/* * Intel Wireless Multicomm 3200 WiFi driver * * Copyright (C) 2009 Intel Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * * Intel Corporation * Samuel Ortiz * Zhu Yi * */ /* * Hardware Abstraction Layer for iwm. * * This file mostly defines an abstraction API for * sending various commands to the target. * * We have 2 types of commands: wifi and non-wifi ones. * * - wifi commands: * They are used for sending LMAC and UMAC commands, * and thus are the most commonly used ones. * There are 2 different wifi command types, the regular * one and the LMAC one. The former is used to send * UMAC commands (see UMAC_CMD_OPCODE_* from umac.h) * while the latter is used for sending commands to the * LMAC. If you look at LMAC commands you'll se that they * are actually regular iwlwifi target commands encapsulated * into a special UMAC command called UMAC passthrough. * This is due to the fact the the host talks exclusively * to the UMAC and so there needs to be a special UMAC * command for talking to the LMAC. * This is how a wifi command is layed out: * ------------------------ * | iwm_udma_out_wifi_hdr | * ------------------------ * | SW meta_data (32 bits) | * ------------------------ * | iwm_dev_cmd_hdr | * ------------------------ * | payload | * | .... | * * - non-wifi, or general commands: * Those commands are handled by the device's bootrom, * and are typically sent when the UMAC and the LMAC * are not yet available. * * This is how a non-wifi command is layed out: * --------------------------- * | iwm_udma_out_nonwifi_hdr | * --------------------------- * | payload | * | .... | * * All the commands start with a UDMA header, which is * basically a 32 bits field. The 4 LSB there define * an opcode that allows the target to differentiate * between wifi (opcode is 0xf) and non-wifi commands * (opcode is [0..0xe]). * * When a command (wifi or non-wifi) is supposed to receive * an answer, we queue the command buffer. When we do receive * a command response from the UMAC, we go through the list * of pending command, and pass both the command and the answer * to the rx handler. Each command is sent with a unique * sequence id, and the answer is sent with the same one. This * is how we're supposed to match an answer with its command. * See rx.c:iwm_rx_handle_[non]wifi() and iwm_get_pending_[non]wifi() * for the implementation details. */ #include #include #include "iwm.h" #include "bus.h" #include "hal.h" #include "umac.h" #include "debug.h" static int iwm_nonwifi_cmd_init(struct iwm_priv *iwm, struct iwm_nonwifi_cmd *cmd, struct iwm_udma_nonwifi_cmd *udma_cmd) { INIT_LIST_HEAD(&cmd->pending); spin_lock(&iwm->cmd_lock); cmd->resp_received = 0; cmd->seq_num = iwm->nonwifi_seq_num; udma_cmd->seq_num = cpu_to_le16(cmd->seq_num); iwm->nonwifi_seq_num++; iwm->nonwifi_seq_num %= UMAC_NONWIFI_SEQ_NUM_MAX; if (udma_cmd->resp) list_add_tail(&cmd->pending, &iwm->nonwifi_pending_cmd); spin_unlock(&iwm->cmd_lock); cmd->buf.start = cmd->buf.payload; cmd->buf.len = 0; memcpy(&cmd->udma_cmd, udma_cmd, sizeof(*udma_cmd)); return cmd->seq_num; } u16 iwm_alloc_wifi_cmd_seq(struct iwm_priv *iwm) { u16 seq_num = iwm->wifi_seq_num; iwm->wifi_seq_num++; iwm->wifi_seq_num %= UMAC_WIFI_SEQ_NUM_MAX; return seq_num; } static void iwm_wifi_cmd_init(struct iwm_priv *iwm, struct iwm_wifi_cmd *cmd, struct iwm_udma_wifi_cmd *udma_cmd, struct iwm_umac_cmd *umac_cmd, struct iwm_lmac_cmd *lmac_cmd, u16 payload_size) { INIT_LIST_HEAD(&cmd->pending); spin_lock(&iwm->cmd_lock); cmd->seq_num = iwm_alloc_wifi_cmd_seq(iwm); umac_cmd->seq_num = cpu_to_le16(cmd->seq_num); if (umac_cmd->resp) list_add_tail(&cmd->pending, &iwm->wifi_pending_cmd); spin_unlock(&iwm->cmd_lock); cmd->buf.start = cmd->buf.payload; cmd->buf.len = 0; if (lmac_cmd) { cmd->buf.start -= sizeof(struct iwm_lmac_hdr); lmac_cmd->seq_num = cpu_to_le16(cmd->seq_num); lmac_cmd->count = cpu_to_le16(payload_size); memcpy(&cmd->lmac_cmd, lmac_cmd, sizeof(*lmac_cmd)); umac_cmd->count = cpu_to_le16(sizeof(struct iwm_lmac_hdr)); } else umac_cmd->count = 0; umac_cmd->count = cpu_to_le16(payload_size + le16_to_cpu(umac_cmd->count)); udma_cmd->count = cpu_to_le16(sizeof(struct iwm_umac_fw_cmd_hdr) + le16_to_cpu(umac_cmd->count)); memcpy(&cmd->udma_cmd, udma_cmd, sizeof(*udma_cmd)); memcpy(&cmd->umac_cmd, umac_cmd, sizeof(*umac_cmd)); } void iwm_cmd_flush(struct iwm_priv *iwm) { struct iwm_wifi_cmd *wcmd, *wnext; struct iwm_nonwifi_cmd *nwcmd, *nwnext; list_for_each_entry_safe(wcmd, wnext, &iwm->wifi_pending_cmd, pending) { list_del(&wcmd->pending); kfree(wcmd); } list_for_each_entry_safe(nwcmd, nwnext, &iwm->nonwifi_pending_cmd, pending) { list_del(&nwcmd->pending); kfree(nwcmd); } } struct iwm_wifi_cmd *iwm_get_pending_wifi_cmd(struct iwm_priv *iwm, u16 seq_num) { struct iwm_wifi_cmd *cmd, *next; list_for_each_entry_safe(cmd, next, &iwm->wifi_pending_cmd, pending) if (cmd->seq_num == seq_num) { list_del(&cmd->pending); return cmd; } return NULL; } struct iwm_nonwifi_cmd * iwm_get_pending_nonwifi_cmd(struct iwm_priv *iwm, u8 seq_num, u8 cmd_opcode) { struct iwm_nonwifi_cmd *cmd, *next; list_for_each_entry_safe(cmd, next, &iwm->nonwifi_pending_cmd, pending) if ((cmd->seq_num == seq_num) && (cmd->udma_cmd.opcode == cmd_opcode) && (cmd->resp_received)) { list_del(&cmd->pending); return cmd; } return NULL; } static void iwm_build_udma_nonwifi_hdr(struct iwm_priv *iwm, struct iwm_udma_out_nonwifi_hdr *hdr, struct iwm_udma_nonwifi_cmd *cmd) { memset(hdr, 0, sizeof(*hdr)); SET_VAL32(hdr->cmd, UMAC_HDI_OUT_CMD_OPCODE, cmd->opcode); SET_VAL32(hdr->cmd, UDMA_HDI_OUT_NW_CMD_RESP, cmd->resp); SET_VAL32(hdr->cmd, UMAC_HDI_OUT_CMD_EOT, 1); SET_VAL32(hdr->cmd, UDMA_HDI_OUT_NW_CMD_HANDLE_BY_HW, cmd->handle_by_hw); SET_VAL32(hdr->cmd, UMAC_HDI_OUT_CMD_SIGNATURE, UMAC_HDI_OUT_SIGNATURE); SET_VAL32(hdr->cmd, UDMA_HDI_OUT_CMD_NON_WIFI_HW_SEQ_NUM, le16_to_cpu(cmd->seq_num)); hdr->addr = cmd->addr; hdr->op1_sz = cmd->op1_sz; hdr->op2 = cmd->op2; } static int iwm_send_udma_nonwifi_cmd(struct iwm_priv *iwm, struct iwm_nonwifi_cmd *cmd) { struct iwm_udma_out_nonwifi_hdr *udma_hdr; struct iwm_nonwifi_cmd_buff *buf; struct iwm_udma_nonwifi_cmd *udma_cmd = &cmd->udma_cmd; buf = &cmd->buf; buf->start -= sizeof(struct iwm_umac_nonwifi_out_hdr); buf->len += sizeof(struct iwm_umac_nonwifi_out_hdr); udma_hdr = (struct iwm_udma_out_nonwifi_hdr *)(buf->start); iwm_build_udma_nonwifi_hdr(iwm, udma_hdr, udma_cmd); IWM_DBG_CMD(iwm, DBG, "Send UDMA nonwifi cmd: opcode = 0x%x, resp = 0x%x, " "hw = 0x%x, seqnum = %d, addr = 0x%x, op1_sz = 0x%x, " "op2 = 0x%x\n", udma_cmd->opcode, udma_cmd->resp, udma_cmd->handle_by_hw, cmd->seq_num, udma_cmd->addr, udma_cmd->op1_sz, udma_cmd->op2); return iwm_bus_send_chunk(iwm, buf->start, buf->len); } void iwm_udma_wifi_hdr_set_eop(struct iwm_priv *iwm, u8 *buf, u8 eop) { struct iwm_udma_out_wifi_hdr *hdr = (struct iwm_udma_out_wifi_hdr *)buf; SET_VAL32(hdr->cmd, UMAC_HDI_OUT_CMD_EOT, eop); } void iwm_build_udma_wifi_hdr(struct iwm_priv *iwm, struct iwm_udma_out_wifi_hdr *hdr, struct iwm_udma_wifi_cmd *cmd) { memset(hdr, 0, sizeof(*hdr)); SET_VAL32(hdr->cmd, UMAC_HDI_OUT_CMD_OPCODE, UMAC_HDI_OUT_OPCODE_WIFI); SET_VAL32(hdr->cmd, UMAC_HDI_OUT_CMD_EOT, cmd->eop); SET_VAL32(hdr->cmd, UMAC_HDI_OUT_CMD_SIGNATURE, UMAC_HDI_OUT_SIGNATURE); SET_VAL32(hdr->meta_data, UMAC_HDI_OUT_BYTE_COUNT, le16_to_cpu(cmd->count)); SET_VAL32(hdr->meta_data, UMAC_HDI_OUT_CREDIT_GRP, cmd->credit_group); SET_VAL32(hdr->meta_data, UMAC_HDI_OUT_RATID, cmd->ra_tid); SET_VAL32(hdr->meta_data, UMAC_HDI_OUT_LMAC_OFFSET, cmd->lmac_offset); } void iwm_build_umac_hdr(struct iwm_priv *iwm, struct iwm_umac_fw_cmd_hdr *hdr, struct iwm_umac_cmd *cmd) { memset(hdr, 0, sizeof(*hdr)); SET_VAL32(hdr->meta_data, UMAC_FW_CMD_BYTE_COUNT, le16_to_cpu(cmd->count)); SET_VAL32(hdr->meta_data, UMAC_FW_CMD_TX_STA_COLOR, cmd->color); SET_VAL8(hdr->cmd.flags, UMAC_DEV_CMD_FLAGS_RESP_REQ, cmd->resp); hdr->cmd.cmd = cmd->id; hdr->cmd.seq_num = cmd->seq_num; } static int iwm_send_udma_wifi_cmd(struct iwm_priv *iwm, struct iwm_wifi_cmd *cmd) { struct iwm_umac_wifi_out_hdr *umac_hdr; struct iwm_wifi_cmd_buff *buf; struct iwm_udma_wifi_cmd *udma_cmd = &cmd->udma_cmd; struct iwm_umac_cmd *umac_cmd = &cmd->umac_cmd; int ret; buf = &cmd->buf; buf->start -= sizeof(struct iwm_umac_wifi_out_hdr); buf->len += sizeof(struct iwm_umac_wifi_out_hdr); umac_hdr = (struct iwm_umac_wifi_out_hdr *)(buf->start); iwm_build_udma_wifi_hdr(iwm, &umac_hdr->hw_hdr, udma_cmd); iwm_build_umac_hdr(iwm, &umac_hdr->sw_hdr, umac_cmd); IWM_DBG_CMD(iwm, DBG, "Send UDMA wifi cmd: opcode = 0x%x, UMAC opcode = 0x%x, " "eop = 0x%x, count = 0x%x, credit_group = 0x%x, " "ra_tid = 0x%x, lmac_offset = 0x%x, seqnum = %d\n", UMAC_HDI_OUT_OPCODE_WIFI, umac_cmd->id, udma_cmd->eop, udma_cmd->count, udma_cmd->credit_group, udma_cmd->ra_tid, udma_cmd->lmac_offset, cmd->seq_num); if (umac_cmd->id == UMAC_CMD_OPCODE_WIFI_PASS_THROUGH) IWM_DBG_CMD(iwm, DBG, "\tLMAC opcode: 0x%x\n", cmd->lmac_cmd.id); ret = iwm_tx_credit_alloc(iwm, udma_cmd->credit_group, buf->len); /* We keep sending UMAC reset regardless of the command credits. * The UMAC is supposed to be reset anyway and the Tx credits are * reinitialized afterwards. If we are lucky, the reset could * still be done even though we have run out of credits for the * command pool at this moment.*/ if (ret && (umac_cmd->id != UMAC_CMD_OPCODE_RESET)) { IWM_DBG_TX(iwm, DBG, "Failed to alloc tx credit for cmd %d\n", umac_cmd->id); return ret; } return iwm_bus_send_chunk(iwm, buf->start, buf->len); } /* target_cmd a.k.a udma_nonwifi_cmd can be sent when UMAC is not available */ int iwm_hal_send_target_cmd(struct iwm_priv *iwm, struct iwm_udma_nonwifi_cmd *udma_cmd, const void *payload) { struct iwm_nonwifi_cmd *cmd; int ret, seq_num; cmd = kzalloc(sizeof(struct iwm_nonwifi_cmd), GFP_KERNEL); if (!cmd) { IWM_ERR(iwm, "Couldn't alloc memory for hal cmd\n"); return -ENOMEM; } seq_num = iwm_nonwifi_cmd_init(iwm, cmd, udma_cmd); if (cmd->udma_cmd.opcode == UMAC_HDI_OUT_OPCODE_WRITE || cmd->udma_cmd.opcode == UMAC_HDI_OUT_OPCODE_WRITE_PERSISTENT) { cmd->buf.len = le32_to_cpu(cmd->udma_cmd.op1_sz); memcpy(&cmd->buf.payload, payload, cmd->buf.len); } ret = iwm_send_udma_nonwifi_cmd(iwm, cmd); if (!udma_cmd->resp) kfree(cmd); if (ret < 0) return ret; return seq_num; } static void iwm_build_lmac_hdr(struct iwm_priv *iwm, struct iwm_lmac_hdr *hdr, struct iwm_lmac_cmd *cmd) { memset(hdr, 0, sizeof(*hdr)); hdr->id = cmd->id; hdr->flags = 0; /* Is this ever used? */ hdr->seq_num = cmd->seq_num; } /* * iwm_hal_send_host_cmd(): sends commands to the UMAC or the LMAC. * Sending command to the LMAC is equivalent to sending a * regular UMAC command with the LMAC passthrough or the LMAC * wrapper UMAC command IDs. */ int iwm_hal_send_host_cmd(struct iwm_priv *iwm, struct iwm_udma_wifi_cmd *udma_cmd, struct iwm_umac_cmd *umac_cmd, struct iwm_lmac_cmd *lmac_cmd, const void *payload, u16 payload_size) { struct iwm_wifi_cmd *cmd; struct iwm_lmac_hdr *hdr; int lmac_hdr_len = 0; int ret; cmd = kzalloc(sizeof(struct iwm_wifi_cmd), GFP_KERNEL); if (!cmd) { IWM_ERR(iwm, "Couldn't alloc memory for wifi hal cmd\n"); return -ENOMEM; } iwm_wifi_cmd_init(iwm, cmd, udma_cmd, umac_cmd, lmac_cmd, payload_size); if (lmac_cmd) { hdr = (struct iwm_lmac_hdr *)(cmd->buf.start); iwm_build_lmac_hdr(iwm, hdr, &cmd->lmac_cmd); lmac_hdr_len = sizeof(struct iwm_lmac_hdr); } memcpy(cmd->buf.payload, payload, payload_size); cmd->buf.len = le16_to_cpu(umac_cmd->count); ret = iwm_send_udma_wifi_cmd(iwm, cmd); /* We free the cmd if we're not expecting any response */ if (!umac_cmd->resp) kfree(cmd); return ret; } /* * iwm_hal_send_umac_cmd(): This is a special case for * iwm_hal_send_host_cmd() to send direct UMAC cmd (without * LMAC involved). */ int iwm_hal_send_umac_cmd(struct iwm_priv *iwm, struct iwm_udma_wifi_cmd *udma_cmd, struct iwm_umac_cmd *umac_cmd, const void *payload, u16 payload_size) { return iwm_hal_send_host_cmd(iwm, udma_cmd, umac_cmd, NULL, payload, payload_size); }