]> nv-tegra.nvidia Code Review - linux-2.6.git/blobdiff - arch/x86/mm/numa_64.c
x86: Remove old bootmem code
[linux-2.6.git] / arch / x86 / mm / numa_64.c
index 8482314816192b55989c85c36c545e0fbb481a0b..aef0ff74f7ddcb934134ecfba9c4e549036370ff 100644 (file)
@@ -7,10 +7,12 @@
 #include <linux/string.h>
 #include <linux/init.h>
 #include <linux/bootmem.h>
+#include <linux/memblock.h>
 #include <linux/mmzone.h>
 #include <linux/ctype.h>
 #include <linux/module.h>
 #include <linux/nodemask.h>
+#include <linux/sched.h>
 
 #include <asm/e820.h>
 #include <asm/proto.h>
 #include <asm/acpi.h>
 #include <asm/k8.h>
 
-#ifndef Dprintk
-#define Dprintk(x...)
-#endif
-
 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
 EXPORT_SYMBOL(node_data);
 
-bootmem_data_t plat_node_bdata[MAX_NUMNODES];
-
 struct memnode memnode;
 
-int cpu_to_node_map[NR_CPUS] __read_mostly = {
-       [0 ... NR_CPUS-1] = NUMA_NO_NODE
-};
-EXPORT_SYMBOL(cpu_to_node_map);
-
-unsigned char apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
+s16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
        [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
 };
 
-cpumask_t node_to_cpumask_map[MAX_NUMNODES] __read_mostly;
-EXPORT_SYMBOL(node_to_cpumask_map);
-
 int numa_off __initdata;
-unsigned long __initdata nodemap_addr;
-unsigned long __initdata nodemap_size;
+static unsigned long __initdata nodemap_addr;
+static unsigned long __initdata nodemap_size;
+
+/*
+ * Map cpu index to node index
+ */
+DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
+EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
 
 /*
  * Given a shift value, try to populate memnodemap[]
@@ -54,12 +48,12 @@ unsigned long __initdata nodemap_size;
  * -1 if node overlap or lost ram (shift too big)
  */
 static int __init populate_memnodemap(const struct bootnode *nodes,
-                                     int numnodes, int shift)
+                                     int numnodes, int shift, int *nodeids)
 {
        unsigned long addr, end;
        int i, res = -1;
 
-       memset(memnodemap, 0xff, memnodemapsize);
+       memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize);
        for (i = 0; i < numnodes; i++) {
                addr = nodes[i].start;
                end = nodes[i].end;
@@ -68,9 +62,14 @@ static int __init populate_memnodemap(const struct bootnode *nodes,
                if ((end >> shift) >= memnodemapsize)
                        return 0;
                do {
-                       if (memnodemap[addr >> shift] != 0xff)
+                       if (memnodemap[addr >> shift] != NUMA_NO_NODE)
                                return -1;
-                       memnodemap[addr >> shift] = i;
+
+                       if (!nodeids)
+                               memnodemap[addr >> shift] = i;
+                       else
+                               memnodemap[addr >> shift] = nodeids[i];
+
                        addr += (1UL << shift);
                } while (addr < end);
                res = 1;
@@ -80,25 +79,24 @@ static int __init populate_memnodemap(const struct bootnode *nodes,
 
 static int __init allocate_cachealigned_memnodemap(void)
 {
-       unsigned long pad, pad_addr;
+       unsigned long addr;
 
        memnodemap = memnode.embedded_map;
-       if (memnodemapsize <= 48)
+       if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
                return 0;
 
-       pad = L1_CACHE_BYTES - 1;
-       pad_addr = 0x8000;
-       nodemap_size = pad + memnodemapsize;
-       nodemap_addr = find_e820_area(pad_addr, end_pfn<<PAGE_SHIFT,
-                                     nodemap_size);
-       if (nodemap_addr == -1UL) {
+       addr = 0x8000;
+       nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES);
+       nodemap_addr = memblock_find_in_range(addr, max_pfn<<PAGE_SHIFT,
+                                     nodemap_size, L1_CACHE_BYTES);
+       if (nodemap_addr == MEMBLOCK_ERROR) {
                printk(KERN_ERR
                       "NUMA: Unable to allocate Memory to Node hash map\n");
                nodemap_addr = nodemap_size = 0;
                return -1;
        }
-       pad_addr = (nodemap_addr + pad) & ~pad;
-       memnodemap = phys_to_virt(pad_addr);
+       memnodemap = phys_to_virt(nodemap_addr);
+       memblock_x86_reserve_range(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP");
 
        printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
               nodemap_addr, nodemap_addr + nodemap_size);
@@ -134,7 +132,8 @@ static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
        return i;
 }
 
-int __init compute_hash_shift(struct bootnode *nodes, int numnodes)
+int __init compute_hash_shift(struct bootnode *nodes, int numnodes,
+                             int *nodeids)
 {
        int shift;
 
@@ -144,7 +143,7 @@ int __init compute_hash_shift(struct bootnode *nodes, int numnodes)
        printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
                shift);
 
-       if (populate_memnodemap(nodes, numnodes, shift) != 1) {
+       if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) {
                printk(KERN_INFO "Your memory is not aligned you need to "
                       "rebuild your kernel with a bigger NODEMAPSIZE "
                       "shift=%d\n", shift);
@@ -153,112 +152,92 @@ int __init compute_hash_shift(struct bootnode *nodes, int numnodes)
        return shift;
 }
 
-int early_pfn_to_nid(unsigned long pfn)
+int __meminit  __early_pfn_to_nid(unsigned long pfn)
 {
        return phys_to_nid(pfn << PAGE_SHIFT);
 }
 
 static void * __init early_node_mem(int nodeid, unsigned long start,
-                                   unsigned long end, unsigned long size)
+                                   unsigned long end, unsigned long size,
+                                   unsigned long align)
 {
-       unsigned long mem = find_e820_area(start, end, size);
-       void *ptr;
+       unsigned long mem;
+
+       /*
+        * put it on high as possible
+        * something will go with NODE_DATA
+        */
+       if (start < (MAX_DMA_PFN<<PAGE_SHIFT))
+               start = MAX_DMA_PFN<<PAGE_SHIFT;
+       if (start < (MAX_DMA32_PFN<<PAGE_SHIFT) &&
+           end > (MAX_DMA32_PFN<<PAGE_SHIFT))
+               start = MAX_DMA32_PFN<<PAGE_SHIFT;
+       mem = memblock_x86_find_in_range_node(nodeid, start, end, size, align);
+       if (mem != MEMBLOCK_ERROR)
+               return __va(mem);
 
-       if (mem != -1L)
+       /* extend the search scope */
+       end = max_pfn_mapped << PAGE_SHIFT;
+       if (end > (MAX_DMA32_PFN<<PAGE_SHIFT))
+               start = MAX_DMA32_PFN<<PAGE_SHIFT;
+       else
+               start = MAX_DMA_PFN<<PAGE_SHIFT;
+       mem = memblock_x86_find_in_range_node(nodeid, start, end, size, align);
+       if (mem != MEMBLOCK_ERROR)
                return __va(mem);
-       ptr = __alloc_bootmem_nopanic(size,
-                               SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS));
-       if (ptr == NULL) {
-               printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
+
+       printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
                       size, nodeid);
-               return NULL;
-       }
-       return ptr;
+
+       return NULL;
 }
 
 /* Initialize bootmem allocator for a node */
-void __init setup_node_bootmem(int nodeid, unsigned long start,
-                              unsigned long end)
+void __init
+setup_node_bootmem(int nodeid, unsigned long start, unsigned long end)
 {
-       unsigned long start_pfn, end_pfn, bootmap_pages, bootmap_size;
-       unsigned long bootmap_start, nodedata_phys;
-       void *bootmap;
-       const int pgdat_size = round_up(sizeof(pg_data_t), PAGE_SIZE);
+       unsigned long start_pfn, last_pfn, nodedata_phys;
+       const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
+       int nid;
+
+       if (!end)
+               return;
 
-       start = round_up(start, ZONE_ALIGN);
+       /*
+        * Don't confuse VM with a node that doesn't have the
+        * minimum amount of memory:
+        */
+       if (end && (end - start) < NODE_MIN_SIZE)
+               return;
+
+       start = roundup(start, ZONE_ALIGN);
 
-       printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid,
+       printk(KERN_INFO "Initmem setup node %d %016lx-%016lx\n", nodeid,
               start, end);
 
        start_pfn = start >> PAGE_SHIFT;
-       end_pfn = end >> PAGE_SHIFT;
+       last_pfn = end >> PAGE_SHIFT;
 
-       node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size);
+       node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size,
+                                          SMP_CACHE_BYTES);
        if (node_data[nodeid] == NULL)
                return;
        nodedata_phys = __pa(node_data[nodeid]);
+       memblock_x86_reserve_range(nodedata_phys, nodedata_phys + pgdat_size, "NODE_DATA");
+       printk(KERN_INFO "  NODE_DATA [%016lx - %016lx]\n", nodedata_phys,
+               nodedata_phys + pgdat_size - 1);
+       nid = phys_to_nid(nodedata_phys);
+       if (nid != nodeid)
+               printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nodeid, nid);
 
        memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
-       NODE_DATA(nodeid)->bdata = &plat_node_bdata[nodeid];
+       NODE_DATA(nodeid)->node_id = nodeid;
        NODE_DATA(nodeid)->node_start_pfn = start_pfn;
-       NODE_DATA(nodeid)->node_spanned_pages = end_pfn - start_pfn;
-
-       /* Find a place for the bootmem map */
-       bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
-       bootmap_start = round_up(nodedata_phys + pgdat_size, PAGE_SIZE);
-       bootmap = early_node_mem(nodeid, bootmap_start, end,
-                                       bootmap_pages<<PAGE_SHIFT);
-       if (bootmap == NULL)  {
-               if (nodedata_phys < start || nodedata_phys >= end)
-                       free_bootmem((unsigned long)node_data[nodeid],
-                                    pgdat_size);
-               node_data[nodeid] = NULL;
-               return;
-       }
-       bootmap_start = __pa(bootmap);
-       Dprintk("bootmap start %lu pages %lu\n", bootmap_start, bootmap_pages);
-
-       bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
-                                        bootmap_start >> PAGE_SHIFT,
-                                        start_pfn, end_pfn);
+       NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn;
 
-       free_bootmem_with_active_regions(nodeid, end);
-
-       reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys, pgdat_size);
-       reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start,
-                            bootmap_pages<<PAGE_SHIFT);
-#ifdef CONFIG_ACPI_NUMA
-       srat_reserve_add_area(nodeid);
-#endif
        node_set_online(nodeid);
 }
 
-/* Initialize final allocator for a zone */
-void __init setup_node_zones(int nodeid)
-{
-       unsigned long start_pfn, end_pfn, memmapsize, limit;
-
-       start_pfn = node_start_pfn(nodeid);
-       end_pfn = node_end_pfn(nodeid);
-
-       Dprintk(KERN_INFO "Setting up memmap for node %d %lx-%lx\n",
-               nodeid, start_pfn, end_pfn);
-
-       /*
-        * Try to allocate mem_map at end to not fill up precious <4GB
-        * memory.
-        */
-       memmapsize = sizeof(struct page) * (end_pfn-start_pfn);
-       limit = end_pfn << PAGE_SHIFT;
-#ifdef CONFIG_FLAT_NODE_MEM_MAP
-       NODE_DATA(nodeid)->node_mem_map =
-               __alloc_bootmem_core(NODE_DATA(nodeid)->bdata,
-                                    memmapsize, SMP_CACHE_BYTES,
-                                    round_down(limit - memmapsize, PAGE_SIZE),
-                                    limit);
-#endif
-}
-
 /*
  * There are unfortunately some poorly designed mainboards around that
  * only connect memory to a single CPU. This breaks the 1:1 cpu->node
@@ -271,8 +250,8 @@ void __init numa_init_array(void)
        int rr, i;
 
        rr = first_node(node_online_map);
-       for (i = 0; i < NR_CPUS; i++) {
-               if (cpu_to_node(i) != NUMA_NO_NODE)
+       for (i = 0; i < nr_cpu_ids; i++) {
+               if (early_cpu_to_node(i) != NUMA_NO_NODE)
                        continue;
                numa_set_node(i, rr);
                rr = next_node(rr, node_online_map);
@@ -283,7 +262,70 @@ void __init numa_init_array(void)
 
 #ifdef CONFIG_NUMA_EMU
 /* Numa emulation */
-char *cmdline __initdata;
+static struct bootnode nodes[MAX_NUMNODES] __initdata;
+static struct bootnode physnodes[MAX_NUMNODES] __initdata;
+static char *cmdline __initdata;
+
+static int __init setup_physnodes(unsigned long start, unsigned long end,
+                                       int acpi, int k8)
+{
+       int nr_nodes = 0;
+       int ret = 0;
+       int i;
+
+#ifdef CONFIG_ACPI_NUMA
+       if (acpi)
+               nr_nodes = acpi_get_nodes(physnodes);
+#endif
+#ifdef CONFIG_K8_NUMA
+       if (k8)
+               nr_nodes = k8_get_nodes(physnodes);
+#endif
+       /*
+        * Basic sanity checking on the physical node map: there may be errors
+        * if the SRAT or K8 incorrectly reported the topology or the mem=
+        * kernel parameter is used.
+        */
+       for (i = 0; i < nr_nodes; i++) {
+               if (physnodes[i].start == physnodes[i].end)
+                       continue;
+               if (physnodes[i].start > end) {
+                       physnodes[i].end = physnodes[i].start;
+                       continue;
+               }
+               if (physnodes[i].end < start) {
+                       physnodes[i].start = physnodes[i].end;
+                       continue;
+               }
+               if (physnodes[i].start < start)
+                       physnodes[i].start = start;
+               if (physnodes[i].end > end)
+                       physnodes[i].end = end;
+       }
+
+       /*
+        * Remove all nodes that have no memory or were truncated because of the
+        * limited address range.
+        */
+       for (i = 0; i < nr_nodes; i++) {
+               if (physnodes[i].start == physnodes[i].end)
+                       continue;
+               physnodes[ret].start = physnodes[i].start;
+               physnodes[ret].end = physnodes[i].end;
+               ret++;
+       }
+
+       /*
+        * If no physical topology was detected, a single node is faked to cover
+        * the entire address space.
+        */
+       if (!ret) {
+               physnodes[ret].start = start;
+               physnodes[ret].end = end;
+               ret = 1;
+       }
+       return ret;
+}
 
 /*
  * Setups up nid to range from addr to addr + size.  If the end
@@ -292,11 +334,9 @@ char *cmdline __initdata;
  * allocation past addr and -1 otherwise.  addr is adjusted to be at
  * the end of the node.
  */
-static int __init setup_node_range(int nid, struct bootnode *nodes, u64 *addr,
-                                  u64 size, u64 max_addr)
+static int __init setup_node_range(int nid, u64 *addr, u64 size, u64 max_addr)
 {
        int ret = 0;
-
        nodes[nid].start = *addr;
        *addr += size;
        if (*addr >= max_addr) {
@@ -312,167 +352,235 @@ static int __init setup_node_range(int nid, struct bootnode *nodes, u64 *addr,
 }
 
 /*
- * Splits num_nodes nodes up equally starting at node_start.  The return value
- * is the number of nodes split up and addr is adjusted to be at the end of the
- * last node allocated.
+ * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr
+ * to max_addr.  The return value is the number of nodes allocated.
  */
-static int __init split_nodes_equally(struct bootnode *nodes, u64 *addr,
-                                     u64 max_addr, int node_start,
-                                     int num_nodes)
+static int __init split_nodes_interleave(u64 addr, u64 max_addr,
+                                               int nr_phys_nodes, int nr_nodes)
 {
-       unsigned int big;
+       nodemask_t physnode_mask = NODE_MASK_NONE;
        u64 size;
+       int big;
+       int ret = 0;
        int i;
 
-       if (num_nodes <= 0)
+       if (nr_nodes <= 0)
                return -1;
-       if (num_nodes > MAX_NUMNODES)
-               num_nodes = MAX_NUMNODES;
-       size = (max_addr - *addr - e820_hole_size(*addr, max_addr)) /
-              num_nodes;
+       if (nr_nodes > MAX_NUMNODES) {
+               pr_info("numa=fake=%d too large, reducing to %d\n",
+                       nr_nodes, MAX_NUMNODES);
+               nr_nodes = MAX_NUMNODES;
+       }
+
+       size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) / nr_nodes;
        /*
         * Calculate the number of big nodes that can be allocated as a result
-        * of consolidating the leftovers.
+        * of consolidating the remainder.
         */
-       big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) /
-             FAKE_NODE_MIN_SIZE;
+       big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
+               FAKE_NODE_MIN_SIZE;
 
-       /* Round down to nearest FAKE_NODE_MIN_SIZE. */
        size &= FAKE_NODE_MIN_HASH_MASK;
        if (!size) {
-               printk(KERN_ERR "Not enough memory for each node.  "
-                      "NUMA emulation disabled.\n");
+               pr_err("Not enough memory for each node.  "
+                       "NUMA emulation disabled.\n");
                return -1;
        }
 
-       for (i = node_start; i < num_nodes + node_start; i++) {
-               u64 end = *addr + size;
+       for (i = 0; i < nr_phys_nodes; i++)
+               if (physnodes[i].start != physnodes[i].end)
+                       node_set(i, physnode_mask);
 
-               if (i < big)
-                       end += FAKE_NODE_MIN_SIZE;
-               /*
-                * The final node can have the remaining system RAM.  Other
-                * nodes receive roughly the same amount of available pages.
-                */
-               if (i == num_nodes + node_start - 1)
-                       end = max_addr;
-               else
-                       while (end - *addr - e820_hole_size(*addr, end) <
-                              size) {
+       /*
+        * Continue to fill physical nodes with fake nodes until there is no
+        * memory left on any of them.
+        */
+       while (nodes_weight(physnode_mask)) {
+               for_each_node_mask(i, physnode_mask) {
+                       u64 end = physnodes[i].start + size;
+                       u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
+
+                       if (ret < big)
+                               end += FAKE_NODE_MIN_SIZE;
+
+                       /*
+                        * Continue to add memory to this fake node if its
+                        * non-reserved memory is less than the per-node size.
+                        */
+                       while (end - physnodes[i].start -
+                               memblock_x86_hole_size(physnodes[i].start, end) < size) {
                                end += FAKE_NODE_MIN_SIZE;
-                               if (end > max_addr) {
-                                       end = max_addr;
+                               if (end > physnodes[i].end) {
+                                       end = physnodes[i].end;
                                        break;
                                }
                        }
-               if (setup_node_range(i, nodes, addr, end - *addr, max_addr) < 0)
-                       break;
+
+                       /*
+                        * If there won't be at least FAKE_NODE_MIN_SIZE of
+                        * non-reserved memory in ZONE_DMA32 for the next node,
+                        * this one must extend to the boundary.
+                        */
+                       if (end < dma32_end && dma32_end - end -
+                           memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
+                               end = dma32_end;
+
+                       /*
+                        * If there won't be enough non-reserved memory for the
+                        * next node, this one must extend to the end of the
+                        * physical node.
+                        */
+                       if (physnodes[i].end - end -
+                           memblock_x86_hole_size(end, physnodes[i].end) < size)
+                               end = physnodes[i].end;
+
+                       /*
+                        * Avoid allocating more nodes than requested, which can
+                        * happen as a result of rounding down each node's size
+                        * to FAKE_NODE_MIN_SIZE.
+                        */
+                       if (nodes_weight(physnode_mask) + ret >= nr_nodes)
+                               end = physnodes[i].end;
+
+                       if (setup_node_range(ret++, &physnodes[i].start,
+                                               end - physnodes[i].start,
+                                               physnodes[i].end) < 0)
+                               node_clear(i, physnode_mask);
+               }
        }
-       return i - node_start + 1;
+       return ret;
 }
 
 /*
- * Splits the remaining system RAM into chunks of size.  The remaining memory is
- * always assigned to a final node and can be asymmetric.  Returns the number of
- * nodes split.
+ * Returns the end address of a node so that there is at least `size' amount of
+ * non-reserved memory or `max_addr' is reached.
  */
-static int __init split_nodes_by_size(struct bootnode *nodes, u64 *addr,
-                                     u64 max_addr, int node_start, u64 size)
+static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
 {
-       int i = node_start;
-       size = (size << 20) & FAKE_NODE_MIN_HASH_MASK;
-       while (!setup_node_range(i++, nodes, addr, size, max_addr))
-               ;
-       return i - node_start;
+       u64 end = start + size;
+
+       while (end - start - memblock_x86_hole_size(start, end) < size) {
+               end += FAKE_NODE_MIN_SIZE;
+               if (end > max_addr) {
+                       end = max_addr;
+                       break;
+               }
+       }
+       return end;
 }
 
 /*
- * Sets up the system RAM area from start_pfn to end_pfn according to the
- * numa=fake command-line option.
+ * Sets up fake nodes of `size' interleaved over physical nodes ranging from
+ * `addr' to `max_addr'.  The return value is the number of nodes allocated.
  */
-static int __init numa_emulation(unsigned long start_pfn, unsigned long end_pfn)
+static int __init split_nodes_size_interleave(u64 addr, u64 max_addr, u64 size)
 {
-       struct bootnode nodes[MAX_NUMNODES];
-       u64 size, addr = start_pfn << PAGE_SHIFT;
-       u64 max_addr = end_pfn << PAGE_SHIFT;
-       int num_nodes = 0, num = 0, coeff_flag, coeff = -1, i;
+       nodemask_t physnode_mask = NODE_MASK_NONE;
+       u64 min_size;
+       int ret = 0;
+       int i;
 
-       memset(&nodes, 0, sizeof(nodes));
+       if (!size)
+               return -1;
        /*
-        * If the numa=fake command-line is just a single number N, split the
-        * system RAM into N fake nodes.
+        * The limit on emulated nodes is MAX_NUMNODES, so the size per node is
+        * increased accordingly if the requested size is too small.  This
+        * creates a uniform distribution of node sizes across the entire
+        * machine (but not necessarily over physical nodes).
         */
-       if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) {
-               long n = simple_strtol(cmdline, NULL, 0);
-
-               num_nodes = split_nodes_equally(nodes, &addr, max_addr, 0, n);
-               if (num_nodes < 0)
-                       return num_nodes;
-               goto out;
+       min_size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) /
+                                               MAX_NUMNODES;
+       min_size = max(min_size, FAKE_NODE_MIN_SIZE);
+       if ((min_size & FAKE_NODE_MIN_HASH_MASK) < min_size)
+               min_size = (min_size + FAKE_NODE_MIN_SIZE) &
+                                               FAKE_NODE_MIN_HASH_MASK;
+       if (size < min_size) {
+               pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
+                       size >> 20, min_size >> 20);
+               size = min_size;
        }
+       size &= FAKE_NODE_MIN_HASH_MASK;
+
+       for (i = 0; i < MAX_NUMNODES; i++)
+               if (physnodes[i].start != physnodes[i].end)
+                       node_set(i, physnode_mask);
+       /*
+        * Fill physical nodes with fake nodes of size until there is no memory
+        * left on any of them.
+        */
+       while (nodes_weight(physnode_mask)) {
+               for_each_node_mask(i, physnode_mask) {
+                       u64 dma32_end = MAX_DMA32_PFN << PAGE_SHIFT;
+                       u64 end;
+
+                       end = find_end_of_node(physnodes[i].start,
+                                               physnodes[i].end, size);
+                       /*
+                        * If there won't be at least FAKE_NODE_MIN_SIZE of
+                        * non-reserved memory in ZONE_DMA32 for the next node,
+                        * this one must extend to the boundary.
+                        */
+                       if (end < dma32_end && dma32_end - end -
+                           memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
+                               end = dma32_end;
+
+                       /*
+                        * If there won't be enough non-reserved memory for the
+                        * next node, this one must extend to the end of the
+                        * physical node.
+                        */
+                       if (physnodes[i].end - end -
+                           memblock_x86_hole_size(end, physnodes[i].end) < size)
+                               end = physnodes[i].end;
 
-       /* Parse the command line. */
-       for (coeff_flag = 0; ; cmdline++) {
-               if (*cmdline && isdigit(*cmdline)) {
-                       num = num * 10 + *cmdline - '0';
-                       continue;
-               }
-               if (*cmdline == '*') {
-                       if (num > 0)
-                               coeff = num;
-                       coeff_flag = 1;
-               }
-               if (!*cmdline || *cmdline == ',') {
-                       if (!coeff_flag)
-                               coeff = 1;
                        /*
-                        * Round down to the nearest FAKE_NODE_MIN_SIZE.
-                        * Command-line coefficients are in megabytes.
+                        * Setup the fake node that will be allocated as bootmem
+                        * later.  If setup_node_range() returns non-zero, there
+                        * is no more memory available on this physical node.
                         */
-                       size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK;
-                       if (size)
-                               for (i = 0; i < coeff; i++, num_nodes++)
-                                       if (setup_node_range(num_nodes, nodes,
-                                               &addr, size, max_addr) < 0)
-                                               goto done;
-                       if (!*cmdline)
-                               break;
-                       coeff_flag = 0;
-                       coeff = -1;
+                       if (setup_node_range(ret++, &physnodes[i].start,
+                                               end - physnodes[i].start,
+                                               physnodes[i].end) < 0)
+                               node_clear(i, physnode_mask);
                }
-               num = 0;
        }
-done:
-       if (!num_nodes)
-               return -1;
-       /* Fill remainder of system RAM, if appropriate. */
-       if (addr < max_addr) {
-               if (coeff_flag && coeff < 0) {
-                       /* Split remaining nodes into num-sized chunks */
-                       num_nodes += split_nodes_by_size(nodes, &addr, max_addr,
-                                                        num_nodes, num);
-                       goto out;
-               }
-               switch (*(cmdline - 1)) {
-               case '*':
-                       /* Split remaining nodes into coeff chunks */
-                       if (coeff <= 0)
-                               break;
-                       num_nodes += split_nodes_equally(nodes, &addr, max_addr,
-                                                        num_nodes, coeff);
-                       break;
-               case ',':
-                       /* Do not allocate remaining system RAM */
-                       break;
-               default:
-                       /* Give one final node */
-                       setup_node_range(num_nodes, nodes, &addr,
-                                        max_addr - addr, max_addr);
-                       num_nodes++;
-               }
+       return ret;
+}
+
+/*
+ * Sets up the system RAM area from start_pfn to last_pfn according to the
+ * numa=fake command-line option.
+ */
+static int __init numa_emulation(unsigned long start_pfn,
+                       unsigned long last_pfn, int acpi, int k8)
+{
+       u64 addr = start_pfn << PAGE_SHIFT;
+       u64 max_addr = last_pfn << PAGE_SHIFT;
+       int num_phys_nodes;
+       int num_nodes;
+       int i;
+
+       num_phys_nodes = setup_physnodes(addr, max_addr, acpi, k8);
+       /*
+        * If the numa=fake command-line contains a 'M' or 'G', it represents
+        * the fixed node size.  Otherwise, if it is just a single number N,
+        * split the system RAM into N fake nodes.
+        */
+       if (strchr(cmdline, 'M') || strchr(cmdline, 'G')) {
+               u64 size;
+
+               size = memparse(cmdline, &cmdline);
+               num_nodes = split_nodes_size_interleave(addr, max_addr, size);
+       } else {
+               unsigned long n;
+
+               n = simple_strtoul(cmdline, NULL, 0);
+               num_nodes = split_nodes_interleave(addr, max_addr, num_phys_nodes, n);
        }
-out:
-       memnode_shift = compute_hash_shift(nodes, num_nodes);
+
+       if (num_nodes < 0)
+               return num_nodes;
+       memnode_shift = compute_hash_shift(nodes, num_nodes, NULL);
        if (memnode_shift < 0) {
                memnode_shift = 0;
                printk(KERN_ERR "No NUMA hash function found.  NUMA emulation "
@@ -481,16 +589,12 @@ out:
        }
 
        /*
-        * We need to vacate all active ranges that may have been registered by
-        * SRAT and set acpi_numa to -1 so that srat_disabled() always returns
-        * true.  NUMA emulation has succeeded so we will not scan ACPI nodes.
+        * We need to vacate all active ranges that may have been registered for
+        * the e820 memory map.
         */
        remove_all_active_ranges();
-#ifdef CONFIG_ACPI_NUMA
-       acpi_numa = -1;
-#endif
        for_each_node_mask(i, node_possible_map) {
-               e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
+               memblock_x86_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
                                                nodes[i].end >> PAGE_SHIFT);
                setup_node_bootmem(i, nodes[i].start, nodes[i].end);
        }
@@ -500,60 +604,51 @@ out:
 }
 #endif /* CONFIG_NUMA_EMU */
 
-void __init numa_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
+void __init initmem_init(unsigned long start_pfn, unsigned long last_pfn,
+                               int acpi, int k8)
 {
        int i;
 
        nodes_clear(node_possible_map);
+       nodes_clear(node_online_map);
 
 #ifdef CONFIG_NUMA_EMU
-       if (cmdline && !numa_emulation(start_pfn, end_pfn))
+       if (cmdline && !numa_emulation(start_pfn, last_pfn, acpi, k8))
                return;
        nodes_clear(node_possible_map);
+       nodes_clear(node_online_map);
 #endif
 
 #ifdef CONFIG_ACPI_NUMA
-       if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
-                                         end_pfn << PAGE_SHIFT))
+       if (!numa_off && acpi && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
+                                                 last_pfn << PAGE_SHIFT))
                return;
        nodes_clear(node_possible_map);
+       nodes_clear(node_online_map);
 #endif
 
 #ifdef CONFIG_K8_NUMA
-       if (!numa_off && !k8_scan_nodes(start_pfn<<PAGE_SHIFT,
-                                       end_pfn<<PAGE_SHIFT))
+       if (!numa_off && k8 && !k8_scan_nodes())
                return;
        nodes_clear(node_possible_map);
+       nodes_clear(node_online_map);
 #endif
        printk(KERN_INFO "%s\n",
               numa_off ? "NUMA turned off" : "No NUMA configuration found");
 
        printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
               start_pfn << PAGE_SHIFT,
-              end_pfn << PAGE_SHIFT);
+              last_pfn << PAGE_SHIFT);
        /* setup dummy node covering all memory */
        memnode_shift = 63;
        memnodemap = memnode.embedded_map;
        memnodemap[0] = 0;
-       nodes_clear(node_online_map);
        node_set_online(0);
        node_set(0, node_possible_map);
-       for (i = 0; i < NR_CPUS; i++)
+       for (i = 0; i < nr_cpu_ids; i++)
                numa_set_node(i, 0);
-       node_to_cpumask_map[0] = cpumask_of_cpu(0);
-       e820_register_active_regions(0, start_pfn, end_pfn);
-       setup_node_bootmem(0, start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
-}
-
-__cpuinit void numa_add_cpu(int cpu)
-{
-       set_bit(cpu, (unsigned long *)&node_to_cpumask_map[cpu_to_node(cpu)]);
-}
-
-void __cpuinit numa_set_node(int cpu, int node)
-{
-       cpu_pda(cpu)->nodenumber = node;
-       cpu_to_node_map[cpu] = node;
+       memblock_x86_register_active_regions(0, start_pfn, last_pfn);
+       setup_node_bootmem(0, start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT);
 }
 
 unsigned long __init numa_free_all_bootmem(void)
@@ -564,26 +659,9 @@ unsigned long __init numa_free_all_bootmem(void)
        for_each_online_node(i)
                pages += free_all_bootmem_node(NODE_DATA(i));
 
-       return pages;
-}
-
-void __init paging_init(void)
-{
-       unsigned long max_zone_pfns[MAX_NR_ZONES];
-       int i;
-
-       memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
-       max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
-       max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
-       max_zone_pfns[ZONE_NORMAL] = end_pfn;
-
-       sparse_memory_present_with_active_regions(MAX_NUMNODES);
-       sparse_init();
-
-       for_each_online_node(i)
-               setup_node_zones(i);
+       pages += free_all_memory_core_early(MAX_NUMNODES);
 
-       free_area_init_nodes(max_zone_pfns);
+       return pages;
 }
 
 static __init int numa_setup(char *opt)
@@ -599,13 +677,31 @@ static __init int numa_setup(char *opt)
 #ifdef CONFIG_ACPI_NUMA
        if (!strncmp(opt, "noacpi", 6))
                acpi_numa = -1;
-       if (!strncmp(opt, "hotadd=", 7))
-               hotadd_percent = simple_strtoul(opt+7, NULL, 10);
 #endif
        return 0;
 }
 early_param("numa", numa_setup);
 
+#ifdef CONFIG_NUMA
+
+static __init int find_near_online_node(int node)
+{
+       int n, val;
+       int min_val = INT_MAX;
+       int best_node = -1;
+
+       for_each_online_node(n) {
+               val = node_distance(node, n);
+
+               if (val < min_val) {
+                       min_val = val;
+                       best_node = n;
+               }
+       }
+
+       return best_node;
+}
+
 /*
  * Setup early cpu_to_node.
  *
@@ -617,20 +713,143 @@ early_param("numa", numa_setup);
  * is already initialized in a round robin manner at numa_init_array,
  * prior to this call, and this initialization is good enough
  * for the fake NUMA cases.
+ *
+ * Called before the per_cpu areas are setup.
  */
 void __init init_cpu_to_node(void)
 {
-       int i;
+       int cpu;
+       u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
 
-       for (i = 0; i < NR_CPUS; i++) {
-               u8 apicid = x86_cpu_to_apicid_init[i];
+       BUG_ON(cpu_to_apicid == NULL);
+
+       for_each_possible_cpu(cpu) {
+               int node;
+               u16 apicid = cpu_to_apicid[cpu];
 
                if (apicid == BAD_APICID)
                        continue;
-               if (apicid_to_node[apicid] == NUMA_NO_NODE)
+               node = apicid_to_node[apicid];
+               if (node == NUMA_NO_NODE)
                        continue;
-               numa_set_node(i, apicid_to_node[apicid]);
+               if (!node_online(node))
+                       node = find_near_online_node(node);
+               numa_set_node(cpu, node);
+       }
+}
+#endif
+
+
+void __cpuinit numa_set_node(int cpu, int node)
+{
+       int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
+
+       /* early setting, no percpu area yet */
+       if (cpu_to_node_map) {
+               cpu_to_node_map[cpu] = node;
+               return;
+       }
+
+#ifdef CONFIG_DEBUG_PER_CPU_MAPS
+       if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
+               printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
+               dump_stack();
+               return;
+       }
+#endif
+       per_cpu(x86_cpu_to_node_map, cpu) = node;
+
+       if (node != NUMA_NO_NODE)
+               set_cpu_numa_node(cpu, node);
+}
+
+void __cpuinit numa_clear_node(int cpu)
+{
+       numa_set_node(cpu, NUMA_NO_NODE);
+}
+
+#ifndef CONFIG_DEBUG_PER_CPU_MAPS
+
+void __cpuinit numa_add_cpu(int cpu)
+{
+       cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
+}
+
+void __cpuinit numa_remove_cpu(int cpu)
+{
+       cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
+}
+
+#else /* CONFIG_DEBUG_PER_CPU_MAPS */
+
+/*
+ * --------- debug versions of the numa functions ---------
+ */
+static void __cpuinit numa_set_cpumask(int cpu, int enable)
+{
+       int node = early_cpu_to_node(cpu);
+       struct cpumask *mask;
+       char buf[64];
+
+       mask = node_to_cpumask_map[node];
+       if (mask == NULL) {
+               printk(KERN_ERR "node_to_cpumask_map[%i] NULL\n", node);
+               dump_stack();
+               return;
+       }
+
+       if (enable)
+               cpumask_set_cpu(cpu, mask);
+       else
+               cpumask_clear_cpu(cpu, mask);
+
+       cpulist_scnprintf(buf, sizeof(buf), mask);
+       printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n",
+               enable ? "numa_add_cpu" : "numa_remove_cpu", cpu, node, buf);
+}
+
+void __cpuinit numa_add_cpu(int cpu)
+{
+       numa_set_cpumask(cpu, 1);
+}
+
+void __cpuinit numa_remove_cpu(int cpu)
+{
+       numa_set_cpumask(cpu, 0);
+}
+
+int __cpu_to_node(int cpu)
+{
+       if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
+               printk(KERN_WARNING
+                       "cpu_to_node(%d): usage too early!\n", cpu);
+               dump_stack();
+               return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
+       }
+       return per_cpu(x86_cpu_to_node_map, cpu);
+}
+EXPORT_SYMBOL(__cpu_to_node);
+
+/*
+ * Same function as cpu_to_node() but used if called before the
+ * per_cpu areas are setup.
+ */
+int early_cpu_to_node(int cpu)
+{
+       if (early_per_cpu_ptr(x86_cpu_to_node_map))
+               return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
+
+       if (!cpu_possible(cpu)) {
+               printk(KERN_WARNING
+                       "early_cpu_to_node(%d): no per_cpu area!\n", cpu);
+               dump_stack();
+               return NUMA_NO_NODE;
        }
+       return per_cpu(x86_cpu_to_node_map, cpu);
 }
 
+/*
+ * --------- end of debug versions of the numa functions ---------
+ */
 
+#endif /* CONFIG_DEBUG_PER_CPU_MAPS */