/* Low-level parallel port routines for built-in port on SGI IP32 * * Author: Arnaud Giersch * * Based on parport_pc.c by * Phil Blundell, Tim Waugh, Jose Renau, David Campbell, * Andrea Arcangeli, et al. * * Thanks to Ilya A. Volynets-Evenbakh for his help. * * Copyright (C) 2005, 2006 Arnaud Giersch. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., 59 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Current status: * * Basic SPP and PS2 modes are supported. * Support for parallel port IRQ is present. * Hardware SPP (a.k.a. compatibility), EPP, and ECP modes are * supported. * SPP/ECP FIFO can be driven in PIO or DMA mode. PIO mode can work with * or without interrupt support. * * Hardware ECP mode is not fully implemented (ecp_read_data and * ecp_write_addr are actually missing). * * To do: * * Fully implement ECP mode. * EPP and ECP mode need to be tested. I currently do not own any * peripheral supporting these extended mode, and cannot test them. * If DMA mode works well, decide if support for PIO FIFO modes should be * dropped. * Use the io{read,write} family functions when they become available in * the linux-mips.org tree. Note: the MIPS specific functions readsb() * and writesb() are to be translated by ioread8_rep() and iowrite8_rep() * respectively. */ /* The built-in parallel port on the SGI 02 workstation (a.k.a. IP32) is an * IEEE 1284 parallel port driven by a Texas Instrument TL16PIR552PH chip[1]. * This chip supports SPP, bidirectional, EPP and ECP modes. It has a 16 byte * FIFO buffer and supports DMA transfers. * * [1] http://focus.ti.com/docs/prod/folders/print/tl16pir552.html * * Theoretically, we could simply use the parport_pc module. It is however * not so simple. The parport_pc code assumes that the parallel port * registers are port-mapped. On the O2, they are memory-mapped. * Furthermore, each register is replicated on 256 consecutive addresses (as * it is for the built-in serial ports on the same chip). */ /*--- Some configuration defines ---------------------------------------*/ /* DEBUG_PARPORT_IP32 * 0 disable debug * 1 standard level: pr_debug1 is enabled * 2 parport_ip32_dump_state is enabled * >=3 verbose level: pr_debug is enabled */ #if !defined(DEBUG_PARPORT_IP32) # define DEBUG_PARPORT_IP32 0 /* 0 (disabled) for production */ #endif /*----------------------------------------------------------------------*/ /* Setup DEBUG macros. This is done before any includes, just in case we * activate pr_debug() with DEBUG_PARPORT_IP32 >= 3. */ #if DEBUG_PARPORT_IP32 == 1 # warning DEBUG_PARPORT_IP32 == 1 #elif DEBUG_PARPORT_IP32 == 2 # warning DEBUG_PARPORT_IP32 == 2 #elif DEBUG_PARPORT_IP32 >= 3 # warning DEBUG_PARPORT_IP32 >= 3 # if !defined(DEBUG) # define DEBUG /* enable pr_debug() in kernel.h */ # endif #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /*--- Global variables -------------------------------------------------*/ /* Verbose probing on by default for debugging. */ #if DEBUG_PARPORT_IP32 >= 1 # define DEFAULT_VERBOSE_PROBING 1 #else # define DEFAULT_VERBOSE_PROBING 0 #endif /* Default prefix for printk */ #define PPIP32 "parport_ip32: " /* * These are the module parameters: * @features: bit mask of features to enable/disable * (all enabled by default) * @verbose_probing: log chit-chat during initialization */ #define PARPORT_IP32_ENABLE_IRQ (1U << 0) #define PARPORT_IP32_ENABLE_DMA (1U << 1) #define PARPORT_IP32_ENABLE_SPP (1U << 2) #define PARPORT_IP32_ENABLE_EPP (1U << 3) #define PARPORT_IP32_ENABLE_ECP (1U << 4) static unsigned int features = ~0U; static int verbose_probing = DEFAULT_VERBOSE_PROBING; /* We do not support more than one port. */ static struct parport *this_port = NULL; /* Timing constants for FIFO modes. */ #define FIFO_NFAULT_TIMEOUT 100 /* milliseconds */ #define FIFO_POLLING_INTERVAL 50 /* microseconds */ /*--- I/O register definitions -----------------------------------------*/ /** * struct parport_ip32_regs - virtual addresses of parallel port registers * @data: Data Register * @dsr: Device Status Register * @dcr: Device Control Register * @eppAddr: EPP Address Register * @eppData0: EPP Data Register 0 * @eppData1: EPP Data Register 1 * @eppData2: EPP Data Register 2 * @eppData3: EPP Data Register 3 * @ecpAFifo: ECP Address FIFO * @fifo: General FIFO register. The same address is used for: * - cFifo, the Parallel Port DATA FIFO * - ecpDFifo, the ECP Data FIFO * - tFifo, the ECP Test FIFO * @cnfgA: Configuration Register A * @cnfgB: Configuration Register B * @ecr: Extended Control Register */ struct parport_ip32_regs { void __iomem *data; void __iomem *dsr; void __iomem *dcr; void __iomem *eppAddr; void __iomem *eppData0; void __iomem *eppData1; void __iomem *eppData2; void __iomem *eppData3; void __iomem *ecpAFifo; void __iomem *fifo; void __iomem *cnfgA; void __iomem *cnfgB; void __iomem *ecr; }; /* Device Status Register */ #define DSR_nBUSY (1U << 7) /* PARPORT_STATUS_BUSY */ #define DSR_nACK (1U << 6) /* PARPORT_STATUS_ACK */ #define DSR_PERROR (1U << 5) /* PARPORT_STATUS_PAPEROUT */ #define DSR_SELECT (1U << 4) /* PARPORT_STATUS_SELECT */ #define DSR_nFAULT (1U << 3) /* PARPORT_STATUS_ERROR */ #define DSR_nPRINT (1U << 2) /* specific to TL16PIR552 */ /* #define DSR_reserved (1U << 1) */ #define DSR_TIMEOUT (1U << 0) /* EPP timeout */ /* Device Control Register */ /* #define DCR_reserved (1U << 7) | (1U << 6) */ #define DCR_DIR (1U << 5) /* direction */ #define DCR_IRQ (1U << 4) /* interrupt on nAck */ #define DCR_SELECT (1U << 3) /* PARPORT_CONTROL_SELECT */ #define DCR_nINIT (1U << 2) /* PARPORT_CONTROL_INIT */ #define DCR_AUTOFD (1U << 1) /* PARPORT_CONTROL_AUTOFD */ #define DCR_STROBE (1U << 0) /* PARPORT_CONTROL_STROBE */ /* ECP Configuration Register A */ #define CNFGA_IRQ (1U << 7) #define CNFGA_ID_MASK ((1U << 6) | (1U << 5) | (1U << 4)) #define CNFGA_ID_SHIFT 4 #define CNFGA_ID_16 (00U << CNFGA_ID_SHIFT) #define CNFGA_ID_8 (01U << CNFGA_ID_SHIFT) #define CNFGA_ID_32 (02U << CNFGA_ID_SHIFT) /* #define CNFGA_reserved (1U << 3) */ #define CNFGA_nBYTEINTRANS (1U << 2) #define CNFGA_PWORDLEFT ((1U << 1) | (1U << 0)) /* ECP Configuration Register B */ #define CNFGB_COMPRESS (1U << 7) #define CNFGB_INTRVAL (1U << 6) #define CNFGB_IRQ_MASK ((1U << 5) | (1U << 4) | (1U << 3)) #define CNFGB_IRQ_SHIFT 3 #define CNFGB_DMA_MASK ((1U << 2) | (1U << 1) | (1U << 0)) #define CNFGB_DMA_SHIFT 0 /* Extended Control Register */ #define ECR_MODE_MASK ((1U << 7) | (1U << 6) | (1U << 5)) #define ECR_MODE_SHIFT 5 #define ECR_MODE_SPP (00U << ECR_MODE_SHIFT) #define ECR_MODE_PS2 (01U << ECR_MODE_SHIFT) #define ECR_MODE_PPF (02U << ECR_MODE_SHIFT) #define ECR_MODE_ECP (03U << ECR_MODE_SHIFT) #define ECR_MODE_EPP (04U << ECR_MODE_SHIFT) /* #define ECR_MODE_reserved (05U << ECR_MODE_SHIFT) */ #define ECR_MODE_TST (06U << ECR_MODE_SHIFT) #define ECR_MODE_CFG (07U << ECR_MODE_SHIFT) #define ECR_nERRINTR (1U << 4) #define ECR_DMAEN (1U << 3) #define ECR_SERVINTR (1U << 2) #define ECR_F_FULL (1U << 1) #define ECR_F_EMPTY (1U << 0) /*--- Private data -----------------------------------------------------*/ /** * enum parport_ip32_irq_mode - operation mode of interrupt handler * @PARPORT_IP32_IRQ_FWD: forward interrupt to the upper parport layer * @PARPORT_IP32_IRQ_HERE: interrupt is handled locally */ enum parport_ip32_irq_mode { PARPORT_IP32_IRQ_FWD, PARPORT_IP32_IRQ_HERE }; /** * struct parport_ip32_private - private stuff for &struct parport * @regs: register addresses * @dcr_cache: cached contents of DCR * @dcr_writable: bit mask of writable DCR bits * @pword: number of bytes per PWord * @fifo_depth: number of PWords that FIFO will hold * @readIntrThreshold: minimum number of PWords we can read * if we get an interrupt * @writeIntrThreshold: minimum number of PWords we can write * if we get an interrupt * @irq_mode: operation mode of interrupt handler for this port * @irq_complete: mutex used to wait for an interrupt to occur */ struct parport_ip32_private { struct parport_ip32_regs regs; unsigned int dcr_cache; unsigned int dcr_writable; unsigned int pword; unsigned int fifo_depth; unsigned int readIntrThreshold; unsigned int writeIntrThreshold; enum parport_ip32_irq_mode irq_mode; struct completion irq_complete; }; /*--- Debug code -------------------------------------------------------*/ /* * pr_debug1 - print debug messages * * This is like pr_debug(), but is defined for %DEBUG_PARPORT_IP32 >= 1 */ #if DEBUG_PARPORT_IP32 >= 1 # define pr_debug1(...) printk(KERN_DEBUG __VA_ARGS__) #else /* DEBUG_PARPORT_IP32 < 1 */ # define pr_debug1(...) do { } while (0) #endif /* * pr_trace, pr_trace1 - trace function calls * @p: pointer to &struct parport * @fmt: printk format string * @...: parameters for format string * * Macros used to trace function calls. The given string is formatted after * function name. pr_trace() uses pr_debug(), and pr_trace1() uses * pr_debug1(). __pr_trace() is the low-level macro and is not to be used * directly. */ #define __pr_trace(pr, p, fmt, ...) \ pr("%s: %s" fmt "\n", \ ({ const struct parport *__p = (p); \ __p ? __p->name : "parport_ip32"; }), \ __func__ , ##__VA_ARGS__) #define pr_trace(p, fmt, ...) __pr_trace(pr_debug, p, fmt , ##__VA_ARGS__) #define pr_trace1(p, fmt, ...) __pr_trace(pr_debug1, p, fmt , ##__VA_ARGS__) /* * __pr_probe, pr_probe - print message if @verbose_probing is true * @p: pointer to &struct parport * @fmt: printk format string * @...: parameters for format string * * For new lines, use pr_probe(). Use __pr_probe() for continued lines. */ #define __pr_probe(...) \ do { if (verbose_probing) printk(__VA_ARGS__); } while (0) #define pr_probe(p, fmt, ...) \ __pr_probe(KERN_INFO PPIP32 "0x%lx: " fmt, (p)->base , ##__VA_ARGS__) /* * parport_ip32_dump_state - print register status of parport * @p: pointer to &struct parport * @str: string to add in message * @show_ecp_config: shall we dump ECP configuration registers too? * * This function is only here for debugging purpose, and should be used with * care. Reading the parallel port registers may have undesired side effects. * Especially if @show_ecp_config is true, the parallel port is resetted. * This function is only defined if %DEBUG_PARPORT_IP32 >= 2. */ #if DEBUG_PARPORT_IP32 >= 2 static void parport_ip32_dump_state(struct parport *p, char *str, unsigned int show_ecp_config) { struct parport_ip32_private * const priv = p->physport->private_data; unsigned int i; printk(KERN_DEBUG PPIP32 "%s: state (%s):\n", p->name, str); { static const char ecr_modes[8][4] = {"SPP", "PS2", "PPF", "ECP", "EPP", "???", "TST", "CFG"}; unsigned int ecr = readb(priv->regs.ecr); printk(KERN_DEBUG PPIP32 " ecr=0x%02x", ecr); printk(" %s", ecr_modes[(ecr & ECR_MODE_MASK) >> ECR_MODE_SHIFT]); if (ecr & ECR_nERRINTR) printk(",nErrIntrEn"); if (ecr & ECR_DMAEN) printk(",dmaEn"); if (ecr & ECR_SERVINTR) printk(",serviceIntr"); if (ecr & ECR_F_FULL) printk(",f_full"); if (ecr & ECR_F_EMPTY) printk(",f_empty"); printk("\n"); } if (show_ecp_config) { unsigned int oecr, cnfgA, cnfgB; oecr = readb(priv->regs.ecr); writeb(ECR_MODE_PS2, priv->regs.ecr); writeb(ECR_MODE_CFG, priv->regs.ecr); cnfgA = readb(priv->regs.cnfgA); cnfgB = readb(priv->regs.cnfgB); writeb(ECR_MODE_PS2, priv->regs.ecr); writeb(oecr, priv->regs.ecr); printk(KERN_DEBUG PPIP32 " cnfgA=0x%02x", cnfgA); printk(" ISA-%s", (cnfgA & CNFGA_IRQ) ? "Level" : "Pulses"); switch (cnfgA & CNFGA_ID_MASK) { case CNFGA_ID_8: printk(",8 bits"); break; case CNFGA_ID_16: printk(",16 bits"); break; case CNFGA_ID_32: printk(",32 bits"); break; default: printk(",unknown ID"); break; } if (!(cnfgA & CNFGA_nBYTEINTRANS)) printk(",ByteInTrans"); if ((cnfgA & CNFGA_ID_MASK) != CNFGA_ID_8) printk(",%d byte%s left", cnfgA & CNFGA_PWORDLEFT, ((cnfgA & CNFGA_PWORDLEFT) > 1) ? "s" : ""); printk("\n"); printk(KERN_DEBUG PPIP32 " cnfgB=0x%02x", cnfgB); printk(" irq=%u,dma=%u", (cnfgB & CNFGB_IRQ_MASK) >> CNFGB_IRQ_SHIFT, (cnfgB & CNFGB_DMA_MASK) >> CNFGB_DMA_SHIFT); printk(",intrValue=%d", !!(cnfgB & CNFGB_INTRVAL)); if (cnfgB & CNFGB_COMPRESS) printk(",compress"); printk("\n"); } for (i = 0; i < 2; i++) { unsigned int dcr = i ? priv->dcr_cache : readb(priv->regs.dcr); printk(KERN_DEBUG PPIP32 " dcr(%s)=0x%02x", i ? "soft" : "hard", dcr); printk(" %s", (dcr & DCR_DIR) ? "rev" : "fwd"); if (dcr & DCR_IRQ) printk(",ackIntEn"); if (!(dcr & DCR_SELECT)) printk(",nSelectIn"); if (dcr & DCR_nINIT) printk(",nInit"); if (!(dcr & DCR_AUTOFD)) printk(",nAutoFD"); if (!(dcr & DCR_STROBE)) printk(",nStrobe"); printk("\n"); } #define sep (f++ ? ',' : ' ') { unsigned int f = 0; unsigned int dsr = readb(priv->regs.dsr); printk(KERN_DEBUG PPIP32 " dsr=0x%02x", dsr); if (!(dsr & DSR_nBUSY)) printk("%cBusy", sep); if (dsr & DSR_nACK) printk("%cnAck", sep); if (dsr & DSR_PERROR) printk("%cPError", sep); if (dsr & DSR_SELECT) printk("%cSelect", sep); if (dsr & DSR_nFAULT) printk("%cnFault", sep); if (!(dsr & DSR_nPRINT)) printk("%c(Print)", sep); if (dsr & DSR_TIMEOUT) printk("%cTimeout", sep); printk("\n"); } #undef sep } #else /* DEBUG_PARPORT_IP32 < 2 */ #define parport_ip32_dump_state(...) do { } while (0) #endif /* * CHECK_EXTRA_BITS - track and log extra bits * @p: pointer to &struct parport * @b: byte to inspect * @m: bit mask of authorized bits * * This is used to track and log extra bits that should not be there in * parport_ip32_write_control() and parport_ip32_frob_control(). It is only * defined if %DEBUG_PARPORT_IP32 >= 1. */ #if DEBUG_PARPORT_IP32 >= 1 #define CHECK_EXTRA_BITS(p, b, m) \ do { \ unsigned int __b = (b), __m = (m); \ if (__b & ~__m) \ pr_debug1(PPIP32 "%s: extra bits in %s(%s): " \ "0x%02x/0x%02x\n", \ (p)->name, __func__, #b, __b, __m); \ } while (0) #else /* DEBUG_PARPORT_IP32 < 1 */ #define CHECK_EXTRA_BITS(...) do { } while (0) #endif /*--- IP32 parallel port DMA operations --------------------------------*/ /** * struct parport_ip32_dma_data - private data needed for DMA operation * @dir: DMA direction (from or to device) * @buf: buffer physical address * @len: buffer length * @next: address of next bytes to DMA transfer * @left: number of bytes remaining * @ctx: next context to write (0: context_a; 1: context_b) * @irq_on: are the DMA IRQs currently enabled? * @lock: spinlock to protect access to the structure */ struct parport_ip32_dma_data { enum dma_data_direction dir; dma_addr_t buf; dma_addr_t next; size_t len; size_t left; unsigned int ctx; unsigned int irq_on; spinlock_t lock; }; static struct parport_ip32_dma_data parport_ip32_dma; /** * parport_ip32_dma_setup_context - setup next DMA context * @limit: maximum data size for the context * * The alignment constraints must be verified in caller function, and the * parameter @limit must be set accordingly. */ static void parport_ip32_dma_setup_context(unsigned int limit) { unsigned long flags; spin_lock_irqsave(&parport_ip32_dma.lock, flags); if (parport_ip32_dma.left > 0) { /* Note: ctxreg is "volatile" here only because * mace->perif.ctrl.parport.context_a and context_b are * "volatile". */ volatile u64 __iomem *ctxreg = (parport_ip32_dma.ctx == 0) ? &mace->perif.ctrl.parport.context_a : &mace->perif.ctrl.parport.context_b; u64 count; u64 ctxval; if (parport_ip32_dma.left <= limit) { count = parport_ip32_dma.left; ctxval = MACEPAR_CONTEXT_LASTFLAG; } else { count = limit; ctxval = 0; } pr_trace(NULL, "(%u): 0x%04x:0x%04x, %u -> %u%s", limit, (unsigned int)parport_ip32_dma.buf, (unsigned int)parport_ip32_dma.next, (unsigned int)count, parport_ip32_dma.ctx, ctxval ? "*" : ""); ctxval |= parport_ip32_dma.next & MACEPAR_CONTEXT_BASEADDR_MASK; ctxval |= ((count - 1) << MACEPAR_CONTEXT_DATALEN_SHIFT) & MACEPAR_CONTEXT_DATALEN_MASK; writeq(ctxval, ctxreg); parport_ip32_dma.next += count; parport_ip32_dma.left -= count; parport_ip32_dma.ctx ^= 1U; } /* If there is nothing more to send, disable IRQs to avoid to * face an IRQ storm which can lock the machine. Disable them * only once. */ if (parport_ip32_dma.left == 0 && parport_ip32_dma.irq_on) { pr_debug(PPIP32 "IRQ off (ctx)\n"); disable_irq_nosync(MACEISA_PAR_CTXA_IRQ); disable_irq_nosync(MACEISA_PAR_CTXB_IRQ); parport_ip32_dma.irq_on = 0; } spin_unlock_irqrestore(&parport_ip32_dma.lock, flags); } /** * parport_ip32_dma_interrupt - DMA interrupt handler * @irq: interrupt number * @dev_id: unused */ static irqreturn_t parport_ip32_dma_interrupt(int irq, void *dev_id) { if (parport_ip32_dma.left) pr_trace(NULL, "(%d): ctx=%d", irq, parport_ip32_dma.ctx); parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND); return IRQ_HANDLED; } #if DEBUG_PARPORT_IP32 static irqreturn_t parport_ip32_merr_interrupt(int irq, void *dev_id) { pr_trace1(NULL, "(%d)", irq); return IRQ_HANDLED; } #endif /** * parport_ip32_dma_start - begins a DMA transfer * @dir: DMA direction: DMA_TO_DEVICE or DMA_FROM_DEVICE * @addr: pointer to data buffer * @count: buffer size * * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be * correctly balanced. */ static int parport_ip32_dma_start(enum dma_data_direction dir, void *addr, size_t count) { unsigned int limit; u64 ctrl; pr_trace(NULL, "(%d, %lu)", dir, (unsigned long)count); /* FIXME - add support for DMA_FROM_DEVICE. In this case, buffer must * be 64 bytes aligned. */ BUG_ON(dir != DMA_TO_DEVICE); /* Reset DMA controller */ ctrl = MACEPAR_CTLSTAT_RESET; writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); /* DMA IRQs should normally be enabled */ if (!parport_ip32_dma.irq_on) { WARN_ON(1); enable_irq(MACEISA_PAR_CTXA_IRQ); enable_irq(MACEISA_PAR_CTXB_IRQ); parport_ip32_dma.irq_on = 1; } /* Prepare DMA pointers */ parport_ip32_dma.dir = dir; parport_ip32_dma.buf = dma_map_single(NULL, addr, count, dir); parport_ip32_dma.len = count; parport_ip32_dma.next = parport_ip32_dma.buf; parport_ip32_dma.left = parport_ip32_dma.len; parport_ip32_dma.ctx = 0; /* Setup DMA direction and first two contexts */ ctrl = (dir == DMA_TO_DEVICE) ? 0 : MACEPAR_CTLSTAT_DIRECTION; writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); /* Single transfer should not cross a 4K page boundary */ limit = MACEPAR_CONTEXT_DATA_BOUND - (parport_ip32_dma.next & (MACEPAR_CONTEXT_DATA_BOUND - 1)); parport_ip32_dma_setup_context(limit); parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND); /* Real start of DMA transfer */ ctrl |= MACEPAR_CTLSTAT_ENABLE; writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); return 0; } /** * parport_ip32_dma_stop - ends a running DMA transfer * * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be * correctly balanced. */ static void parport_ip32_dma_stop(void) { u64 ctx_a; u64 ctx_b; u64 ctrl; u64 diag; size_t res[2]; /* {[0] = res_a, [1] = res_b} */ pr_trace(NULL, "()"); /* Disable IRQs */ spin_lock_irq(&parport_ip32_dma.lock); if (parport_ip32_dma.irq_on) { pr_debug(PPIP32 "IRQ off (stop)\n"); disable_irq_nosync(MACEISA_PAR_CTXA_IRQ); disable_irq_nosync(MACEISA_PAR_CTXB_IRQ); parport_ip32_dma.irq_on = 0; } spin_unlock_irq(&parport_ip32_dma.lock); /* Force IRQ synchronization, even if the IRQs were disabled * elsewhere. */ synchronize_irq(MACEISA_PAR_CTXA_IRQ); synchronize_irq(MACEISA_PAR_CTXB_IRQ); /* Stop DMA transfer */ ctrl = readq(&mace->perif.ctrl.parport.cntlstat); ctrl &= ~MACEPAR_CTLSTAT_ENABLE; writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); /* Adjust residue (parport_ip32_dma.left) */ ctx_a = readq(&mace->perif.ctrl.parport.context_a); ctx_b = readq(&mace->perif.ctrl.parport.context_b); ctrl = readq(&mace->perif.ctrl.parport.cntlstat); diag = readq(&mace->perif.ctrl.parport.diagnostic); res[0] = (ctrl & MACEPAR_CTLSTAT_CTXA_VALID) ? 1 + ((ctx_a & MACEPAR_CONTEXT_DATALEN_MASK) >> MACEPAR_CONTEXT_DATALEN_SHIFT) : 0; res[1] = (ctrl & MACEPAR_CTLSTAT_CTXB_VALID) ? 1 + ((ctx_b & MACEPAR_CONTEXT_DATALEN_MASK) >> MACEPAR_CONTEXT_DATALEN_SHIFT) : 0; if (diag & MACEPAR_DIAG_DMACTIVE) res[(diag & MACEPAR_DIAG_CTXINUSE) != 0] = 1 + ((diag & MACEPAR_DIAG_CTRMASK) >> MACEPAR_DIAG_CTRSHIFT); parport_ip32_dma.left += res[0] + res[1]; /* Reset DMA controller, and re-enable IRQs */ ctrl = MACEPAR_CTLSTAT_RESET; writeq(ctrl, &mace->perif.ctrl.parport.cntlstat); pr_debug(PPIP32 "IRQ on (stop)\n"); enable_irq(MACEISA_PAR_CTXA_IRQ); enable_irq(MACEISA_PAR_CTXB_IRQ); parport_ip32_dma.irq_on = 1; dma_unmap_single(NULL, parport_ip32_dma.buf, parport_ip32_dma.len, parport_ip32_dma.dir); } /** * parport_ip32_dma_get_residue - get residue from last DMA transfer * * Returns the number of bytes remaining from last DMA transfer. */ static inline size_t parport_ip32_dma_get_residue(void) { return parport_ip32_dma.left; } /** * parport_ip32_dma_register - initialize DMA engine * * Returns zero for success. */ static int parport_ip32_dma_register(void) { int err; spin_lock_init(&parport_ip32_dma.lock); parport_ip32_dma.irq_on = 1; /* Reset DMA controller */ writeq(MACEPAR_CTLSTAT_RESET, &mace->perif.ctrl.parport.cntlstat); /* Request IRQs */ err = request_irq(MACEISA_PAR_CTXA_IRQ, parport_ip32_dma_interrupt, 0, "parport_ip32", NULL); if (err) goto fail_a; err = request_irq(MACEISA_PAR_CTXB_IRQ, parport_ip32_dma_interrupt, 0, "parport_ip32", NULL); if (err) goto fail_b; #if DEBUG_PARPORT_IP32 /* FIXME - what is this IRQ for? */ err = request_irq(MACEISA_PAR_MERR_IRQ, parport_ip32_merr_interrupt, 0, "parport_ip32", NULL); if (err) goto fail_merr; #endif return 0; #if DEBUG_PARPORT_IP32 fail_merr: free_irq(MACEISA_PAR_CTXB_IRQ, NULL); #endif fail_b: free_irq(MACEISA_PAR_CTXA_IRQ, NULL); fail_a: return err; } /** * parport_ip32_dma_unregister - release and free resources for DMA engine */ static void parport_ip32_dma_unregister(void) { #if DEBUG_PARPORT_IP32 free_irq(MACEISA_PAR_MERR_IRQ, NULL); #endif free_irq(MACEISA_PAR_CTXB_IRQ, NULL); free_irq(MACEISA_PAR_CTXA_IRQ, NULL); } /*--- Interrupt handlers and associates --------------------------------*/ /** * parport_ip32_wakeup - wakes up code waiting for an interrupt * @p: pointer to &struct parport */ static inline void parport_ip32_wakeup(struct parport *p) { struct parport_ip32_private * const priv = p->physport->private_data; complete(&priv->irq_complete); } /** * parport_ip32_interrupt - interrupt handler * @irq: interrupt number * @dev_id: pointer to &struct parport * * Caught interrupts are forwarded to the upper parport layer if IRQ_mode is * %PARPORT_IP32_IRQ_FWD. */ static irqreturn_t parport_ip32_interrupt(int irq, void *dev_id) { struct parport * const p = dev_id; struct parport_ip32_private * const priv = p->physport->private_data; enum parport_ip32_irq_mode irq_mode = priv->irq_mode; switch (irq_mode) { case PARPORT_IP32_IRQ_FWD: return parport_irq_handler(irq, dev_id); case PARPORT_IP32_IRQ_HERE: parport_ip32_wakeup(p); break; } return IRQ_HANDLED; } /*--- Some utility function to manipulate ECR register -----------------*/ /** * parport_ip32_read_econtrol - read contents of the ECR register * @p: pointer to &struct parport */ static inline unsigned int parport_ip32_read_econtrol(struct parport *p) { struct parport_ip32_private * const priv = p->physport->private_data; return readb(priv->regs.ecr); } /** * parport_ip32_write_econtrol - write new contents to the ECR register * @p: pointer to &struct parport * @c: new value to write */ static inline void parport_ip32_write_econtrol(struct parport *p, unsigned int c) { struct parport_ip32_private * const priv = p->physport->private_data; writeb(c, priv->regs.ecr); } /** * parport_ip32_frob_econtrol - change bits from the ECR register * @p: pointer to &struct parport * @mask: bit mask of bits to change * @val: new value for changed bits * * Read from the ECR, mask out the bits in @mask, exclusive-or with the bits * in @val, and write the result to the ECR. */ static inline void parport_ip32_frob_econtrol(struct parport *p, unsigned int mask, unsigned int val) { unsigned int c; c = (parport_ip32_read_econtrol(p) & ~mask) ^ val; parport_ip32_write_econtrol(p, c); } /** * parport_ip32_set_mode - change mode of ECP port * @p: pointer to &struct parport * @mode: new mode to write in ECR * * ECR is reset in a sane state (interrupts and DMA disabled), and placed in * mode @mode. Go through PS2 mode if needed. */ static void parport_ip32_set_mode(struct parport *p, unsigned int mode) { unsigned int omode; mode &= ECR_MODE_MASK; omode = parport_ip32_read_econtrol(p) & ECR_MODE_MASK; if (!(mode == ECR_MODE_SPP || mode == ECR_MODE_PS2 || omode == ECR_MODE_SPP || omode == ECR_MODE_PS2)) { /* We have to go through PS2 mode */ unsigned int ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR; parport_ip32_write_econtrol(p, ecr); } parport_ip32_write_econtrol(p, mode | ECR_nERRINTR | ECR_SERVINTR); } /*--- Basic functions needed for parport -------------------------------*/ /** * parport_ip32_read_data - return current contents of the DATA register * @p: pointer to &struct parport */ static inline unsigned char parport_ip32_read_data(struct parport *p) { struct parport_ip32_private * const priv = p->physport->private_data; return readb(priv->regs.data); } /** * parport_ip32_write_data - set new contents for the DATA register * @p: pointer to &struct parport * @d: new value to write */ static inline void parport_ip32_write_data(struct parport *p, unsigned char d) { struct parport_ip32_private * const priv = p->physport->private_data; writeb(d, priv->regs.data); } /** * parport_ip32_read_status - return current contents of the DSR register * @p: pointer to &struct parport */ static inline unsigned char parport_ip32_read_status(struct parport *p) { struct parport_ip32_private * const priv = p->physport->private_data; return readb(priv->regs.dsr); } /** * __parport_ip32_read_control - return cached contents of the DCR register * @p: pointer to &struct parport */ static inline unsigned int __parport_ip32_read_control(struct parport *p) { struct parport_ip32_private * const priv = p->physport->private_data; return priv->dcr_cache; /* use soft copy */ } /** * __parport_ip32_write_control - set new contents for the DCR register * @p: pointer to &struct parport * @c: new value to write */ static inline void __parport_ip32_write_control(struct parport *p, unsigned int c) { struct parport_ip32_private * const priv = p->physport->private_data; CHECK_EXTRA_BITS(p, c, priv->dcr_writable); c &= priv->dcr_writable; /* only writable bits */ writeb(c, priv->regs.dcr); priv->dcr_cache = c; /* update soft copy */ } /** * __parport_ip32_frob_control - change bits from the DCR register * @p: pointer to &struct parport * @mask: bit mask of bits to change * @val: new value for changed bits * * This is equivalent to read from the DCR, mask out the bits in @mask, * exclusive-or with the bits in @val, and write the result to the DCR. * Actually, the cached contents of the DCR is used. */ static inline void __parport_ip32_frob_control(struct parport *p, unsigned int mask, unsigned int val) { unsigned int c; c = (__parport_ip32_read_control(p) & ~mask) ^ val; __parport_ip32_write_control(p, c); } /** * parport_ip32_read_control - return cached contents of the DCR register * @p: pointer to &struct parport * * The return value is masked so as to only return the value of %DCR_STROBE, * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT. */ static inline unsigned char parport_ip32_read_control(struct parport *p) { const unsigned int rm = DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT; return __parport_ip32_read_control(p) & rm; } /** * parport_ip32_write_control - set new contents for the DCR register * @p: pointer to &struct parport * @c: new value to write * * The value is masked so as to only change the value of %DCR_STROBE, * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT. */ static inline void parport_ip32_write_control(struct parport *p, unsigned char c) { const unsigned int wm = DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT; CHECK_EXTRA_BITS(p, c, wm); __parport_ip32_frob_control(p, wm, c & wm); } /** * parport_ip32_frob_control - change bits from the DCR register * @p: pointer to &struct parport * @mask: bit mask of bits to change * @val: new value for changed bits * * This differs from __parport_ip32_frob_control() in that it only allows to * change the value of %DCR_STROBE, %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT. */ static inline unsigned char parport_ip32_frob_control(struct parport *p, unsigned char mask, unsigned char val) { const unsigned int wm = DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT; CHECK_EXTRA_BITS(p, mask, wm); CHECK_EXTRA_BITS(p, val, wm); __parport_ip32_frob_control(p, mask & wm, val & wm); return parport_ip32_read_control(p); } /** * parport_ip32_disable_irq - disable interrupts on the rising edge of nACK * @p: pointer to &struct parport */ static inline void parport_ip32_disable_irq(struct parport *p) { __parport_ip32_frob_control(p, DCR_IRQ, 0); } /** * parport_ip32_enable_irq - enable interrupts on the rising edge of nACK * @p: pointer to &struct parport */ static inline void parport_ip32_enable_irq(struct parport *p) { __parport_ip32_frob_control(p, DCR_IRQ, DCR_IRQ); } /** * parport_ip32_data_forward - enable host-to-peripheral communications * @p: pointer to &struct parport * * Enable the data line drivers, for 8-bit host-to-peripheral communications. */ static inline void parport_ip32_data_forward(struct parport *p) { __parport_ip32_frob_control(p, DCR_DIR, 0); } /** * parport_ip32_data_reverse - enable peripheral-to-host communications * @p: pointer to &struct parport * * Place the data bus in a high impedance state, if @p->modes has the * PARPORT_MODE_TRISTATE bit set. */ static inline void parport_ip32_data_reverse(struct parport *p) { __parport_ip32_frob_control(p, DCR_DIR, DCR_DIR); } /** * parport_ip32_init_state - for core parport code * @dev: pointer to &struct pardevice * @s: pointer to &struct parport_state to initialize */ static void parport_ip32_init_state(struct pardevice *dev, struct parport_state *s) { s->u.ip32.dcr = DCR_SELECT | DCR_nINIT; s->u.ip32.ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR; } /** * parport_ip32_save_state - for core parport code * @p: pointer to &struct parport * @s: pointer to &struct parport_state to save state to */ static void parport_ip32_save_state(struct parport *p, struct parport_state *s) { s->u.ip32.dcr = __parport_ip32_read_control(p); s->u.ip32.ecr = parport_ip32_read_econtrol(p); } /** * parport_ip32_restore_state - for core parport code * @p: pointer to &struct parport * @s: pointer to &struct parport_state to restore state from */ static void parport_ip32_restore_state(struct parport *p, struct parport_state *s) { parport_ip32_set_mode(p, s->u.ip32.ecr & ECR_MODE_MASK); parport_ip32_write_econtrol(p, s->u.ip32.ecr); __parport_ip32_write_control(p, s->u.ip32.dcr); } /*--- EPP mode functions -----------------------------------------------*/ /** * parport_ip32_clear_epp_timeout - clear Timeout bit in EPP mode * @p: pointer to &struct parport * * Returns 1 if the Timeout bit is clear, and 0 otherwise. */ static unsigned int parport_ip32_clear_epp_timeout(struct parport *p) { struct parport_ip32_private * const priv = p->physport->private_data; unsigned int cleared; if (!(parport_ip32_read_status(p) & DSR_TIMEOUT)) cleared = 1; else { unsigned int r; /* To clear timeout some chips require double read */ parport_ip32_read_status(p); r = parport_ip32_read_status(p); /* Some reset by writing 1 */ writeb(r | DSR_TIMEOUT, priv->regs.dsr); /* Others by writing 0 */ writeb(r & ~DSR_TIMEOUT, priv->regs.dsr); r = parport_ip32_read_status(p); cleared = !(r & DSR_TIMEOUT); } pr_trace(p, "(): %s", cleared ? "cleared" : "failed"); return cleared; } /** * parport_ip32_epp_read - generic EPP read function * @eppreg: I/O register to read from * @p: pointer to &struct parport * @buf: buffer to store read data * @len: length of buffer @buf * @flags: may be PARPORT_EPP_FAST */ static size_t parport_ip32_epp_read(void __iomem *eppreg, struct parport *p, void *buf, size_t len, int flags) { struct parport_ip32_private * const priv = p->physport->private_data; size_t got; parport_ip32_set_mode(p, ECR_MODE_EPP); parport_ip32_data_reverse(p); parport_ip32_write_control(p, DCR_nINIT); if ((flags & PARPORT_EPP_FAST) && (len > 1)) { readsb(eppreg, buf, len); if (readb(priv->regs.dsr) & DSR_TIMEOUT) { parport_ip32_clear_epp_timeout(p); return -EIO; } got = len; } else { u8 *bufp = buf; for (got = 0; got < len; got++) { *bufp++ = readb(eppreg); if (readb(priv->regs.dsr) & DSR_TIMEOUT) { parport_ip32_clear_epp_timeout(p); break; } } } parport_ip32_data_forward(p); parport_ip32_set_mode(p, ECR_MODE_PS2); return got; } /** * parport_ip32_epp_write - generic EPP write function * @eppreg: I/O register to write to * @p: pointer to &struct parport * @buf: buffer of data to write * @len: length of buffer @buf * @flags: may be PARPORT_EPP_FAST */ static size_t parport_ip32_epp_write(void __iomem *eppreg, struct parport *p, const void *buf, size_t len, int flags) { struct parport_ip32_private * const priv = p->physport->private_data; size_t written; parport_ip32_set_mode(p, ECR_MODE_EPP); parport_ip32_data_forward(p); parport_ip32_write_control(p, DCR_nINIT); if ((flags & PARPORT_EPP_FAST) && (len > 1)) { writesb(eppreg, buf, len); if (readb(priv->regs.dsr) & DSR_TIMEOUT) { parport_ip32_clear_epp_timeout(p); return -EIO; } written = len; } else { const u8 *bufp = buf; for (written = 0; written < len; written++) { writeb(*bufp++, eppreg); if (readb(priv->regs.dsr) & DSR_TIMEOUT) { parport_ip32_clear_epp_timeout(p); break; } } } parport_ip32_set_mode(p, ECR_MODE_PS2); return written; } /** * parport_ip32_epp_read_data - read a block of data in EPP mode * @p: pointer to &struct parport * @buf: buffer to store read data * @len: length of buffer @buf * @flags: may be PARPORT_EPP_FAST */ static size_t parport_ip32_epp_read_data(struct parport *p, void *buf, size_t len, int flags) { struct parport_ip32_private * const priv = p->physport->private_data; return parport_ip32_epp_read(priv->regs.eppData0, p, buf, len, flags); } /** * parport_ip32_epp_write_data - write a block of data in EPP mode * @p: pointer to &struct parport * @buf: buffer of data to write * @len: length of buffer @buf * @flags: may be PARPORT_EPP_FAST */ static size_t parport_ip32_epp_write_data(struct parport *p, const void *buf, size_t len, int flags) { struct parport_ip32_private * const priv = p->physport->private_data; return parport_ip32_epp_write(priv->regs.eppData0, p, buf, len, flags); } /** * parport_ip32_epp_read_addr - read a block of addresses in EPP mode * @p: pointer to &struct parport * @buf: buffer to store read data * @len: length of buffer @buf * @flags: may be PARPORT_EPP_FAST */ static size_t parport_ip32_epp_read_addr(struct parport *p, void *buf, size_t len, int flags) { struct parport_ip32_private * const priv = p->physport->private_data; return parport_ip32_epp_read(priv->regs.eppAddr, p, buf, len, flags); } /** * parport_ip32_epp_write_addr - write a block of addresses in EPP mode * @p: pointer to &struct parport * @buf: buffer of data to write * @len: length of buffer @buf * @flags: may be PARPORT_EPP_FAST */ static size_t parport_ip32_epp_write_addr(struct parport *p, const void *buf, size_t len, int flags) { struct parport_ip32_private * const priv = p->physport->private_data; return parport_ip32_epp_write(priv->regs.eppAddr, p, buf, len, flags); } /*--- ECP mode functions (FIFO) ----------------------------------------*/ /** * parport_ip32_fifo_wait_break - check if the waiting function should return * @p: pointer to &struct parport * @expire: timeout expiring date, in jiffies * * parport_ip32_fifo_wait_break() checks if the waiting function should return * immediately or not. The break conditions are: * - expired timeout; * - a pending signal; * - nFault asserted low. * This function also calls cond_resched(). */ static unsigned int parport_ip32_fifo_wait_break(struct parport *p, unsigned long expire) { cond_resched(); if (time_after(jiffies, expire)) { pr_debug1(PPIP32 "%s: FIFO write timed out\n", p->name); return 1; } if (signal_pending(current)) { pr_debug1(PPIP32 "%s: Signal pending\n", p->name); return 1; } if (!(parport_ip32_read_status(p) & DSR_nFAULT)) { pr_debug1(PPIP32 "%s: nFault asserted low\n", p->name); return 1; } return 0; } /** * parport_ip32_fwp_wait_polling - wait for FIFO to empty (polling) * @p: pointer to &struct parport * * Returns the number of bytes that can safely be written in the FIFO. A * return value of zero means that the calling function should terminate as * fast as possible. */ static unsigned int parport_ip32_fwp_wait_polling(struct parport *p) { struct parport_ip32_private * const priv = p->physport->private_data; struct parport * const physport = p->physport; unsigned long expire; unsigned int count; unsigned int ecr; expire = jiffies + physport->cad->timeout; count = 0; while (1) { if (parport_ip32_fifo_wait_break(p, expire)) break; /* Check FIFO state. We do nothing when the FIFO is nor full, * nor empty. It appears that the FIFO full bit is not always * reliable, the FIFO state is sometimes wrongly reported, and * the chip gets confused if we give it another byte. */ ecr = parport_ip32_read_econtrol(p); if (ecr & ECR_F_EMPTY) { /* FIFO is empty, fill it up */ count = priv->fifo_depth; break; } /* Wait a moment... */ udelay(FIFO_POLLING_INTERVAL); } /* while (1) */ return count; } /** * parport_ip32_fwp_wait_interrupt - wait for FIFO to empty (interrupt-driven) * @p: pointer to &struct parport * * Returns the number of bytes that can safely be written in the FIFO. A * return value of zero means that the calling function should terminate as * fast as possible. */ static unsigned int parport_ip32_fwp_wait_interrupt(struct parport *p) { static unsigned int lost_interrupt = 0; struct parport_ip32_private * const priv = p->physport->private_data; struct parport * const physport = p->physport; unsigned long nfault_timeout; unsigned long expire; unsigned int count; unsigned int ecr; nfault_timeout = min((unsigned long)physport->cad->timeout, msecs_to_jiffies(FIFO_NFAULT_TIMEOUT)); expire = jiffies + physport->cad->timeout; count = 0; while (1) { if (parport_ip32_fifo_wait_break(p, expire)) break; /* Initialize mutex used to take interrupts into account */ INIT_COMPLETION(priv->irq_complete); /* Enable serviceIntr */ parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0); /* Enabling serviceIntr while the FIFO is empty does not * always generate an interrupt, so check for emptiness * now. */ ecr = parport_ip32_read_econtrol(p); if (!(ecr & ECR_F_EMPTY)) { /* FIFO is not empty: wait for an interrupt or a * timeout to occur */ wait_for_completion_interruptible_timeout( &priv->irq_complete, nfault_timeout); ecr = parport_ip32_read_econtrol(p); if ((ecr & ECR_F_EMPTY) && !(ecr & ECR_SERVINTR) && !lost_interrupt) { printk(KERN_WARNING PPIP32 "%s: lost interrupt in %s\n", p->name, __func__); lost_interrupt = 1; } } /* Disable serviceIntr */ parport_ip32_frob_econtrol(p, ECR_SERVINTR, ECR_SERVINTR); /* Check FIFO state */ if (ecr & ECR_F_EMPTY) { /* FIFO is empty, fill it up */ count = priv->fifo_depth; break; } else if (ecr & ECR_SERVINTR) { /* FIFO is not empty, but we know that can safely push * writeIntrThreshold bytes into it */ count = priv->writeIntrThreshold; break; } /* FIFO is not empty, and we did not get any interrupt. * Either it's time to check for nFault, or a signal is * pending. This is verified in * parport_ip32_fifo_wait_break(), so we continue the loop. */ } /* while (1) */ return count; } /** * parport_ip32_fifo_write_block_pio - write a block of data (PIO mode) * @p: pointer to &struct parport * @buf: buffer of data to write * @len: length of buffer @buf * * Uses PIO to write the contents of the buffer @buf into the parallel port * FIFO. Returns the number of bytes that were actually written. It can work * with or without the help of interrupts. The parallel port must be * correctly initialized before calling parport_ip32_fifo_write_block_pio(). */ static size_t parport_ip32_fifo_write_block_pio(struct parport *p, const void *buf, size_t len) { struct parport_ip32_private * const priv = p->physport->private_data; const u8 *bufp = buf; size_t left = len; priv->irq_mode = PARPORT_IP32_IRQ_HERE; while (left > 0) { unsigned int count; count = (p->irq == PARPORT_IRQ_NONE) ? parport_ip32_fwp_wait_polling(p) : parport_ip32_fwp_wait_interrupt(p); if (count == 0) break; /* Transmission should be stopped */ if (count > left) count = left; if (count == 1) { writeb(*bufp, priv->regs.fifo); bufp++, left--; } else { writesb(priv->regs.fifo, bufp, count); bufp += count, left -= count; } } priv->irq_mode = PARPORT_IP32_IRQ_FWD; return len - left; } /** * parport_ip32_fifo_write_block_dma - write a block of data (DMA mode) * @p: pointer to &struct parport * @buf: buffer of data to write * @len: length of buffer @buf * * Uses DMA to write the contents of the buffer @buf into the parallel port * FIFO. Returns the number of bytes that were actually written. The * parallel port must be correctly initialized before calling * parport_ip32_fifo_write_block_dma(). */ static size_t parport_ip32_fifo_write_block_dma(struct parport *p, const void *buf, size_t len) { struct parport_ip32_private * const priv = p->physport->private_data; struct parport * const physport = p->physport; unsigned long nfault_timeout; unsigned long expire; size_t written; unsigned int ecr; priv->irq_mode = PARPORT_IP32_IRQ_HERE; parport_ip32_dma_start(DMA_TO_DEVICE, (void *)buf, len); INIT_COMPLETION(priv->irq_complete); parport_ip32_frob_econtrol(p, ECR_DMAEN | ECR_SERVINTR, ECR_DMAEN); nfault_timeout = min((unsigned long)physport->cad->timeout, msecs_to_jiffies(FIFO_NFAULT_TIMEOUT)); expire = jiffies + physport->cad->timeout; while (1) { if (parport_ip32_fifo_wait_break(p, expire)) break; wait_for_completion_interruptible_timeout(&priv->irq_complete, nfault_timeout); ecr = parport_ip32_read_econtrol(p); if (ecr & ECR_SERVINTR) break; /* DMA transfer just finished */ } parport_ip32_dma_stop(); written = len - parport_ip32_dma_get_residue(); priv->irq_mode = PARPORT_IP32_IRQ_FWD; return written; } /** * parport_ip32_fifo_write_block - write a block of data * @p: pointer to &struct parport * @buf: buffer of data to write * @len: length of buffer @buf * * Uses PIO or DMA to write the contents of the buffer @buf into the parallel * p FIFO. Returns the number of bytes that were actually written. */ static size_t parport_ip32_fifo_write_block(struct parport *p, const void *buf, size_t len) { size_t written = 0; if (len) /* FIXME - Maybe some threshold value should be set for @len * under which we revert to PIO mode? */ written = (p->modes & PARPORT_MODE_DMA) ? parport_ip32_fifo_write_block_dma(p, buf, len) : parport_ip32_fifo_write_block_pio(p, buf, len); return written; } /** * parport_ip32_drain_fifo - wait for FIFO to empty * @p: pointer to &struct parport * @timeout: timeout, in jiffies * * This function waits for FIFO to empty. It returns 1 when FIFO is empty, or * 0 if the timeout @timeout is reached before, or if a signal is pending. */ static unsigned int parport_ip32_drain_fifo(struct parport *p, unsigned long timeout) { unsigned long expire = jiffies + timeout; unsigned int polling_interval; unsigned int counter; /* Busy wait for approx. 200us */ for (counter = 0; counter < 40; counter++) { if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY) break; if (time_after(jiffies, expire)) break; if (signal_pending(current)) break; udelay(5); } /* Poll slowly. Polling interval starts with 1 millisecond, and is * increased exponentially until 128. */ polling_interval = 1; /* msecs */ while (!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY)) { if (time_after_eq(jiffies, expire)) break; msleep_interruptible(polling_interval); if (signal_pending(current)) break; if (polling_interval < 128) polling_interval *= 2; } return !!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY); } /** * parport_ip32_get_fifo_residue - reset FIFO * @p: pointer to &struct parport * @mode: current operation mode (ECR_MODE_PPF or ECR_MODE_ECP) * * This function resets FIFO, and returns the number of bytes remaining in it. */ static unsigned int parport_ip32_get_fifo_residue(struct parport *p, unsigned int mode) { struct parport_ip32_private * const priv = p->physport->private_data; unsigned int residue; unsigned int cnfga; /* FIXME - We are missing one byte if the printer is off-line. I * don't know how to detect this. It looks that the full bit is not * always reliable. For the moment, the problem is avoided in most * cases by testing for BUSY in parport_ip32_compat_write_data(). */ if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY) residue = 0; else { pr_debug1(PPIP32 "%s: FIFO is stuck\n", p->name); /* Stop all transfers. * * Microsoft's document instructs to drive DCR_STROBE to 0, * but it doesn't work (at least in Compatibility mode, not * tested in ECP mode). Switching directly to Test mode (as * in parport_pc) is not an option: it does confuse the port, * ECP service interrupts are no more working after that. A * hard reset is then needed to revert to a sane state. * * Let's hope that the FIFO is really stuck and that the * peripheral doesn't wake up now. */ parport_ip32_frob_control(p, DCR_STROBE, 0); /* Fill up FIFO */ for (residue = priv->fifo_depth; residue > 0; residue--) { if (parport_ip32_read_econtrol(p) & ECR_F_FULL) break; writeb(0x00, priv->regs.fifo); } } if (residue) pr_debug1(PPIP32 "%s: %d PWord%s left in FIFO\n", p->name, residue, (residue == 1) ? " was" : "s were"); /* Now reset the FIFO */ parport_ip32_set_mode(p, ECR_MODE_PS2); /* Host recovery for ECP mode */ if (mode == ECR_MODE_ECP) { parport_ip32_data_reverse(p); parport_ip32_frob_control(p, DCR_nINIT, 0); if (parport_wait_peripheral(p, DSR_PERROR, 0)) pr_debug1(PPIP32 "%s: PEerror timeout 1 in %s\n", p->name, __func__); parport_ip32_frob_control(p, DCR_STROBE, DCR_STROBE); parport_ip32_frob_control(p, DCR_nINIT, DCR_nINIT); if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR)) pr_debug1(PPIP32 "%s: PEerror timeout 2 in %s\n", p->name, __func__); } /* Adjust residue if needed */ parport_ip32_set_mode(p, ECR_MODE_CFG); cnfga = readb(priv->regs.cnfgA); if (!(cnfga & CNFGA_nBYTEINTRANS)) { pr_debug1(PPIP32 "%s: cnfgA contains 0x%02x\n", p->name, cnfga); pr_debug1(PPIP32 "%s: Accounting for extra byte\n", p->name); residue++; } /* Don't care about partial PWords since we do not support * PWord != 1 byte. */ /* Back to forward PS2 mode. */ parport_ip32_set_mode(p, ECR_MODE_PS2); parport_ip32_data_forward(p); return residue; } /** * parport_ip32_compat_write_data - write a block of data in SPP mode * @p: pointer to &struct parport * @buf: buffer of data to write * @len: length of buffer @buf * @flags: ignored */ static size_t parport_ip32_compat_write_data(struct parport *p, const void *buf, size_t len, int flags) { static unsigned int ready_before = 1; struct parport_ip32_private * const priv = p->physport->private_data; struct parport * const physport = p->physport; size_t written = 0; /* Special case: a timeout of zero means we cannot call schedule(). * Also if O_NONBLOCK is set then use the default implementation. */ if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK) return parport_ieee1284_write_compat(p, buf, len, flags); /* Reset FIFO, go in forward mode, and disable ackIntEn */ parport_ip32_set_mode(p, ECR_MODE_PS2); parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT); parport_ip32_data_forward(p); parport_ip32_disable_irq(p); parport_ip32_set_mode(p, ECR_MODE_PPF); physport->ieee1284.phase = IEEE1284_PH_FWD_DATA; /* Wait for peripheral to become ready */ if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT, DSR_nBUSY | DSR_nFAULT)) { /* Avoid to flood the logs */ if (ready_before) printk(KERN_INFO PPIP32 "%s: not ready in %s\n", p->name, __func__); ready_before = 0; goto stop; } ready_before = 1; written = parport_ip32_fifo_write_block(p, buf, len); /* Wait FIFO to empty. Timeout is proportional to FIFO_depth. */ parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth); /* Check for a potential residue */ written -= parport_ip32_get_fifo_residue(p, ECR_MODE_PPF); /* Then, wait for BUSY to get low. */ if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY)) printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n", p->name, __func__); stop: /* Reset FIFO */ parport_ip32_set_mode(p, ECR_MODE_PS2); physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE; return written; } /* * FIXME - Insert here parport_ip32_ecp_read_data(). */ /** * parport_ip32_ecp_write_data - write a block of data in ECP mode * @p: pointer to &struct parport * @buf: buffer of data to write * @len: length of buffer @buf * @flags: ignored */ static size_t parport_ip32_ecp_write_data(struct parport *p, const void *buf, size_t len, int flags) { static unsigned int ready_before = 1; struct parport_ip32_private * const priv = p->physport->private_data; struct parport * const physport = p->physport; size_t written = 0; /* Special case: a timeout of zero means we cannot call schedule(). * Also if O_NONBLOCK is set then use the default implementation. */ if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK) return parport_ieee1284_ecp_write_data(p, buf, len, flags); /* Negotiate to forward mode if necessary. */ if (physport->ieee1284.phase != IEEE1284_PH_FWD_IDLE) { /* Event 47: Set nInit high. */ parport_ip32_frob_control(p, DCR_nINIT | DCR_AUTOFD, DCR_nINIT | DCR_AUTOFD); /* Event 49: PError goes high. */ if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR)) { printk(KERN_DEBUG PPIP32 "%s: PError timeout in %s", p->name, __func__); physport->ieee1284.phase = IEEE1284_PH_ECP_DIR_UNKNOWN; return 0; } } /* Reset FIFO, go in forward mode, and disable ackIntEn */ parport_ip32_set_mode(p, ECR_MODE_PS2); parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT); parport_ip32_data_forward(p); parport_ip32_disable_irq(p); parport_ip32_set_mode(p, ECR_MODE_ECP); physport->ieee1284.phase = IEEE1284_PH_FWD_DATA; /* Wait for peripheral to become ready */ if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT, DSR_nBUSY | DSR_nFAULT)) { /* Avoid to flood the logs */ if (ready_before) printk(KERN_INFO PPIP32 "%s: not ready in %s\n", p->name, __func__); ready_before = 0; goto stop; } ready_before = 1; written = parport_ip32_fifo_write_block(p, buf, len); /* Wait FIFO to empty. Timeout is proportional to FIFO_depth. */ parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth); /* Check for a potential residue */ written -= parport_ip32_get_fifo_residue(p, ECR_MODE_ECP); /* Then, wait for BUSY to get low. */ if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY)) printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n", p->name, __func__); stop: /* Reset FIFO */ parport_ip32_set_mode(p, ECR_MODE_PS2); physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE; return written; } /* * FIXME - Insert here parport_ip32_ecp_write_addr(). */ /*--- Default parport operations ---------------------------------------*/ static __initdata struct parport_operations parport_ip32_ops = { .write_data = parport_ip32_write_data, .read_data = parport_ip32_read_data, .write_control = parport_ip32_write_control, .read_control = parport_ip32_read_control, .frob_control = parport_ip32_frob_control, .read_status = parport_ip32_read_status, .enable_irq = parport_ip32_enable_irq, .disable_irq = parport_ip32_disable_irq, .data_forward = parport_ip32_data_forward, .data_reverse = parport_ip32_data_reverse, .init_state = parport_ip32_init_state, .save_state = parport_ip32_save_state, .restore_state = parport_ip32_restore_state, .epp_write_data = parport_ieee1284_epp_write_data, .epp_read_data = parport_ieee1284_epp_read_data, .epp_write_addr = parport_ieee1284_epp_write_addr, .epp_read_addr = parport_ieee1284_epp_read_addr, .ecp_write_data = parport_ieee1284_ecp_write_data, .ecp_read_data = parport_ieee1284_ecp_read_data, .ecp_write_addr = parport_ieee1284_ecp_write_addr, .compat_write_data = parport_ieee1284_write_compat, .nibble_read_data = parport_ieee1284_read_nibble, .byte_read_data = parport_ieee1284_read_byte, .owner = THIS_MODULE, }; /*--- Device detection -------------------------------------------------*/ /** * parport_ip32_ecp_supported - check for an ECP port * @p: pointer to the &parport structure * * Returns 1 if an ECP port is found, and 0 otherwise. This function actually * checks if an Extended Control Register seems to be present. On successful * return, the port is placed in SPP mode. */ static __init unsigned int parport_ip32_ecp_supported(struct parport *p) { struct parport_ip32_private * const priv = p->physport->private_data; unsigned int ecr; ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR; writeb(ecr, priv->regs.ecr); if (readb(priv->regs.ecr) != (ecr | ECR_F_EMPTY)) goto fail; pr_probe(p, "Found working ECR register\n"); parport_ip32_set_mode(p, ECR_MODE_SPP); parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT); return 1; fail: pr_probe(p, "ECR register not found\n"); return 0; } /** * parport_ip32_fifo_supported - check for FIFO parameters * @p: pointer to the &parport structure * * Check for FIFO parameters of an Extended Capabilities Port. Returns 1 on * success, and 0 otherwise. Adjust FIFO parameters in the parport structure. * On return, the port is placed in SPP mode. */ static __init unsigned int parport_ip32_fifo_supported(struct parport *p) { struct parport_ip32_private * const priv = p->physport->private_data; unsigned int configa, configb; unsigned int pword; unsigned int i; /* Configuration mode */ parport_ip32_set_mode(p, ECR_MODE_CFG); configa = readb(priv->regs.cnfgA); configb = readb(priv->regs.cnfgB); /* Find out PWord size */ switch (configa & CNFGA_ID_MASK) { case CNFGA_ID_8: pword = 1; break; case CNFGA_ID_16: pword = 2; break; case CNFGA_ID_32: pword = 4; break; default: pr_probe(p, "Unknown implementation ID: 0x%0x\n", (configa & CNFGA_ID_MASK) >> CNFGA_ID_SHIFT); goto fail; break; } if (pword != 1) { pr_probe(p, "Unsupported PWord size: %u\n", pword); goto fail; } priv->pword = pword; pr_probe(p, "PWord is %u bits\n", 8 * priv->pword); /* Check for compression support */ writeb(configb | CNFGB_COMPRESS, priv->regs.cnfgB); if (readb(priv->regs.cnfgB) & CNFGB_COMPRESS) pr_probe(p, "Hardware compression detected (unsupported)\n"); writeb(configb & ~CNFGB_COMPRESS, priv->regs.cnfgB); /* Reset FIFO and go in test mode (no interrupt, no DMA) */ parport_ip32_set_mode(p, ECR_MODE_TST); /* FIFO must be empty now */ if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) { pr_probe(p, "FIFO not reset\n"); goto fail; } /* Find out FIFO depth. */ priv->fifo_depth = 0; for (i = 0; i < 1024; i++) { if (readb(priv->regs.ecr) & ECR_F_FULL) { /* FIFO full */ priv->fifo_depth = i; break; } writeb((u8)i, priv->regs.fifo); } if (i >= 1024) { pr_probe(p, "Can't fill FIFO\n"); goto fail; } if (!priv->fifo_depth) { pr_probe(p, "Can't get FIFO depth\n"); goto fail; } pr_probe(p, "FIFO is %u PWords deep\n", priv->fifo_depth); /* Enable interrupts */ parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0); /* Find out writeIntrThreshold: number of PWords we know we can write * if we get an interrupt. */ priv->writeIntrThreshold = 0; for (i = 0; i < priv->fifo_depth; i++) { if (readb(priv->regs.fifo) != (u8)i) { pr_probe(p, "Invalid data in FIFO\n"); goto fail; } if (!priv->writeIntrThreshold && readb(priv->regs.ecr) & ECR_SERVINTR) /* writeIntrThreshold reached */ priv->writeIntrThreshold = i + 1; if (i + 1 < priv->fifo_depth && readb(priv->regs.ecr) & ECR_F_EMPTY) { /* FIFO empty before the last byte? */ pr_probe(p, "Data lost in FIFO\n"); goto fail; } } if (!priv->writeIntrThreshold) { pr_probe(p, "Can't get writeIntrThreshold\n"); goto fail; } pr_probe(p, "writeIntrThreshold is %u\n", priv->writeIntrThreshold); /* FIFO must be empty now */ if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) { pr_probe(p, "Can't empty FIFO\n"); goto fail; } /* Reset FIFO */ parport_ip32_set_mode(p, ECR_MODE_PS2); /* Set reverse direction (must be in PS2 mode) */ parport_ip32_data_reverse(p); /* Test FIFO, no interrupt, no DMA */ parport_ip32_set_mode(p, ECR_MODE_TST); /* Enable interrupts */ parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0); /* Find out readIntrThreshold: number of PWords we can read if we get * an interrupt. */ priv->readIntrThreshold = 0; for (i = 0; i < priv->fifo_depth; i++) { writeb(0xaa, priv->regs.fifo); if (readb(priv->regs.ecr) & ECR_SERVINTR) { /* readIntrThreshold reached */ priv->readIntrThreshold = i + 1; break; } } if (!priv->readIntrThreshold) { pr_probe(p, "Can't get readIntrThreshold\n"); goto fail; } pr_probe(p, "readIntrThreshold is %u\n", priv->readIntrThreshold); /* Reset ECR */ parport_ip32_set_mode(p, ECR_MODE_PS2); parport_ip32_data_forward(p); parport_ip32_set_mode(p, ECR_MODE_SPP); return 1; fail: priv->fifo_depth = 0; parport_ip32_set_mode(p, ECR_MODE_SPP); return 0; } /*--- Initialization code ----------------------------------------------*/ /** * parport_ip32_make_isa_registers - compute (ISA) register addresses * @regs: pointer to &struct parport_ip32_regs to fill * @base: base address of standard and EPP registers * @base_hi: base address of ECP registers * @regshift: how much to shift register offset by * * Compute register addresses, according to the ISA standard. The addresses * of the standard and EPP registers are computed from address @base. The * addresses of the ECP registers are computed from address @base_hi. */ static void __init parport_ip32_make_isa_registers(struct parport_ip32_regs *regs, void __iomem *base, void __iomem *base_hi, unsigned int regshift) { #define r_base(offset) ((u8 __iomem *)base + ((offset) << regshift)) #define r_base_hi(offset) ((u8 __iomem *)base_hi + ((offset) << regshift)) *regs = (struct parport_ip32_regs){ .data = r_base(0), .dsr = r_base(1), .dcr = r_base(2), .eppAddr = r_base(3), .eppData0 = r_base(4), .eppData1 = r_base(5), .eppData2 = r_base(6), .eppData3 = r_base(7), .ecpAFifo = r_base(0), .fifo = r_base_hi(0), .cnfgA = r_base_hi(0), .cnfgB = r_base_hi(1), .ecr = r_base_hi(2) }; #undef r_base_hi #undef r_base } /** * parport_ip32_probe_port - probe and register IP32 built-in parallel port * * Returns the new allocated &parport structure. On error, an error code is * encoded in return value with the ERR_PTR function. */ static __init struct parport *parport_ip32_probe_port(void) { struct parport_ip32_regs regs; struct parport_ip32_private *priv = NULL; struct parport_operations *ops = NULL; struct parport *p = NULL; int err; parport_ip32_make_isa_registers(®s, &mace->isa.parallel, &mace->isa.ecp1284, 8 /* regshift */); ops = kmalloc(sizeof(struct parport_operations), GFP_KERNEL); priv = kmalloc(sizeof(struct parport_ip32_private), GFP_KERNEL); p = parport_register_port(0, PARPORT_IRQ_NONE, PARPORT_DMA_NONE, ops); if (ops == NULL || priv == NULL || p == NULL) { err = -ENOMEM; goto fail; } p->base = MACE_BASE + offsetof(struct sgi_mace, isa.parallel); p->base_hi = MACE_BASE + offsetof(struct sgi_mace, isa.ecp1284); p->private_data = priv; *ops = parport_ip32_ops; *priv = (struct parport_ip32_private){ .regs = regs, .dcr_writable = DCR_DIR | DCR_SELECT | DCR_nINIT | DCR_AUTOFD | DCR_STROBE, .irq_mode = PARPORT_IP32_IRQ_FWD, }; init_completion(&priv->irq_complete); /* Probe port. */ if (!parport_ip32_ecp_supported(p)) { err = -ENODEV; goto fail; } parport_ip32_dump_state(p, "begin init", 0); /* We found what looks like a working ECR register. Simply assume * that all modes are correctly supported. Enable basic modes. */ p->modes = PARPORT_MODE_PCSPP | PARPORT_MODE_SAFEININT; p->modes |= PARPORT_MODE_TRISTATE; if (!parport_ip32_fifo_supported(p)) { printk(KERN_WARNING PPIP32 "%s: error: FIFO disabled\n", p->name); /* Disable hardware modes depending on a working FIFO. */ features &= ~PARPORT_IP32_ENABLE_SPP; features &= ~PARPORT_IP32_ENABLE_ECP; /* DMA is not needed if FIFO is not supported. */ features &= ~PARPORT_IP32_ENABLE_DMA; } /* Request IRQ */ if (features & PARPORT_IP32_ENABLE_IRQ) { int irq = MACEISA_PARALLEL_IRQ; if (request_irq(irq, parport_ip32_interrupt, 0, p->name, p)) { printk(KERN_WARNING PPIP32 "%s: error: IRQ disabled\n", p->name); /* DMA cannot work without interrupts. */ features &= ~PARPORT_IP32_ENABLE_DMA; } else { pr_probe(p, "Interrupt support enabled\n"); p->irq = irq; priv->dcr_writable |= DCR_IRQ; } } /* Allocate DMA resources */ if (features & PARPORT_IP32_ENABLE_DMA) { if (parport_ip32_dma_register()) printk(KERN_WARNING PPIP32 "%s: error: DMA disabled\n", p->name); else { pr_probe(p, "DMA support enabled\n"); p->dma = 0; /* arbitrary value != PARPORT_DMA_NONE */ p->modes |= PARPORT_MODE_DMA; } } if (features & PARPORT_IP32_ENABLE_SPP) { /* Enable compatibility FIFO mode */ p->ops->compat_write_data = parport_ip32_compat_write_data; p->modes |= PARPORT_MODE_COMPAT; pr_probe(p, "Hardware support for SPP mode enabled\n"); } if (features & PARPORT_IP32_ENABLE_EPP) { /* Set up access functions to use EPP hardware. */ p->ops->epp_read_data = parport_ip32_epp_read_data; p->ops->epp_write_data = parport_ip32_epp_write_data; p->ops->epp_read_addr = parport_ip32_epp_read_addr; p->ops->epp_write_addr = parport_ip32_epp_write_addr; p->modes |= PARPORT_MODE_EPP; pr_probe(p, "Hardware support for EPP mode enabled\n"); } if (features & PARPORT_IP32_ENABLE_ECP) { /* Enable ECP FIFO mode */ p->ops->ecp_write_data = parport_ip32_ecp_write_data; /* FIXME - not implemented */ /* p->ops->ecp_read_data = parport_ip32_ecp_read_data; */ /* p->ops->ecp_write_addr = parport_ip32_ecp_write_addr; */ p->modes |= PARPORT_MODE_ECP; pr_probe(p, "Hardware support for ECP mode enabled\n"); } /* Initialize the port with sensible values */ parport_ip32_set_mode(p, ECR_MODE_PS2); parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT); parport_ip32_data_forward(p); parport_ip32_disable_irq(p); parport_ip32_write_data(p, 0x00); parport_ip32_dump_state(p, "end init", 0); /* Print out what we found */ printk(KERN_INFO "%s: SGI IP32 at 0x%lx (0x%lx)", p->name, p->base, p->base_hi); if (p->irq != PARPORT_IRQ_NONE) printk(", irq %d", p->irq); printk(" ["); #define printmode(x) if (p->modes & PARPORT_MODE_##x) \ printk("%s%s", f++ ? "," : "", #x) { unsigned int f = 0; printmode(PCSPP); printmode(TRISTATE); printmode(COMPAT); printmode(EPP); printmode(ECP); printmode(DMA); } #undef printmode printk("]\n"); parport_announce_port(p); return p; fail: if (p) parport_put_port(p); kfree(priv); kfree(ops); return ERR_PTR(err); } /** * parport_ip32_unregister_port - unregister a parallel port * @p: pointer to the &struct parport * * Unregisters a parallel port and free previously allocated resources * (memory, IRQ, ...). */ static __exit void parport_ip32_unregister_port(struct parport *p) { struct parport_ip32_private * const priv = p->physport->private_data; struct parport_operations *ops = p->ops; parport_remove_port(p); if (p->modes & PARPORT_MODE_DMA) parport_ip32_dma_unregister(); if (p->irq != PARPORT_IRQ_NONE) free_irq(p->irq, p); parport_put_port(p); kfree(priv); kfree(ops); } /** * parport_ip32_init - module initialization function */ static int __init parport_ip32_init(void) { pr_info(PPIP32 "SGI IP32 built-in parallel port driver v0.6\n"); pr_debug1(PPIP32 "Compiled on %s, %s\n", __DATE__, __TIME__); this_port = parport_ip32_probe_port(); return IS_ERR(this_port) ? PTR_ERR(this_port) : 0; } /** * parport_ip32_exit - module termination function */ static void __exit parport_ip32_exit(void) { parport_ip32_unregister_port(this_port); } /*--- Module stuff -----------------------------------------------------*/ MODULE_AUTHOR("Arnaud Giersch "); MODULE_DESCRIPTION("SGI IP32 built-in parallel port driver"); MODULE_LICENSE("GPL"); MODULE_VERSION("0.6"); /* update in parport_ip32_init() too */ module_init(parport_ip32_init); module_exit(parport_ip32_exit); module_param(verbose_probing, bool, S_IRUGO); MODULE_PARM_DESC(verbose_probing, "Log chit-chat during initialization"); module_param(features, uint, S_IRUGO); MODULE_PARM_DESC(features, "Bit mask of features to enable" ", bit 0: IRQ support" ", bit 1: DMA support" ", bit 2: hardware SPP mode" ", bit 3: hardware EPP mode" ", bit 4: hardware ECP mode"); /*--- Inform (X)Emacs about preferred coding style ---------------------*/ /* * Local Variables: * mode: c * c-file-style: "linux" * indent-tabs-mode: t * tab-width: 8 * fill-column: 78 * ispell-local-dictionary: "american" * End: */