/* * NinjaSCSI-32Bi Cardbus, NinjaSCSI-32UDE PCI/CardBus SCSI driver * Copyright (C) 2001, 2002, 2003 * YOKOTA Hiroshi * GOTO Masanori , * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * * Revision History: * 1.0: Initial Release. * 1.1: Add /proc SDTR status. * Remove obsolete error handler nsp32_reset. * Some clean up. * 1.2: PowerPC (big endian) support. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nsp32.h" /*********************************************************************** * Module parameters */ static int trans_mode = 0; /* default: BIOS */ module_param (trans_mode, int, 0); MODULE_PARM_DESC(trans_mode, "transfer mode (0: BIOS(default) 1: Async 2: Ultra20M"); #define ASYNC_MODE 1 #define ULTRA20M_MODE 2 static int auto_param = 0; /* default: ON */ module_param (auto_param, bool, 0); MODULE_PARM_DESC(auto_param, "AutoParameter mode (0: ON(default) 1: OFF)"); static int disc_priv = 1; /* default: OFF */ module_param (disc_priv, bool, 0); MODULE_PARM_DESC(disc_priv, "disconnection privilege mode (0: ON 1: OFF(default))"); MODULE_AUTHOR("YOKOTA Hiroshi , GOTO Masanori "); MODULE_DESCRIPTION("Workbit NinjaSCSI-32Bi/UDE CardBus/PCI SCSI host bus adapter module"); MODULE_LICENSE("GPL"); static const char *nsp32_release_version = "1.2"; /**************************************************************************** * Supported hardware */ static struct pci_device_id nsp32_pci_table[] __devinitdata = { { .vendor = PCI_VENDOR_ID_IODATA, .device = PCI_DEVICE_ID_NINJASCSI_32BI_CBSC_II, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, .driver_data = MODEL_IODATA, }, { .vendor = PCI_VENDOR_ID_WORKBIT, .device = PCI_DEVICE_ID_NINJASCSI_32BI_KME, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, .driver_data = MODEL_KME, }, { .vendor = PCI_VENDOR_ID_WORKBIT, .device = PCI_DEVICE_ID_NINJASCSI_32BI_WBT, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, .driver_data = MODEL_WORKBIT, }, { .vendor = PCI_VENDOR_ID_WORKBIT, .device = PCI_DEVICE_ID_WORKBIT_STANDARD, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, .driver_data = MODEL_PCI_WORKBIT, }, { .vendor = PCI_VENDOR_ID_WORKBIT, .device = PCI_DEVICE_ID_NINJASCSI_32BI_LOGITEC, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, .driver_data = MODEL_LOGITEC, }, { .vendor = PCI_VENDOR_ID_WORKBIT, .device = PCI_DEVICE_ID_NINJASCSI_32BIB_LOGITEC, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, .driver_data = MODEL_PCI_LOGITEC, }, { .vendor = PCI_VENDOR_ID_WORKBIT, .device = PCI_DEVICE_ID_NINJASCSI_32UDE_MELCO, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, .driver_data = MODEL_PCI_MELCO, }, { .vendor = PCI_VENDOR_ID_WORKBIT, .device = PCI_DEVICE_ID_NINJASCSI_32UDE_MELCO_II, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, .driver_data = MODEL_PCI_MELCO, }, {0,0,}, }; MODULE_DEVICE_TABLE(pci, nsp32_pci_table); static nsp32_hw_data nsp32_data_base; /* probe <-> detect glue */ /* * Period/AckWidth speed conversion table * * Note: This period/ackwidth speed table must be in descending order. */ static nsp32_sync_table nsp32_sync_table_40M[] = { /* {PNo, AW, SP, EP, SREQ smpl} Speed(MB/s) Period AckWidth */ {0x1, 0, 0x0c, 0x0c, SMPL_40M}, /* 20.0 : 50ns, 25ns */ {0x2, 0, 0x0d, 0x18, SMPL_40M}, /* 13.3 : 75ns, 25ns */ {0x3, 1, 0x19, 0x19, SMPL_40M}, /* 10.0 : 100ns, 50ns */ {0x4, 1, 0x1a, 0x1f, SMPL_20M}, /* 8.0 : 125ns, 50ns */ {0x5, 2, 0x20, 0x25, SMPL_20M}, /* 6.7 : 150ns, 75ns */ {0x6, 2, 0x26, 0x31, SMPL_20M}, /* 5.7 : 175ns, 75ns */ {0x7, 3, 0x32, 0x32, SMPL_20M}, /* 5.0 : 200ns, 100ns */ {0x8, 3, 0x33, 0x38, SMPL_10M}, /* 4.4 : 225ns, 100ns */ {0x9, 3, 0x39, 0x3e, SMPL_10M}, /* 4.0 : 250ns, 100ns */ }; static nsp32_sync_table nsp32_sync_table_20M[] = { {0x1, 0, 0x19, 0x19, SMPL_40M}, /* 10.0 : 100ns, 50ns */ {0x2, 0, 0x1a, 0x25, SMPL_20M}, /* 6.7 : 150ns, 50ns */ {0x3, 1, 0x26, 0x32, SMPL_20M}, /* 5.0 : 200ns, 100ns */ {0x4, 1, 0x33, 0x3e, SMPL_10M}, /* 4.0 : 250ns, 100ns */ {0x5, 2, 0x3f, 0x4b, SMPL_10M}, /* 3.3 : 300ns, 150ns */ {0x6, 2, 0x4c, 0x57, SMPL_10M}, /* 2.8 : 350ns, 150ns */ {0x7, 3, 0x58, 0x64, SMPL_10M}, /* 2.5 : 400ns, 200ns */ {0x8, 3, 0x65, 0x70, SMPL_10M}, /* 2.2 : 450ns, 200ns */ {0x9, 3, 0x71, 0x7d, SMPL_10M}, /* 2.0 : 500ns, 200ns */ }; static nsp32_sync_table nsp32_sync_table_pci[] = { {0x1, 0, 0x0c, 0x0f, SMPL_40M}, /* 16.6 : 60ns, 30ns */ {0x2, 0, 0x10, 0x16, SMPL_40M}, /* 11.1 : 90ns, 30ns */ {0x3, 1, 0x17, 0x1e, SMPL_20M}, /* 8.3 : 120ns, 60ns */ {0x4, 1, 0x1f, 0x25, SMPL_20M}, /* 6.7 : 150ns, 60ns */ {0x5, 2, 0x26, 0x2d, SMPL_20M}, /* 5.6 : 180ns, 90ns */ {0x6, 2, 0x2e, 0x34, SMPL_10M}, /* 4.8 : 210ns, 90ns */ {0x7, 3, 0x35, 0x3c, SMPL_10M}, /* 4.2 : 240ns, 120ns */ {0x8, 3, 0x3d, 0x43, SMPL_10M}, /* 3.7 : 270ns, 120ns */ {0x9, 3, 0x44, 0x4b, SMPL_10M}, /* 3.3 : 300ns, 120ns */ }; /* * function declaration */ /* module entry point */ static int __devinit nsp32_probe (struct pci_dev *, const struct pci_device_id *); static void __devexit nsp32_remove(struct pci_dev *); static int __init init_nsp32 (void); static void __exit exit_nsp32 (void); /* struct struct scsi_host_template */ static int nsp32_proc_info (struct Scsi_Host *, char *, char **, off_t, int, int); static int nsp32_detect (struct pci_dev *pdev); static int nsp32_queuecommand(struct Scsi_Host *, struct scsi_cmnd *); static const char *nsp32_info (struct Scsi_Host *); static int nsp32_release (struct Scsi_Host *); /* SCSI error handler */ static int nsp32_eh_abort (struct scsi_cmnd *); static int nsp32_eh_bus_reset (struct scsi_cmnd *); static int nsp32_eh_host_reset(struct scsi_cmnd *); /* generate SCSI message */ static void nsp32_build_identify(struct scsi_cmnd *); static void nsp32_build_nop (struct scsi_cmnd *); static void nsp32_build_reject (struct scsi_cmnd *); static void nsp32_build_sdtr (struct scsi_cmnd *, unsigned char, unsigned char); /* SCSI message handler */ static int nsp32_busfree_occur(struct scsi_cmnd *, unsigned short); static void nsp32_msgout_occur (struct scsi_cmnd *); static void nsp32_msgin_occur (struct scsi_cmnd *, unsigned long, unsigned short); static int nsp32_setup_sg_table (struct scsi_cmnd *); static int nsp32_selection_autopara(struct scsi_cmnd *); static int nsp32_selection_autoscsi(struct scsi_cmnd *); static void nsp32_scsi_done (struct scsi_cmnd *); static int nsp32_arbitration (struct scsi_cmnd *, unsigned int); static int nsp32_reselection (struct scsi_cmnd *, unsigned char); static void nsp32_adjust_busfree (struct scsi_cmnd *, unsigned int); static void nsp32_restart_autoscsi (struct scsi_cmnd *, unsigned short); /* SCSI SDTR */ static void nsp32_analyze_sdtr (struct scsi_cmnd *); static int nsp32_search_period_entry(nsp32_hw_data *, nsp32_target *, unsigned char); static void nsp32_set_async (nsp32_hw_data *, nsp32_target *); static void nsp32_set_max_sync (nsp32_hw_data *, nsp32_target *, unsigned char *, unsigned char *); static void nsp32_set_sync_entry (nsp32_hw_data *, nsp32_target *, int, unsigned char); /* SCSI bus status handler */ static void nsp32_wait_req (nsp32_hw_data *, int); static void nsp32_wait_sack (nsp32_hw_data *, int); static void nsp32_sack_assert (nsp32_hw_data *); static void nsp32_sack_negate (nsp32_hw_data *); static void nsp32_do_bus_reset(nsp32_hw_data *); /* hardware interrupt handler */ static irqreturn_t do_nsp32_isr(int, void *); /* initialize hardware */ static int nsp32hw_init(nsp32_hw_data *); /* EEPROM handler */ static int nsp32_getprom_param (nsp32_hw_data *); static int nsp32_getprom_at24 (nsp32_hw_data *); static int nsp32_getprom_c16 (nsp32_hw_data *); static void nsp32_prom_start (nsp32_hw_data *); static void nsp32_prom_stop (nsp32_hw_data *); static int nsp32_prom_read (nsp32_hw_data *, int); static int nsp32_prom_read_bit (nsp32_hw_data *); static void nsp32_prom_write_bit(nsp32_hw_data *, int); static void nsp32_prom_set (nsp32_hw_data *, int, int); static int nsp32_prom_get (nsp32_hw_data *, int); /* debug/warning/info message */ static void nsp32_message (const char *, int, char *, char *, ...); #ifdef NSP32_DEBUG static void nsp32_dmessage(const char *, int, int, char *, ...); #endif /* * max_sectors is currently limited up to 128. */ static struct scsi_host_template nsp32_template = { .proc_name = "nsp32", .name = "Workbit NinjaSCSI-32Bi/UDE", .proc_info = nsp32_proc_info, .info = nsp32_info, .queuecommand = nsp32_queuecommand, .can_queue = 1, .sg_tablesize = NSP32_SG_SIZE, .max_sectors = 128, .cmd_per_lun = 1, .this_id = NSP32_HOST_SCSIID, .use_clustering = DISABLE_CLUSTERING, .eh_abort_handler = nsp32_eh_abort, .eh_bus_reset_handler = nsp32_eh_bus_reset, .eh_host_reset_handler = nsp32_eh_host_reset, /* .highmem_io = 1, */ }; #include "nsp32_io.h" /*********************************************************************** * debug, error print */ #ifndef NSP32_DEBUG # define NSP32_DEBUG_MASK 0x000000 # define nsp32_msg(type, args...) nsp32_message ("", 0, (type), args) # define nsp32_dbg(mask, args...) /* */ #else # define NSP32_DEBUG_MASK 0xffffff # define nsp32_msg(type, args...) \ nsp32_message (__func__, __LINE__, (type), args) # define nsp32_dbg(mask, args...) \ nsp32_dmessage(__func__, __LINE__, (mask), args) #endif #define NSP32_DEBUG_QUEUECOMMAND BIT(0) #define NSP32_DEBUG_REGISTER BIT(1) #define NSP32_DEBUG_AUTOSCSI BIT(2) #define NSP32_DEBUG_INTR BIT(3) #define NSP32_DEBUG_SGLIST BIT(4) #define NSP32_DEBUG_BUSFREE BIT(5) #define NSP32_DEBUG_CDB_CONTENTS BIT(6) #define NSP32_DEBUG_RESELECTION BIT(7) #define NSP32_DEBUG_MSGINOCCUR BIT(8) #define NSP32_DEBUG_EEPROM BIT(9) #define NSP32_DEBUG_MSGOUTOCCUR BIT(10) #define NSP32_DEBUG_BUSRESET BIT(11) #define NSP32_DEBUG_RESTART BIT(12) #define NSP32_DEBUG_SYNC BIT(13) #define NSP32_DEBUG_WAIT BIT(14) #define NSP32_DEBUG_TARGETFLAG BIT(15) #define NSP32_DEBUG_PROC BIT(16) #define NSP32_DEBUG_INIT BIT(17) #define NSP32_SPECIAL_PRINT_REGISTER BIT(20) #define NSP32_DEBUG_BUF_LEN 100 static void nsp32_message(const char *func, int line, char *type, char *fmt, ...) { va_list args; char buf[NSP32_DEBUG_BUF_LEN]; va_start(args, fmt); vsnprintf(buf, sizeof(buf), fmt, args); va_end(args); #ifndef NSP32_DEBUG printk("%snsp32: %s\n", type, buf); #else printk("%snsp32: %s (%d): %s\n", type, func, line, buf); #endif } #ifdef NSP32_DEBUG static void nsp32_dmessage(const char *func, int line, int mask, char *fmt, ...) { va_list args; char buf[NSP32_DEBUG_BUF_LEN]; va_start(args, fmt); vsnprintf(buf, sizeof(buf), fmt, args); va_end(args); if (mask & NSP32_DEBUG_MASK) { printk("nsp32-debug: 0x%x %s (%d): %s\n", mask, func, line, buf); } } #endif #ifdef NSP32_DEBUG # include "nsp32_debug.c" #else # define show_command(arg) /* */ # define show_busphase(arg) /* */ # define show_autophase(arg) /* */ #endif /* * IDENTIFY Message */ static void nsp32_build_identify(struct scsi_cmnd *SCpnt) { nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata; int pos = data->msgout_len; int mode = FALSE; /* XXX: Auto DiscPriv detection is progressing... */ if (disc_priv == 0) { /* mode = TRUE; */ } data->msgoutbuf[pos] = IDENTIFY(mode, SCpnt->device->lun); pos++; data->msgout_len = pos; } /* * SDTR Message Routine */ static void nsp32_build_sdtr(struct scsi_cmnd *SCpnt, unsigned char period, unsigned char offset) { nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata; int pos = data->msgout_len; data->msgoutbuf[pos] = EXTENDED_MESSAGE; pos++; data->msgoutbuf[pos] = EXTENDED_SDTR_LEN; pos++; data->msgoutbuf[pos] = EXTENDED_SDTR; pos++; data->msgoutbuf[pos] = period; pos++; data->msgoutbuf[pos] = offset; pos++; data->msgout_len = pos; } /* * No Operation Message */ static void nsp32_build_nop(struct scsi_cmnd *SCpnt) { nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata; int pos = data->msgout_len; if (pos != 0) { nsp32_msg(KERN_WARNING, "Some messages are already contained!"); return; } data->msgoutbuf[pos] = NOP; pos++; data->msgout_len = pos; } /* * Reject Message */ static void nsp32_build_reject(struct scsi_cmnd *SCpnt) { nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata; int pos = data->msgout_len; data->msgoutbuf[pos] = MESSAGE_REJECT; pos++; data->msgout_len = pos; } /* * timer */ #if 0 static void nsp32_start_timer(struct scsi_cmnd *SCpnt, int time) { unsigned int base = SCpnt->host->io_port; nsp32_dbg(NSP32_DEBUG_INTR, "timer=%d", time); if (time & (~TIMER_CNT_MASK)) { nsp32_dbg(NSP32_DEBUG_INTR, "timer set overflow"); } nsp32_write2(base, TIMER_SET, time & TIMER_CNT_MASK); } #endif /* * set SCSI command and other parameter to asic, and start selection phase */ static int nsp32_selection_autopara(struct scsi_cmnd *SCpnt) { nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata; unsigned int base = SCpnt->device->host->io_port; unsigned int host_id = SCpnt->device->host->this_id; unsigned char target = scmd_id(SCpnt); nsp32_autoparam *param = data->autoparam; unsigned char phase; int i, ret; unsigned int msgout; u16_le s; nsp32_dbg(NSP32_DEBUG_AUTOSCSI, "in"); /* * check bus free */ phase = nsp32_read1(base, SCSI_BUS_MONITOR); if (phase != BUSMON_BUS_FREE) { nsp32_msg(KERN_WARNING, "bus busy"); show_busphase(phase & BUSMON_PHASE_MASK); SCpnt->result = DID_BUS_BUSY << 16; return FALSE; } /* * message out * * Note: If the range of msgout_len is 1 - 3, fill scsi_msgout. * over 3 messages needs another routine. */ if (data->msgout_len == 0) { nsp32_msg(KERN_ERR, "SCSI MsgOut without any message!"); SCpnt->result = DID_ERROR << 16; return FALSE; } else if (data->msgout_len > 0 && data->msgout_len <= 3) { msgout = 0; for (i = 0; i < data->msgout_len; i++) { /* * the sending order of the message is: * MCNT 3: MSG#0 -> MSG#1 -> MSG#2 * MCNT 2: MSG#1 -> MSG#2 * MCNT 1: MSG#2 */ msgout >>= 8; msgout |= ((unsigned int)(data->msgoutbuf[i]) << 24); } msgout |= MV_VALID; /* MV valid */ msgout |= (unsigned int)data->msgout_len; /* len */ } else { /* data->msgout_len > 3 */ msgout = 0; } // nsp_dbg(NSP32_DEBUG_AUTOSCSI, "sel time out=0x%x\n", nsp32_read2(base, SEL_TIME_OUT)); // nsp32_write2(base, SEL_TIME_OUT, SEL_TIMEOUT_TIME); /* * setup asic parameter */ memset(param, 0, sizeof(nsp32_autoparam)); /* cdb */ for (i = 0; i < SCpnt->cmd_len; i++) { param->cdb[4 * i] = SCpnt->cmnd[i]; } /* outgoing messages */ param->msgout = cpu_to_le32(msgout); /* syncreg, ackwidth, target id, SREQ sampling rate */ param->syncreg = data->cur_target->syncreg; param->ackwidth = data->cur_target->ackwidth; param->target_id = BIT(host_id) | BIT(target); param->sample_reg = data->cur_target->sample_reg; // nsp32_dbg(NSP32_DEBUG_AUTOSCSI, "sample rate=0x%x\n", data->cur_target->sample_reg); /* command control */ param->command_control = cpu_to_le16(CLEAR_CDB_FIFO_POINTER | AUTOSCSI_START | AUTO_MSGIN_00_OR_04 | AUTO_MSGIN_02 | AUTO_ATN ); /* transfer control */ s = 0; switch (data->trans_method) { case NSP32_TRANSFER_BUSMASTER: s |= BM_START; break; case NSP32_TRANSFER_MMIO: s |= CB_MMIO_MODE; break; case NSP32_TRANSFER_PIO: s |= CB_IO_MODE; break; default: nsp32_msg(KERN_ERR, "unknown trans_method"); break; } /* * OR-ed BLIEND_MODE, FIFO intr is decreased, instead of PCI bus waits. * For bus master transfer, it's taken off. */ s |= (TRANSFER_GO | ALL_COUNTER_CLR); param->transfer_control = cpu_to_le16(s); /* sg table addr */ param->sgt_pointer = cpu_to_le32(data->cur_lunt->sglun_paddr); /* * transfer parameter to ASIC */ nsp32_write4(base, SGT_ADR, data->auto_paddr); nsp32_write2(base, COMMAND_CONTROL, CLEAR_CDB_FIFO_POINTER | AUTO_PARAMETER ); /* * Check arbitration */ ret = nsp32_arbitration(SCpnt, base); return ret; } /* * Selection with AUTO SCSI (without AUTO PARAMETER) */ static int nsp32_selection_autoscsi(struct scsi_cmnd *SCpnt) { nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata; unsigned int base = SCpnt->device->host->io_port; unsigned int host_id = SCpnt->device->host->this_id; unsigned char target = scmd_id(SCpnt); unsigned char phase; int status; unsigned short command = 0; unsigned int msgout = 0; unsigned short execph; int i; nsp32_dbg(NSP32_DEBUG_AUTOSCSI, "in"); /* * IRQ disable */ nsp32_write2(base, IRQ_CONTROL, IRQ_CONTROL_ALL_IRQ_MASK); /* * check bus line */ phase = nsp32_read1(base, SCSI_BUS_MONITOR); if(((phase & BUSMON_BSY) == 1) || (phase & BUSMON_SEL) == 1) { nsp32_msg(KERN_WARNING, "bus busy"); SCpnt->result = DID_BUS_BUSY << 16; status = 1; goto out; } /* * clear execph */ execph = nsp32_read2(base, SCSI_EXECUTE_PHASE); /* * clear FIFO counter to set CDBs */ nsp32_write2(base, COMMAND_CONTROL, CLEAR_CDB_FIFO_POINTER); /* * set CDB0 - CDB15 */ for (i = 0; i < SCpnt->cmd_len; i++) { nsp32_write1(base, COMMAND_DATA, SCpnt->cmnd[i]); } nsp32_dbg(NSP32_DEBUG_CDB_CONTENTS, "CDB[0]=[0x%x]", SCpnt->cmnd[0]); /* * set SCSIOUT LATCH(initiator)/TARGET(target) (OR-ed) ID */ nsp32_write1(base, SCSI_OUT_LATCH_TARGET_ID, BIT(host_id) | BIT(target)); /* * set SCSI MSGOUT REG * * Note: If the range of msgout_len is 1 - 3, fill scsi_msgout. * over 3 messages needs another routine. */ if (data->msgout_len == 0) { nsp32_msg(KERN_ERR, "SCSI MsgOut without any message!"); SCpnt->result = DID_ERROR << 16; status = 1; goto out; } else if (data->msgout_len > 0 && data->msgout_len <= 3) { msgout = 0; for (i = 0; i < data->msgout_len; i++) { /* * the sending order of the message is: * MCNT 3: MSG#0 -> MSG#1 -> MSG#2 * MCNT 2: MSG#1 -> MSG#2 * MCNT 1: MSG#2 */ msgout >>= 8; msgout |= ((unsigned int)(data->msgoutbuf[i]) << 24); } msgout |= MV_VALID; /* MV valid */ msgout |= (unsigned int)data->msgout_len; /* len */ nsp32_write4(base, SCSI_MSG_OUT, msgout); } else { /* data->msgout_len > 3 */ nsp32_write4(base, SCSI_MSG_OUT, 0); } /* * set selection timeout(= 250ms) */ nsp32_write2(base, SEL_TIME_OUT, SEL_TIMEOUT_TIME); /* * set SREQ hazard killer sampling rate * * TODO: sample_rate (BASE+0F) is 0 when internal clock = 40MHz. * check other internal clock! */ nsp32_write1(base, SREQ_SMPL_RATE, data->cur_target->sample_reg); /* * clear Arbit */ nsp32_write1(base, SET_ARBIT, ARBIT_CLEAR); /* * set SYNCREG * Don't set BM_START_ADR before setting this register. */ nsp32_write1(base, SYNC_REG, data->cur_target->syncreg); /* * set ACKWIDTH */ nsp32_write1(base, ACK_WIDTH, data->cur_target->ackwidth); nsp32_dbg(NSP32_DEBUG_AUTOSCSI, "syncreg=0x%x, ackwidth=0x%x, sgtpaddr=0x%x, id=0x%x", nsp32_read1(base, SYNC_REG), nsp32_read1(base, ACK_WIDTH), nsp32_read4(base, SGT_ADR), nsp32_read1(base, SCSI_OUT_LATCH_TARGET_ID)); nsp32_dbg(NSP32_DEBUG_AUTOSCSI, "msgout_len=%d, msgout=0x%x", data->msgout_len, msgout); /* * set SGT ADDR (physical address) */ nsp32_write4(base, SGT_ADR, data->cur_lunt->sglun_paddr); /* * set TRANSFER CONTROL REG */ command = 0; command |= (TRANSFER_GO | ALL_COUNTER_CLR); if (data->trans_method & NSP32_TRANSFER_BUSMASTER) { if (scsi_bufflen(SCpnt) > 0) { command |= BM_START; } } else if (data->trans_method & NSP32_TRANSFER_MMIO) { command |= CB_MMIO_MODE; } else if (data->trans_method & NSP32_TRANSFER_PIO) { command |= CB_IO_MODE; } nsp32_write2(base, TRANSFER_CONTROL, command); /* * start AUTO SCSI, kick off arbitration */ command = (CLEAR_CDB_FIFO_POINTER | AUTOSCSI_START | AUTO_MSGIN_00_OR_04 | AUTO_MSGIN_02 | AUTO_ATN ); nsp32_write2(base, COMMAND_CONTROL, command); /* * Check arbitration */ status = nsp32_arbitration(SCpnt, base); out: /* * IRQ enable */ nsp32_write2(base, IRQ_CONTROL, 0); return status; } /* * Arbitration Status Check * * Note: Arbitration counter is waited during ARBIT_GO is not lifting. * Using udelay(1) consumes CPU time and system time, but * arbitration delay time is defined minimal 2.4us in SCSI * specification, thus udelay works as coarse grained wait timer. */ static int nsp32_arbitration(struct scsi_cmnd *SCpnt, unsigned int base) { unsigned char arbit; int status = TRUE; int time = 0; do { arbit = nsp32_read1(base, ARBIT_STATUS); time++; } while ((arbit & (ARBIT_WIN | ARBIT_FAIL)) == 0 && (time <= ARBIT_TIMEOUT_TIME)); nsp32_dbg(NSP32_DEBUG_AUTOSCSI, "arbit: 0x%x, delay time: %d", arbit, time); if (arbit & ARBIT_WIN) { /* Arbitration succeeded */ SCpnt->result = DID_OK << 16; nsp32_index_write1(base, EXT_PORT, LED_ON); /* PCI LED on */ } else if (arbit & ARBIT_FAIL) { /* Arbitration failed */ SCpnt->result = DID_BUS_BUSY << 16; status = FALSE; } else { /* * unknown error or ARBIT_GO timeout, * something lock up! guess no connection. */ nsp32_dbg(NSP32_DEBUG_AUTOSCSI, "arbit timeout"); SCpnt->result = DID_NO_CONNECT << 16; status = FALSE; } /* * clear Arbit */ nsp32_write1(base, SET_ARBIT, ARBIT_CLEAR); return status; } /* * reselection * * Note: This reselection routine is called from msgin_occur, * reselection target id&lun must be already set. * SCSI-2 says IDENTIFY implies RESTORE_POINTER operation. */ static int nsp32_reselection(struct scsi_cmnd *SCpnt, unsigned char newlun) { nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata; unsigned int host_id = SCpnt->device->host->this_id; unsigned int base = SCpnt->device->host->io_port; unsigned char tmpid, newid; nsp32_dbg(NSP32_DEBUG_RESELECTION, "enter"); /* * calculate reselected SCSI ID */ tmpid = nsp32_read1(base, RESELECT_ID); tmpid &= (~BIT(host_id)); newid = 0; while (tmpid) { if (tmpid & 1) { break; } tmpid >>= 1; newid++; } /* * If reselected New ID:LUN is not existed * or current nexus is not existed, unexpected * reselection is occurred. Send reject message. */ if (newid >= ARRAY_SIZE(data->lunt) || newlun >= ARRAY_SIZE(data->lunt[0])) { nsp32_msg(KERN_WARNING, "unknown id/lun"); return FALSE; } else if(data->lunt[newid][newlun].SCpnt == NULL) { nsp32_msg(KERN_WARNING, "no SCSI command is processing"); return FALSE; } data->cur_id = newid; data->cur_lun = newlun; data->cur_target = &(data->target[newid]); data->cur_lunt = &(data->lunt[newid][newlun]); /* reset SACK/SavedACK counter (or ALL clear?) */ nsp32_write4(base, CLR_COUNTER, CLRCOUNTER_ALLMASK); return TRUE; } /* * nsp32_setup_sg_table - build scatter gather list for transfer data * with bus master. * * Note: NinjaSCSI-32Bi/UDE bus master can not transfer over 64KB at a time. */ static int nsp32_setup_sg_table(struct scsi_cmnd *SCpnt) { nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata; struct scatterlist *sg; nsp32_sgtable *sgt = data->cur_lunt->sglun->sgt; int num, i; u32_le l; if (sgt == NULL) { nsp32_dbg(NSP32_DEBUG_SGLIST, "SGT == null"); return FALSE; } num = scsi_dma_map(SCpnt); if (!num) return TRUE; else if (num < 0) return FALSE; else { scsi_for_each_sg(SCpnt, sg, num, i) { /* * Build nsp32_sglist, substitute sg dma addresses. */ sgt[i].addr = cpu_to_le32(sg_dma_address(sg)); sgt[i].len = cpu_to_le32(sg_dma_len(sg)); if (le32_to_cpu(sgt[i].len) > 0x10000) { nsp32_msg(KERN_ERR, "can't transfer over 64KB at a time, size=0x%lx", le32_to_cpu(sgt[i].len)); return FALSE; } nsp32_dbg(NSP32_DEBUG_SGLIST, "num 0x%x : addr 0x%lx len 0x%lx", i, le32_to_cpu(sgt[i].addr), le32_to_cpu(sgt[i].len )); } /* set end mark */ l = le32_to_cpu(sgt[num-1].len); sgt[num-1].len = cpu_to_le32(l | SGTEND); } return TRUE; } static int nsp32_queuecommand_lck(struct scsi_cmnd *SCpnt, void (*done)(struct scsi_cmnd *)) { nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata; nsp32_target *target; nsp32_lunt *cur_lunt; int ret; nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND, "enter. target: 0x%x LUN: 0x%x cmnd: 0x%x cmndlen: 0x%x " "use_sg: 0x%x reqbuf: 0x%lx reqlen: 0x%x", SCpnt->device->id, SCpnt->device->lun, SCpnt->cmnd[0], SCpnt->cmd_len, scsi_sg_count(SCpnt), scsi_sglist(SCpnt), scsi_bufflen(SCpnt)); if (data->CurrentSC != NULL) { nsp32_msg(KERN_ERR, "Currentsc != NULL. Cancel this command request"); data->CurrentSC = NULL; SCpnt->result = DID_NO_CONNECT << 16; done(SCpnt); return 0; } /* check target ID is not same as this initiator ID */ if (scmd_id(SCpnt) == SCpnt->device->host->this_id) { nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND, "terget==host???"); SCpnt->result = DID_BAD_TARGET << 16; done(SCpnt); return 0; } /* check target LUN is allowable value */ if (SCpnt->device->lun >= MAX_LUN) { nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND, "no more lun"); SCpnt->result = DID_BAD_TARGET << 16; done(SCpnt); return 0; } show_command(SCpnt); SCpnt->scsi_done = done; data->CurrentSC = SCpnt; SCpnt->SCp.Status = CHECK_CONDITION; SCpnt->SCp.Message = 0; scsi_set_resid(SCpnt, scsi_bufflen(SCpnt)); SCpnt->SCp.ptr = (char *)scsi_sglist(SCpnt); SCpnt->SCp.this_residual = scsi_bufflen(SCpnt); SCpnt->SCp.buffer = NULL; SCpnt->SCp.buffers_residual = 0; /* initialize data */ data->msgout_len = 0; data->msgin_len = 0; cur_lunt = &(data->lunt[SCpnt->device->id][SCpnt->device->lun]); cur_lunt->SCpnt = SCpnt; cur_lunt->save_datp = 0; cur_lunt->msgin03 = FALSE; data->cur_lunt = cur_lunt; data->cur_id = SCpnt->device->id; data->cur_lun = SCpnt->device->lun; ret = nsp32_setup_sg_table(SCpnt); if (ret == FALSE) { nsp32_msg(KERN_ERR, "SGT fail"); SCpnt->result = DID_ERROR << 16; nsp32_scsi_done(SCpnt); return 0; } /* Build IDENTIFY */ nsp32_build_identify(SCpnt); /* * If target is the first time to transfer after the reset * (target don't have SDTR_DONE and SDTR_INITIATOR), sync * message SDTR is needed to do synchronous transfer. */ target = &data->target[scmd_id(SCpnt)]; data->cur_target = target; if (!(target->sync_flag & (SDTR_DONE | SDTR_INITIATOR | SDTR_TARGET))) { unsigned char period, offset; if (trans_mode != ASYNC_MODE) { nsp32_set_max_sync(data, target, &period, &offset); nsp32_build_sdtr(SCpnt, period, offset); target->sync_flag |= SDTR_INITIATOR; } else { nsp32_set_async(data, target); target->sync_flag |= SDTR_DONE; } nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND, "SDTR: entry: %d start_period: 0x%x offset: 0x%x\n", target->limit_entry, period, offset); } else if (target->sync_flag & SDTR_INITIATOR) { /* * It was negotiating SDTR with target, sending from the * initiator, but there are no chance to remove this flag. * Set async because we don't get proper negotiation. */ nsp32_set_async(data, target); target->sync_flag &= ~SDTR_INITIATOR; target->sync_flag |= SDTR_DONE; nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND, "SDTR_INITIATOR: fall back to async"); } else if (target->sync_flag & SDTR_TARGET) { /* * It was negotiating SDTR with target, sending from target, * but there are no chance to remove this flag. Set async * because we don't get proper negotiation. */ nsp32_set_async(data, target); target->sync_flag &= ~SDTR_TARGET; target->sync_flag |= SDTR_DONE; nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND, "Unknown SDTR from target is reached, fall back to async."); } nsp32_dbg(NSP32_DEBUG_TARGETFLAG, "target: %d sync_flag: 0x%x syncreg: 0x%x ackwidth: 0x%x", SCpnt->device->id, target->sync_flag, target->syncreg, target->ackwidth); /* Selection */ if (auto_param == 0) { ret = nsp32_selection_autopara(SCpnt); } else { ret = nsp32_selection_autoscsi(SCpnt); } if (ret != TRUE) { nsp32_dbg(NSP32_DEBUG_QUEUECOMMAND, "selection fail"); nsp32_scsi_done(SCpnt); } return 0; } static DEF_SCSI_QCMD(nsp32_queuecommand) /* initialize asic */ static int nsp32hw_init(nsp32_hw_data *data) { unsigned int base = data->BaseAddress; unsigned short irq_stat; unsigned long lc_reg; unsigned char power; lc_reg = nsp32_index_read4(base, CFG_LATE_CACHE); if ((lc_reg & 0xff00) == 0) { lc_reg |= (0x20 << 8); nsp32_index_write2(base, CFG_LATE_CACHE, lc_reg & 0xffff); } nsp32_write2(base, IRQ_CONTROL, IRQ_CONTROL_ALL_IRQ_MASK); nsp32_write2(base, TRANSFER_CONTROL, 0); nsp32_write4(base, BM_CNT, 0); nsp32_write2(base, SCSI_EXECUTE_PHASE, 0); do { irq_stat = nsp32_read2(base, IRQ_STATUS); nsp32_dbg(NSP32_DEBUG_INIT, "irq_stat 0x%x", irq_stat); } while (irq_stat & IRQSTATUS_ANY_IRQ); /* * Fill FIFO_FULL_SHLD, FIFO_EMPTY_SHLD. Below parameter is * designated by specification. */ if ((data->trans_method & NSP32_TRANSFER_PIO) || (data->trans_method & NSP32_TRANSFER_MMIO)) { nsp32_index_write1(base, FIFO_FULL_SHLD_COUNT, 0x40); nsp32_index_write1(base, FIFO_EMPTY_SHLD_COUNT, 0x40); } else if (data->trans_method & NSP32_TRANSFER_BUSMASTER) { nsp32_index_write1(base, FIFO_FULL_SHLD_COUNT, 0x10); nsp32_index_write1(base, FIFO_EMPTY_SHLD_COUNT, 0x60); } else { nsp32_dbg(NSP32_DEBUG_INIT, "unknown transfer mode"); } nsp32_dbg(NSP32_DEBUG_INIT, "full 0x%x emp 0x%x", nsp32_index_read1(base, FIFO_FULL_SHLD_COUNT), nsp32_index_read1(base, FIFO_EMPTY_SHLD_COUNT)); nsp32_index_write1(base, CLOCK_DIV, data->clock); nsp32_index_write1(base, BM_CYCLE, MEMRD_CMD1 | SGT_AUTO_PARA_MEMED_CMD); nsp32_write1(base, PARITY_CONTROL, 0); /* parity check is disable */ /* * initialize MISC_WRRD register * * Note: Designated parameters is obeyed as following: * MISC_SCSI_DIRECTION_DETECTOR_SELECT: It must be set. * MISC_MASTER_TERMINATION_SELECT: It must be set. * MISC_BMREQ_NEGATE_TIMING_SEL: It should be set. * MISC_AUTOSEL_TIMING_SEL: It should be set. * MISC_BMSTOP_CHANGE2_NONDATA_PHASE: It should be set. * MISC_DELAYED_BMSTART: It's selected for safety. * * Note: If MISC_BMSTOP_CHANGE2_NONDATA_PHASE is set, then * we have to set TRANSFERCONTROL_BM_START as 0 and set * appropriate value before restarting bus master transfer. */ nsp32_index_write2(base, MISC_WR, (SCSI_DIRECTION_DETECTOR_SELECT | DELAYED_BMSTART | MASTER_TERMINATION_SELECT | BMREQ_NEGATE_TIMING_SEL | AUTOSEL_TIMING_SEL | BMSTOP_CHANGE2_NONDATA_PHASE)); nsp32_index_write1(base, TERM_PWR_CONTROL, 0); power = nsp32_index_read1(base, TERM_PWR_CONTROL); if (!(power & SENSE)) { nsp32_msg(KERN_INFO, "term power on"); nsp32_index_write1(base, TERM_PWR_CONTROL, BPWR); } nsp32_write2(base, TIMER_SET, TIMER_STOP); nsp32_write2(base, TIMER_SET, TIMER_STOP); /* Required 2 times */ nsp32_write1(base, SYNC_REG, 0); nsp32_write1(base, ACK_WIDTH, 0); nsp32_write2(base, SEL_TIME_OUT, SEL_TIMEOUT_TIME); /* * enable to select designated IRQ (except for * IRQSELECT_SERR, IRQSELECT_PERR, IRQSELECT_BMCNTERR) */ nsp32_index_write2(base, IRQ_SELECT, IRQSELECT_TIMER_IRQ | IRQSELECT_SCSIRESET_IRQ | IRQSELECT_FIFO_SHLD_IRQ | IRQSELECT_RESELECT_IRQ | IRQSELECT_PHASE_CHANGE_IRQ | IRQSELECT_AUTO_SCSI_SEQ_IRQ | // IRQSELECT_BMCNTERR_IRQ | IRQSELECT_TARGET_ABORT_IRQ | IRQSELECT_MASTER_ABORT_IRQ ); nsp32_write2(base, IRQ_CONTROL, 0); /* PCI LED off */ nsp32_index_write1(base, EXT_PORT_DDR, LED_OFF); nsp32_index_write1(base, EXT_PORT, LED_OFF); return TRUE; } /* interrupt routine */ static irqreturn_t do_nsp32_isr(int irq, void *dev_id) { nsp32_hw_data *data = dev_id; unsigned int base = data->BaseAddress; struct scsi_cmnd *SCpnt = data->CurrentSC; unsigned short auto_stat, irq_stat, trans_stat; unsigned char busmon, busphase; unsigned long flags; int ret; int handled = 0; struct Scsi_Host *host = data->Host; spin_lock_irqsave(host->host_lock, flags); /* * IRQ check, then enable IRQ mask */ irq_stat = nsp32_read2(base, IRQ_STATUS); nsp32_dbg(NSP32_DEBUG_INTR, "enter IRQ: %d, IRQstatus: 0x%x", irq, irq_stat); /* is this interrupt comes from Ninja asic? */ if ((irq_stat & IRQSTATUS_ANY_IRQ) == 0) { nsp32_dbg(NSP32_DEBUG_INTR, "shared interrupt: irq other 0x%x", irq_stat); goto out2; } handled = 1; nsp32_write2(base, IRQ_CONTROL, IRQ_CONTROL_ALL_IRQ_MASK); busmon = nsp32_read1(base, SCSI_BUS_MONITOR); busphase = busmon & BUSMON_PHASE_MASK; trans_stat = nsp32_read2(base, TRANSFER_STATUS); if ((irq_stat == 0xffff) && (trans_stat == 0xffff)) { nsp32_msg(KERN_INFO, "card disconnect"); if (data->CurrentSC != NULL) { nsp32_msg(KERN_INFO, "clean up current SCSI command"); SCpnt->result = DID_BAD_TARGET << 16; nsp32_scsi_done(SCpnt); } goto out; } /* Timer IRQ */ if (irq_stat & IRQSTATUS_TIMER_IRQ) { nsp32_dbg(NSP32_DEBUG_INTR, "timer stop"); nsp32_write2(base, TIMER_SET, TIMER_STOP); goto out; } /* SCSI reset */ if (irq_stat & IRQSTATUS_SCSIRESET_IRQ) { nsp32_msg(KERN_INFO, "detected someone do bus reset"); nsp32_do_bus_reset(data); if (SCpnt != NULL) { SCpnt->result = DID_RESET << 16; nsp32_scsi_done(SCpnt); } goto out; } if (SCpnt == NULL) { nsp32_msg(KERN_WARNING, "SCpnt==NULL this can't be happened"); nsp32_msg(KERN_WARNING, "irq_stat=0x%x trans_stat=0x%x", irq_stat, trans_stat); goto out; } /* * AutoSCSI Interrupt. * Note: This interrupt is occurred when AutoSCSI is finished. Then * check SCSIEXECUTEPHASE, and do appropriate action. Each phases are * recorded when AutoSCSI sequencer has been processed. */ if(irq_stat & IRQSTATUS_AUTOSCSI_IRQ) { /* getting SCSI executed phase */ auto_stat = nsp32_read2(base, SCSI_EXECUTE_PHASE); nsp32_write2(base, SCSI_EXECUTE_PHASE, 0); /* Selection Timeout, go busfree phase. */ if (auto_stat & SELECTION_TIMEOUT) { nsp32_dbg(NSP32_DEBUG_INTR, "selection timeout occurred"); SCpnt->result = DID_TIME_OUT << 16; nsp32_scsi_done(SCpnt); goto out; } if (auto_stat & MSGOUT_PHASE) { /* * MsgOut phase was processed. * If MSG_IN_OCCUER is not set, then MsgOut phase is * completed. Thus, msgout_len must reset. Otherwise, * nothing to do here. If MSG_OUT_OCCUER is occurred, * then we will encounter the condition and check. */ if (!(auto_stat & MSG_IN_OCCUER) && (data->msgout_len <= 3)) { /* * !MSG_IN_OCCUER && msgout_len <=3 * ---> AutoSCSI with MSGOUTreg is processed. */ data->msgout_len = 0; }; nsp32_dbg(NSP32_DEBUG_INTR, "MsgOut phase processed"); } if ((auto_stat & DATA_IN_PHASE) && (scsi_get_resid(SCpnt) > 0) && ((nsp32_read2(base, FIFO_REST_CNT) & FIFO_REST_MASK) != 0)) { printk( "auto+fifo\n"); //nsp32_pio_read(SCpnt); } if (auto_stat & (DATA_IN_PHASE | DATA_OUT_PHASE)) { /* DATA_IN_PHASE/DATA_OUT_PHASE was processed. */ nsp32_dbg(NSP32_DEBUG_INTR, "Data in/out phase processed"); /* read BMCNT, SGT pointer addr */ nsp32_dbg(NSP32_DEBUG_INTR, "BMCNT=0x%lx", nsp32_read4(base, BM_CNT)); nsp32_dbg(NSP32_DEBUG_INTR, "addr=0x%lx", nsp32_read4(base, SGT_ADR)); nsp32_dbg(NSP32_DEBUG_INTR, "SACK=0x%lx", nsp32_read4(base, SACK_CNT)); nsp32_dbg(NSP32_DEBUG_INTR, "SSACK=0x%lx", nsp32_read4(base, SAVED_SACK_CNT)); scsi_set_resid(SCpnt, 0); /* all data transfered! */ } /* * MsgIn Occur */ if (auto_stat & MSG_IN_OCCUER) { nsp32_msgin_occur(SCpnt, irq_stat, auto_stat); } /* * MsgOut Occur */ if (auto_stat & MSG_OUT_OCCUER) { nsp32_msgout_occur(SCpnt); } /* * Bus Free Occur */ if (auto_stat & BUS_FREE_OCCUER) { ret = nsp32_busfree_occur(SCpnt, auto_stat); if (ret == TRUE) { goto out; } } if (auto_stat & STATUS_PHASE) { /* * Read CSB and substitute CSB for SCpnt->result * to save status phase stutas byte. * scsi error handler checks host_byte (DID_*: * low level driver to indicate status), then checks * status_byte (SCSI status byte). */ SCpnt->result = (int)nsp32_read1(base, SCSI_CSB_IN); } if (auto_stat & ILLEGAL_PHASE) { /* Illegal phase is detected. SACK is not back. */ nsp32_msg(KERN_WARNING, "AUTO SCSI ILLEGAL PHASE OCCUR!!!!"); /* TODO: currently we don't have any action... bus reset? */ /* * To send back SACK, assert, wait, and negate. */ nsp32_sack_assert(data); nsp32_wait_req(data, NEGATE); nsp32_sack_negate(data); } if (auto_stat & COMMAND_PHASE) { /* nothing to do */ nsp32_dbg(NSP32_DEBUG_INTR, "Command phase processed"); } if (auto_stat & AUTOSCSI_BUSY) { /* AutoSCSI is running */ } show_autophase(auto_stat); } /* FIFO_SHLD_IRQ */ if (irq_stat & IRQSTATUS_FIFO_SHLD_IRQ) { nsp32_dbg(NSP32_DEBUG_INTR, "FIFO IRQ"); switch(busphase) { case BUSPHASE_DATA_OUT: nsp32_dbg(NSP32_DEBUG_INTR, "fifo/write"); //nsp32_pio_write(SCpnt); break; case BUSPHASE_DATA_IN: nsp32_dbg(NSP32_DEBUG_INTR, "fifo/read"); //nsp32_pio_read(SCpnt); break; case BUSPHASE_STATUS: nsp32_dbg(NSP32_DEBUG_INTR, "fifo/status"); SCpnt->SCp.Status = nsp32_read1(base, SCSI_CSB_IN); break; default: nsp32_dbg(NSP32_DEBUG_INTR, "fifo/other phase"); nsp32_dbg(NSP32_DEBUG_INTR, "irq_stat=0x%x trans_stat=0x%x", irq_stat, trans_stat); show_busphase(busphase); break; } goto out; } /* Phase Change IRQ */ if (irq_stat & IRQSTATUS_PHASE_CHANGE_IRQ) { nsp32_dbg(NSP32_DEBUG_INTR, "phase change IRQ"); switch(busphase) { case BUSPHASE_MESSAGE_IN: nsp32_dbg(NSP32_DEBUG_INTR, "phase chg/msg in"); nsp32_msgin_occur(SCpnt, irq_stat, 0); break; default: nsp32_msg(KERN_WARNING, "phase chg/other phase?"); nsp32_msg(KERN_WARNING, "irq_stat=0x%x trans_stat=0x%x\n", irq_stat, trans_stat); show_busphase(busphase); break; } goto out; } /* PCI_IRQ */ if (irq_stat & IRQSTATUS_PCI_IRQ) { nsp32_dbg(NSP32_DEBUG_INTR, "PCI IRQ occurred"); /* Do nothing */ } /* BMCNTERR_IRQ */ if (irq_stat & IRQSTATUS_BMCNTERR_IRQ) { nsp32_msg(KERN_ERR, "Received unexpected BMCNTERR IRQ! "); /* * TODO: To be implemented improving bus master * transfer reliability when BMCNTERR is occurred in * AutoSCSI phase described in specification. */ } #if 0 nsp32_dbg(NSP32_DEBUG_INTR, "irq_stat=0x%x trans_stat=0x%x", irq_stat, trans_stat); show_busphase(busphase); #endif out: /* disable IRQ mask */ nsp32_write2(base, IRQ_CONTROL, 0); out2: spin_unlock_irqrestore(host->host_lock, flags); nsp32_dbg(NSP32_DEBUG_INTR, "exit"); return IRQ_RETVAL(handled); } #undef SPRINTF #define SPRINTF(args...) \ do { \ if(length > (pos - buffer)) { \ pos += snprintf(pos, length - (pos - buffer) + 1, ## args); \ nsp32_dbg(NSP32_DEBUG_PROC, "buffer=0x%p pos=0x%p length=%d %d\n", buffer, pos, length, length - (pos - buffer));\ } \ } while(0) static int nsp32_proc_info(struct Scsi_Host *host, char *buffer, char **start, off_t offset, int length, int inout) { char *pos = buffer; int thislength; unsigned long flags; nsp32_hw_data *data; int hostno; unsigned int base; unsigned char mode_reg; int id, speed; long model; /* Write is not supported, just return. */ if (inout == TRUE) { return -EINVAL; } hostno = host->host_no; data = (nsp32_hw_data *)host->hostdata; base = host->io_port; SPRINTF("NinjaSCSI-32 status\n\n"); SPRINTF("Driver version: %s, $Revision: 1.33 $\n", nsp32_release_version); SPRINTF("SCSI host No.: %d\n", hostno); SPRINTF("IRQ: %d\n", host->irq); SPRINTF("IO: 0x%lx-0x%lx\n", host->io_port, host->io_port + host->n_io_port - 1); SPRINTF("MMIO(virtual address): 0x%lx-0x%lx\n", host->base, host->base + data->MmioLength - 1); SPRINTF("sg_tablesize: %d\n", host->sg_tablesize); SPRINTF("Chip revision: 0x%x\n", (nsp32_read2(base, INDEX_REG) >> 8) & 0xff); mode_reg = nsp32_index_read1(base, CHIP_MODE); model = data->pci_devid->driver_data; #ifdef CONFIG_PM SPRINTF("Power Management: %s\n", (mode_reg & OPTF) ? "yes" : "no"); #endif SPRINTF("OEM: %ld, %s\n", (mode_reg & (OEM0|OEM1)), nsp32_model[model]); spin_lock_irqsave(&(data->Lock), flags); SPRINTF("CurrentSC: 0x%p\n\n", data->CurrentSC); spin_unlock_irqrestore(&(data->Lock), flags); SPRINTF("SDTR status\n"); for (id = 0; id < ARRAY_SIZE(data->target); id++) { SPRINTF("id %d: ", id); if (id == host->this_id) { SPRINTF("----- NinjaSCSI-32 host adapter\n"); continue; } if (data->target[id].sync_flag == SDTR_DONE) { if (data->target[id].period == 0 && data->target[id].offset == ASYNC_OFFSET ) { SPRINTF("async"); } else { SPRINTF(" sync"); } } else { SPRINTF(" none"); } if (data->target[id].period != 0) { speed = 1000000 / (data->target[id].period * 4); SPRINTF(" transfer %d.%dMB/s, offset %d", speed / 1000, speed % 1000, data->target[id].offset ); } SPRINTF("\n"); } thislength = pos - (buffer + offset); if(thislength < 0) { *start = NULL; return 0; } thislength = min(thislength, length); *start = buffer + offset; return thislength; } #undef SPRINTF /* * Reset parameters and call scsi_done for data->cur_lunt. * Be careful setting SCpnt->result = DID_* before calling this function. */ static void nsp32_scsi_done(struct scsi_cmnd *SCpnt) { nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata; unsigned int base = SCpnt->device->host->io_port; scsi_dma_unmap(SCpnt); /* * clear TRANSFERCONTROL_BM_START */ nsp32_write2(base, TRANSFER_CONTROL, 0); nsp32_write4(base, BM_CNT, 0); /* * call scsi_done */ (*SCpnt->scsi_done)(SCpnt); /* * reset parameters */ data->cur_lunt->SCpnt = NULL; data->cur_lunt = NULL; data->cur_target = NULL; data->CurrentSC = NULL; } /* * Bus Free Occur * * Current Phase is BUSFREE. AutoSCSI is automatically execute BUSFREE phase * with ACK reply when below condition is matched: * MsgIn 00: Command Complete. * MsgIn 02: Save Data Pointer. * MsgIn 04: Diconnect. * In other case, unexpected BUSFREE is detected. */ static int nsp32_busfree_occur(struct scsi_cmnd *SCpnt, unsigned short execph) { nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata; unsigned int base = SCpnt->device->host->io_port; nsp32_dbg(NSP32_DEBUG_BUSFREE, "enter execph=0x%x", execph); show_autophase(execph); nsp32_write4(base, BM_CNT, 0); nsp32_write2(base, TRANSFER_CONTROL, 0); /* * MsgIn 02: Save Data Pointer * * VALID: * Save Data Pointer is received. Adjust pointer. * * NO-VALID: * SCSI-3 says if Save Data Pointer is not received, then we restart * processing and we can't adjust any SCSI data pointer in next data * phase. */ if (execph & MSGIN_02_VALID) { nsp32_dbg(NSP32_DEBUG_BUSFREE, "MsgIn02_Valid"); /* * Check sack_cnt/saved_sack_cnt, then adjust sg table if * needed. */ if (!(execph & MSGIN_00_VALID) && ((execph & DATA_IN_PHASE) || (execph & DATA_OUT_PHASE))) { unsigned int sacklen, s_sacklen; /* * Read SACK count and SAVEDSACK count, then compare. */ sacklen = nsp32_read4(base, SACK_CNT ); s_sacklen = nsp32_read4(base, SAVED_SACK_CNT); /* * If SAVEDSACKCNT == 0, it means SavedDataPointer is * come after data transfering. */ if (s_sacklen > 0) { /* * Comparing between sack and savedsack to * check the condition of AutoMsgIn03. * * If they are same, set msgin03 == TRUE, * COMMANDCONTROL_AUTO_MSGIN_03 is enabled at * reselection. On the other hand, if they * aren't same, set msgin03 == FALSE, and * COMMANDCONTROL_AUTO_MSGIN_03 is disabled at * reselection. */ if (sacklen != s_sacklen) { data->cur_lunt->msgin03 = FALSE; } else { data->cur_lunt->msgin03 = TRUE; } nsp32_adjust_busfree(SCpnt, s_sacklen); } } /* This value has not substitude with valid value yet... */ //data->cur_lunt->save_datp = data->cur_datp; } else { /* * no processing. */ } if (execph & MSGIN_03_VALID) { /* MsgIn03 was valid to be processed. No need processing. */ } /* * target SDTR check */ if (data->cur_target->sync_flag & SDTR_INITIATOR) { /* * SDTR negotiation pulled by the initiator has not * finished yet. Fall back to ASYNC mode. */ nsp32_set_async(data, data->cur_target); data->cur_target->sync_flag &= ~SDTR_INITIATOR; data->cur_target->sync_flag |= SDTR_DONE; } else if (data->cur_target->sync_flag & SDTR_TARGET) { /* * SDTR negotiation pulled by the target has been * negotiating. */ if (execph & (MSGIN_00_VALID | MSGIN_04_VALID)) { /* * If valid message is received, then * negotiation is succeeded. */ } else { /* * On the contrary, if unexpected bus free is * occurred, then negotiation is failed. Fall * back to ASYNC mode. */ nsp32_set_async(data, data->cur_target); } data->cur_target->sync_flag &= ~SDTR_TARGET; data->cur_target->sync_flag |= SDTR_DONE; } /* * It is always ensured by SCSI standard that initiator * switches into Bus Free Phase after * receiving message 00 (Command Complete), 04 (Disconnect). * It's the reason that processing here is valid. */ if (execph & MSGIN_00_VALID) { /* MsgIn 00: Command Complete */ nsp32_dbg(NSP32_DEBUG_BUSFREE, "command complete"); SCpnt->SCp.Status = nsp32_read1(base, SCSI_CSB_IN); SCpnt->SCp.Message = 0; nsp32_dbg(NSP32_DEBUG_BUSFREE, "normal end stat=0x%x resid=0x%x\n", SCpnt->SCp.Status, scsi_get_resid(SCpnt)); SCpnt->result = (DID_OK << 16) | (SCpnt->SCp.Message << 8) | (SCpnt->SCp.Status << 0); nsp32_scsi_done(SCpnt); /* All operation is done */ return TRUE; } else if (execph & MSGIN_04_VALID) { /* MsgIn 04: Disconnect */ SCpnt->SCp.Status = nsp32_read1(base, SCSI_CSB_IN); SCpnt->SCp.Message = 4; nsp32_dbg(NSP32_DEBUG_BUSFREE, "disconnect"); return TRUE; } else { /* Unexpected bus free */ nsp32_msg(KERN_WARNING, "unexpected bus free occurred"); /* DID_ERROR? */ //SCpnt->result = (DID_OK << 16) | (SCpnt->SCp.Message << 8) | (SCpnt->SCp.Status << 0); SCpnt->result = DID_ERROR << 16; nsp32_scsi_done(SCpnt); return TRUE; } return FALSE; } /* * nsp32_adjust_busfree - adjusting SG table * * Note: This driver adjust the SG table using SCSI ACK * counter instead of BMCNT counter! */ static void nsp32_adjust_busfree(struct scsi_cmnd *SCpnt, unsigned int s_sacklen) { nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata; int old_entry = data->cur_entry; int new_entry; int sg_num = data->cur_lunt->sg_num; nsp32_sgtable *sgt = data->cur_lunt->sglun->sgt; unsigned int restlen, sentlen; u32_le len, addr; nsp32_dbg(NSP32_DEBUG_SGLIST, "old resid=0x%x", scsi_get_resid(SCpnt)); /* adjust saved SACK count with 4 byte start address boundary */ s_sacklen -= le32_to_cpu(sgt[old_entry].addr) & 3; /* * calculate new_entry from sack count and each sgt[].len * calculate the byte which is intent to send */ sentlen = 0; for (new_entry = old_entry; new_entry < sg_num; new_entry++) { sentlen += (le32_to_cpu(sgt[new_entry].len) & ~SGTEND); if (sentlen > s_sacklen) { break; } } /* all sgt is processed */ if (new_entry == sg_num) { goto last; } if (sentlen == s_sacklen) { /* XXX: confirm it's ok or not */ /* In this case, it's ok because we are at the head element of the sg. restlen is correctly calculated. */ } /* calculate the rest length for transfering */ restlen = sentlen - s_sacklen; /* update adjusting current SG table entry */ len = le32_to_cpu(sgt[new_entry].len); addr = le32_to_cpu(sgt[new_entry].addr); addr += (len - restlen); sgt[new_entry].addr = cpu_to_le32(addr); sgt[new_entry].len = cpu_to_le32(restlen); /* set cur_entry with new_entry */ data->cur_entry = new_entry; return; last: if (scsi_get_resid(SCpnt) < sentlen) { nsp32_msg(KERN_ERR, "resid underflow"); } scsi_set_resid(SCpnt, scsi_get_resid(SCpnt) - sentlen); nsp32_dbg(NSP32_DEBUG_SGLIST, "new resid=0x%x", scsi_get_resid(SCpnt)); /* update hostdata and lun */ return; } /* * It's called MsgOut phase occur. * NinjaSCSI-32Bi/UDE automatically processes up to 3 messages in * message out phase. It, however, has more than 3 messages, * HBA creates the interrupt and we have to process by hand. */ static void nsp32_msgout_occur(struct scsi_cmnd *SCpnt) { nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata; unsigned int base = SCpnt->device->host->io_port; //unsigned short command; long new_sgtp; int i; nsp32_dbg(NSP32_DEBUG_MSGOUTOCCUR, "enter: msgout_len: 0x%x", data->msgout_len); /* * If MsgOut phase is occurred without having any * message, then No_Operation is sent (SCSI-2). */ if (data->msgout_len == 0) { nsp32_build_nop(SCpnt); } /* * Set SGTP ADDR current entry for restarting AUTOSCSI, * because SGTP is incremented next point. * There is few statement in the specification... */ new_sgtp = data->cur_lunt->sglun_paddr + (data->cur_lunt->cur_entry * sizeof(nsp32_sgtable)); /* * send messages */ for (i = 0; i < data->msgout_len; i++) { nsp32_dbg(NSP32_DEBUG_MSGOUTOCCUR, "%d : 0x%x", i, data->msgoutbuf[i]); /* * Check REQ is asserted. */ nsp32_wait_req(data, ASSERT); if (i == (data->msgout_len - 1)) { /* * If the last message, set the AutoSCSI restart * before send back the ack message. AutoSCSI * restart automatically negate ATN signal. */ //command = (AUTO_MSGIN_00_OR_04 | AUTO_MSGIN_02); //nsp32_restart_autoscsi(SCpnt, command); nsp32_write2(base, COMMAND_CONTROL, (CLEAR_CDB_FIFO_POINTER | AUTO_COMMAND_PHASE | AUTOSCSI_RESTART | AUTO_MSGIN_00_OR_04 | AUTO_MSGIN_02 )); } /* * Write data with SACK, then wait sack is * automatically negated. */ nsp32_write1(base, SCSI_DATA_WITH_ACK, data->msgoutbuf[i]); nsp32_wait_sack(data, NEGATE); nsp32_dbg(NSP32_DEBUG_MSGOUTOCCUR, "bus: 0x%x\n", nsp32_read1(base, SCSI_BUS_MONITOR)); }; data->msgout_len = 0; nsp32_dbg(NSP32_DEBUG_MSGOUTOCCUR, "exit"); } /* * Restart AutoSCSI * * Note: Restarting AutoSCSI needs set: * SYNC_REG, ACK_WIDTH, SGT_ADR, TRANSFER_CONTROL */ static void nsp32_restart_autoscsi(struct scsi_cmnd *SCpnt, unsigned short command) { nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata; unsigned int base = data->BaseAddress; unsigned short transfer = 0; nsp32_dbg(NSP32_DEBUG_RESTART, "enter"); if (data->cur_target == NULL || data->cur_lunt == NULL) { nsp32_msg(KERN_ERR, "Target or Lun is invalid"); } /* * set SYNC_REG * Don't set BM_START_ADR before setting this register. */ nsp32_write1(base, SYNC_REG, data->cur_target->syncreg); /* * set ACKWIDTH */ nsp32_write1(base, ACK_WIDTH, data->cur_target->ackwidth); /* * set SREQ hazard killer sampling rate */ nsp32_write1(base, SREQ_SMPL_RATE, data->cur_target->sample_reg); /* * set SGT ADDR (physical address) */ nsp32_write4(base, SGT_ADR, data->cur_lunt->sglun_paddr); /* * set TRANSFER CONTROL REG */ transfer = 0; transfer |= (TRANSFER_GO | ALL_COUNTER_CLR); if (data->trans_method & NSP32_TRANSFER_BUSMASTER) { if (scsi_bufflen(SCpnt) > 0) { transfer |= BM_START; } } else if (data->trans_method & NSP32_TRANSFER_MMIO) { transfer |= CB_MMIO_MODE; } else if (data->trans_method & NSP32_TRANSFER_PIO) { transfer |= CB_IO_MODE; } nsp32_write2(base, TRANSFER_CONTROL, transfer); /* * restart AutoSCSI * * TODO: COMMANDCONTROL_AUTO_COMMAND_PHASE is needed ? */ command |= (CLEAR_CDB_FIFO_POINTER | AUTO_COMMAND_PHASE | AUTOSCSI_RESTART ); nsp32_write2(base, COMMAND_CONTROL, command); nsp32_dbg(NSP32_DEBUG_RESTART, "exit"); } /* * cannot run automatically message in occur */ static void nsp32_msgin_occur(struct scsi_cmnd *SCpnt, unsigned long irq_status, unsigned short execph) { nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata; unsigned int base = SCpnt->device->host->io_port; unsigned char msg; unsigned char msgtype; unsigned char newlun; unsigned short command = 0; int msgclear = TRUE; long new_sgtp; int ret; /* * read first message * Use SCSIDATA_W_ACK instead of SCSIDATAIN, because the procedure * of Message-In have to be processed before sending back SCSI ACK. */ msg = nsp32_read1(base, SCSI_DATA_IN); data->msginbuf[(unsigned char)data->msgin_len] = msg; msgtype = data->msginbuf[0]; nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "enter: msglen: 0x%x msgin: 0x%x msgtype: 0x%x", data->msgin_len, msg, msgtype); /* * TODO: We need checking whether bus phase is message in? */ /* * assert SCSI ACK */ nsp32_sack_assert(data); /* * processing IDENTIFY */ if (msgtype & 0x80) { if (!(irq_status & IRQSTATUS_RESELECT_OCCUER)) { /* Invalid (non reselect) phase */ goto reject; } newlun = msgtype & 0x1f; /* TODO: SPI-3 compliant? */ ret = nsp32_reselection(SCpnt, newlun); if (ret == TRUE) { goto restart; } else { goto reject; } } /* * processing messages except for IDENTIFY * * TODO: Messages are all SCSI-2 terminology. SCSI-3 compliance is TODO. */ switch (msgtype) { /* * 1-byte message */ case COMMAND_COMPLETE: case DISCONNECT: /* * These messages should not be occurred. * They should be processed on AutoSCSI sequencer. */ nsp32_msg(KERN_WARNING, "unexpected message of AutoSCSI MsgIn: 0x%x", msg); break; case RESTORE_POINTERS: /* * AutoMsgIn03 is disabled, and HBA gets this message. */ if ((execph & DATA_IN_PHASE) || (execph & DATA_OUT_PHASE)) { unsigned int s_sacklen; s_sacklen = nsp32_read4(base, SAVED_SACK_CNT); if ((execph & MSGIN_02_VALID) && (s_sacklen > 0)) { nsp32_adjust_busfree(SCpnt, s_sacklen); } else { /* No need to rewrite SGT */ } } data->cur_lunt->msgin03 = FALSE; /* Update with the new value */ /* reset SACK/SavedACK counter (or ALL clear?) */ nsp32_write4(base, CLR_COUNTER, CLRCOUNTER_ALLMASK); /* * set new sg pointer */ new_sgtp = data->cur_lunt->sglun_paddr + (data->cur_lunt->cur_entry * sizeof(nsp32_sgtable)); nsp32_write4(base, SGT_ADR, new_sgtp); break; case SAVE_POINTERS: /* * These messages should not be occurred. * They should be processed on AutoSCSI sequencer. */ nsp32_msg (KERN_WARNING, "unexpected message of AutoSCSI MsgIn: SAVE_POINTERS"); break; case MESSAGE_REJECT: /* If previous message_out is sending SDTR, and get message_reject from target, SDTR negotiation is failed */ if (data->cur_target->sync_flag & (SDTR_INITIATOR | SDTR_TARGET)) { /* * Current target is negotiating SDTR, but it's * failed. Fall back to async transfer mode, and set * SDTR_DONE. */ nsp32_set_async(data, data->cur_target); data->cur_target->sync_flag &= ~SDTR_INITIATOR; data->cur_target->sync_flag |= SDTR_DONE; } break; case LINKED_CMD_COMPLETE: case LINKED_FLG_CMD_COMPLETE: /* queue tag is not supported currently */ nsp32_msg (KERN_WARNING, "unsupported message: 0x%x", msgtype); break; case INITIATE_RECOVERY: /* staring ECA (Extended Contingent Allegiance) state. */ /* This message is declined in SPI2 or later. */ goto reject; /* * 2-byte message */ case SIMPLE_QUEUE_TAG: case 0x23: /* * 0x23: Ignore_Wide_Residue is not declared in scsi.h. * No support is needed. */ if (data->msgin_len >= 1) { goto reject; } /* current position is 1-byte of 2 byte */ msgclear = FALSE; break; /* * extended message */ case EXTENDED_MESSAGE: if (data->msgin_len < 1) { /* * Current position does not reach 2-byte * (2-byte is extended message length). */ msgclear = FALSE; break; } if ((data->msginbuf[1] + 1) > data->msgin_len) { /* * Current extended message has msginbuf[1] + 2 * (msgin_len starts counting from 0, so buf[1] + 1). * If current message position is not finished, * continue receiving message. */ msgclear = FALSE; break; } /* * Reach here means regular length of each type of * extended messages. */ switch (data->msginbuf[2]) { case EXTENDED_MODIFY_DATA_POINTER: /* TODO */ goto reject; /* not implemented yet */ break; case EXTENDED_SDTR: /* * Exchange this message between initiator and target. */ if (data->msgin_len != EXTENDED_SDTR_LEN + 1) { /* * received inappropriate message. */ goto reject; break; } nsp32_analyze_sdtr(SCpnt); break; case EXTENDED_EXTENDED_IDENTIFY: /* SCSI-I only, not supported. */ goto reject; /* not implemented yet */ break; case EXTENDED_WDTR: goto reject; /* not implemented yet */ break; default: goto reject; } break; default: goto reject; } restart: if (msgclear == TRUE) { data->msgin_len = 0; /* * If restarting AutoSCSI, but there are some message to out * (msgout_len > 0), set AutoATN, and set SCSIMSGOUT as 0 * (MV_VALID = 0). When commandcontrol is written with * AutoSCSI restart, at the same time MsgOutOccur should be * happened (however, such situation is really possible...?). */ if (data->msgout_len > 0) { nsp32_write4(base, SCSI_MSG_OUT, 0); command |= AUTO_ATN; } /* * restart AutoSCSI * If it's failed, COMMANDCONTROL_AUTO_COMMAND_PHASE is needed. */ command |= (AUTO_MSGIN_00_OR_04 | AUTO_MSGIN_02); /* * If current msgin03 is TRUE, then flag on. */ if (data->cur_lunt->msgin03 == TRUE) { command |= AUTO_MSGIN_03; } data->cur_lunt->msgin03 = FALSE; } else { data->msgin_len++; } /* * restart AutoSCSI */ nsp32_restart_autoscsi(SCpnt, command); /* * wait SCSI REQ negate for REQ-ACK handshake */ nsp32_wait_req(data, NEGATE); /* * negate SCSI ACK */ nsp32_sack_negate(data); nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "exit"); return; reject: nsp32_msg(KERN_WARNING, "invalid or unsupported MessageIn, rejected. " "current msg: 0x%x (len: 0x%x), processing msg: 0x%x", msg, data->msgin_len, msgtype); nsp32_build_reject(SCpnt); data->msgin_len = 0; goto restart; } /* * */ static void nsp32_analyze_sdtr(struct scsi_cmnd *SCpnt) { nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata; nsp32_target *target = data->cur_target; nsp32_sync_table *synct; unsigned char get_period = data->msginbuf[3]; unsigned char get_offset = data->msginbuf[4]; int entry; int syncnum; nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "enter"); synct = data->synct; syncnum = data->syncnum; /* * If this inititor sent the SDTR message, then target responds SDTR, * initiator SYNCREG, ACKWIDTH from SDTR parameter. * Messages are not appropriate, then send back reject message. * If initiator did not send the SDTR, but target sends SDTR, * initiator calculator the appropriate parameter and send back SDTR. */ if (target->sync_flag & SDTR_INITIATOR) { /* * Initiator sent SDTR, the target responds and * send back negotiation SDTR. */ nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "target responds SDTR"); target->sync_flag &= ~SDTR_INITIATOR; target->sync_flag |= SDTR_DONE; /* * offset: */ if (get_offset > SYNC_OFFSET) { /* * Negotiation is failed, the target send back * unexpected offset value. */ goto reject; } if (get_offset == ASYNC_OFFSET) { /* * Negotiation is succeeded, the target want * to fall back into asynchronous transfer mode. */ goto async; } /* * period: * Check whether sync period is too short. If too short, * fall back to async mode. If it's ok, then investigate * the received sync period. If sync period is acceptable * between sync table start_period and end_period, then * set this I_T nexus as sent offset and period. * If it's not acceptable, send back reject and fall back * to async mode. */ if (get_period < data->synct[0].period_num) { /* * Negotiation is failed, the target send back * unexpected period value. */ goto reject; } entry = nsp32_search_period_entry(data, target, get_period); if (entry < 0) { /* * Target want to use long period which is not * acceptable NinjaSCSI-32Bi/UDE. */ goto reject; } /* * Set new sync table and offset in this I_T nexus. */ nsp32_set_sync_entry(data, target, entry, get_offset); } else { /* Target send SDTR to initiator. */ nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "target send SDTR"); target->sync_flag |= SDTR_INITIATOR; /* offset: */ if (get_offset > SYNC_OFFSET) { /* send back as SYNC_OFFSET */ get_offset = SYNC_OFFSET; } /* period: */ if (get_period < data->synct[0].period_num) { get_period = data->synct[0].period_num; } entry = nsp32_search_period_entry(data, target, get_period); if (get_offset == ASYNC_OFFSET || entry < 0) { nsp32_set_async(data, target); nsp32_build_sdtr(SCpnt, 0, ASYNC_OFFSET); } else { nsp32_set_sync_entry(data, target, entry, get_offset); nsp32_build_sdtr(SCpnt, get_period, get_offset); } } target->period = get_period; nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "exit"); return; reject: /* * If the current message is unacceptable, send back to the target * with reject message. */ nsp32_build_reject(SCpnt); async: nsp32_set_async(data, target); /* set as ASYNC transfer mode */ target->period = 0; nsp32_dbg(NSP32_DEBUG_MSGINOCCUR, "exit: set async"); return; } /* * Search config entry number matched in sync_table from given * target and speed period value. If failed to search, return negative value. */ static int nsp32_search_period_entry(nsp32_hw_data *data, nsp32_target *target, unsigned char period) { int i; if (target->limit_entry >= data->syncnum) { nsp32_msg(KERN_ERR, "limit_entry exceeds syncnum!"); target->limit_entry = 0; } for (i = target->limit_entry; i < data->syncnum; i++) { if (period >= data->synct[i].start_period && period <= data->synct[i].end_period) { break; } } /* * Check given period value is over the sync_table value. * If so, return max value. */ if (i == data->syncnum) { i = -1; } return i; } /* * target <-> initiator use ASYNC transfer */ static void nsp32_set_async(nsp32_hw_data *data, nsp32_target *target) { unsigned char period = data->synct[target->limit_entry].period_num; target->offset = ASYNC_OFFSET; target->period = 0; target->syncreg = TO_SYNCREG(period, ASYNC_OFFSET); target->ackwidth = 0; target->sample_reg = 0; nsp32_dbg(NSP32_DEBUG_SYNC, "set async"); } /* * target <-> initiator use maximum SYNC transfer */ static void nsp32_set_max_sync(nsp32_hw_data *data, nsp32_target *target, unsigned char *period, unsigned char *offset) { unsigned char period_num, ackwidth; period_num = data->synct[target->limit_entry].period_num; *period = data->synct[target->limit_entry].start_period; ackwidth = data->synct[target->limit_entry].ackwidth; *offset = SYNC_OFFSET; target->syncreg = TO_SYNCREG(period_num, *offset); target->ackwidth = ackwidth; target->offset = *offset; target->sample_reg = 0; /* disable SREQ sampling */ } /* * target <-> initiator use entry number speed */ static void nsp32_set_sync_entry(nsp32_hw_data *data, nsp32_target *target, int entry, unsigned char offset) { unsigned char period, ackwidth, sample_rate; period = data->synct[entry].period_num; ackwidth = data->synct[entry].ackwidth; offset = offset; sample_rate = data->synct[entry].sample_rate; target->syncreg = TO_SYNCREG(period, offset); target->ackwidth = ackwidth; target->offset = offset; target->sample_reg = sample_rate | SAMPLING_ENABLE; nsp32_dbg(NSP32_DEBUG_SYNC, "set sync"); } /* * It waits until SCSI REQ becomes assertion or negation state. * * Note: If nsp32_msgin_occur is called, we asserts SCSI ACK. Then * connected target responds SCSI REQ negation. We have to wait * SCSI REQ becomes negation in order to negate SCSI ACK signal for * REQ-ACK handshake. */ static void nsp32_wait_req(nsp32_hw_data *data, int state) { unsigned int base = data->BaseAddress; int wait_time = 0; unsigned char bus, req_bit; if (!((state == ASSERT) || (state == NEGATE))) { nsp32_msg(KERN_ERR, "unknown state designation"); } /* REQ is BIT(5) */ req_bit = (state == ASSERT ? BUSMON_REQ : 0); do { bus = nsp32_read1(base, SCSI_BUS_MONITOR); if ((bus & BUSMON_REQ) == req_bit) { nsp32_dbg(NSP32_DEBUG_WAIT, "wait_time: %d", wait_time); return; } udelay(1); wait_time++; } while (wait_time < REQSACK_TIMEOUT_TIME); nsp32_msg(KERN_WARNING, "wait REQ timeout, req_bit: 0x%x", req_bit); } /* * It waits until SCSI SACK becomes assertion or negation state. */ static void nsp32_wait_sack(nsp32_hw_data *data, int state) { unsigned int base = data->BaseAddress; int wait_time = 0; unsigned char bus, ack_bit; if (!((state == ASSERT) || (state == NEGATE))) { nsp32_msg(KERN_ERR, "unknown state designation"); } /* ACK is BIT(4) */ ack_bit = (state == ASSERT ? BUSMON_ACK : 0); do { bus = nsp32_read1(base, SCSI_BUS_MONITOR); if ((bus & BUSMON_ACK) == ack_bit) { nsp32_dbg(NSP32_DEBUG_WAIT, "wait_time: %d", wait_time); return; } udelay(1); wait_time++; } while (wait_time < REQSACK_TIMEOUT_TIME); nsp32_msg(KERN_WARNING, "wait SACK timeout, ack_bit: 0x%x", ack_bit); } /* * assert SCSI ACK * * Note: SCSI ACK assertion needs with ACKENB=1, AUTODIRECTION=1. */ static void nsp32_sack_assert(nsp32_hw_data *data) { unsigned int base = data->BaseAddress; unsigned char busctrl; busctrl = nsp32_read1(base, SCSI_BUS_CONTROL); busctrl |= (BUSCTL_ACK | AUTODIRECTION | ACKENB); nsp32_write1(base, SCSI_BUS_CONTROL, busctrl); } /* * negate SCSI ACK */ static void nsp32_sack_negate(nsp32_hw_data *data) { unsigned int base = data->BaseAddress; unsigned char busctrl; busctrl = nsp32_read1(base, SCSI_BUS_CONTROL); busctrl &= ~BUSCTL_ACK; nsp32_write1(base, SCSI_BUS_CONTROL, busctrl); } /* * Note: n_io_port is defined as 0x7f because I/O register port is * assigned as: * 0x800-0x8ff: memory mapped I/O port * 0x900-0xbff: (map same 0x800-0x8ff I/O port image repeatedly) * 0xc00-0xfff: CardBus status registers */ static int nsp32_detect(struct pci_dev *pdev) { struct Scsi_Host *host; /* registered host structure */ struct resource *res; nsp32_hw_data *data; int ret; int i, j; nsp32_dbg(NSP32_DEBUG_REGISTER, "enter"); /* * register this HBA as SCSI device */ host = scsi_host_alloc(&nsp32_template, sizeof(nsp32_hw_data)); if (host == NULL) { nsp32_msg (KERN_ERR, "failed to scsi register"); goto err; } /* * set nsp32_hw_data */ data = (nsp32_hw_data *)host->hostdata; memcpy(data, &nsp32_data_base, sizeof(nsp32_hw_data)); host->irq = data->IrqNumber; host->io_port = data->BaseAddress; host->unique_id = data->BaseAddress; host->n_io_port = data->NumAddress; host->base = (unsigned long)data->MmioAddress; data->Host = host; spin_lock_init(&(data->Lock)); data->cur_lunt = NULL; data->cur_target = NULL; /* * Bus master transfer mode is supported currently. */ data->trans_method = NSP32_TRANSFER_BUSMASTER; /* * Set clock div, CLOCK_4 (HBA has own external clock, and * dividing * 100ns/4). * Currently CLOCK_4 has only tested, not for CLOCK_2/PCICLK yet. */ data->clock = CLOCK_4; /* * Select appropriate nsp32_sync_table and set I_CLOCKDIV. */ switch (data->clock) { case CLOCK_4: /* If data->clock is CLOCK_4, then select 40M sync table. */ data->synct = nsp32_sync_table_40M; data->syncnum = ARRAY_SIZE(nsp32_sync_table_40M); break; case CLOCK_2: /* If data->clock is CLOCK_2, then select 20M sync table. */ data->synct = nsp32_sync_table_20M; data->syncnum = ARRAY_SIZE(nsp32_sync_table_20M); break; case PCICLK: /* If data->clock is PCICLK, then select pci sync table. */ data->synct = nsp32_sync_table_pci; data->syncnum = ARRAY_SIZE(nsp32_sync_table_pci); break; default: nsp32_msg(KERN_WARNING, "Invalid clock div is selected, set CLOCK_4."); /* Use default value CLOCK_4 */ data->clock = CLOCK_4; data->synct = nsp32_sync_table_40M; data->syncnum = ARRAY_SIZE(nsp32_sync_table_40M); } /* * setup nsp32_lunt */ /* * setup DMA */ if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0) { nsp32_msg (KERN_ERR, "failed to set PCI DMA mask"); goto scsi_unregister; } /* * allocate autoparam DMA resource. */ data->autoparam = pci_alloc_consistent(pdev, sizeof(nsp32_autoparam), &(data->auto_paddr)); if (data->autoparam == NULL) { nsp32_msg(KERN_ERR, "failed to allocate DMA memory"); goto scsi_unregister; } /* * allocate scatter-gather DMA resource. */ data->sg_list = pci_alloc_consistent(pdev, NSP32_SG_TABLE_SIZE, &(data->sg_paddr)); if (data->sg_list == NULL) { nsp32_msg(KERN_ERR, "failed to allocate DMA memory"); goto free_autoparam; } for (i = 0; i < ARRAY_SIZE(data->lunt); i++) { for (j = 0; j < ARRAY_SIZE(data->lunt[0]); j++) { int offset = i * ARRAY_SIZE(data->lunt[0]) + j; nsp32_lunt tmp = { .SCpnt = NULL, .save_datp = 0, .msgin03 = FALSE, .sg_num = 0, .cur_entry = 0, .sglun = &(data->sg_list[offset]), .sglun_paddr = data->sg_paddr + (offset * sizeof(nsp32_sglun)), }; data->lunt[i][j] = tmp; } } /* * setup target */ for (i = 0; i < ARRAY_SIZE(data->target); i++) { nsp32_target *target = &(data->target[i]); target->limit_entry = 0; target->sync_flag = 0; nsp32_set_async(data, target); } /* * EEPROM check */ ret = nsp32_getprom_param(data); if (ret == FALSE) { data->resettime = 3; /* default 3 */ } /* * setup HBA */ nsp32hw_init(data); snprintf(data->info_str, sizeof(data->info_str), "NinjaSCSI-32Bi/UDE: irq %d, io 0x%lx+0x%x", host->irq, host->io_port, host->n_io_port); /* * SCSI bus reset * * Note: It's important to reset SCSI bus in initialization phase. * NinjaSCSI-32Bi/UDE HBA EEPROM seems to exchange SDTR when * system is coming up, so SCSI devices connected to HBA is set as * un-asynchronous mode. It brings the merit that this HBA is * ready to start synchronous transfer without any preparation, * but we are difficult to control transfer speed. In addition, * it prevents device transfer speed from effecting EEPROM start-up * SDTR. NinjaSCSI-32Bi/UDE has the feature if EEPROM is set as * Auto Mode, then FAST-10M is selected when SCSI devices are * connected same or more than 4 devices. It should be avoided * depending on this specification. Thus, resetting the SCSI bus * restores all connected SCSI devices to asynchronous mode, then * this driver set SDTR safely later, and we can control all SCSI * device transfer mode. */ nsp32_do_bus_reset(data); ret = request_irq(host->irq, do_nsp32_isr, IRQF_SHARED, "nsp32", data); if (ret < 0) { nsp32_msg(KERN_ERR, "Unable to allocate IRQ for NinjaSCSI32 " "SCSI PCI controller. Interrupt: %d", host->irq); goto free_sg_list; } /* * PCI IO register */ res = request_region(host->io_port, host->n_io_port, "nsp32"); if (res == NULL) { nsp32_msg(KERN_ERR, "I/O region 0x%lx+0x%lx is already used", data->BaseAddress, data->NumAddress); goto free_irq; } ret = scsi_add_host(host, &pdev->dev); if (ret) { nsp32_msg(KERN_ERR, "failed to add scsi host"); goto free_region; } scsi_scan_host(host); pci_set_drvdata(pdev, host); return 0; free_region: release_region(host->io_port, host->n_io_port); free_irq: free_irq(host->irq, data); free_sg_list: pci_free_consistent(pdev, NSP32_SG_TABLE_SIZE, data->sg_list, data->sg_paddr); free_autoparam: pci_free_consistent(pdev, sizeof(nsp32_autoparam), data->autoparam, data->auto_paddr); scsi_unregister: scsi_host_put(host); err: return 1; } static int nsp32_release(struct Scsi_Host *host) { nsp32_hw_data *data = (nsp32_hw_data *)host->hostdata; if (data->autoparam) { pci_free_consistent(data->Pci, sizeof(nsp32_autoparam), data->autoparam, data->auto_paddr); } if (data->sg_list) { pci_free_consistent(data->Pci, NSP32_SG_TABLE_SIZE, data->sg_list, data->sg_paddr); } if (host->irq) { free_irq(host->irq, data); } if (host->io_port && host->n_io_port) { release_region(host->io_port, host->n_io_port); } if (data->MmioAddress) { iounmap(data->MmioAddress); } return 0; } static const char *nsp32_info(struct Scsi_Host *shpnt) { nsp32_hw_data *data = (nsp32_hw_data *)shpnt->hostdata; return data->info_str; } /**************************************************************************** * error handler */ static int nsp32_eh_abort(struct scsi_cmnd *SCpnt) { nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata; unsigned int base = SCpnt->device->host->io_port; nsp32_msg(KERN_WARNING, "abort"); if (data->cur_lunt->SCpnt == NULL) { nsp32_dbg(NSP32_DEBUG_BUSRESET, "abort failed"); return FAILED; } if (data->cur_target->sync_flag & (SDTR_INITIATOR | SDTR_TARGET)) { /* reset SDTR negotiation */ data->cur_target->sync_flag = 0; nsp32_set_async(data, data->cur_target); } nsp32_write2(base, TRANSFER_CONTROL, 0); nsp32_write2(base, BM_CNT, 0); SCpnt->result = DID_ABORT << 16; nsp32_scsi_done(SCpnt); nsp32_dbg(NSP32_DEBUG_BUSRESET, "abort success"); return SUCCESS; } static int nsp32_eh_bus_reset(struct scsi_cmnd *SCpnt) { nsp32_hw_data *data = (nsp32_hw_data *)SCpnt->device->host->hostdata; unsigned int base = SCpnt->device->host->io_port; spin_lock_irq(SCpnt->device->host->host_lock); nsp32_msg(KERN_INFO, "Bus Reset"); nsp32_dbg(NSP32_DEBUG_BUSRESET, "SCpnt=0x%x", SCpnt); nsp32_write2(base, IRQ_CONTROL, IRQ_CONTROL_ALL_IRQ_MASK); nsp32_do_bus_reset(data); nsp32_write2(base, IRQ_CONTROL, 0); spin_unlock_irq(SCpnt->device->host->host_lock); return SUCCESS; /* SCSI bus reset is succeeded at any time. */ } static void nsp32_do_bus_reset(nsp32_hw_data *data) { unsigned int base = data->BaseAddress; unsigned short intrdat; int i; nsp32_dbg(NSP32_DEBUG_BUSRESET, "in"); /* * stop all transfer * clear TRANSFERCONTROL_BM_START * clear counter */ nsp32_write2(base, TRANSFER_CONTROL, 0); nsp32_write4(base, BM_CNT, 0); nsp32_write4(base, CLR_COUNTER, CLRCOUNTER_ALLMASK); /* * fall back to asynchronous transfer mode * initialize SDTR negotiation flag */ for (i = 0; i < ARRAY_SIZE(data->target); i++) { nsp32_target *target = &data->target[i]; target->sync_flag = 0; nsp32_set_async(data, target); } /* * reset SCSI bus */ nsp32_write1(base, SCSI_BUS_CONTROL, BUSCTL_RST); udelay(RESET_HOLD_TIME); nsp32_write1(base, SCSI_BUS_CONTROL, 0); for(i = 0; i < 5; i++) { intrdat = nsp32_read2(base, IRQ_STATUS); /* dummy read */ nsp32_dbg(NSP32_DEBUG_BUSRESET, "irq:1: 0x%x", intrdat); } data->CurrentSC = NULL; } static int nsp32_eh_host_reset(struct scsi_cmnd *SCpnt) { struct Scsi_Host *host = SCpnt->device->host; unsigned int base = SCpnt->device->host->io_port; nsp32_hw_data *data = (nsp32_hw_data *)host->hostdata; nsp32_msg(KERN_INFO, "Host Reset"); nsp32_dbg(NSP32_DEBUG_BUSRESET, "SCpnt=0x%x", SCpnt); spin_lock_irq(SCpnt->device->host->host_lock); nsp32hw_init(data); nsp32_write2(base, IRQ_CONTROL, IRQ_CONTROL_ALL_IRQ_MASK); nsp32_do_bus_reset(data); nsp32_write2(base, IRQ_CONTROL, 0); spin_unlock_irq(SCpnt->device->host->host_lock); return SUCCESS; /* Host reset is succeeded at any time. */ } /************************************************************************** * EEPROM handler */ /* * getting EEPROM parameter */ static int nsp32_getprom_param(nsp32_hw_data *data) { int vendor = data->pci_devid->vendor; int device = data->pci_devid->device; int ret, val, i; /* * EEPROM checking. */ ret = nsp32_prom_read(data, 0x7e); if (ret != 0x55) { nsp32_msg(KERN_INFO, "No EEPROM detected: 0x%x", ret); return FALSE; } ret = nsp32_prom_read(data, 0x7f); if (ret != 0xaa) { nsp32_msg(KERN_INFO, "Invalid number: 0x%x", ret); return FALSE; } /* * check EEPROM type */ if (vendor == PCI_VENDOR_ID_WORKBIT && device == PCI_DEVICE_ID_WORKBIT_STANDARD) { ret = nsp32_getprom_c16(data); } else if (vendor == PCI_VENDOR_ID_WORKBIT && device == PCI_DEVICE_ID_NINJASCSI_32BIB_LOGITEC) { ret = nsp32_getprom_at24(data); } else if (vendor == PCI_VENDOR_ID_WORKBIT && device == PCI_DEVICE_ID_NINJASCSI_32UDE_MELCO ) { ret = nsp32_getprom_at24(data); } else { nsp32_msg(KERN_WARNING, "Unknown EEPROM"); ret = FALSE; } /* for debug : SPROM data full checking */ for (i = 0; i <= 0x1f; i++) { val = nsp32_prom_read(data, i); nsp32_dbg(NSP32_DEBUG_EEPROM, "rom address 0x%x : 0x%x", i, val); } return ret; } /* * AT24C01A (Logitec: LHA-600S), AT24C02 (Melco Buffalo: IFC-USLP) data map: * * ROMADDR * 0x00 - 0x06 : Device Synchronous Transfer Period (SCSI ID 0 - 6) * Value 0x0: ASYNC, 0x0c: Ultra-20M, 0x19: Fast-10M * 0x07 : HBA Synchronous Transfer Period * Value 0: AutoSync, 1: Manual Setting * 0x08 - 0x0f : Not Used? (0x0) * 0x10 : Bus Termination * Value 0: Auto[ON], 1: ON, 2: OFF * 0x11 : Not Used? (0) * 0x12 : Bus Reset Delay Time (0x03) * 0x13 : Bootable CD Support * Value 0: Disable, 1: Enable * 0x14 : Device Scan * Bit 7 6 5 4 3 2 1 0 * | <-----------------> * | SCSI ID: Value 0: Skip, 1: YES * |-> Value 0: ALL scan, Value 1: Manual * 0x15 - 0x1b : Not Used? (0) * 0x1c : Constant? (0x01) (clock div?) * 0x1d - 0x7c : Not Used (0xff) * 0x7d : Not Used? (0xff) * 0x7e : Constant (0x55), Validity signature * 0x7f : Constant (0xaa), Validity signature */ static int nsp32_getprom_at24(nsp32_hw_data *data) { int ret, i; int auto_sync; nsp32_target *target; int entry; /* * Reset time which is designated by EEPROM. * * TODO: Not used yet. */ data->resettime = nsp32_prom_read(data, 0x12); /* * HBA Synchronous Transfer Period * * Note: auto_sync = 0: auto, 1: manual. Ninja SCSI HBA spec says * that if auto_sync is 0 (auto), and connected SCSI devices are * same or lower than 3, then transfer speed is set as ULTRA-20M. * On the contrary if connected SCSI devices are same or higher * than 4, then transfer speed is set as FAST-10M. * * I break this rule. The number of connected SCSI devices are * only ignored. If auto_sync is 0 (auto), then transfer speed is * forced as ULTRA-20M. */ ret = nsp32_prom_read(data, 0x07); switch (ret) { case 0: auto_sync = TRUE; break; case 1: auto_sync = FALSE; break; default: nsp32_msg(KERN_WARNING, "Unsupported Auto Sync mode. Fall back to manual mode."); auto_sync = TRUE; } if (trans_mode == ULTRA20M_MODE) { auto_sync = TRUE; } /* * each device Synchronous Transfer Period */ for (i = 0; i < NSP32_HOST_SCSIID; i++) { target = &data->target[i]; if (auto_sync == TRUE) { target->limit_entry = 0; /* set as ULTRA20M */ } else { ret = nsp32_prom_read(data, i); entry = nsp32_search_period_entry(data, target, ret); if (entry < 0) { /* search failed... set maximum speed */ entry = 0; } target->limit_entry = entry; } } return TRUE; } /* * C16 110 (I-O Data: SC-NBD) data map: * * ROMADDR * 0x00 - 0x06 : Device Synchronous Transfer Period (SCSI ID 0 - 6) * Value 0x0: 20MB/S, 0x1: 10MB/S, 0x2: 5MB/S, 0x3: ASYNC * 0x07 : 0 (HBA Synchronous Transfer Period: Auto Sync) * 0x08 - 0x0f : Not Used? (0x0) * 0x10 : Transfer Mode * Value 0: PIO, 1: Busmater * 0x11 : Bus Reset Delay Time (0x00-0x20) * 0x12 : Bus Termination * Value 0: Disable, 1: Enable * 0x13 - 0x19 : Disconnection * Value 0: Disable, 1: Enable * 0x1a - 0x7c : Not Used? (0) * 0x7d : Not Used? (0xf8) * 0x7e : Constant (0x55), Validity signature * 0x7f : Constant (0xaa), Validity signature */ static int nsp32_getprom_c16(nsp32_hw_data *data) { int ret, i; nsp32_target *target; int entry, val; /* * Reset time which is designated by EEPROM. * * TODO: Not used yet. */ data->resettime = nsp32_prom_read(data, 0x11); /* * each device Synchronous Transfer Period */ for (i = 0; i < NSP32_HOST_SCSIID; i++) { target = &data->target[i]; ret = nsp32_prom_read(data, i); switch (ret) { case 0: /* 20MB/s */ val = 0x0c; break; case 1: /* 10MB/s */ val = 0x19; break; case 2: /* 5MB/s */ val = 0x32; break; case 3: /* ASYNC */ val = 0x00; break; default: /* default 20MB/s */ val = 0x0c; break; } entry = nsp32_search_period_entry(data, target, val); if (entry < 0 || trans_mode == ULTRA20M_MODE) { /* search failed... set maximum speed */ entry = 0; } target->limit_entry = entry; } return TRUE; } /* * Atmel AT24C01A (drived in 5V) serial EEPROM routines */ static int nsp32_prom_read(nsp32_hw_data *data, int romaddr) { int i, val; /* start condition */ nsp32_prom_start(data); /* device address */ nsp32_prom_write_bit(data, 1); /* 1 */ nsp32_prom_write_bit(data, 0); /* 0 */ nsp32_prom_write_bit(data, 1); /* 1 */ nsp32_prom_write_bit(data, 0); /* 0 */ nsp32_prom_write_bit(data, 0); /* A2: 0 (GND) */ nsp32_prom_write_bit(data, 0); /* A1: 0 (GND) */ nsp32_prom_write_bit(data, 0); /* A0: 0 (GND) */ /* R/W: W for dummy write */ nsp32_prom_write_bit(data, 0); /* ack */ nsp32_prom_write_bit(data, 0); /* word address */ for (i = 7; i >= 0; i--) { nsp32_prom_write_bit(data, ((romaddr >> i) & 1)); } /* ack */ nsp32_prom_write_bit(data, 0); /* start condition */ nsp32_prom_start(data); /* device address */ nsp32_prom_write_bit(data, 1); /* 1 */ nsp32_prom_write_bit(data, 0); /* 0 */ nsp32_prom_write_bit(data, 1); /* 1 */ nsp32_prom_write_bit(data, 0); /* 0 */ nsp32_prom_write_bit(data, 0); /* A2: 0 (GND) */ nsp32_prom_write_bit(data, 0); /* A1: 0 (GND) */ nsp32_prom_write_bit(data, 0); /* A0: 0 (GND) */ /* R/W: R */ nsp32_prom_write_bit(data, 1); /* ack */ nsp32_prom_write_bit(data, 0); /* data... */ val = 0; for (i = 7; i >= 0; i--) { val += (nsp32_prom_read_bit(data) << i); } /* no ack */ nsp32_prom_write_bit(data, 1); /* stop condition */ nsp32_prom_stop(data); return val; } static void nsp32_prom_set(nsp32_hw_data *data, int bit, int val) { int base = data->BaseAddress; int tmp; tmp = nsp32_index_read1(base, SERIAL_ROM_CTL); if (val == 0) { tmp &= ~bit; } else { tmp |= bit; } nsp32_index_write1(base, SERIAL_ROM_CTL, tmp); udelay(10); } static int nsp32_prom_get(nsp32_hw_data *data, int bit) { int base = data->BaseAddress; int tmp, ret; if (bit != SDA) { nsp32_msg(KERN_ERR, "return value is not appropriate"); return 0; } tmp = nsp32_index_read1(base, SERIAL_ROM_CTL) & bit; if (tmp == 0) { ret = 0; } else { ret = 1; } udelay(10); return ret; } static void nsp32_prom_start (nsp32_hw_data *data) { /* start condition */ nsp32_prom_set(data, SCL, 1); nsp32_prom_set(data, SDA, 1); nsp32_prom_set(data, ENA, 1); /* output mode */ nsp32_prom_set(data, SDA, 0); /* keeping SCL=1 and transiting * SDA 1->0 is start condition */ nsp32_prom_set(data, SCL, 0); } static void nsp32_prom_stop (nsp32_hw_data *data) { /* stop condition */ nsp32_prom_set(data, SCL, 1); nsp32_prom_set(data, SDA, 0); nsp32_prom_set(data, ENA, 1); /* output mode */ nsp32_prom_set(data, SDA, 1); nsp32_prom_set(data, SCL, 0); } static void nsp32_prom_write_bit(nsp32_hw_data *data, int val) { /* write */ nsp32_prom_set(data, SDA, val); nsp32_prom_set(data, SCL, 1 ); nsp32_prom_set(data, SCL, 0 ); } static int nsp32_prom_read_bit(nsp32_hw_data *data) { int val; /* read */ nsp32_prom_set(data, ENA, 0); /* input mode */ nsp32_prom_set(data, SCL, 1); val = nsp32_prom_get(data, SDA); nsp32_prom_set(data, SCL, 0); nsp32_prom_set(data, ENA, 1); /* output mode */ return val; } /************************************************************************** * Power Management */ #ifdef CONFIG_PM /* Device suspended */ static int nsp32_suspend(struct pci_dev *pdev, pm_message_t state) { struct Scsi_Host *host = pci_get_drvdata(pdev); nsp32_msg(KERN_INFO, "pci-suspend: pdev=0x%p, state=%ld, slot=%s, host=0x%p", pdev, state, pci_name(pdev), host); pci_save_state (pdev); pci_disable_device (pdev); pci_set_power_state(pdev, pci_choose_state(pdev, state)); return 0; } /* Device woken up */ static int nsp32_resume(struct pci_dev *pdev) { struct Scsi_Host *host = pci_get_drvdata(pdev); nsp32_hw_data *data = (nsp32_hw_data *)host->hostdata; unsigned short reg; nsp32_msg(KERN_INFO, "pci-resume: pdev=0x%p, slot=%s, host=0x%p", pdev, pci_name(pdev), host); pci_set_power_state(pdev, PCI_D0); pci_enable_wake (pdev, PCI_D0, 0); pci_restore_state (pdev); reg = nsp32_read2(data->BaseAddress, INDEX_REG); nsp32_msg(KERN_INFO, "io=0x%x reg=0x%x", data->BaseAddress, reg); if (reg == 0xffff) { nsp32_msg(KERN_INFO, "missing device. abort resume."); return 0; } nsp32hw_init (data); nsp32_do_bus_reset(data); nsp32_msg(KERN_INFO, "resume success"); return 0; } #endif /************************************************************************ * PCI/Cardbus probe/remove routine */ static int __devinit nsp32_probe(struct pci_dev *pdev, const struct pci_device_id *id) { int ret; nsp32_hw_data *data = &nsp32_data_base; nsp32_dbg(NSP32_DEBUG_REGISTER, "enter"); ret = pci_enable_device(pdev); if (ret) { nsp32_msg(KERN_ERR, "failed to enable pci device"); return ret; } data->Pci = pdev; data->pci_devid = id; data->IrqNumber = pdev->irq; data->BaseAddress = pci_resource_start(pdev, 0); data->NumAddress = pci_resource_len (pdev, 0); data->MmioAddress = pci_ioremap_bar(pdev, 1); data->MmioLength = pci_resource_len (pdev, 1); pci_set_master(pdev); ret = nsp32_detect(pdev); nsp32_msg(KERN_INFO, "irq: %i mmio: %p+0x%lx slot: %s model: %s", pdev->irq, data->MmioAddress, data->MmioLength, pci_name(pdev), nsp32_model[id->driver_data]); nsp32_dbg(NSP32_DEBUG_REGISTER, "exit %d", ret); return ret; } static void __devexit nsp32_remove(struct pci_dev *pdev) { struct Scsi_Host *host = pci_get_drvdata(pdev); nsp32_dbg(NSP32_DEBUG_REGISTER, "enter"); scsi_remove_host(host); nsp32_release(host); scsi_host_put(host); } static struct pci_driver nsp32_driver = { .name = "nsp32", .id_table = nsp32_pci_table, .probe = nsp32_probe, .remove = __devexit_p(nsp32_remove), #ifdef CONFIG_PM .suspend = nsp32_suspend, .resume = nsp32_resume, #endif }; /********************************************************************* * Moule entry point */ static int __init init_nsp32(void) { nsp32_msg(KERN_INFO, "loading..."); return pci_register_driver(&nsp32_driver); } static void __exit exit_nsp32(void) { nsp32_msg(KERN_INFO, "unloading..."); pci_unregister_driver(&nsp32_driver); } module_init(init_nsp32); module_exit(exit_nsp32); /* end */