cg;
-
-       if (run_callbacks && need_forkexit_callback) {
-               for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
-                       struct cgroup_subsys *ss = subsys[i];
-                       if (ss->exit)
-                               ss->exit(ss, tsk);
-               }
-       }
+       int i;
 
        /*
         * Unlink from the css_set task list if necessary.
@@ -3087,7 +4603,7 @@ void cgroup_exit(struct task_struct *tsk, int run_callbacks)
        if (!list_empty(&tsk->cg_list)) {
                write_lock(&css_set_lock);
                if (!list_empty(&tsk->cg_list))
-                       list_del(&tsk->cg_list);
+                       list_del_init(&tsk->cg_list);
                write_unlock(&css_set_lock);
        }
 
@@ -3095,125 +4611,26 @@ void cgroup_exit(struct task_struct *tsk, int run_callbacks)
        task_lock(tsk);
        cg = tsk->cgroups;
        tsk->cgroups = &init_css_set;
-       task_unlock(tsk);
-       if (cg)
-               put_css_set_taskexit(cg);
-}
-
-/**
- * cgroup_clone - clone the cgroup the given subsystem is attached to
- * @tsk: the task to be moved
- * @subsys: the given subsystem
- * @nodename: the name for the new cgroup
- *
- * Duplicate the current cgroup in the hierarchy that the given
- * subsystem is attached to, and move this task into the new
- * child.
- */
-int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
-                                                       char *nodename)
-{
-       struct dentry *dentry;
-       int ret = 0;
-       struct cgroup *parent, *child;
-       struct inode *inode;
-       struct css_set *cg;
-       struct cgroupfs_root *root;
-       struct cgroup_subsys *ss;
 
-       /* We shouldn't be called by an unregistered subsystem */
-       BUG_ON(!subsys->active);
-
-       /* First figure out what hierarchy and cgroup we're dealing
-        * with, and pin them so we can drop cgroup_mutex */
-       mutex_lock(&cgroup_mutex);
- again:
-       root = subsys->root;
-       if (root == &rootnode) {
-               mutex_unlock(&cgroup_mutex);
-               return 0;
-       }
-
-       /* Pin the hierarchy */
-       if (!atomic_inc_not_zero(&root->sb->s_active)) {
-               /* We race with the final deactivate_super() */
-               mutex_unlock(&cgroup_mutex);
-               return 0;
+       if (run_callbacks && need_forkexit_callback) {
+               /*
+                * modular subsystems can't use callbacks, so no need to lock
+                * the subsys array
+                */
+               for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
+                       struct cgroup_subsys *ss = subsys[i];
+                       if (ss->exit) {
+                               struct cgroup *old_cgrp =
+                                       rcu_dereference_raw(cg->subsys[i])->cgroup;
+                               struct cgroup *cgrp = task_cgroup(tsk, i);
+                               ss->exit(ss, cgrp, old_cgrp, tsk);
+                       }
+               }
        }
-
-       /* Keep the cgroup alive */
-       task_lock(tsk);
-       parent = task_cgroup(tsk, subsys->subsys_id);
-       cg = tsk->cgroups;
-       get_css_set(cg);
        task_unlock(tsk);
 
-       mutex_unlock(&cgroup_mutex);
-
-       /* Now do the VFS work to create a cgroup */
-       inode = parent->dentry->d_inode;
-
-       /* Hold the parent directory mutex across this operation to
-        * stop anyone else deleting the new cgroup */
-       mutex_lock(&inode->i_mutex);
-       dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
-       if (IS_ERR(dentry)) {
-               printk(KERN_INFO
-                      "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
-                      PTR_ERR(dentry));
-               ret = PTR_ERR(dentry);
-               goto out_release;
-       }
-
-       /* Create the cgroup directory, which also creates the cgroup */
-       ret = vfs_mkdir(inode, dentry, 0755);
-       child = __d_cgrp(dentry);
-       dput(dentry);
-       if (ret) {
-               printk(KERN_INFO
-                      "Failed to create cgroup %s: %d\n", nodename,
-                      ret);
-               goto out_release;
-       }
-
-       /* The cgroup now exists. Retake cgroup_mutex and check
-        * that we're still in the same state that we thought we
-        * were. */
-       mutex_lock(&cgroup_mutex);
-       if ((root != subsys->root) ||
-           (parent != task_cgroup(tsk, subsys->subsys_id))) {
-               /* Aargh, we raced ... */
-               mutex_unlock(&inode->i_mutex);
-               put_css_set(cg);
-
-               deactivate_super(root->sb);
-               /* The cgroup is still accessible in the VFS, but
-                * we're not going to try to rmdir() it at this
-                * point. */
-               printk(KERN_INFO
-                      "Race in cgroup_clone() - leaking cgroup %s\n",
-                      nodename);
-               goto again;
-       }
-
-       /* do any required auto-setup */
-       for_each_subsys(root, ss) {
-               if (ss->post_clone)
-                       ss->post_clone(ss, child);
-       }
-
-       /* All seems fine. Finish by moving the task into the new cgroup */
-       ret = cgroup_attach_task(child, tsk);
-       mutex_unlock(&cgroup_mutex);
-
- out_release:
-       mutex_unlock(&inode->i_mutex);
-
-       mutex_lock(&cgroup_mutex);
-       put_css_set(cg);
-       mutex_unlock(&cgroup_mutex);
-       deactivate_super(root->sb);
-       return ret;
+       if (cg)
+               put_css_set_taskexit(cg);
 }
 
 /**
@@ -3233,13 +4650,11 @@ int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
 {
        int ret;
        struct cgroup *target;
-       int subsys_id;
 
        if (cgrp == dummytop)
                return 1;
 
-       get_first_subsys(cgrp, NULL, &subsys_id);
-       target = task_cgroup(task, subsys_id);
+       target = task_cgroup_from_root(task, cgrp->root);
        while (cgrp != target && cgrp!= cgrp->top_cgroup)
                cgrp = cgrp->parent;
        ret = (cgrp == target);
@@ -3268,19 +4683,24 @@ static void check_for_release(struct cgroup *cgrp)
        }
 }
 
-void __css_put(struct cgroup_subsys_state *css)
+/* Caller must verify that the css is not for root cgroup */
+void __css_put(struct cgroup_subsys_state *css, int count)
 {
        struct cgroup *cgrp = css->cgroup;
+       int val;
        rcu_read_lock();
-       if (atomic_dec_return(&css->refcnt) == 1) {
+       val = atomic_sub_return(count, &css->refcnt);
+       if (val == 1) {
                if (notify_on_release(cgrp)) {
                        set_bit(CGRP_RELEASABLE, &cgrp->flags);
                        check_for_release(cgrp);
                }
-               cgroup_wakeup_rmdir_waiters(cgrp);
+               cgroup_wakeup_rmdir_waiter(cgrp);
        }
        rcu_read_unlock();
+       WARN_ON_ONCE(val < 1);
 }
+EXPORT_SYMBOL_GPL(__css_put);
 
 /*
  * Notify userspace when a cgroup is released, by running the
@@ -3362,8 +4782,11 @@ static int __init cgroup_disable(char *str)
        while ((token = strsep(&str, ",")) != NULL) {
                if (!*token)
                        continue;
-
-               for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
+               /*
+                * cgroup_disable, being at boot time, can't know about module
+                * subsystems, so we don't worry about them.
+                */
+               for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
                        struct cgroup_subsys *ss = subsys[i];
 
                        if (!strcmp(token, ss->name)) {
@@ -3387,39 +4810,63 @@ __setup("cgroup_disable=", cgroup_disable);
  */
 unsigned short css_id(struct cgroup_subsys_state *css)
 {
-       struct css_id *cssid = rcu_dereference(css->id);
+       struct css_id *cssid;
+
+       /*
+        * This css_id() can return correct value when somone has refcnt
+        * on this or this is under rcu_read_lock(). Once css->id is allocated,
+        * it's unchanged until freed.
+        */
+       cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
 
        if (cssid)
                return cssid->id;
        return 0;
 }
+EXPORT_SYMBOL_GPL(css_id);
 
 unsigned short css_depth(struct cgroup_subsys_state *css)
 {
-       struct css_id *cssid = rcu_dereference(css->id);
+       struct css_id *cssid;
+
+       cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
 
        if (cssid)
                return cssid->depth;
        return 0;
 }
+EXPORT_SYMBOL_GPL(css_depth);
+
+/**
+ *  css_is_ancestor - test "root" css is an ancestor of "child"
+ * @child: the css to be tested.
+ * @root: the css supporsed to be an ancestor of the child.
+ *
+ * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
+ * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
+ * But, considering usual usage, the csses should be valid objects after test.
+ * Assuming that the caller will do some action to the child if this returns
+ * returns true, the caller must take "child";s reference count.
+ * If "child" is valid object and this returns true, "root" is valid, too.
+ */
 
 bool css_is_ancestor(struct cgroup_subsys_state *child,
                    const struct cgroup_subsys_state *root)
 {
-       struct css_id *child_id = rcu_dereference(child->id);
-       struct css_id *root_id = rcu_dereference(root->id);
-
-       if (!child_id || !root_id || (child_id->depth < root_id->depth))
-               return false;
-       return child_id->stack[root_id->depth] == root_id->id;
-}
-
-static void __free_css_id_cb(struct rcu_head *head)
-{
-       struct css_id *id;
+       struct css_id *child_id;
+       struct css_id *root_id;
+       bool ret = true;
 
-       id = container_of(head, struct css_id, rcu_head);
-       kfree(id);
+       rcu_read_lock();
+       child_id  = rcu_dereference(child->id);
+       root_id = rcu_dereference(root->id);
+       if (!child_id
+           || !root_id
+           || (child_id->depth < root_id->depth)
+           || (child_id->stack[root_id->depth] != root_id->id))
+               ret = false;
+       rcu_read_unlock();
+       return ret;
 }
 
 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
@@ -3436,8 +4883,9 @@ void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
        spin_lock(&ss->id_lock);
        idr_remove(&ss->idr, id->id);
        spin_unlock(&ss->id_lock);
-       call_rcu(&id->rcu_head, __free_css_id_cb);
+       kfree_rcu(id, rcu_head);
 }
+EXPORT_SYMBOL_GPL(free_css_id);
 
 /*
  * This is called by init or create(). Then, calls to this function are
@@ -3487,15 +4935,14 @@ err_out:
 
 }
 
-static int __init cgroup_subsys_init_idr(struct cgroup_subsys *ss)
+static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
+                                           struct cgroup_subsys_state *rootcss)
 {
        struct css_id *newid;
-       struct cgroup_subsys_state *rootcss;
 
        spin_lock_init(&ss->id_lock);
        idr_init(&ss->idr);
 
-       rootcss = init_css_set.subsys[ss->subsys_id];
        newid = get_new_cssid(ss, 0);
        if (IS_ERR(newid))
                return PTR_ERR(newid);
@@ -3511,13 +4958,13 @@ static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
 {
        int subsys_id, i, depth = 0;
        struct cgroup_subsys_state *parent_css, *child_css;
-       struct css_id *child_id, *parent_id = NULL;
+       struct css_id *child_id, *parent_id;
 
        subsys_id = ss->subsys_id;
        parent_css = parent->subsys[subsys_id];
        child_css = child->subsys[subsys_id];
-       depth = css_depth(parent_css) + 1;
        parent_id = parent_css->id;
+       depth = parent_id->depth + 1;
 
        child_id = get_new_cssid(ss, depth);
        if (IS_ERR(child_id))
@@ -3555,6 +5002,7 @@ struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
 
        return rcu_dereference(cssid->css);
 }
+EXPORT_SYMBOL_GPL(css_lookup);
 
 /**
  * css_get_next - lookup next cgroup under specified hierarchy.
@@ -3606,3 +5054,177 @@ css_get_next(struct cgroup_subsys *ss, int id,
        return ret;
 }
 
+/*
+ * get corresponding css from file open on cgroupfs directory
+ */
+struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
+{
+       struct cgroup *cgrp;
+       struct inode *inode;
+       struct cgroup_subsys_state *css;
+
+       inode = f->f_dentry->d_inode;
+       /* check in cgroup filesystem dir */
+       if (inode->i_op != &cgroup_dir_inode_operations)
+               return ERR_PTR(-EBADF);
+
+       if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
+               return ERR_PTR(-EINVAL);
+
+       /* get cgroup */
+       cgrp = __d_cgrp(f->f_dentry);
+       css = cgrp->subsys[id];
+       return css ? css : ERR_PTR(-ENOENT);
+}
+
+#ifdef CONFIG_CGROUP_DEBUG
+static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
+                                                  struct cgroup *cont)
+{
+       struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
+
+       if (!css)
+               return ERR_PTR(-ENOMEM);
+
+       return css;
+}
+
+static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
+{
+       kfree(cont->subsys[debug_subsys_id]);
+}
+
+static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
+{
+       return atomic_read(&cont->count);
+}
+
+static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
+{
+       return cgroup_task_count(cont);
+}
+
+static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
+{
+       return (u64)(unsigned long)current->cgroups;
+}
+
+static u64 current_css_set_refcount_read(struct cgroup *cont,
+                                          struct cftype *cft)
+{
+       u64 count;
+
+       rcu_read_lock();
+       count = atomic_read(&current->cgroups->refcount);
+       rcu_read_unlock();
+       return count;
+}
+
+static int current_css_set_cg_links_read(struct cgroup *cont,
+                                        struct cftype *cft,
+                                        struct seq_file *seq)
+{
+       struct cg_cgroup_link *link;
+       struct css_set *cg;
+
+       read_lock(&css_set_lock);
+       rcu_read_lock();
+       cg = rcu_dereference(current->cgroups);
+       list_for_each_entry(link, &cg->cg_links, cg_link_list) {
+               struct cgroup *c = link->cgrp;
+               const char *name;
+
+               if (c->dentry)
+                       name = c->dentry->d_name.name;
+               else
+                       name = "?";
+               seq_printf(seq, "Root %d group %s\n",
+                          c->root->hierarchy_id, name);
+       }
+       rcu_read_unlock();
+       read_unlock(&css_set_lock);
+       return 0;
+}
+
+#define MAX_TASKS_SHOWN_PER_CSS 25
+static int cgroup_css_links_read(struct cgroup *cont,
+                                struct cftype *cft,
+                                struct seq_file *seq)
+{
+       struct cg_cgroup_link *link;
+
+       read_lock(&css_set_lock);
+       list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
+               struct css_set *cg = link->cg;
+               struct task_struct *task;
+               int count = 0;
+               seq_printf(seq, "css_set %p\n", cg);
+               list_for_each_entry(task, &cg->tasks, cg_list) {
+                       if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
+                               seq_puts(seq, "  ...\n");
+                               break;
+                       } else {
+                               seq_printf(seq, "  task %d\n",
+                                          task_pid_vnr(task));
+                       }
+               }
+       }
+       read_unlock(&css_set_lock);
+       return 0;
+}
+
+static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
+{
+       return test_bit(CGRP_RELEASABLE, &cgrp->flags);
+}
+
+static struct cftype debug_files[] =  {
+       {
+               .name = "cgroup_refcount",
+               .read_u64 = cgroup_refcount_read,
+       },
+       {
+               .name = "taskcount",
+               .read_u64 = debug_taskcount_read,
+       },
+
+       {
+               .name = "current_css_set",
+               .read_u64 = current_css_set_read,
+       },
+
+       {
+               .name = "current_css_set_refcount",
+               .read_u64 = current_css_set_refcount_read,
+       },
+
+       {
+               .name = "current_css_set_cg_links",
+               .read_seq_string = current_css_set_cg_links_read,
+       },
+
+       {
+               .name = "cgroup_css_links",
+               .read_seq_string = cgroup_css_links_read,
+       },
+
+       {
+               .name = "releasable",
+               .read_u64 = releasable_read,
+       },
+};
+
+static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
+{
+       return cgroup_add_files(cont, ss, debug_files,
+                               ARRAY_SIZE(debug_files));
+}
+
+struct cgroup_subsys debug_subsys = {
+       .name = "debug",
+       .create = debug_create,
+       .destroy = debug_destroy,
+       .populate = debug_populate,
+       .subsys_id = debug_subsys_id,
+};
+#endif /* CONFIG_CGROUP_DEBUG */