/* * This is a module which is used for queueing packets and communicating with * userspace via nfetlink. * * (C) 2005 by Harald Welte * (C) 2007 by Patrick McHardy * * Based on the old ipv4-only ip_queue.c: * (C) 2000-2002 James Morris * (C) 2003-2005 Netfilter Core Team * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_BRIDGE_NETFILTER #include "../bridge/br_private.h" #endif #define NFQNL_QMAX_DEFAULT 1024 struct nfqnl_instance { struct hlist_node hlist; /* global list of queues */ struct rcu_head rcu; int peer_pid; unsigned int queue_maxlen; unsigned int copy_range; unsigned int queue_total; unsigned int queue_dropped; unsigned int queue_user_dropped; unsigned int id_sequence; /* 'sequence' of pkt ids */ u_int16_t queue_num; /* number of this queue */ u_int8_t copy_mode; spinlock_t lock; struct list_head queue_list; /* packets in queue */ }; typedef int (*nfqnl_cmpfn)(struct nf_queue_entry *, unsigned long); static DEFINE_SPINLOCK(instances_lock); #define INSTANCE_BUCKETS 16 static struct hlist_head instance_table[INSTANCE_BUCKETS] __read_mostly; static inline u_int8_t instance_hashfn(u_int16_t queue_num) { return ((queue_num >> 8) | queue_num) % INSTANCE_BUCKETS; } static struct nfqnl_instance * instance_lookup(u_int16_t queue_num) { struct hlist_head *head; struct hlist_node *pos; struct nfqnl_instance *inst; head = &instance_table[instance_hashfn(queue_num)]; hlist_for_each_entry_rcu(inst, pos, head, hlist) { if (inst->queue_num == queue_num) return inst; } return NULL; } static struct nfqnl_instance * instance_create(u_int16_t queue_num, int pid) { struct nfqnl_instance *inst; unsigned int h; int err; spin_lock(&instances_lock); if (instance_lookup(queue_num)) { err = -EEXIST; goto out_unlock; } inst = kzalloc(sizeof(*inst), GFP_ATOMIC); if (!inst) { err = -ENOMEM; goto out_unlock; } inst->queue_num = queue_num; inst->peer_pid = pid; inst->queue_maxlen = NFQNL_QMAX_DEFAULT; inst->copy_range = 0xfffff; inst->copy_mode = NFQNL_COPY_NONE; spin_lock_init(&inst->lock); INIT_LIST_HEAD(&inst->queue_list); INIT_RCU_HEAD(&inst->rcu); if (!try_module_get(THIS_MODULE)) { err = -EAGAIN; goto out_free; } h = instance_hashfn(queue_num); hlist_add_head_rcu(&inst->hlist, &instance_table[h]); spin_unlock(&instances_lock); return inst; out_free: kfree(inst); out_unlock: spin_unlock(&instances_lock); return ERR_PTR(err); } static void nfqnl_flush(struct nfqnl_instance *queue, nfqnl_cmpfn cmpfn, unsigned long data); static void instance_destroy_rcu(struct rcu_head *head) { struct nfqnl_instance *inst = container_of(head, struct nfqnl_instance, rcu); nfqnl_flush(inst, NULL, 0); kfree(inst); module_put(THIS_MODULE); } static void __instance_destroy(struct nfqnl_instance *inst) { hlist_del_rcu(&inst->hlist); call_rcu(&inst->rcu, instance_destroy_rcu); } static void instance_destroy(struct nfqnl_instance *inst) { spin_lock(&instances_lock); __instance_destroy(inst); spin_unlock(&instances_lock); } static inline void __enqueue_entry(struct nfqnl_instance *queue, struct nf_queue_entry *entry) { list_add_tail(&entry->list, &queue->queue_list); queue->queue_total++; } static struct nf_queue_entry * find_dequeue_entry(struct nfqnl_instance *queue, unsigned int id) { struct nf_queue_entry *entry = NULL, *i; spin_lock_bh(&queue->lock); list_for_each_entry(i, &queue->queue_list, list) { if (i->id == id) { entry = i; break; } } if (entry) { list_del(&entry->list); queue->queue_total--; } spin_unlock_bh(&queue->lock); return entry; } static void nfqnl_flush(struct nfqnl_instance *queue, nfqnl_cmpfn cmpfn, unsigned long data) { struct nf_queue_entry *entry, *next; spin_lock_bh(&queue->lock); list_for_each_entry_safe(entry, next, &queue->queue_list, list) { if (!cmpfn || cmpfn(entry, data)) { list_del(&entry->list); queue->queue_total--; nf_reinject(entry, NF_DROP); } } spin_unlock_bh(&queue->lock); } static struct sk_buff * nfqnl_build_packet_message(struct nfqnl_instance *queue, struct nf_queue_entry *entry) { sk_buff_data_t old_tail; size_t size; size_t data_len = 0; struct sk_buff *skb; struct nfqnl_msg_packet_hdr pmsg; struct nlmsghdr *nlh; struct nfgenmsg *nfmsg; struct sk_buff *entskb = entry->skb; struct net_device *indev; struct net_device *outdev; size = NLMSG_SPACE(sizeof(struct nfgenmsg)) + nla_total_size(sizeof(struct nfqnl_msg_packet_hdr)) + nla_total_size(sizeof(u_int32_t)) /* ifindex */ + nla_total_size(sizeof(u_int32_t)) /* ifindex */ #ifdef CONFIG_BRIDGE_NETFILTER + nla_total_size(sizeof(u_int32_t)) /* ifindex */ + nla_total_size(sizeof(u_int32_t)) /* ifindex */ #endif + nla_total_size(sizeof(u_int32_t)) /* mark */ + nla_total_size(sizeof(struct nfqnl_msg_packet_hw)) + nla_total_size(sizeof(struct nfqnl_msg_packet_timestamp)); outdev = entry->outdev; spin_lock_bh(&queue->lock); switch ((enum nfqnl_config_mode)queue->copy_mode) { case NFQNL_COPY_META: case NFQNL_COPY_NONE: break; case NFQNL_COPY_PACKET: if ((entskb->ip_summed == CHECKSUM_PARTIAL || entskb->ip_summed == CHECKSUM_COMPLETE) && skb_checksum_help(entskb)) { spin_unlock_bh(&queue->lock); return NULL; } if (queue->copy_range == 0 || queue->copy_range > entskb->len) data_len = entskb->len; else data_len = queue->copy_range; size += nla_total_size(data_len); break; } entry->id = queue->id_sequence++; spin_unlock_bh(&queue->lock); skb = alloc_skb(size, GFP_ATOMIC); if (!skb) goto nlmsg_failure; old_tail = skb->tail; nlh = NLMSG_PUT(skb, 0, 0, NFNL_SUBSYS_QUEUE << 8 | NFQNL_MSG_PACKET, sizeof(struct nfgenmsg)); nfmsg = NLMSG_DATA(nlh); nfmsg->nfgen_family = entry->pf; nfmsg->version = NFNETLINK_V0; nfmsg->res_id = htons(queue->queue_num); pmsg.packet_id = htonl(entry->id); pmsg.hw_protocol = entskb->protocol; pmsg.hook = entry->hook; NLA_PUT(skb, NFQA_PACKET_HDR, sizeof(pmsg), &pmsg); indev = entry->indev; if (indev) { #ifndef CONFIG_BRIDGE_NETFILTER NLA_PUT_BE32(skb, NFQA_IFINDEX_INDEV, htonl(indev->ifindex)); #else if (entry->pf == PF_BRIDGE) { /* Case 1: indev is physical input device, we need to * look for bridge group (when called from * netfilter_bridge) */ NLA_PUT_BE32(skb, NFQA_IFINDEX_PHYSINDEV, htonl(indev->ifindex)); /* this is the bridge group "brX" */ NLA_PUT_BE32(skb, NFQA_IFINDEX_INDEV, htonl(indev->br_port->br->dev->ifindex)); } else { /* Case 2: indev is bridge group, we need to look for * physical device (when called from ipv4) */ NLA_PUT_BE32(skb, NFQA_IFINDEX_INDEV, htonl(indev->ifindex)); if (entskb->nf_bridge && entskb->nf_bridge->physindev) NLA_PUT_BE32(skb, NFQA_IFINDEX_PHYSINDEV, htonl(entskb->nf_bridge->physindev->ifindex)); } #endif } if (outdev) { #ifndef CONFIG_BRIDGE_NETFILTER NLA_PUT_BE32(skb, NFQA_IFINDEX_OUTDEV, htonl(outdev->ifindex)); #else if (entry->pf == PF_BRIDGE) { /* Case 1: outdev is physical output device, we need to * look for bridge group (when called from * netfilter_bridge) */ NLA_PUT_BE32(skb, NFQA_IFINDEX_PHYSOUTDEV, htonl(outdev->ifindex)); /* this is the bridge group "brX" */ NLA_PUT_BE32(skb, NFQA_IFINDEX_OUTDEV, htonl(outdev->br_port->br->dev->ifindex)); } else { /* Case 2: outdev is bridge group, we need to look for * physical output device (when called from ipv4) */ NLA_PUT_BE32(skb, NFQA_IFINDEX_OUTDEV, htonl(outdev->ifindex)); if (entskb->nf_bridge && entskb->nf_bridge->physoutdev) NLA_PUT_BE32(skb, NFQA_IFINDEX_PHYSOUTDEV, htonl(entskb->nf_bridge->physoutdev->ifindex)); } #endif } if (entskb->mark) NLA_PUT_BE32(skb, NFQA_MARK, htonl(entskb->mark)); if (indev && entskb->dev) { struct nfqnl_msg_packet_hw phw; int len = dev_parse_header(entskb, phw.hw_addr); if (len) { phw.hw_addrlen = htons(len); NLA_PUT(skb, NFQA_HWADDR, sizeof(phw), &phw); } } if (entskb->tstamp.tv64) { struct nfqnl_msg_packet_timestamp ts; struct timeval tv = ktime_to_timeval(entskb->tstamp); ts.sec = cpu_to_be64(tv.tv_sec); ts.usec = cpu_to_be64(tv.tv_usec); NLA_PUT(skb, NFQA_TIMESTAMP, sizeof(ts), &ts); } if (data_len) { struct nlattr *nla; int sz = nla_attr_size(data_len); if (skb_tailroom(skb) < nla_total_size(data_len)) { printk(KERN_WARNING "nf_queue: no tailroom!\n"); goto nlmsg_failure; } nla = (struct nlattr *)skb_put(skb, nla_total_size(data_len)); nla->nla_type = NFQA_PAYLOAD; nla->nla_len = sz; if (skb_copy_bits(entskb, 0, nla_data(nla), data_len)) BUG(); } nlh->nlmsg_len = skb->tail - old_tail; return skb; nlmsg_failure: nla_put_failure: if (skb) kfree_skb(skb); if (net_ratelimit()) printk(KERN_ERR "nf_queue: error creating packet message\n"); return NULL; } static int nfqnl_enqueue_packet(struct nf_queue_entry *entry, unsigned int queuenum) { struct sk_buff *nskb; struct nfqnl_instance *queue; int err; /* rcu_read_lock()ed by nf_hook_slow() */ queue = instance_lookup(queuenum); if (!queue) goto err_out; if (queue->copy_mode == NFQNL_COPY_NONE) goto err_out; nskb = nfqnl_build_packet_message(queue, entry); if (nskb == NULL) goto err_out; spin_lock_bh(&queue->lock); if (!queue->peer_pid) goto err_out_free_nskb; if (queue->queue_total >= queue->queue_maxlen) { queue->queue_dropped++; if (net_ratelimit()) printk(KERN_WARNING "nf_queue: full at %d entries, " "dropping packets(s). Dropped: %d\n", queue->queue_total, queue->queue_dropped); goto err_out_free_nskb; } /* nfnetlink_unicast will either free the nskb or add it to a socket */ err = nfnetlink_unicast(nskb, queue->peer_pid, MSG_DONTWAIT); if (err < 0) { queue->queue_user_dropped++; goto err_out_unlock; } __enqueue_entry(queue, entry); spin_unlock_bh(&queue->lock); return 0; err_out_free_nskb: kfree_skb(nskb); err_out_unlock: spin_unlock_bh(&queue->lock); err_out: return -1; } static int nfqnl_mangle(void *data, int data_len, struct nf_queue_entry *e) { struct sk_buff *nskb; int diff; diff = data_len - e->skb->len; if (diff < 0) { if (pskb_trim(e->skb, data_len)) return -ENOMEM; } else if (diff > 0) { if (data_len > 0xFFFF) return -EINVAL; if (diff > skb_tailroom(e->skb)) { nskb = skb_copy_expand(e->skb, skb_headroom(e->skb), diff, GFP_ATOMIC); if (!nskb) { printk(KERN_WARNING "nf_queue: OOM " "in mangle, dropping packet\n"); return -ENOMEM; } kfree_skb(e->skb); e->skb = nskb; } skb_put(e->skb, diff); } if (!skb_make_writable(e->skb, data_len)) return -ENOMEM; skb_copy_to_linear_data(e->skb, data, data_len); e->skb->ip_summed = CHECKSUM_NONE; return 0; } static int nfqnl_set_mode(struct nfqnl_instance *queue, unsigned char mode, unsigned int range) { int status = 0; spin_lock_bh(&queue->lock); switch (mode) { case NFQNL_COPY_NONE: case NFQNL_COPY_META: queue->copy_mode = mode; queue->copy_range = 0; break; case NFQNL_COPY_PACKET: queue->copy_mode = mode; /* we're using struct nlattr which has 16bit nla_len */ if (range > 0xffff) queue->copy_range = 0xffff; else queue->copy_range = range; break; default: status = -EINVAL; } spin_unlock_bh(&queue->lock); return status; } static int dev_cmp(struct nf_queue_entry *entry, unsigned long ifindex) { if (entry->indev) if (entry->indev->ifindex == ifindex) return 1; if (entry->outdev) if (entry->outdev->ifindex == ifindex) return 1; #ifdef CONFIG_BRIDGE_NETFILTER if (entry->skb->nf_bridge) { if (entry->skb->nf_bridge->physindev && entry->skb->nf_bridge->physindev->ifindex == ifindex) return 1; if (entry->skb->nf_bridge->physoutdev && entry->skb->nf_bridge->physoutdev->ifindex == ifindex) return 1; } #endif return 0; } /* drop all packets with either indev or outdev == ifindex from all queue * instances */ static void nfqnl_dev_drop(int ifindex) { int i; rcu_read_lock(); for (i = 0; i < INSTANCE_BUCKETS; i++) { struct hlist_node *tmp; struct nfqnl_instance *inst; struct hlist_head *head = &instance_table[i]; hlist_for_each_entry_rcu(inst, tmp, head, hlist) nfqnl_flush(inst, dev_cmp, ifindex); } rcu_read_unlock(); } #define RCV_SKB_FAIL(err) do { netlink_ack(skb, nlh, (err)); return; } while (0) static int nfqnl_rcv_dev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = ptr; if (!net_eq(dev_net(dev), &init_net)) return NOTIFY_DONE; /* Drop any packets associated with the downed device */ if (event == NETDEV_DOWN) nfqnl_dev_drop(dev->ifindex); return NOTIFY_DONE; } static struct notifier_block nfqnl_dev_notifier = { .notifier_call = nfqnl_rcv_dev_event, }; static int nfqnl_rcv_nl_event(struct notifier_block *this, unsigned long event, void *ptr) { struct netlink_notify *n = ptr; if (event == NETLINK_URELEASE && n->protocol == NETLINK_NETFILTER && n->pid) { int i; /* destroy all instances for this pid */ spin_lock(&instances_lock); for (i = 0; i < INSTANCE_BUCKETS; i++) { struct hlist_node *tmp, *t2; struct nfqnl_instance *inst; struct hlist_head *head = &instance_table[i]; hlist_for_each_entry_safe(inst, tmp, t2, head, hlist) { if ((n->net == &init_net) && (n->pid == inst->peer_pid)) __instance_destroy(inst); } } spin_unlock(&instances_lock); } return NOTIFY_DONE; } static struct notifier_block nfqnl_rtnl_notifier = { .notifier_call = nfqnl_rcv_nl_event, }; static const struct nla_policy nfqa_verdict_policy[NFQA_MAX+1] = { [NFQA_VERDICT_HDR] = { .len = sizeof(struct nfqnl_msg_verdict_hdr) }, [NFQA_MARK] = { .type = NLA_U32 }, [NFQA_PAYLOAD] = { .type = NLA_UNSPEC }, }; static int nfqnl_recv_verdict(struct sock *ctnl, struct sk_buff *skb, struct nlmsghdr *nlh, struct nlattr *nfqa[]) { struct nfgenmsg *nfmsg = NLMSG_DATA(nlh); u_int16_t queue_num = ntohs(nfmsg->res_id); struct nfqnl_msg_verdict_hdr *vhdr; struct nfqnl_instance *queue; unsigned int verdict; struct nf_queue_entry *entry; int err; rcu_read_lock(); queue = instance_lookup(queue_num); if (!queue) { err = -ENODEV; goto err_out_unlock; } if (queue->peer_pid != NETLINK_CB(skb).pid) { err = -EPERM; goto err_out_unlock; } if (!nfqa[NFQA_VERDICT_HDR]) { err = -EINVAL; goto err_out_unlock; } vhdr = nla_data(nfqa[NFQA_VERDICT_HDR]); verdict = ntohl(vhdr->verdict); if ((verdict & NF_VERDICT_MASK) > NF_MAX_VERDICT) { err = -EINVAL; goto err_out_unlock; } entry = find_dequeue_entry(queue, ntohl(vhdr->id)); if (entry == NULL) { err = -ENOENT; goto err_out_unlock; } rcu_read_unlock(); if (nfqa[NFQA_PAYLOAD]) { if (nfqnl_mangle(nla_data(nfqa[NFQA_PAYLOAD]), nla_len(nfqa[NFQA_PAYLOAD]), entry) < 0) verdict = NF_DROP; } if (nfqa[NFQA_MARK]) entry->skb->mark = ntohl(nla_get_be32(nfqa[NFQA_MARK])); nf_reinject(entry, verdict); return 0; err_out_unlock: rcu_read_unlock(); return err; } static int nfqnl_recv_unsupp(struct sock *ctnl, struct sk_buff *skb, struct nlmsghdr *nlh, struct nlattr *nfqa[]) { return -ENOTSUPP; } static const struct nla_policy nfqa_cfg_policy[NFQA_CFG_MAX+1] = { [NFQA_CFG_CMD] = { .len = sizeof(struct nfqnl_msg_config_cmd) }, [NFQA_CFG_PARAMS] = { .len = sizeof(struct nfqnl_msg_config_params) }, }; static const struct nf_queue_handler nfqh = { .name = "nf_queue", .outfn = &nfqnl_enqueue_packet, }; static int nfqnl_recv_config(struct sock *ctnl, struct sk_buff *skb, struct nlmsghdr *nlh, struct nlattr *nfqa[]) { struct nfgenmsg *nfmsg = NLMSG_DATA(nlh); u_int16_t queue_num = ntohs(nfmsg->res_id); struct nfqnl_instance *queue; struct nfqnl_msg_config_cmd *cmd = NULL; int ret = 0; if (nfqa[NFQA_CFG_CMD]) { cmd = nla_data(nfqa[NFQA_CFG_CMD]); /* Commands without queue context - might sleep */ switch (cmd->command) { case NFQNL_CFG_CMD_PF_BIND: return nf_register_queue_handler(ntohs(cmd->pf), &nfqh); case NFQNL_CFG_CMD_PF_UNBIND: return nf_unregister_queue_handler(ntohs(cmd->pf), &nfqh); } } rcu_read_lock(); queue = instance_lookup(queue_num); if (queue && queue->peer_pid != NETLINK_CB(skb).pid) { ret = -EPERM; goto err_out_unlock; } if (cmd != NULL) { switch (cmd->command) { case NFQNL_CFG_CMD_BIND: if (queue) { ret = -EBUSY; goto err_out_unlock; } queue = instance_create(queue_num, NETLINK_CB(skb).pid); if (IS_ERR(queue)) { ret = PTR_ERR(queue); goto err_out_unlock; } break; case NFQNL_CFG_CMD_UNBIND: if (!queue) { ret = -ENODEV; goto err_out_unlock; } instance_destroy(queue); break; case NFQNL_CFG_CMD_PF_BIND: case NFQNL_CFG_CMD_PF_UNBIND: break; default: ret = -ENOTSUPP; break; } } if (nfqa[NFQA_CFG_PARAMS]) { struct nfqnl_msg_config_params *params; if (!queue) { ret = -ENODEV; goto err_out_unlock; } params = nla_data(nfqa[NFQA_CFG_PARAMS]); nfqnl_set_mode(queue, params->copy_mode, ntohl(params->copy_range)); } if (nfqa[NFQA_CFG_QUEUE_MAXLEN]) { __be32 *queue_maxlen; if (!queue) { ret = -ENODEV; goto err_out_unlock; } queue_maxlen = nla_data(nfqa[NFQA_CFG_QUEUE_MAXLEN]); spin_lock_bh(&queue->lock); queue->queue_maxlen = ntohl(*queue_maxlen); spin_unlock_bh(&queue->lock); } err_out_unlock: rcu_read_unlock(); return ret; } static const struct nfnl_callback nfqnl_cb[NFQNL_MSG_MAX] = { [NFQNL_MSG_PACKET] = { .call = nfqnl_recv_unsupp, .attr_count = NFQA_MAX, }, [NFQNL_MSG_VERDICT] = { .call = nfqnl_recv_verdict, .attr_count = NFQA_MAX, .policy = nfqa_verdict_policy }, [NFQNL_MSG_CONFIG] = { .call = nfqnl_recv_config, .attr_count = NFQA_CFG_MAX, .policy = nfqa_cfg_policy }, }; static const struct nfnetlink_subsystem nfqnl_subsys = { .name = "nf_queue", .subsys_id = NFNL_SUBSYS_QUEUE, .cb_count = NFQNL_MSG_MAX, .cb = nfqnl_cb, }; #ifdef CONFIG_PROC_FS struct iter_state { unsigned int bucket; }; static struct hlist_node *get_first(struct seq_file *seq) { struct iter_state *st = seq->private; if (!st) return NULL; for (st->bucket = 0; st->bucket < INSTANCE_BUCKETS; st->bucket++) { if (!hlist_empty(&instance_table[st->bucket])) return instance_table[st->bucket].first; } return NULL; } static struct hlist_node *get_next(struct seq_file *seq, struct hlist_node *h) { struct iter_state *st = seq->private; h = h->next; while (!h) { if (++st->bucket >= INSTANCE_BUCKETS) return NULL; h = instance_table[st->bucket].first; } return h; } static struct hlist_node *get_idx(struct seq_file *seq, loff_t pos) { struct hlist_node *head; head = get_first(seq); if (head) while (pos && (head = get_next(seq, head))) pos--; return pos ? NULL : head; } static void *seq_start(struct seq_file *seq, loff_t *pos) __acquires(instances_lock) { spin_lock(&instances_lock); return get_idx(seq, *pos); } static void *seq_next(struct seq_file *s, void *v, loff_t *pos) { (*pos)++; return get_next(s, v); } static void seq_stop(struct seq_file *s, void *v) __releases(instances_lock) { spin_unlock(&instances_lock); } static int seq_show(struct seq_file *s, void *v) { const struct nfqnl_instance *inst = v; return seq_printf(s, "%5d %6d %5d %1d %5d %5d %5d %8d %2d\n", inst->queue_num, inst->peer_pid, inst->queue_total, inst->copy_mode, inst->copy_range, inst->queue_dropped, inst->queue_user_dropped, inst->id_sequence, 1); } static const struct seq_operations nfqnl_seq_ops = { .start = seq_start, .next = seq_next, .stop = seq_stop, .show = seq_show, }; static int nfqnl_open(struct inode *inode, struct file *file) { return seq_open_private(file, &nfqnl_seq_ops, sizeof(struct iter_state)); } static const struct file_operations nfqnl_file_ops = { .owner = THIS_MODULE, .open = nfqnl_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_private, }; #endif /* PROC_FS */ static int __init nfnetlink_queue_init(void) { int i, status = -ENOMEM; for (i = 0; i < INSTANCE_BUCKETS; i++) INIT_HLIST_HEAD(&instance_table[i]); netlink_register_notifier(&nfqnl_rtnl_notifier); status = nfnetlink_subsys_register(&nfqnl_subsys); if (status < 0) { printk(KERN_ERR "nf_queue: failed to create netlink socket\n"); goto cleanup_netlink_notifier; } #ifdef CONFIG_PROC_FS if (!proc_create("nfnetlink_queue", 0440, proc_net_netfilter, &nfqnl_file_ops)) goto cleanup_subsys; #endif register_netdevice_notifier(&nfqnl_dev_notifier); return status; #ifdef CONFIG_PROC_FS cleanup_subsys: nfnetlink_subsys_unregister(&nfqnl_subsys); #endif cleanup_netlink_notifier: netlink_unregister_notifier(&nfqnl_rtnl_notifier); return status; } static void __exit nfnetlink_queue_fini(void) { nf_unregister_queue_handlers(&nfqh); unregister_netdevice_notifier(&nfqnl_dev_notifier); #ifdef CONFIG_PROC_FS remove_proc_entry("nfnetlink_queue", proc_net_netfilter); #endif nfnetlink_subsys_unregister(&nfqnl_subsys); netlink_unregister_notifier(&nfqnl_rtnl_notifier); } MODULE_DESCRIPTION("netfilter packet queue handler"); MODULE_AUTHOR("Harald Welte "); MODULE_LICENSE("GPL"); MODULE_ALIAS_NFNL_SUBSYS(NFNL_SUBSYS_QUEUE); module_init(nfnetlink_queue_init); module_exit(nfnetlink_queue_fini);