/* * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board. * * Copyright (C) 1998-2002 by Jes Sorensen, . * * Thanks to Essential Communication for providing us with hardware * and very comprehensive documentation without which I would not have * been able to write this driver. A special thank you to John Gibbon * for sorting out the legal issues, with the NDA, allowing the code to * be released under the GPL. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the * stupid bugs in my code. * * Softnet support and various other patches from Val Henson of * ODS/Essential. * * PCI DMA mapping code partly based on work by Francois Romieu. */ #define DEBUG 1 #define RX_DMA_SKBUFF 1 #define PKT_COPY_THRESHOLD 512 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define rr_if_busy(dev) netif_queue_stopped(dev) #define rr_if_running(dev) netif_running(dev) #include "rrunner.h" #define RUN_AT(x) (jiffies + (x)) MODULE_AUTHOR("Jes Sorensen "); MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver"); MODULE_LICENSE("GPL"); static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n"; static const struct net_device_ops rr_netdev_ops = { .ndo_open = rr_open, .ndo_stop = rr_close, .ndo_do_ioctl = rr_ioctl, .ndo_start_xmit = rr_start_xmit, .ndo_change_mtu = hippi_change_mtu, .ndo_set_mac_address = hippi_mac_addr, }; /* * Implementation notes: * * The DMA engine only allows for DMA within physical 64KB chunks of * memory. The current approach of the driver (and stack) is to use * linear blocks of memory for the skbuffs. However, as the data block * is always the first part of the skb and skbs are 2^n aligned so we * are guarantted to get the whole block within one 64KB align 64KB * chunk. * * On the long term, relying on being able to allocate 64KB linear * chunks of memory is not feasible and the skb handling code and the * stack will need to know about I/O vectors or something similar. */ static int __devinit rr_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *dev; static int version_disp; u8 pci_latency; struct rr_private *rrpriv; void *tmpptr; dma_addr_t ring_dma; int ret = -ENOMEM; dev = alloc_hippi_dev(sizeof(struct rr_private)); if (!dev) goto out3; ret = pci_enable_device(pdev); if (ret) { ret = -ENODEV; goto out2; } rrpriv = netdev_priv(dev); SET_NETDEV_DEV(dev, &pdev->dev); if (pci_request_regions(pdev, "rrunner")) { ret = -EIO; goto out; } pci_set_drvdata(pdev, dev); rrpriv->pci_dev = pdev; spin_lock_init(&rrpriv->lock); dev->irq = pdev->irq; dev->netdev_ops = &rr_netdev_ops; dev->base_addr = pci_resource_start(pdev, 0); /* display version info if adapter is found */ if (!version_disp) { /* set display flag to TRUE so that */ /* we only display this string ONCE */ version_disp = 1; printk(version); } pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency); if (pci_latency <= 0x58){ pci_latency = 0x58; pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency); } pci_set_master(pdev); printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI " "at 0x%08lx, irq %i, PCI latency %i\n", dev->name, dev->base_addr, dev->irq, pci_latency); /* * Remap the regs into kernel space. */ rrpriv->regs = ioremap(dev->base_addr, 0x1000); if (!rrpriv->regs){ printk(KERN_ERR "%s: Unable to map I/O register, " "RoadRunner will be disabled.\n", dev->name); ret = -EIO; goto out; } tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma); rrpriv->tx_ring = tmpptr; rrpriv->tx_ring_dma = ring_dma; if (!tmpptr) { ret = -ENOMEM; goto out; } tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma); rrpriv->rx_ring = tmpptr; rrpriv->rx_ring_dma = ring_dma; if (!tmpptr) { ret = -ENOMEM; goto out; } tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma); rrpriv->evt_ring = tmpptr; rrpriv->evt_ring_dma = ring_dma; if (!tmpptr) { ret = -ENOMEM; goto out; } /* * Don't access any register before this point! */ #ifdef __BIG_ENDIAN writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP, &rrpriv->regs->HostCtrl); #endif /* * Need to add a case for little-endian 64-bit hosts here. */ rr_init(dev); dev->base_addr = 0; ret = register_netdev(dev); if (ret) goto out; return 0; out: if (rrpriv->rx_ring) pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring, rrpriv->rx_ring_dma); if (rrpriv->tx_ring) pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring, rrpriv->tx_ring_dma); if (rrpriv->regs) iounmap(rrpriv->regs); if (pdev) { pci_release_regions(pdev); pci_set_drvdata(pdev, NULL); } out2: free_netdev(dev); out3: return ret; } static void __devexit rr_remove_one (struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); if (dev) { struct rr_private *rr = netdev_priv(dev); if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){ printk(KERN_ERR "%s: trying to unload running NIC\n", dev->name); writel(HALT_NIC, &rr->regs->HostCtrl); } pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring, rr->evt_ring_dma); pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring, rr->rx_ring_dma); pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring, rr->tx_ring_dma); unregister_netdev(dev); iounmap(rr->regs); free_netdev(dev); pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); } } /* * Commands are considered to be slow, thus there is no reason to * inline this. */ static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd) { struct rr_regs __iomem *regs; u32 idx; regs = rrpriv->regs; /* * This is temporary - it will go away in the final version. * We probably also want to make this function inline. */ if (readl(®s->HostCtrl) & NIC_HALTED){ printk("issuing command for halted NIC, code 0x%x, " "HostCtrl %08x\n", cmd->code, readl(®s->HostCtrl)); if (readl(®s->Mode) & FATAL_ERR) printk("error codes Fail1 %02x, Fail2 %02x\n", readl(®s->Fail1), readl(®s->Fail2)); } idx = rrpriv->info->cmd_ctrl.pi; writel(*(u32*)(cmd), ®s->CmdRing[idx]); wmb(); idx = (idx - 1) % CMD_RING_ENTRIES; rrpriv->info->cmd_ctrl.pi = idx; wmb(); if (readl(®s->Mode) & FATAL_ERR) printk("error code %02x\n", readl(®s->Fail1)); } /* * Reset the board in a sensible manner. The NIC is already halted * when we get here and a spin-lock is held. */ static int rr_reset(struct net_device *dev) { struct rr_private *rrpriv; struct rr_regs __iomem *regs; u32 start_pc; int i; rrpriv = netdev_priv(dev); regs = rrpriv->regs; rr_load_firmware(dev); writel(0x01000000, ®s->TX_state); writel(0xff800000, ®s->RX_state); writel(0, ®s->AssistState); writel(CLEAR_INTA, ®s->LocalCtrl); writel(0x01, ®s->BrkPt); writel(0, ®s->Timer); writel(0, ®s->TimerRef); writel(RESET_DMA, ®s->DmaReadState); writel(RESET_DMA, ®s->DmaWriteState); writel(0, ®s->DmaWriteHostHi); writel(0, ®s->DmaWriteHostLo); writel(0, ®s->DmaReadHostHi); writel(0, ®s->DmaReadHostLo); writel(0, ®s->DmaReadLen); writel(0, ®s->DmaWriteLen); writel(0, ®s->DmaWriteLcl); writel(0, ®s->DmaWriteIPchecksum); writel(0, ®s->DmaReadLcl); writel(0, ®s->DmaReadIPchecksum); writel(0, ®s->PciState); #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, ®s->Mode); #elif (BITS_PER_LONG == 64) writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, ®s->Mode); #else writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, ®s->Mode); #endif #if 0 /* * Don't worry, this is just black magic. */ writel(0xdf000, ®s->RxBase); writel(0xdf000, ®s->RxPrd); writel(0xdf000, ®s->RxCon); writel(0xce000, ®s->TxBase); writel(0xce000, ®s->TxPrd); writel(0xce000, ®s->TxCon); writel(0, ®s->RxIndPro); writel(0, ®s->RxIndCon); writel(0, ®s->RxIndRef); writel(0, ®s->TxIndPro); writel(0, ®s->TxIndCon); writel(0, ®s->TxIndRef); writel(0xcc000, ®s->pad10[0]); writel(0, ®s->DrCmndPro); writel(0, ®s->DrCmndCon); writel(0, ®s->DwCmndPro); writel(0, ®s->DwCmndCon); writel(0, ®s->DwCmndRef); writel(0, ®s->DrDataPro); writel(0, ®s->DrDataCon); writel(0, ®s->DrDataRef); writel(0, ®s->DwDataPro); writel(0, ®s->DwDataCon); writel(0, ®s->DwDataRef); #endif writel(0xffffffff, ®s->MbEvent); writel(0, ®s->Event); writel(0, ®s->TxPi); writel(0, ®s->IpRxPi); writel(0, ®s->EvtCon); writel(0, ®s->EvtPrd); rrpriv->info->evt_ctrl.pi = 0; for (i = 0; i < CMD_RING_ENTRIES; i++) writel(0, ®s->CmdRing[i]); /* * Why 32 ? is this not cache line size dependent? */ writel(RBURST_64|WBURST_64, ®s->PciState); wmb(); start_pc = rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, rncd_info.FwStart)); #if (DEBUG > 1) printk("%s: Executing firmware at address 0x%06x\n", dev->name, start_pc); #endif writel(start_pc + 0x800, ®s->Pc); wmb(); udelay(5); writel(start_pc, ®s->Pc); wmb(); return 0; } /* * Read a string from the EEPROM. */ static unsigned int rr_read_eeprom(struct rr_private *rrpriv, unsigned long offset, unsigned char *buf, unsigned long length) { struct rr_regs __iomem *regs = rrpriv->regs; u32 misc, io, host, i; io = readl(®s->ExtIo); writel(0, ®s->ExtIo); misc = readl(®s->LocalCtrl); writel(0, ®s->LocalCtrl); host = readl(®s->HostCtrl); writel(host | HALT_NIC, ®s->HostCtrl); mb(); for (i = 0; i < length; i++){ writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase); mb(); buf[i] = (readl(®s->WinData) >> 24) & 0xff; mb(); } writel(host, ®s->HostCtrl); writel(misc, ®s->LocalCtrl); writel(io, ®s->ExtIo); mb(); return i; } /* * Shortcut to read one word (4 bytes) out of the EEPROM and convert * it to our CPU byte-order. */ static u32 rr_read_eeprom_word(struct rr_private *rrpriv, size_t offset) { __be32 word; if ((rr_read_eeprom(rrpriv, offset, (unsigned char *)&word, 4) == 4)) return be32_to_cpu(word); return 0; } /* * Write a string to the EEPROM. * * This is only called when the firmware is not running. */ static unsigned int write_eeprom(struct rr_private *rrpriv, unsigned long offset, unsigned char *buf, unsigned long length) { struct rr_regs __iomem *regs = rrpriv->regs; u32 misc, io, data, i, j, ready, error = 0; io = readl(®s->ExtIo); writel(0, ®s->ExtIo); misc = readl(®s->LocalCtrl); writel(ENABLE_EEPROM_WRITE, ®s->LocalCtrl); mb(); for (i = 0; i < length; i++){ writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase); mb(); data = buf[i] << 24; /* * Only try to write the data if it is not the same * value already. */ if ((readl(®s->WinData) & 0xff000000) != data){ writel(data, ®s->WinData); ready = 0; j = 0; mb(); while(!ready){ udelay(20); if ((readl(®s->WinData) & 0xff000000) == data) ready = 1; mb(); if (j++ > 5000){ printk("data mismatch: %08x, " "WinData %08x\n", data, readl(®s->WinData)); ready = 1; error = 1; } } } } writel(misc, ®s->LocalCtrl); writel(io, ®s->ExtIo); mb(); return error; } static int __devinit rr_init(struct net_device *dev) { struct rr_private *rrpriv; struct rr_regs __iomem *regs; u32 sram_size, rev; rrpriv = netdev_priv(dev); regs = rrpriv->regs; rev = readl(®s->FwRev); rrpriv->fw_rev = rev; if (rev > 0x00020024) printk(" Firmware revision: %i.%i.%i\n", (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff)); else if (rev >= 0x00020000) { printk(" Firmware revision: %i.%i.%i (2.0.37 or " "later is recommended)\n", (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff)); }else{ printk(" Firmware revision too old: %i.%i.%i, please " "upgrade to 2.0.37 or later.\n", (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff)); } #if (DEBUG > 2) printk(" Maximum receive rings %i\n", readl(®s->MaxRxRng)); #endif /* * Read the hardware address from the eeprom. The HW address * is not really necessary for HIPPI but awfully convenient. * The pointer arithmetic to put it in dev_addr is ugly, but * Donald Becker does it this way for the GigE version of this * card and it's shorter and more portable than any * other method I've seen. -VAL */ *(__be16 *)(dev->dev_addr) = htons(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA))); *(__be32 *)(dev->dev_addr+2) = htonl(rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.BoardULA[4]))); printk(" MAC: %pM\n", dev->dev_addr); sram_size = rr_read_eeprom_word(rrpriv, 8); printk(" SRAM size 0x%06x\n", sram_size); return 0; } static int rr_init1(struct net_device *dev) { struct rr_private *rrpriv; struct rr_regs __iomem *regs; unsigned long myjif, flags; struct cmd cmd; u32 hostctrl; int ecode = 0; short i; rrpriv = netdev_priv(dev); regs = rrpriv->regs; spin_lock_irqsave(&rrpriv->lock, flags); hostctrl = readl(®s->HostCtrl); writel(hostctrl | HALT_NIC | RR_CLEAR_INT, ®s->HostCtrl); wmb(); if (hostctrl & PARITY_ERR){ printk("%s: Parity error halting NIC - this is serious!\n", dev->name); spin_unlock_irqrestore(&rrpriv->lock, flags); ecode = -EFAULT; goto error; } set_rxaddr(regs, rrpriv->rx_ctrl_dma); set_infoaddr(regs, rrpriv->info_dma); rrpriv->info->evt_ctrl.entry_size = sizeof(struct event); rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES; rrpriv->info->evt_ctrl.mode = 0; rrpriv->info->evt_ctrl.pi = 0; set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma); rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd); rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES; rrpriv->info->cmd_ctrl.mode = 0; rrpriv->info->cmd_ctrl.pi = 15; for (i = 0; i < CMD_RING_ENTRIES; i++) { writel(0, ®s->CmdRing[i]); } for (i = 0; i < TX_RING_ENTRIES; i++) { rrpriv->tx_ring[i].size = 0; set_rraddr(&rrpriv->tx_ring[i].addr, 0); rrpriv->tx_skbuff[i] = NULL; } rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc); rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES; rrpriv->info->tx_ctrl.mode = 0; rrpriv->info->tx_ctrl.pi = 0; set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma); /* * Set dirty_tx before we start receiving interrupts, otherwise * the interrupt handler might think it is supposed to process * tx ints before we are up and running, which may cause a null * pointer access in the int handler. */ rrpriv->tx_full = 0; rrpriv->cur_rx = 0; rrpriv->dirty_rx = rrpriv->dirty_tx = 0; rr_reset(dev); /* Tuning values */ writel(0x5000, ®s->ConRetry); writel(0x100, ®s->ConRetryTmr); writel(0x500000, ®s->ConTmout); writel(0x60, ®s->IntrTmr); writel(0x500000, ®s->TxDataMvTimeout); writel(0x200000, ®s->RxDataMvTimeout); writel(0x80, ®s->WriteDmaThresh); writel(0x80, ®s->ReadDmaThresh); rrpriv->fw_running = 0; wmb(); hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR); writel(hostctrl, ®s->HostCtrl); wmb(); spin_unlock_irqrestore(&rrpriv->lock, flags); for (i = 0; i < RX_RING_ENTRIES; i++) { struct sk_buff *skb; dma_addr_t addr; rrpriv->rx_ring[i].mode = 0; skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC); if (!skb) { printk(KERN_WARNING "%s: Unable to allocate memory " "for receive ring - halting NIC\n", dev->name); ecode = -ENOMEM; goto error; } rrpriv->rx_skbuff[i] = skb; addr = pci_map_single(rrpriv->pci_dev, skb->data, dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE); /* * Sanity test to see if we conflict with the DMA * limitations of the Roadrunner. */ if ((((unsigned long)skb->data) & 0xfff) > ~65320) printk("skb alloc error\n"); set_rraddr(&rrpriv->rx_ring[i].addr, addr); rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN; } rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc); rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES; rrpriv->rx_ctrl[4].mode = 8; rrpriv->rx_ctrl[4].pi = 0; wmb(); set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma); udelay(1000); /* * Now start the FirmWare. */ cmd.code = C_START_FW; cmd.ring = 0; cmd.index = 0; rr_issue_cmd(rrpriv, &cmd); /* * Give the FirmWare time to chew on the `get running' command. */ myjif = jiffies + 5 * HZ; while (time_before(jiffies, myjif) && !rrpriv->fw_running) cpu_relax(); netif_start_queue(dev); return ecode; error: /* * We might have gotten here because we are out of memory, * make sure we release everything we allocated before failing */ for (i = 0; i < RX_RING_ENTRIES; i++) { struct sk_buff *skb = rrpriv->rx_skbuff[i]; if (skb) { pci_unmap_single(rrpriv->pci_dev, rrpriv->rx_ring[i].addr.addrlo, dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE); rrpriv->rx_ring[i].size = 0; set_rraddr(&rrpriv->rx_ring[i].addr, 0); dev_kfree_skb(skb); rrpriv->rx_skbuff[i] = NULL; } } return ecode; } /* * All events are considered to be slow (RX/TX ints do not generate * events) and are handled here, outside the main interrupt handler, * to reduce the size of the handler. */ static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx) { struct rr_private *rrpriv; struct rr_regs __iomem *regs; u32 tmp; rrpriv = netdev_priv(dev); regs = rrpriv->regs; while (prodidx != eidx){ switch (rrpriv->evt_ring[eidx].code){ case E_NIC_UP: tmp = readl(®s->FwRev); printk(KERN_INFO "%s: Firmware revision %i.%i.%i " "up and running\n", dev->name, (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff)); rrpriv->fw_running = 1; writel(RX_RING_ENTRIES - 1, ®s->IpRxPi); wmb(); break; case E_LINK_ON: printk(KERN_INFO "%s: Optical link ON\n", dev->name); break; case E_LINK_OFF: printk(KERN_INFO "%s: Optical link OFF\n", dev->name); break; case E_RX_IDLE: printk(KERN_WARNING "%s: RX data not moving\n", dev->name); goto drop; case E_WATCHDOG: printk(KERN_INFO "%s: The watchdog is here to see " "us\n", dev->name); break; case E_INTERN_ERR: printk(KERN_ERR "%s: HIPPI Internal NIC error\n", dev->name); writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); wmb(); break; case E_HOST_ERR: printk(KERN_ERR "%s: Host software error\n", dev->name); writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); wmb(); break; /* * TX events. */ case E_CON_REJ: printk(KERN_WARNING "%s: Connection rejected\n", dev->name); dev->stats.tx_aborted_errors++; break; case E_CON_TMOUT: printk(KERN_WARNING "%s: Connection timeout\n", dev->name); break; case E_DISC_ERR: printk(KERN_WARNING "%s: HIPPI disconnect error\n", dev->name); dev->stats.tx_aborted_errors++; break; case E_INT_PRTY: printk(KERN_ERR "%s: HIPPI Internal Parity error\n", dev->name); writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); wmb(); break; case E_TX_IDLE: printk(KERN_WARNING "%s: Transmitter idle\n", dev->name); break; case E_TX_LINK_DROP: printk(KERN_WARNING "%s: Link lost during transmit\n", dev->name); dev->stats.tx_aborted_errors++; writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); wmb(); break; case E_TX_INV_RNG: printk(KERN_ERR "%s: Invalid send ring block\n", dev->name); writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); wmb(); break; case E_TX_INV_BUF: printk(KERN_ERR "%s: Invalid send buffer address\n", dev->name); writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); wmb(); break; case E_TX_INV_DSC: printk(KERN_ERR "%s: Invalid descriptor address\n", dev->name); writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); wmb(); break; /* * RX events. */ case E_RX_RNG_OUT: printk(KERN_INFO "%s: Receive ring full\n", dev->name); break; case E_RX_PAR_ERR: printk(KERN_WARNING "%s: Receive parity error\n", dev->name); goto drop; case E_RX_LLRC_ERR: printk(KERN_WARNING "%s: Receive LLRC error\n", dev->name); goto drop; case E_PKT_LN_ERR: printk(KERN_WARNING "%s: Receive packet length " "error\n", dev->name); goto drop; case E_DTA_CKSM_ERR: printk(KERN_WARNING "%s: Data checksum error\n", dev->name); goto drop; case E_SHT_BST: printk(KERN_WARNING "%s: Unexpected short burst " "error\n", dev->name); goto drop; case E_STATE_ERR: printk(KERN_WARNING "%s: Recv. state transition" " error\n", dev->name); goto drop; case E_UNEXP_DATA: printk(KERN_WARNING "%s: Unexpected data error\n", dev->name); goto drop; case E_LST_LNK_ERR: printk(KERN_WARNING "%s: Link lost error\n", dev->name); goto drop; case E_FRM_ERR: printk(KERN_WARNING "%s: Framming Error\n", dev->name); goto drop; case E_FLG_SYN_ERR: printk(KERN_WARNING "%s: Flag sync. lost during " "packet\n", dev->name); goto drop; case E_RX_INV_BUF: printk(KERN_ERR "%s: Invalid receive buffer " "address\n", dev->name); writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); wmb(); break; case E_RX_INV_DSC: printk(KERN_ERR "%s: Invalid receive descriptor " "address\n", dev->name); writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); wmb(); break; case E_RNG_BLK: printk(KERN_ERR "%s: Invalid ring block\n", dev->name); writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); wmb(); break; drop: /* Label packet to be dropped. * Actual dropping occurs in rx * handling. * * The index of packet we get to drop is * the index of the packet following * the bad packet. -kbf */ { u16 index = rrpriv->evt_ring[eidx].index; index = (index + (RX_RING_ENTRIES - 1)) % RX_RING_ENTRIES; rrpriv->rx_ring[index].mode |= (PACKET_BAD | PACKET_END); } break; default: printk(KERN_WARNING "%s: Unhandled event 0x%02x\n", dev->name, rrpriv->evt_ring[eidx].code); } eidx = (eidx + 1) % EVT_RING_ENTRIES; } rrpriv->info->evt_ctrl.pi = eidx; wmb(); return eidx; } static void rx_int(struct net_device *dev, u32 rxlimit, u32 index) { struct rr_private *rrpriv = netdev_priv(dev); struct rr_regs __iomem *regs = rrpriv->regs; do { struct rx_desc *desc; u32 pkt_len; desc = &(rrpriv->rx_ring[index]); pkt_len = desc->size; #if (DEBUG > 2) printk("index %i, rxlimit %i\n", index, rxlimit); printk("len %x, mode %x\n", pkt_len, desc->mode); #endif if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){ dev->stats.rx_dropped++; goto defer; } if (pkt_len > 0){ struct sk_buff *skb, *rx_skb; rx_skb = rrpriv->rx_skbuff[index]; if (pkt_len < PKT_COPY_THRESHOLD) { skb = alloc_skb(pkt_len, GFP_ATOMIC); if (skb == NULL){ printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len); dev->stats.rx_dropped++; goto defer; } else { pci_dma_sync_single_for_cpu(rrpriv->pci_dev, desc->addr.addrlo, pkt_len, PCI_DMA_FROMDEVICE); memcpy(skb_put(skb, pkt_len), rx_skb->data, pkt_len); pci_dma_sync_single_for_device(rrpriv->pci_dev, desc->addr.addrlo, pkt_len, PCI_DMA_FROMDEVICE); } }else{ struct sk_buff *newskb; newskb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC); if (newskb){ dma_addr_t addr; pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo, dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE); skb = rx_skb; skb_put(skb, pkt_len); rrpriv->rx_skbuff[index] = newskb; addr = pci_map_single(rrpriv->pci_dev, newskb->data, dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE); set_rraddr(&desc->addr, addr); } else { printk("%s: Out of memory, deferring " "packet\n", dev->name); dev->stats.rx_dropped++; goto defer; } } skb->protocol = hippi_type_trans(skb, dev); netif_rx(skb); /* send it up */ dev->stats.rx_packets++; dev->stats.rx_bytes += pkt_len; } defer: desc->mode = 0; desc->size = dev->mtu + HIPPI_HLEN; if ((index & 7) == 7) writel(index, ®s->IpRxPi); index = (index + 1) % RX_RING_ENTRIES; } while(index != rxlimit); rrpriv->cur_rx = index; wmb(); } static irqreturn_t rr_interrupt(int irq, void *dev_id) { struct rr_private *rrpriv; struct rr_regs __iomem *regs; struct net_device *dev = (struct net_device *)dev_id; u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon; rrpriv = netdev_priv(dev); regs = rrpriv->regs; if (!(readl(®s->HostCtrl) & RR_INT)) return IRQ_NONE; spin_lock(&rrpriv->lock); prodidx = readl(®s->EvtPrd); txcsmr = (prodidx >> 8) & 0xff; rxlimit = (prodidx >> 16) & 0xff; prodidx &= 0xff; #if (DEBUG > 2) printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name, prodidx, rrpriv->info->evt_ctrl.pi); #endif /* * Order here is important. We must handle events * before doing anything else in order to catch * such things as LLRC errors, etc -kbf */ eidx = rrpriv->info->evt_ctrl.pi; if (prodidx != eidx) eidx = rr_handle_event(dev, prodidx, eidx); rxindex = rrpriv->cur_rx; if (rxindex != rxlimit) rx_int(dev, rxlimit, rxindex); txcon = rrpriv->dirty_tx; if (txcsmr != txcon) { do { /* Due to occational firmware TX producer/consumer out * of sync. error need to check entry in ring -kbf */ if(rrpriv->tx_skbuff[txcon]){ struct tx_desc *desc; struct sk_buff *skb; desc = &(rrpriv->tx_ring[txcon]); skb = rrpriv->tx_skbuff[txcon]; dev->stats.tx_packets++; dev->stats.tx_bytes += skb->len; pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo, skb->len, PCI_DMA_TODEVICE); dev_kfree_skb_irq(skb); rrpriv->tx_skbuff[txcon] = NULL; desc->size = 0; set_rraddr(&rrpriv->tx_ring[txcon].addr, 0); desc->mode = 0; } txcon = (txcon + 1) % TX_RING_ENTRIES; } while (txcsmr != txcon); wmb(); rrpriv->dirty_tx = txcon; if (rrpriv->tx_full && rr_if_busy(dev) && (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES) != rrpriv->dirty_tx)){ rrpriv->tx_full = 0; netif_wake_queue(dev); } } eidx |= ((txcsmr << 8) | (rxlimit << 16)); writel(eidx, ®s->EvtCon); wmb(); spin_unlock(&rrpriv->lock); return IRQ_HANDLED; } static inline void rr_raz_tx(struct rr_private *rrpriv, struct net_device *dev) { int i; for (i = 0; i < TX_RING_ENTRIES; i++) { struct sk_buff *skb = rrpriv->tx_skbuff[i]; if (skb) { struct tx_desc *desc = &(rrpriv->tx_ring[i]); pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo, skb->len, PCI_DMA_TODEVICE); desc->size = 0; set_rraddr(&desc->addr, 0); dev_kfree_skb(skb); rrpriv->tx_skbuff[i] = NULL; } } } static inline void rr_raz_rx(struct rr_private *rrpriv, struct net_device *dev) { int i; for (i = 0; i < RX_RING_ENTRIES; i++) { struct sk_buff *skb = rrpriv->rx_skbuff[i]; if (skb) { struct rx_desc *desc = &(rrpriv->rx_ring[i]); pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo, dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE); desc->size = 0; set_rraddr(&desc->addr, 0); dev_kfree_skb(skb); rrpriv->rx_skbuff[i] = NULL; } } } static void rr_timer(unsigned long data) { struct net_device *dev = (struct net_device *)data; struct rr_private *rrpriv = netdev_priv(dev); struct rr_regs __iomem *regs = rrpriv->regs; unsigned long flags; if (readl(®s->HostCtrl) & NIC_HALTED){ printk("%s: Restarting nic\n", dev->name); memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl)); memset(rrpriv->info, 0, sizeof(struct rr_info)); wmb(); rr_raz_tx(rrpriv, dev); rr_raz_rx(rrpriv, dev); if (rr_init1(dev)) { spin_lock_irqsave(&rrpriv->lock, flags); writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); spin_unlock_irqrestore(&rrpriv->lock, flags); } } rrpriv->timer.expires = RUN_AT(5*HZ); add_timer(&rrpriv->timer); } static int rr_open(struct net_device *dev) { struct rr_private *rrpriv = netdev_priv(dev); struct pci_dev *pdev = rrpriv->pci_dev; struct rr_regs __iomem *regs; int ecode = 0; unsigned long flags; dma_addr_t dma_addr; regs = rrpriv->regs; if (rrpriv->fw_rev < 0x00020000) { printk(KERN_WARNING "%s: trying to configure device with " "obsolete firmware\n", dev->name); ecode = -EBUSY; goto error; } rrpriv->rx_ctrl = pci_alloc_consistent(pdev, 256 * sizeof(struct ring_ctrl), &dma_addr); if (!rrpriv->rx_ctrl) { ecode = -ENOMEM; goto error; } rrpriv->rx_ctrl_dma = dma_addr; memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl)); rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info), &dma_addr); if (!rrpriv->info) { ecode = -ENOMEM; goto error; } rrpriv->info_dma = dma_addr; memset(rrpriv->info, 0, sizeof(struct rr_info)); wmb(); spin_lock_irqsave(&rrpriv->lock, flags); writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); readl(®s->HostCtrl); spin_unlock_irqrestore(&rrpriv->lock, flags); if (request_irq(dev->irq, rr_interrupt, IRQF_SHARED, dev->name, dev)) { printk(KERN_WARNING "%s: Requested IRQ %d is busy\n", dev->name, dev->irq); ecode = -EAGAIN; goto error; } if ((ecode = rr_init1(dev))) goto error; /* Set the timer to switch to check for link beat and perhaps switch to an alternate media type. */ init_timer(&rrpriv->timer); rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */ rrpriv->timer.data = (unsigned long)dev; rrpriv->timer.function = &rr_timer; /* timer handler */ add_timer(&rrpriv->timer); netif_start_queue(dev); return ecode; error: spin_lock_irqsave(&rrpriv->lock, flags); writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); spin_unlock_irqrestore(&rrpriv->lock, flags); if (rrpriv->info) { pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info, rrpriv->info_dma); rrpriv->info = NULL; } if (rrpriv->rx_ctrl) { pci_free_consistent(pdev, sizeof(struct ring_ctrl), rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma); rrpriv->rx_ctrl = NULL; } netif_stop_queue(dev); return ecode; } static void rr_dump(struct net_device *dev) { struct rr_private *rrpriv; struct rr_regs __iomem *regs; u32 index, cons; short i; int len; rrpriv = netdev_priv(dev); regs = rrpriv->regs; printk("%s: dumping NIC TX rings\n", dev->name); printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n", readl(®s->RxPrd), readl(®s->TxPrd), readl(®s->EvtPrd), readl(®s->TxPi), rrpriv->info->tx_ctrl.pi); printk("Error code 0x%x\n", readl(®s->Fail1)); index = (((readl(®s->EvtPrd) >> 8) & 0xff ) - 1) % EVT_RING_ENTRIES; cons = rrpriv->dirty_tx; printk("TX ring index %i, TX consumer %i\n", index, cons); if (rrpriv->tx_skbuff[index]){ len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len); printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size); for (i = 0; i < len; i++){ if (!(i & 7)) printk("\n"); printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]); } printk("\n"); } if (rrpriv->tx_skbuff[cons]){ len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len); printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len); printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n", rrpriv->tx_ring[cons].mode, rrpriv->tx_ring[cons].size, (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo, (unsigned long)rrpriv->tx_skbuff[cons]->data, (unsigned int)rrpriv->tx_skbuff[cons]->truesize); for (i = 0; i < len; i++){ if (!(i & 7)) printk("\n"); printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size); } printk("\n"); } printk("dumping TX ring info:\n"); for (i = 0; i < TX_RING_ENTRIES; i++) printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n", rrpriv->tx_ring[i].mode, rrpriv->tx_ring[i].size, (unsigned long long) rrpriv->tx_ring[i].addr.addrlo); } static int rr_close(struct net_device *dev) { struct rr_private *rrpriv; struct rr_regs __iomem *regs; unsigned long flags; u32 tmp; short i; netif_stop_queue(dev); rrpriv = netdev_priv(dev); regs = rrpriv->regs; /* * Lock to make sure we are not cleaning up while another CPU * is handling interrupts. */ spin_lock_irqsave(&rrpriv->lock, flags); tmp = readl(®s->HostCtrl); if (tmp & NIC_HALTED){ printk("%s: NIC already halted\n", dev->name); rr_dump(dev); }else{ tmp |= HALT_NIC | RR_CLEAR_INT; writel(tmp, ®s->HostCtrl); readl(®s->HostCtrl); } rrpriv->fw_running = 0; del_timer_sync(&rrpriv->timer); writel(0, ®s->TxPi); writel(0, ®s->IpRxPi); writel(0, ®s->EvtCon); writel(0, ®s->EvtPrd); for (i = 0; i < CMD_RING_ENTRIES; i++) writel(0, ®s->CmdRing[i]); rrpriv->info->tx_ctrl.entries = 0; rrpriv->info->cmd_ctrl.pi = 0; rrpriv->info->evt_ctrl.pi = 0; rrpriv->rx_ctrl[4].entries = 0; rr_raz_tx(rrpriv, dev); rr_raz_rx(rrpriv, dev); pci_free_consistent(rrpriv->pci_dev, 256 * sizeof(struct ring_ctrl), rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma); rrpriv->rx_ctrl = NULL; pci_free_consistent(rrpriv->pci_dev, sizeof(struct rr_info), rrpriv->info, rrpriv->info_dma); rrpriv->info = NULL; free_irq(dev->irq, dev); spin_unlock_irqrestore(&rrpriv->lock, flags); return 0; } static int rr_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct rr_private *rrpriv = netdev_priv(dev); struct rr_regs __iomem *regs = rrpriv->regs; struct hippi_cb *hcb = (struct hippi_cb *) skb->cb; struct ring_ctrl *txctrl; unsigned long flags; u32 index, len = skb->len; u32 *ifield; struct sk_buff *new_skb; if (readl(®s->Mode) & FATAL_ERR) printk("error codes Fail1 %02x, Fail2 %02x\n", readl(®s->Fail1), readl(®s->Fail2)); /* * We probably need to deal with tbusy here to prevent overruns. */ if (skb_headroom(skb) < 8){ printk("incoming skb too small - reallocating\n"); if (!(new_skb = dev_alloc_skb(len + 8))) { dev_kfree_skb(skb); netif_wake_queue(dev); return -EBUSY; } skb_reserve(new_skb, 8); skb_put(new_skb, len); skb_copy_from_linear_data(skb, new_skb->data, len); dev_kfree_skb(skb); skb = new_skb; } ifield = (u32 *)skb_push(skb, 8); ifield[0] = 0; ifield[1] = hcb->ifield; /* * We don't need the lock before we are actually going to start * fiddling with the control blocks. */ spin_lock_irqsave(&rrpriv->lock, flags); txctrl = &rrpriv->info->tx_ctrl; index = txctrl->pi; rrpriv->tx_skbuff[index] = skb; set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single( rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE)); rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */ rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END; txctrl->pi = (index + 1) % TX_RING_ENTRIES; wmb(); writel(txctrl->pi, ®s->TxPi); if (txctrl->pi == rrpriv->dirty_tx){ rrpriv->tx_full = 1; netif_stop_queue(dev); } spin_unlock_irqrestore(&rrpriv->lock, flags); dev->trans_start = jiffies; return 0; } /* * Read the firmware out of the EEPROM and put it into the SRAM * (or from user space - later) * * This operation requires the NIC to be halted and is performed with * interrupts disabled and with the spinlock hold. */ static int rr_load_firmware(struct net_device *dev) { struct rr_private *rrpriv; struct rr_regs __iomem *regs; size_t eptr, segptr; int i, j; u32 localctrl, sptr, len, tmp; u32 p2len, p2size, nr_seg, revision, io, sram_size; rrpriv = netdev_priv(dev); regs = rrpriv->regs; if (dev->flags & IFF_UP) return -EBUSY; if (!(readl(®s->HostCtrl) & NIC_HALTED)){ printk("%s: Trying to load firmware to a running NIC.\n", dev->name); return -EBUSY; } localctrl = readl(®s->LocalCtrl); writel(0, ®s->LocalCtrl); writel(0, ®s->EvtPrd); writel(0, ®s->RxPrd); writel(0, ®s->TxPrd); /* * First wipe the entire SRAM, otherwise we might run into all * kinds of trouble ... sigh, this took almost all afternoon * to track down ;-( */ io = readl(®s->ExtIo); writel(0, ®s->ExtIo); sram_size = rr_read_eeprom_word(rrpriv, 8); for (i = 200; i < sram_size / 4; i++){ writel(i * 4, ®s->WinBase); mb(); writel(0, ®s->WinData); mb(); } writel(io, ®s->ExtIo); mb(); eptr = rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, rncd_info.AddrRunCodeSegs)); eptr = ((eptr & 0x1fffff) >> 3); p2len = rr_read_eeprom_word(rrpriv, 0x83*4); p2len = (p2len << 2); p2size = rr_read_eeprom_word(rrpriv, 0x84*4); p2size = ((p2size & 0x1fffff) >> 3); if ((eptr < p2size) || (eptr > (p2size + p2len))){ printk("%s: eptr is invalid\n", dev->name); goto out; } revision = rr_read_eeprom_word(rrpriv, offsetof(struct eeprom, manf.HeaderFmt)); if (revision != 1){ printk("%s: invalid firmware format (%i)\n", dev->name, revision); goto out; } nr_seg = rr_read_eeprom_word(rrpriv, eptr); eptr +=4; #if (DEBUG > 1) printk("%s: nr_seg %i\n", dev->name, nr_seg); #endif for (i = 0; i < nr_seg; i++){ sptr = rr_read_eeprom_word(rrpriv, eptr); eptr += 4; len = rr_read_eeprom_word(rrpriv, eptr); eptr += 4; segptr = rr_read_eeprom_word(rrpriv, eptr); segptr = ((segptr & 0x1fffff) >> 3); eptr += 4; #if (DEBUG > 1) printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n", dev->name, i, sptr, len, segptr); #endif for (j = 0; j < len; j++){ tmp = rr_read_eeprom_word(rrpriv, segptr); writel(sptr, ®s->WinBase); mb(); writel(tmp, ®s->WinData); mb(); segptr += 4; sptr += 4; } } out: writel(localctrl, ®s->LocalCtrl); mb(); return 0; } static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct rr_private *rrpriv; unsigned char *image, *oldimage; unsigned long flags; unsigned int i; int error = -EOPNOTSUPP; rrpriv = netdev_priv(dev); switch(cmd){ case SIOCRRGFW: if (!capable(CAP_SYS_RAWIO)){ return -EPERM; } image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL); if (!image){ printk(KERN_ERR "%s: Unable to allocate memory " "for EEPROM image\n", dev->name); return -ENOMEM; } if (rrpriv->fw_running){ printk("%s: Firmware already running\n", dev->name); error = -EPERM; goto gf_out; } spin_lock_irqsave(&rrpriv->lock, flags); i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES); spin_unlock_irqrestore(&rrpriv->lock, flags); if (i != EEPROM_BYTES){ printk(KERN_ERR "%s: Error reading EEPROM\n", dev->name); error = -EFAULT; goto gf_out; } error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES); if (error) error = -EFAULT; gf_out: kfree(image); return error; case SIOCRRPFW: if (!capable(CAP_SYS_RAWIO)){ return -EPERM; } image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL); oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL); if (!image || !oldimage) { printk(KERN_ERR "%s: Unable to allocate memory " "for EEPROM image\n", dev->name); error = -ENOMEM; goto wf_out; } error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES); if (error) { error = -EFAULT; goto wf_out; } if (rrpriv->fw_running){ printk("%s: Firmware already running\n", dev->name); error = -EPERM; goto wf_out; } printk("%s: Updating EEPROM firmware\n", dev->name); spin_lock_irqsave(&rrpriv->lock, flags); error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES); if (error) printk(KERN_ERR "%s: Error writing EEPROM\n", dev->name); i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES); spin_unlock_irqrestore(&rrpriv->lock, flags); if (i != EEPROM_BYTES) printk(KERN_ERR "%s: Error reading back EEPROM " "image\n", dev->name); error = memcmp(image, oldimage, EEPROM_BYTES); if (error){ printk(KERN_ERR "%s: Error verifying EEPROM image\n", dev->name); error = -EFAULT; } wf_out: kfree(oldimage); kfree(image); return error; case SIOCRRID: return put_user(0x52523032, (int __user *)rq->ifr_data); default: return error; } } static struct pci_device_id rr_pci_tbl[] = { { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER, PCI_ANY_ID, PCI_ANY_ID, }, { 0,} }; MODULE_DEVICE_TABLE(pci, rr_pci_tbl); static struct pci_driver rr_driver = { .name = "rrunner", .id_table = rr_pci_tbl, .probe = rr_init_one, .remove = __devexit_p(rr_remove_one), }; static int __init rr_init_module(void) { return pci_register_driver(&rr_driver); } static void __exit rr_cleanup_module(void) { pci_unregister_driver(&rr_driver); } module_init(rr_init_module); module_exit(rr_cleanup_module);