/* * linux/mm/compaction.c * * Memory compaction for the reduction of external fragmentation. Note that * this heavily depends upon page migration to do all the real heavy * lifting * * Copyright IBM Corp. 2007-2010 Mel Gorman */ #include #include #include #include #include #include #include #include "internal.h" #define CREATE_TRACE_POINTS #include /* * compact_control is used to track pages being migrated and the free pages * they are being migrated to during memory compaction. The free_pfn starts * at the end of a zone and migrate_pfn begins at the start. Movable pages * are moved to the end of a zone during a compaction run and the run * completes when free_pfn <= migrate_pfn */ struct compact_control { struct list_head freepages; /* List of free pages to migrate to */ struct list_head migratepages; /* List of pages being migrated */ unsigned long nr_freepages; /* Number of isolated free pages */ unsigned long nr_migratepages; /* Number of pages to migrate */ unsigned long free_pfn; /* isolate_freepages search base */ unsigned long migrate_pfn; /* isolate_migratepages search base */ bool sync; /* Synchronous migration */ /* Account for isolated anon and file pages */ unsigned long nr_anon; unsigned long nr_file; unsigned int order; /* order a direct compactor needs */ int migratetype; /* MOVABLE, RECLAIMABLE etc */ struct zone *zone; }; static unsigned long release_freepages(struct list_head *freelist) { struct page *page, *next; unsigned long count = 0; list_for_each_entry_safe(page, next, freelist, lru) { list_del(&page->lru); __free_page(page); count++; } return count; } /* Isolate free pages onto a private freelist. Must hold zone->lock */ static unsigned long isolate_freepages_block(struct zone *zone, unsigned long blockpfn, struct list_head *freelist) { unsigned long zone_end_pfn, end_pfn; int nr_scanned = 0, total_isolated = 0; struct page *cursor; /* Get the last PFN we should scan for free pages at */ zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages; end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn); /* Find the first usable PFN in the block to initialse page cursor */ for (; blockpfn < end_pfn; blockpfn++) { if (pfn_valid_within(blockpfn)) break; } cursor = pfn_to_page(blockpfn); /* Isolate free pages. This assumes the block is valid */ for (; blockpfn < end_pfn; blockpfn++, cursor++) { int isolated, i; struct page *page = cursor; if (!pfn_valid_within(blockpfn)) continue; nr_scanned++; if (!PageBuddy(page)) continue; /* Found a free page, break it into order-0 pages */ isolated = split_free_page(page); total_isolated += isolated; for (i = 0; i < isolated; i++) { list_add(&page->lru, freelist); page++; } /* If a page was split, advance to the end of it */ if (isolated) { blockpfn += isolated - 1; cursor += isolated - 1; } } trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated); return total_isolated; } /* Returns true if the page is within a block suitable for migration to */ static bool suitable_migration_target(struct page *page) { int migratetype = get_pageblock_migratetype(page); /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */ if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE) return false; /* If the page is a large free page, then allow migration */ if (PageBuddy(page) && page_order(page) >= pageblock_order) return true; /* If the block is MIGRATE_MOVABLE, allow migration */ if (migratetype == MIGRATE_MOVABLE) return true; /* Otherwise skip the block */ return false; } /* * Based on information in the current compact_control, find blocks * suitable for isolating free pages from and then isolate them. */ static void isolate_freepages(struct zone *zone, struct compact_control *cc) { struct page *page; unsigned long high_pfn, low_pfn, pfn; unsigned long flags; int nr_freepages = cc->nr_freepages; struct list_head *freelist = &cc->freepages; /* * Initialise the free scanner. The starting point is where we last * scanned from (or the end of the zone if starting). The low point * is the end of the pageblock the migration scanner is using. */ pfn = cc->free_pfn; low_pfn = cc->migrate_pfn + pageblock_nr_pages; /* * Take care that if the migration scanner is at the end of the zone * that the free scanner does not accidentally move to the next zone * in the next isolation cycle. */ high_pfn = min(low_pfn, pfn); /* * Isolate free pages until enough are available to migrate the * pages on cc->migratepages. We stop searching if the migrate * and free page scanners meet or enough free pages are isolated. */ for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages; pfn -= pageblock_nr_pages) { unsigned long isolated; if (!pfn_valid(pfn)) continue; /* * Check for overlapping nodes/zones. It's possible on some * configurations to have a setup like * node0 node1 node0 * i.e. it's possible that all pages within a zones range of * pages do not belong to a single zone. */ page = pfn_to_page(pfn); if (page_zone(page) != zone) continue; /* Check the block is suitable for migration */ if (!suitable_migration_target(page)) continue; /* * Found a block suitable for isolating free pages from. Now * we disabled interrupts, double check things are ok and * isolate the pages. This is to minimise the time IRQs * are disabled */ isolated = 0; spin_lock_irqsave(&zone->lock, flags); if (suitable_migration_target(page)) { isolated = isolate_freepages_block(zone, pfn, freelist); nr_freepages += isolated; } spin_unlock_irqrestore(&zone->lock, flags); /* * Record the highest PFN we isolated pages from. When next * looking for free pages, the search will restart here as * page migration may have returned some pages to the allocator */ if (isolated) high_pfn = max(high_pfn, pfn); } /* split_free_page does not map the pages */ list_for_each_entry(page, freelist, lru) { arch_alloc_page(page, 0); kernel_map_pages(page, 1, 1); } cc->free_pfn = high_pfn; cc->nr_freepages = nr_freepages; } /* Update the number of anon and file isolated pages in the zone */ static void acct_isolated(struct zone *zone, struct compact_control *cc) { struct page *page; unsigned int count[NR_LRU_LISTS] = { 0, }; list_for_each_entry(page, &cc->migratepages, lru) { int lru = page_lru_base_type(page); count[lru]++; } cc->nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON]; cc->nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE]; __mod_zone_page_state(zone, NR_ISOLATED_ANON, cc->nr_anon); __mod_zone_page_state(zone, NR_ISOLATED_FILE, cc->nr_file); } /* Similar to reclaim, but different enough that they don't share logic */ static bool too_many_isolated(struct zone *zone) { unsigned long active, inactive, isolated; inactive = zone_page_state(zone, NR_INACTIVE_FILE) + zone_page_state(zone, NR_INACTIVE_ANON); active = zone_page_state(zone, NR_ACTIVE_FILE) + zone_page_state(zone, NR_ACTIVE_ANON); isolated = zone_page_state(zone, NR_ISOLATED_FILE) + zone_page_state(zone, NR_ISOLATED_ANON); return isolated > (inactive + active) / 2; } /* possible outcome of isolate_migratepages */ typedef enum { ISOLATE_ABORT, /* Abort compaction now */ ISOLATE_NONE, /* No pages isolated, continue scanning */ ISOLATE_SUCCESS, /* Pages isolated, migrate */ } isolate_migrate_t; /* * Isolate all pages that can be migrated from the block pointed to by * the migrate scanner within compact_control. */ static isolate_migrate_t isolate_migratepages(struct zone *zone, struct compact_control *cc) { unsigned long low_pfn, end_pfn; unsigned long last_pageblock_nr = 0, pageblock_nr; unsigned long nr_scanned = 0, nr_isolated = 0; struct list_head *migratelist = &cc->migratepages; /* Do not scan outside zone boundaries */ low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn); /* Only scan within a pageblock boundary */ end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages); /* Do not cross the free scanner or scan within a memory hole */ if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) { cc->migrate_pfn = end_pfn; return ISOLATE_NONE; } /* * Ensure that there are not too many pages isolated from the LRU * list by either parallel reclaimers or compaction. If there are, * delay for some time until fewer pages are isolated */ while (unlikely(too_many_isolated(zone))) { /* async migration should just abort */ if (!cc->sync) return ISOLATE_ABORT; congestion_wait(BLK_RW_ASYNC, HZ/10); if (fatal_signal_pending(current)) return ISOLATE_ABORT; } /* Time to isolate some pages for migration */ cond_resched(); spin_lock_irq(&zone->lru_lock); for (; low_pfn < end_pfn; low_pfn++) { struct page *page; bool locked = true; /* give a chance to irqs before checking need_resched() */ if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) { spin_unlock_irq(&zone->lru_lock); locked = false; } if (need_resched() || spin_is_contended(&zone->lru_lock)) { if (locked) spin_unlock_irq(&zone->lru_lock); cond_resched(); spin_lock_irq(&zone->lru_lock); if (fatal_signal_pending(current)) break; } else if (!locked) spin_lock_irq(&zone->lru_lock); if (!pfn_valid_within(low_pfn)) continue; nr_scanned++; /* Get the page and skip if free */ page = pfn_to_page(low_pfn); if (PageBuddy(page)) continue; /* * For async migration, also only scan in MOVABLE blocks. Async * migration is optimistic to see if the minimum amount of work * satisfies the allocation */ pageblock_nr = low_pfn >> pageblock_order; if (!cc->sync && last_pageblock_nr != pageblock_nr && get_pageblock_migratetype(page) != MIGRATE_MOVABLE) { low_pfn += pageblock_nr_pages; low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1; last_pageblock_nr = pageblock_nr; continue; } if (!PageLRU(page)) continue; /* * PageLRU is set, and lru_lock excludes isolation, * splitting and collapsing (collapsing has already * happened if PageLRU is set). */ if (PageTransHuge(page)) { low_pfn += (1 << compound_order(page)) - 1; continue; } /* Try isolate the page */ if (__isolate_lru_page(page, ISOLATE_BOTH, 0) != 0) continue; VM_BUG_ON(PageTransCompound(page)); /* Successfully isolated */ del_page_from_lru_list(zone, page, page_lru(page)); list_add(&page->lru, migratelist); cc->nr_migratepages++; nr_isolated++; /* Avoid isolating too much */ if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) break; } acct_isolated(zone, cc); spin_unlock_irq(&zone->lru_lock); cc->migrate_pfn = low_pfn; trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated); return ISOLATE_SUCCESS; } /* * This is a migrate-callback that "allocates" freepages by taking pages * from the isolated freelists in the block we are migrating to. */ static struct page *compaction_alloc(struct page *migratepage, unsigned long data, int **result) { struct compact_control *cc = (struct compact_control *)data; struct page *freepage; /* Isolate free pages if necessary */ if (list_empty(&cc->freepages)) { isolate_freepages(cc->zone, cc); if (list_empty(&cc->freepages)) return NULL; } freepage = list_entry(cc->freepages.next, struct page, lru); list_del(&freepage->lru); cc->nr_freepages--; return freepage; } /* * We cannot control nr_migratepages and nr_freepages fully when migration is * running as migrate_pages() has no knowledge of compact_control. When * migration is complete, we count the number of pages on the lists by hand. */ static void update_nr_listpages(struct compact_control *cc) { int nr_migratepages = 0; int nr_freepages = 0; struct page *page; list_for_each_entry(page, &cc->migratepages, lru) nr_migratepages++; list_for_each_entry(page, &cc->freepages, lru) nr_freepages++; cc->nr_migratepages = nr_migratepages; cc->nr_freepages = nr_freepages; } static int compact_finished(struct zone *zone, struct compact_control *cc) { unsigned int order; unsigned long watermark; if (fatal_signal_pending(current)) return COMPACT_PARTIAL; /* Compaction run completes if the migrate and free scanner meet */ if (cc->free_pfn <= cc->migrate_pfn) return COMPACT_COMPLETE; /* * order == -1 is expected when compacting via * /proc/sys/vm/compact_memory */ if (cc->order == -1) return COMPACT_CONTINUE; /* Compaction run is not finished if the watermark is not met */ watermark = low_wmark_pages(zone); watermark += (1 << cc->order); if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0)) return COMPACT_CONTINUE; /* Direct compactor: Is a suitable page free? */ for (order = cc->order; order < MAX_ORDER; order++) { /* Job done if page is free of the right migratetype */ if (!list_empty(&zone->free_area[order].free_list[cc->migratetype])) return COMPACT_PARTIAL; /* Job done if allocation would set block type */ if (order >= pageblock_order && zone->free_area[order].nr_free) return COMPACT_PARTIAL; } return COMPACT_CONTINUE; } /* * compaction_suitable: Is this suitable to run compaction on this zone now? * Returns * COMPACT_SKIPPED - If there are too few free pages for compaction * COMPACT_PARTIAL - If the allocation would succeed without compaction * COMPACT_CONTINUE - If compaction should run now */ unsigned long compaction_suitable(struct zone *zone, int order) { int fragindex; unsigned long watermark; /* * order == -1 is expected when compacting via * /proc/sys/vm/compact_memory */ if (order == -1) return COMPACT_CONTINUE; /* * Watermarks for order-0 must be met for compaction. Note the 2UL. * This is because during migration, copies of pages need to be * allocated and for a short time, the footprint is higher */ watermark = low_wmark_pages(zone) + (2UL << order); if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) return COMPACT_SKIPPED; /* * fragmentation index determines if allocation failures are due to * low memory or external fragmentation * * index of -1000 implies allocations might succeed depending on * watermarks * index towards 0 implies failure is due to lack of memory * index towards 1000 implies failure is due to fragmentation * * Only compact if a failure would be due to fragmentation. */ fragindex = fragmentation_index(zone, order); if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) return COMPACT_SKIPPED; if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark, 0, 0)) return COMPACT_PARTIAL; return COMPACT_CONTINUE; } static int compact_zone(struct zone *zone, struct compact_control *cc) { int ret; ret = compaction_suitable(zone, cc->order); switch (ret) { case COMPACT_PARTIAL: case COMPACT_SKIPPED: /* Compaction is likely to fail */ return ret; case COMPACT_CONTINUE: /* Fall through to compaction */ ; } /* Setup to move all movable pages to the end of the zone */ cc->migrate_pfn = zone->zone_start_pfn; cc->free_pfn = cc->migrate_pfn + zone->spanned_pages; cc->free_pfn &= ~(pageblock_nr_pages-1); migrate_prep_local(); while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) { unsigned long nr_migrate, nr_remaining; int err; switch (isolate_migratepages(zone, cc)) { case ISOLATE_ABORT: ret = COMPACT_PARTIAL; goto out; case ISOLATE_NONE: continue; case ISOLATE_SUCCESS: ; } nr_migrate = cc->nr_migratepages; err = migrate_pages(&cc->migratepages, compaction_alloc, (unsigned long)cc, false, cc->sync); update_nr_listpages(cc); nr_remaining = cc->nr_migratepages; count_vm_event(COMPACTBLOCKS); count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining); if (nr_remaining) count_vm_events(COMPACTPAGEFAILED, nr_remaining); trace_mm_compaction_migratepages(nr_migrate - nr_remaining, nr_remaining); /* Release LRU pages not migrated */ if (err) { putback_lru_pages(&cc->migratepages); cc->nr_migratepages = 0; } } out: /* Release free pages and check accounting */ cc->nr_freepages -= release_freepages(&cc->freepages); VM_BUG_ON(cc->nr_freepages != 0); return ret; } unsigned long compact_zone_order(struct zone *zone, int order, gfp_t gfp_mask, bool sync) { struct compact_control cc = { .nr_freepages = 0, .nr_migratepages = 0, .order = order, .migratetype = allocflags_to_migratetype(gfp_mask), .zone = zone, .sync = sync, }; INIT_LIST_HEAD(&cc.freepages); INIT_LIST_HEAD(&cc.migratepages); return compact_zone(zone, &cc); } int sysctl_extfrag_threshold = 500; /** * try_to_compact_pages - Direct compact to satisfy a high-order allocation * @zonelist: The zonelist used for the current allocation * @order: The order of the current allocation * @gfp_mask: The GFP mask of the current allocation * @nodemask: The allowed nodes to allocate from * @sync: Whether migration is synchronous or not * * This is the main entry point for direct page compaction. */ unsigned long try_to_compact_pages(struct zonelist *zonelist, int order, gfp_t gfp_mask, nodemask_t *nodemask, bool sync) { enum zone_type high_zoneidx = gfp_zone(gfp_mask); int may_enter_fs = gfp_mask & __GFP_FS; int may_perform_io = gfp_mask & __GFP_IO; struct zoneref *z; struct zone *zone; int rc = COMPACT_SKIPPED; /* * Check whether it is worth even starting compaction. The order check is * made because an assumption is made that the page allocator can satisfy * the "cheaper" orders without taking special steps */ if (!order || !may_enter_fs || !may_perform_io) return rc; count_vm_event(COMPACTSTALL); /* Compact each zone in the list */ for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, nodemask) { int status; status = compact_zone_order(zone, order, gfp_mask, sync); rc = max(status, rc); /* If a normal allocation would succeed, stop compacting */ if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0)) break; } return rc; } /* Compact all zones within a node */ static int compact_node(int nid) { int zoneid; pg_data_t *pgdat; struct zone *zone; if (nid < 0 || nid >= nr_node_ids || !node_online(nid)) return -EINVAL; pgdat = NODE_DATA(nid); /* Flush pending updates to the LRU lists */ lru_add_drain_all(); for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { struct compact_control cc = { .nr_freepages = 0, .nr_migratepages = 0, .order = -1, }; zone = &pgdat->node_zones[zoneid]; if (!populated_zone(zone)) continue; cc.zone = zone; INIT_LIST_HEAD(&cc.freepages); INIT_LIST_HEAD(&cc.migratepages); compact_zone(zone, &cc); VM_BUG_ON(!list_empty(&cc.freepages)); VM_BUG_ON(!list_empty(&cc.migratepages)); } return 0; } /* Compact all nodes in the system */ static int compact_nodes(void) { int nid; for_each_online_node(nid) compact_node(nid); return COMPACT_COMPLETE; } /* The written value is actually unused, all memory is compacted */ int sysctl_compact_memory; /* This is the entry point for compacting all nodes via /proc/sys/vm */ int sysctl_compaction_handler(struct ctl_table *table, int write, void __user *buffer, size_t *length, loff_t *ppos) { if (write) return compact_nodes(); return 0; } int sysctl_extfrag_handler(struct ctl_table *table, int write, void __user *buffer, size_t *length, loff_t *ppos) { proc_dointvec_minmax(table, write, buffer, length, ppos); return 0; } #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) ssize_t sysfs_compact_node(struct sys_device *dev, struct sysdev_attribute *attr, const char *buf, size_t count) { compact_node(dev->id); return count; } static SYSDEV_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); int compaction_register_node(struct node *node) { return sysdev_create_file(&node->sysdev, &attr_compact); } void compaction_unregister_node(struct node *node) { return sysdev_remove_file(&node->sysdev, &attr_compact); } #endif /* CONFIG_SYSFS && CONFIG_NUMA */