KVM: fix compile warnings on s390
[linux-2.6.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46
47 #include <asm/processor.h>
48 #include <asm/io.h>
49 #include <asm/uaccess.h>
50 #include <asm/pgtable.h>
51
52 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
53 #include "coalesced_mmio.h"
54 #endif
55
56 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
57 #include <linux/pci.h>
58 #include <linux/interrupt.h>
59 #include "irq.h"
60 #endif
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/kvm.h>
64
65 MODULE_AUTHOR("Qumranet");
66 MODULE_LICENSE("GPL");
67
68 /*
69  * Ordering of locks:
70  *
71  *              kvm->slots_lock --> kvm->lock --> kvm->irq_lock
72  */
73
74 DEFINE_SPINLOCK(kvm_lock);
75 LIST_HEAD(vm_list);
76
77 static cpumask_var_t cpus_hardware_enabled;
78
79 struct kmem_cache *kvm_vcpu_cache;
80 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
81
82 static __read_mostly struct preempt_ops kvm_preempt_ops;
83
84 struct dentry *kvm_debugfs_dir;
85
86 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
87                            unsigned long arg);
88
89 static bool kvm_rebooting;
90
91 static bool largepages_enabled = true;
92
93 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
94 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
95                                                       int assigned_dev_id)
96 {
97         struct list_head *ptr;
98         struct kvm_assigned_dev_kernel *match;
99
100         list_for_each(ptr, head) {
101                 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
102                 if (match->assigned_dev_id == assigned_dev_id)
103                         return match;
104         }
105         return NULL;
106 }
107
108 static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
109                                     *assigned_dev, int irq)
110 {
111         int i, index;
112         struct msix_entry *host_msix_entries;
113
114         host_msix_entries = assigned_dev->host_msix_entries;
115
116         index = -1;
117         for (i = 0; i < assigned_dev->entries_nr; i++)
118                 if (irq == host_msix_entries[i].vector) {
119                         index = i;
120                         break;
121                 }
122         if (index < 0) {
123                 printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
124                 return 0;
125         }
126
127         return index;
128 }
129
130 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
131 {
132         struct kvm_assigned_dev_kernel *assigned_dev;
133         struct kvm *kvm;
134         int i;
135
136         assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
137                                     interrupt_work);
138         kvm = assigned_dev->kvm;
139
140         mutex_lock(&kvm->irq_lock);
141         spin_lock_irq(&assigned_dev->assigned_dev_lock);
142         if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
143                 struct kvm_guest_msix_entry *guest_entries =
144                         assigned_dev->guest_msix_entries;
145                 for (i = 0; i < assigned_dev->entries_nr; i++) {
146                         if (!(guest_entries[i].flags &
147                                         KVM_ASSIGNED_MSIX_PENDING))
148                                 continue;
149                         guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
150                         kvm_set_irq(assigned_dev->kvm,
151                                     assigned_dev->irq_source_id,
152                                     guest_entries[i].vector, 1);
153                 }
154         } else
155                 kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
156                             assigned_dev->guest_irq, 1);
157
158         spin_unlock_irq(&assigned_dev->assigned_dev_lock);
159         mutex_unlock(&assigned_dev->kvm->irq_lock);
160 }
161
162 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
163 {
164         unsigned long flags;
165         struct kvm_assigned_dev_kernel *assigned_dev =
166                 (struct kvm_assigned_dev_kernel *) dev_id;
167
168         spin_lock_irqsave(&assigned_dev->assigned_dev_lock, flags);
169         if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
170                 int index = find_index_from_host_irq(assigned_dev, irq);
171                 if (index < 0)
172                         goto out;
173                 assigned_dev->guest_msix_entries[index].flags |=
174                         KVM_ASSIGNED_MSIX_PENDING;
175         }
176
177         schedule_work(&assigned_dev->interrupt_work);
178
179         if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_GUEST_INTX) {
180                 disable_irq_nosync(irq);
181                 assigned_dev->host_irq_disabled = true;
182         }
183
184 out:
185         spin_unlock_irqrestore(&assigned_dev->assigned_dev_lock, flags);
186         return IRQ_HANDLED;
187 }
188
189 /* Ack the irq line for an assigned device */
190 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
191 {
192         struct kvm_assigned_dev_kernel *dev;
193         unsigned long flags;
194
195         if (kian->gsi == -1)
196                 return;
197
198         dev = container_of(kian, struct kvm_assigned_dev_kernel,
199                            ack_notifier);
200
201         kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
202
203         /* The guest irq may be shared so this ack may be
204          * from another device.
205          */
206         spin_lock_irqsave(&dev->assigned_dev_lock, flags);
207         if (dev->host_irq_disabled) {
208                 enable_irq(dev->host_irq);
209                 dev->host_irq_disabled = false;
210         }
211         spin_unlock_irqrestore(&dev->assigned_dev_lock, flags);
212 }
213
214 static void deassign_guest_irq(struct kvm *kvm,
215                                struct kvm_assigned_dev_kernel *assigned_dev)
216 {
217         kvm_unregister_irq_ack_notifier(kvm, &assigned_dev->ack_notifier);
218         assigned_dev->ack_notifier.gsi = -1;
219
220         if (assigned_dev->irq_source_id != -1)
221                 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
222         assigned_dev->irq_source_id = -1;
223         assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
224 }
225
226 /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
227 static void deassign_host_irq(struct kvm *kvm,
228                               struct kvm_assigned_dev_kernel *assigned_dev)
229 {
230         /*
231          * In kvm_free_device_irq, cancel_work_sync return true if:
232          * 1. work is scheduled, and then cancelled.
233          * 2. work callback is executed.
234          *
235          * The first one ensured that the irq is disabled and no more events
236          * would happen. But for the second one, the irq may be enabled (e.g.
237          * for MSI). So we disable irq here to prevent further events.
238          *
239          * Notice this maybe result in nested disable if the interrupt type is
240          * INTx, but it's OK for we are going to free it.
241          *
242          * If this function is a part of VM destroy, please ensure that till
243          * now, the kvm state is still legal for probably we also have to wait
244          * interrupt_work done.
245          */
246         if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
247                 int i;
248                 for (i = 0; i < assigned_dev->entries_nr; i++)
249                         disable_irq_nosync(assigned_dev->
250                                            host_msix_entries[i].vector);
251
252                 cancel_work_sync(&assigned_dev->interrupt_work);
253
254                 for (i = 0; i < assigned_dev->entries_nr; i++)
255                         free_irq(assigned_dev->host_msix_entries[i].vector,
256                                  (void *)assigned_dev);
257
258                 assigned_dev->entries_nr = 0;
259                 kfree(assigned_dev->host_msix_entries);
260                 kfree(assigned_dev->guest_msix_entries);
261                 pci_disable_msix(assigned_dev->dev);
262         } else {
263                 /* Deal with MSI and INTx */
264                 disable_irq_nosync(assigned_dev->host_irq);
265                 cancel_work_sync(&assigned_dev->interrupt_work);
266
267                 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
268
269                 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
270                         pci_disable_msi(assigned_dev->dev);
271         }
272
273         assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
274 }
275
276 static int kvm_deassign_irq(struct kvm *kvm,
277                             struct kvm_assigned_dev_kernel *assigned_dev,
278                             unsigned long irq_requested_type)
279 {
280         unsigned long guest_irq_type, host_irq_type;
281
282         if (!irqchip_in_kernel(kvm))
283                 return -EINVAL;
284         /* no irq assignment to deassign */
285         if (!assigned_dev->irq_requested_type)
286                 return -ENXIO;
287
288         host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
289         guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
290
291         if (host_irq_type)
292                 deassign_host_irq(kvm, assigned_dev);
293         if (guest_irq_type)
294                 deassign_guest_irq(kvm, assigned_dev);
295
296         return 0;
297 }
298
299 static void kvm_free_assigned_irq(struct kvm *kvm,
300                                   struct kvm_assigned_dev_kernel *assigned_dev)
301 {
302         kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
303 }
304
305 static void kvm_free_assigned_device(struct kvm *kvm,
306                                      struct kvm_assigned_dev_kernel
307                                      *assigned_dev)
308 {
309         kvm_free_assigned_irq(kvm, assigned_dev);
310
311         pci_reset_function(assigned_dev->dev);
312
313         pci_release_regions(assigned_dev->dev);
314         pci_disable_device(assigned_dev->dev);
315         pci_dev_put(assigned_dev->dev);
316
317         list_del(&assigned_dev->list);
318         kfree(assigned_dev);
319 }
320
321 void kvm_free_all_assigned_devices(struct kvm *kvm)
322 {
323         struct list_head *ptr, *ptr2;
324         struct kvm_assigned_dev_kernel *assigned_dev;
325
326         list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
327                 assigned_dev = list_entry(ptr,
328                                           struct kvm_assigned_dev_kernel,
329                                           list);
330
331                 kvm_free_assigned_device(kvm, assigned_dev);
332         }
333 }
334
335 static int assigned_device_enable_host_intx(struct kvm *kvm,
336                                             struct kvm_assigned_dev_kernel *dev)
337 {
338         dev->host_irq = dev->dev->irq;
339         /* Even though this is PCI, we don't want to use shared
340          * interrupts. Sharing host devices with guest-assigned devices
341          * on the same interrupt line is not a happy situation: there
342          * are going to be long delays in accepting, acking, etc.
343          */
344         if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
345                         0, "kvm_assigned_intx_device", (void *)dev))
346                 return -EIO;
347         return 0;
348 }
349
350 #ifdef __KVM_HAVE_MSI
351 static int assigned_device_enable_host_msi(struct kvm *kvm,
352                                            struct kvm_assigned_dev_kernel *dev)
353 {
354         int r;
355
356         if (!dev->dev->msi_enabled) {
357                 r = pci_enable_msi(dev->dev);
358                 if (r)
359                         return r;
360         }
361
362         dev->host_irq = dev->dev->irq;
363         if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
364                         "kvm_assigned_msi_device", (void *)dev)) {
365                 pci_disable_msi(dev->dev);
366                 return -EIO;
367         }
368
369         return 0;
370 }
371 #endif
372
373 #ifdef __KVM_HAVE_MSIX
374 static int assigned_device_enable_host_msix(struct kvm *kvm,
375                                             struct kvm_assigned_dev_kernel *dev)
376 {
377         int i, r = -EINVAL;
378
379         /* host_msix_entries and guest_msix_entries should have been
380          * initialized */
381         if (dev->entries_nr == 0)
382                 return r;
383
384         r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
385         if (r)
386                 return r;
387
388         for (i = 0; i < dev->entries_nr; i++) {
389                 r = request_irq(dev->host_msix_entries[i].vector,
390                                 kvm_assigned_dev_intr, 0,
391                                 "kvm_assigned_msix_device",
392                                 (void *)dev);
393                 /* FIXME: free requested_irq's on failure */
394                 if (r)
395                         return r;
396         }
397
398         return 0;
399 }
400
401 #endif
402
403 static int assigned_device_enable_guest_intx(struct kvm *kvm,
404                                 struct kvm_assigned_dev_kernel *dev,
405                                 struct kvm_assigned_irq *irq)
406 {
407         dev->guest_irq = irq->guest_irq;
408         dev->ack_notifier.gsi = irq->guest_irq;
409         return 0;
410 }
411
412 #ifdef __KVM_HAVE_MSI
413 static int assigned_device_enable_guest_msi(struct kvm *kvm,
414                         struct kvm_assigned_dev_kernel *dev,
415                         struct kvm_assigned_irq *irq)
416 {
417         dev->guest_irq = irq->guest_irq;
418         dev->ack_notifier.gsi = -1;
419         dev->host_irq_disabled = false;
420         return 0;
421 }
422 #endif
423 #ifdef __KVM_HAVE_MSIX
424 static int assigned_device_enable_guest_msix(struct kvm *kvm,
425                         struct kvm_assigned_dev_kernel *dev,
426                         struct kvm_assigned_irq *irq)
427 {
428         dev->guest_irq = irq->guest_irq;
429         dev->ack_notifier.gsi = -1;
430         dev->host_irq_disabled = false;
431         return 0;
432 }
433 #endif
434
435 static int assign_host_irq(struct kvm *kvm,
436                            struct kvm_assigned_dev_kernel *dev,
437                            __u32 host_irq_type)
438 {
439         int r = -EEXIST;
440
441         if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
442                 return r;
443
444         switch (host_irq_type) {
445         case KVM_DEV_IRQ_HOST_INTX:
446                 r = assigned_device_enable_host_intx(kvm, dev);
447                 break;
448 #ifdef __KVM_HAVE_MSI
449         case KVM_DEV_IRQ_HOST_MSI:
450                 r = assigned_device_enable_host_msi(kvm, dev);
451                 break;
452 #endif
453 #ifdef __KVM_HAVE_MSIX
454         case KVM_DEV_IRQ_HOST_MSIX:
455                 r = assigned_device_enable_host_msix(kvm, dev);
456                 break;
457 #endif
458         default:
459                 r = -EINVAL;
460         }
461
462         if (!r)
463                 dev->irq_requested_type |= host_irq_type;
464
465         return r;
466 }
467
468 static int assign_guest_irq(struct kvm *kvm,
469                             struct kvm_assigned_dev_kernel *dev,
470                             struct kvm_assigned_irq *irq,
471                             unsigned long guest_irq_type)
472 {
473         int id;
474         int r = -EEXIST;
475
476         if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
477                 return r;
478
479         id = kvm_request_irq_source_id(kvm);
480         if (id < 0)
481                 return id;
482
483         dev->irq_source_id = id;
484
485         switch (guest_irq_type) {
486         case KVM_DEV_IRQ_GUEST_INTX:
487                 r = assigned_device_enable_guest_intx(kvm, dev, irq);
488                 break;
489 #ifdef __KVM_HAVE_MSI
490         case KVM_DEV_IRQ_GUEST_MSI:
491                 r = assigned_device_enable_guest_msi(kvm, dev, irq);
492                 break;
493 #endif
494 #ifdef __KVM_HAVE_MSIX
495         case KVM_DEV_IRQ_GUEST_MSIX:
496                 r = assigned_device_enable_guest_msix(kvm, dev, irq);
497                 break;
498 #endif
499         default:
500                 r = -EINVAL;
501         }
502
503         if (!r) {
504                 dev->irq_requested_type |= guest_irq_type;
505                 kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
506         } else
507                 kvm_free_irq_source_id(kvm, dev->irq_source_id);
508
509         return r;
510 }
511
512 /* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
513 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
514                                    struct kvm_assigned_irq *assigned_irq)
515 {
516         int r = -EINVAL;
517         struct kvm_assigned_dev_kernel *match;
518         unsigned long host_irq_type, guest_irq_type;
519
520         if (!capable(CAP_SYS_RAWIO))
521                 return -EPERM;
522
523         if (!irqchip_in_kernel(kvm))
524                 return r;
525
526         mutex_lock(&kvm->lock);
527         r = -ENODEV;
528         match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
529                                       assigned_irq->assigned_dev_id);
530         if (!match)
531                 goto out;
532
533         host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
534         guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
535
536         r = -EINVAL;
537         /* can only assign one type at a time */
538         if (hweight_long(host_irq_type) > 1)
539                 goto out;
540         if (hweight_long(guest_irq_type) > 1)
541                 goto out;
542         if (host_irq_type == 0 && guest_irq_type == 0)
543                 goto out;
544
545         r = 0;
546         if (host_irq_type)
547                 r = assign_host_irq(kvm, match, host_irq_type);
548         if (r)
549                 goto out;
550
551         if (guest_irq_type)
552                 r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
553 out:
554         mutex_unlock(&kvm->lock);
555         return r;
556 }
557
558 static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
559                                          struct kvm_assigned_irq
560                                          *assigned_irq)
561 {
562         int r = -ENODEV;
563         struct kvm_assigned_dev_kernel *match;
564
565         mutex_lock(&kvm->lock);
566
567         match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
568                                       assigned_irq->assigned_dev_id);
569         if (!match)
570                 goto out;
571
572         r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
573 out:
574         mutex_unlock(&kvm->lock);
575         return r;
576 }
577
578 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
579                                       struct kvm_assigned_pci_dev *assigned_dev)
580 {
581         int r = 0;
582         struct kvm_assigned_dev_kernel *match;
583         struct pci_dev *dev;
584
585         down_read(&kvm->slots_lock);
586         mutex_lock(&kvm->lock);
587
588         match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
589                                       assigned_dev->assigned_dev_id);
590         if (match) {
591                 /* device already assigned */
592                 r = -EEXIST;
593                 goto out;
594         }
595
596         match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
597         if (match == NULL) {
598                 printk(KERN_INFO "%s: Couldn't allocate memory\n",
599                        __func__);
600                 r = -ENOMEM;
601                 goto out;
602         }
603         dev = pci_get_bus_and_slot(assigned_dev->busnr,
604                                    assigned_dev->devfn);
605         if (!dev) {
606                 printk(KERN_INFO "%s: host device not found\n", __func__);
607                 r = -EINVAL;
608                 goto out_free;
609         }
610         if (pci_enable_device(dev)) {
611                 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
612                 r = -EBUSY;
613                 goto out_put;
614         }
615         r = pci_request_regions(dev, "kvm_assigned_device");
616         if (r) {
617                 printk(KERN_INFO "%s: Could not get access to device regions\n",
618                        __func__);
619                 goto out_disable;
620         }
621
622         pci_reset_function(dev);
623
624         match->assigned_dev_id = assigned_dev->assigned_dev_id;
625         match->host_busnr = assigned_dev->busnr;
626         match->host_devfn = assigned_dev->devfn;
627         match->flags = assigned_dev->flags;
628         match->dev = dev;
629         spin_lock_init(&match->assigned_dev_lock);
630         match->irq_source_id = -1;
631         match->kvm = kvm;
632         match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
633         INIT_WORK(&match->interrupt_work,
634                   kvm_assigned_dev_interrupt_work_handler);
635
636         list_add(&match->list, &kvm->arch.assigned_dev_head);
637
638         if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
639                 if (!kvm->arch.iommu_domain) {
640                         r = kvm_iommu_map_guest(kvm);
641                         if (r)
642                                 goto out_list_del;
643                 }
644                 r = kvm_assign_device(kvm, match);
645                 if (r)
646                         goto out_list_del;
647         }
648
649 out:
650         mutex_unlock(&kvm->lock);
651         up_read(&kvm->slots_lock);
652         return r;
653 out_list_del:
654         list_del(&match->list);
655         pci_release_regions(dev);
656 out_disable:
657         pci_disable_device(dev);
658 out_put:
659         pci_dev_put(dev);
660 out_free:
661         kfree(match);
662         mutex_unlock(&kvm->lock);
663         up_read(&kvm->slots_lock);
664         return r;
665 }
666 #endif
667
668 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
669 static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
670                 struct kvm_assigned_pci_dev *assigned_dev)
671 {
672         int r = 0;
673         struct kvm_assigned_dev_kernel *match;
674
675         mutex_lock(&kvm->lock);
676
677         match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
678                                       assigned_dev->assigned_dev_id);
679         if (!match) {
680                 printk(KERN_INFO "%s: device hasn't been assigned before, "
681                   "so cannot be deassigned\n", __func__);
682                 r = -EINVAL;
683                 goto out;
684         }
685
686         if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
687                 kvm_deassign_device(kvm, match);
688
689         kvm_free_assigned_device(kvm, match);
690
691 out:
692         mutex_unlock(&kvm->lock);
693         return r;
694 }
695 #endif
696
697 inline int kvm_is_mmio_pfn(pfn_t pfn)
698 {
699         if (pfn_valid(pfn)) {
700                 struct page *page = compound_head(pfn_to_page(pfn));
701                 return PageReserved(page);
702         }
703
704         return true;
705 }
706
707 /*
708  * Switches to specified vcpu, until a matching vcpu_put()
709  */
710 void vcpu_load(struct kvm_vcpu *vcpu)
711 {
712         int cpu;
713
714         mutex_lock(&vcpu->mutex);
715         cpu = get_cpu();
716         preempt_notifier_register(&vcpu->preempt_notifier);
717         kvm_arch_vcpu_load(vcpu, cpu);
718         put_cpu();
719 }
720
721 void vcpu_put(struct kvm_vcpu *vcpu)
722 {
723         preempt_disable();
724         kvm_arch_vcpu_put(vcpu);
725         preempt_notifier_unregister(&vcpu->preempt_notifier);
726         preempt_enable();
727         mutex_unlock(&vcpu->mutex);
728 }
729
730 static void ack_flush(void *_completed)
731 {
732 }
733
734 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
735 {
736         int i, cpu, me;
737         cpumask_var_t cpus;
738         bool called = true;
739         struct kvm_vcpu *vcpu;
740
741         if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
742                 cpumask_clear(cpus);
743
744         spin_lock(&kvm->requests_lock);
745         me = smp_processor_id();
746         kvm_for_each_vcpu(i, vcpu, kvm) {
747                 if (test_and_set_bit(req, &vcpu->requests))
748                         continue;
749                 cpu = vcpu->cpu;
750                 if (cpus != NULL && cpu != -1 && cpu != me)
751                         cpumask_set_cpu(cpu, cpus);
752         }
753         if (unlikely(cpus == NULL))
754                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
755         else if (!cpumask_empty(cpus))
756                 smp_call_function_many(cpus, ack_flush, NULL, 1);
757         else
758                 called = false;
759         spin_unlock(&kvm->requests_lock);
760         free_cpumask_var(cpus);
761         return called;
762 }
763
764 void kvm_flush_remote_tlbs(struct kvm *kvm)
765 {
766         if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
767                 ++kvm->stat.remote_tlb_flush;
768 }
769
770 void kvm_reload_remote_mmus(struct kvm *kvm)
771 {
772         make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
773 }
774
775 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
776 {
777         struct page *page;
778         int r;
779
780         mutex_init(&vcpu->mutex);
781         vcpu->cpu = -1;
782         vcpu->kvm = kvm;
783         vcpu->vcpu_id = id;
784         init_waitqueue_head(&vcpu->wq);
785
786         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
787         if (!page) {
788                 r = -ENOMEM;
789                 goto fail;
790         }
791         vcpu->run = page_address(page);
792
793         r = kvm_arch_vcpu_init(vcpu);
794         if (r < 0)
795                 goto fail_free_run;
796         return 0;
797
798 fail_free_run:
799         free_page((unsigned long)vcpu->run);
800 fail:
801         return r;
802 }
803 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
804
805 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
806 {
807         kvm_arch_vcpu_uninit(vcpu);
808         free_page((unsigned long)vcpu->run);
809 }
810 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
811
812 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
813 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
814 {
815         return container_of(mn, struct kvm, mmu_notifier);
816 }
817
818 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
819                                              struct mm_struct *mm,
820                                              unsigned long address)
821 {
822         struct kvm *kvm = mmu_notifier_to_kvm(mn);
823         int need_tlb_flush;
824
825         /*
826          * When ->invalidate_page runs, the linux pte has been zapped
827          * already but the page is still allocated until
828          * ->invalidate_page returns. So if we increase the sequence
829          * here the kvm page fault will notice if the spte can't be
830          * established because the page is going to be freed. If
831          * instead the kvm page fault establishes the spte before
832          * ->invalidate_page runs, kvm_unmap_hva will release it
833          * before returning.
834          *
835          * The sequence increase only need to be seen at spin_unlock
836          * time, and not at spin_lock time.
837          *
838          * Increasing the sequence after the spin_unlock would be
839          * unsafe because the kvm page fault could then establish the
840          * pte after kvm_unmap_hva returned, without noticing the page
841          * is going to be freed.
842          */
843         spin_lock(&kvm->mmu_lock);
844         kvm->mmu_notifier_seq++;
845         need_tlb_flush = kvm_unmap_hva(kvm, address);
846         spin_unlock(&kvm->mmu_lock);
847
848         /* we've to flush the tlb before the pages can be freed */
849         if (need_tlb_flush)
850                 kvm_flush_remote_tlbs(kvm);
851
852 }
853
854 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
855                                                     struct mm_struct *mm,
856                                                     unsigned long start,
857                                                     unsigned long end)
858 {
859         struct kvm *kvm = mmu_notifier_to_kvm(mn);
860         int need_tlb_flush = 0;
861
862         spin_lock(&kvm->mmu_lock);
863         /*
864          * The count increase must become visible at unlock time as no
865          * spte can be established without taking the mmu_lock and
866          * count is also read inside the mmu_lock critical section.
867          */
868         kvm->mmu_notifier_count++;
869         for (; start < end; start += PAGE_SIZE)
870                 need_tlb_flush |= kvm_unmap_hva(kvm, start);
871         spin_unlock(&kvm->mmu_lock);
872
873         /* we've to flush the tlb before the pages can be freed */
874         if (need_tlb_flush)
875                 kvm_flush_remote_tlbs(kvm);
876 }
877
878 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
879                                                   struct mm_struct *mm,
880                                                   unsigned long start,
881                                                   unsigned long end)
882 {
883         struct kvm *kvm = mmu_notifier_to_kvm(mn);
884
885         spin_lock(&kvm->mmu_lock);
886         /*
887          * This sequence increase will notify the kvm page fault that
888          * the page that is going to be mapped in the spte could have
889          * been freed.
890          */
891         kvm->mmu_notifier_seq++;
892         /*
893          * The above sequence increase must be visible before the
894          * below count decrease but both values are read by the kvm
895          * page fault under mmu_lock spinlock so we don't need to add
896          * a smb_wmb() here in between the two.
897          */
898         kvm->mmu_notifier_count--;
899         spin_unlock(&kvm->mmu_lock);
900
901         BUG_ON(kvm->mmu_notifier_count < 0);
902 }
903
904 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
905                                               struct mm_struct *mm,
906                                               unsigned long address)
907 {
908         struct kvm *kvm = mmu_notifier_to_kvm(mn);
909         int young;
910
911         spin_lock(&kvm->mmu_lock);
912         young = kvm_age_hva(kvm, address);
913         spin_unlock(&kvm->mmu_lock);
914
915         if (young)
916                 kvm_flush_remote_tlbs(kvm);
917
918         return young;
919 }
920
921 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
922                                      struct mm_struct *mm)
923 {
924         struct kvm *kvm = mmu_notifier_to_kvm(mn);
925         kvm_arch_flush_shadow(kvm);
926 }
927
928 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
929         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
930         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
931         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
932         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
933         .release                = kvm_mmu_notifier_release,
934 };
935 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
936
937 static struct kvm *kvm_create_vm(void)
938 {
939         struct kvm *kvm = kvm_arch_create_vm();
940 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
941         struct page *page;
942 #endif
943
944         if (IS_ERR(kvm))
945                 goto out;
946 #ifdef CONFIG_HAVE_KVM_IRQCHIP
947         INIT_LIST_HEAD(&kvm->irq_routing);
948         INIT_HLIST_HEAD(&kvm->mask_notifier_list);
949 #endif
950
951 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
952         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
953         if (!page) {
954                 kfree(kvm);
955                 return ERR_PTR(-ENOMEM);
956         }
957         kvm->coalesced_mmio_ring =
958                         (struct kvm_coalesced_mmio_ring *)page_address(page);
959 #endif
960
961 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
962         {
963                 int err;
964                 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
965                 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
966                 if (err) {
967 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
968                         put_page(page);
969 #endif
970                         kfree(kvm);
971                         return ERR_PTR(err);
972                 }
973         }
974 #endif
975
976         kvm->mm = current->mm;
977         atomic_inc(&kvm->mm->mm_count);
978         spin_lock_init(&kvm->mmu_lock);
979         spin_lock_init(&kvm->requests_lock);
980         kvm_io_bus_init(&kvm->pio_bus);
981         kvm_eventfd_init(kvm);
982         mutex_init(&kvm->lock);
983         mutex_init(&kvm->irq_lock);
984         kvm_io_bus_init(&kvm->mmio_bus);
985         init_rwsem(&kvm->slots_lock);
986         atomic_set(&kvm->users_count, 1);
987         spin_lock(&kvm_lock);
988         list_add(&kvm->vm_list, &vm_list);
989         spin_unlock(&kvm_lock);
990 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
991         kvm_coalesced_mmio_init(kvm);
992 #endif
993 out:
994         return kvm;
995 }
996
997 /*
998  * Free any memory in @free but not in @dont.
999  */
1000 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
1001                                   struct kvm_memory_slot *dont)
1002 {
1003         int i;
1004
1005         if (!dont || free->rmap != dont->rmap)
1006                 vfree(free->rmap);
1007
1008         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
1009                 vfree(free->dirty_bitmap);
1010
1011
1012         for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
1013                 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
1014                         vfree(free->lpage_info[i]);
1015                         free->lpage_info[i] = NULL;
1016                 }
1017         }
1018
1019         free->npages = 0;
1020         free->dirty_bitmap = NULL;
1021         free->rmap = NULL;
1022 }
1023
1024 void kvm_free_physmem(struct kvm *kvm)
1025 {
1026         int i;
1027
1028         for (i = 0; i < kvm->nmemslots; ++i)
1029                 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
1030 }
1031
1032 static void kvm_destroy_vm(struct kvm *kvm)
1033 {
1034         struct mm_struct *mm = kvm->mm;
1035
1036         kvm_arch_sync_events(kvm);
1037         spin_lock(&kvm_lock);
1038         list_del(&kvm->vm_list);
1039         spin_unlock(&kvm_lock);
1040         kvm_free_irq_routing(kvm);
1041         kvm_io_bus_destroy(&kvm->pio_bus);
1042         kvm_io_bus_destroy(&kvm->mmio_bus);
1043 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1044         if (kvm->coalesced_mmio_ring != NULL)
1045                 free_page((unsigned long)kvm->coalesced_mmio_ring);
1046 #endif
1047 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1048         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1049 #else
1050         kvm_arch_flush_shadow(kvm);
1051 #endif
1052         kvm_arch_destroy_vm(kvm);
1053         mmdrop(mm);
1054 }
1055
1056 void kvm_get_kvm(struct kvm *kvm)
1057 {
1058         atomic_inc(&kvm->users_count);
1059 }
1060 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1061
1062 void kvm_put_kvm(struct kvm *kvm)
1063 {
1064         if (atomic_dec_and_test(&kvm->users_count))
1065                 kvm_destroy_vm(kvm);
1066 }
1067 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1068
1069
1070 static int kvm_vm_release(struct inode *inode, struct file *filp)
1071 {
1072         struct kvm *kvm = filp->private_data;
1073
1074         kvm_irqfd_release(kvm);
1075
1076         kvm_put_kvm(kvm);
1077         return 0;
1078 }
1079
1080 /*
1081  * Allocate some memory and give it an address in the guest physical address
1082  * space.
1083  *
1084  * Discontiguous memory is allowed, mostly for framebuffers.
1085  *
1086  * Must be called holding mmap_sem for write.
1087  */
1088 int __kvm_set_memory_region(struct kvm *kvm,
1089                             struct kvm_userspace_memory_region *mem,
1090                             int user_alloc)
1091 {
1092         int r;
1093         gfn_t base_gfn;
1094         unsigned long npages;
1095         unsigned long i;
1096         struct kvm_memory_slot *memslot;
1097         struct kvm_memory_slot old, new;
1098
1099         r = -EINVAL;
1100         /* General sanity checks */
1101         if (mem->memory_size & (PAGE_SIZE - 1))
1102                 goto out;
1103         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1104                 goto out;
1105         if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
1106                 goto out;
1107         if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
1108                 goto out;
1109         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1110                 goto out;
1111
1112         memslot = &kvm->memslots[mem->slot];
1113         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1114         npages = mem->memory_size >> PAGE_SHIFT;
1115
1116         if (!npages)
1117                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1118
1119         new = old = *memslot;
1120
1121         new.base_gfn = base_gfn;
1122         new.npages = npages;
1123         new.flags = mem->flags;
1124
1125         /* Disallow changing a memory slot's size. */
1126         r = -EINVAL;
1127         if (npages && old.npages && npages != old.npages)
1128                 goto out_free;
1129
1130         /* Check for overlaps */
1131         r = -EEXIST;
1132         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1133                 struct kvm_memory_slot *s = &kvm->memslots[i];
1134
1135                 if (s == memslot || !s->npages)
1136                         continue;
1137                 if (!((base_gfn + npages <= s->base_gfn) ||
1138                       (base_gfn >= s->base_gfn + s->npages)))
1139                         goto out_free;
1140         }
1141
1142         /* Free page dirty bitmap if unneeded */
1143         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1144                 new.dirty_bitmap = NULL;
1145
1146         r = -ENOMEM;
1147
1148         /* Allocate if a slot is being created */
1149 #ifndef CONFIG_S390
1150         if (npages && !new.rmap) {
1151                 new.rmap = vmalloc(npages * sizeof(struct page *));
1152
1153                 if (!new.rmap)
1154                         goto out_free;
1155
1156                 memset(new.rmap, 0, npages * sizeof(*new.rmap));
1157
1158                 new.user_alloc = user_alloc;
1159                 /*
1160                  * hva_to_rmmap() serialzies with the mmu_lock and to be
1161                  * safe it has to ignore memslots with !user_alloc &&
1162                  * !userspace_addr.
1163                  */
1164                 if (user_alloc)
1165                         new.userspace_addr = mem->userspace_addr;
1166                 else
1167                         new.userspace_addr = 0;
1168         }
1169         if (!npages)
1170                 goto skip_lpage;
1171
1172         for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
1173                 unsigned long ugfn;
1174                 unsigned long j;
1175                 int lpages;
1176                 int level = i + 2;
1177
1178                 /* Avoid unused variable warning if no large pages */
1179                 (void)level;
1180
1181                 if (new.lpage_info[i])
1182                         continue;
1183
1184                 lpages = 1 + (base_gfn + npages - 1) /
1185                              KVM_PAGES_PER_HPAGE(level);
1186                 lpages -= base_gfn / KVM_PAGES_PER_HPAGE(level);
1187
1188                 new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
1189
1190                 if (!new.lpage_info[i])
1191                         goto out_free;
1192
1193                 memset(new.lpage_info[i], 0,
1194                        lpages * sizeof(*new.lpage_info[i]));
1195
1196                 if (base_gfn % KVM_PAGES_PER_HPAGE(level))
1197                         new.lpage_info[i][0].write_count = 1;
1198                 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE(level))
1199                         new.lpage_info[i][lpages - 1].write_count = 1;
1200                 ugfn = new.userspace_addr >> PAGE_SHIFT;
1201                 /*
1202                  * If the gfn and userspace address are not aligned wrt each
1203                  * other, or if explicitly asked to, disable large page
1204                  * support for this slot
1205                  */
1206                 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
1207                     !largepages_enabled)
1208                         for (j = 0; j < lpages; ++j)
1209                                 new.lpage_info[i][j].write_count = 1;
1210         }
1211
1212 skip_lpage:
1213
1214         /* Allocate page dirty bitmap if needed */
1215         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1216                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
1217
1218                 new.dirty_bitmap = vmalloc(dirty_bytes);
1219                 if (!new.dirty_bitmap)
1220                         goto out_free;
1221                 memset(new.dirty_bitmap, 0, dirty_bytes);
1222                 if (old.npages)
1223                         kvm_arch_flush_shadow(kvm);
1224         }
1225 #else  /* not defined CONFIG_S390 */
1226         new.user_alloc = user_alloc;
1227         if (user_alloc)
1228                 new.userspace_addr = mem->userspace_addr;
1229 #endif /* not defined CONFIG_S390 */
1230
1231         if (!npages)
1232                 kvm_arch_flush_shadow(kvm);
1233
1234         spin_lock(&kvm->mmu_lock);
1235         if (mem->slot >= kvm->nmemslots)
1236                 kvm->nmemslots = mem->slot + 1;
1237
1238         *memslot = new;
1239         spin_unlock(&kvm->mmu_lock);
1240
1241         r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1242         if (r) {
1243                 spin_lock(&kvm->mmu_lock);
1244                 *memslot = old;
1245                 spin_unlock(&kvm->mmu_lock);
1246                 goto out_free;
1247         }
1248
1249         kvm_free_physmem_slot(&old, npages ? &new : NULL);
1250         /* Slot deletion case: we have to update the current slot */
1251         spin_lock(&kvm->mmu_lock);
1252         if (!npages)
1253                 *memslot = old;
1254         spin_unlock(&kvm->mmu_lock);
1255 #ifdef CONFIG_DMAR
1256         /* map the pages in iommu page table */
1257         r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1258         if (r)
1259                 goto out;
1260 #endif
1261         return 0;
1262
1263 out_free:
1264         kvm_free_physmem_slot(&new, &old);
1265 out:
1266         return r;
1267
1268 }
1269 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1270
1271 int kvm_set_memory_region(struct kvm *kvm,
1272                           struct kvm_userspace_memory_region *mem,
1273                           int user_alloc)
1274 {
1275         int r;
1276
1277         down_write(&kvm->slots_lock);
1278         r = __kvm_set_memory_region(kvm, mem, user_alloc);
1279         up_write(&kvm->slots_lock);
1280         return r;
1281 }
1282 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1283
1284 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1285                                    struct
1286                                    kvm_userspace_memory_region *mem,
1287                                    int user_alloc)
1288 {
1289         if (mem->slot >= KVM_MEMORY_SLOTS)
1290                 return -EINVAL;
1291         return kvm_set_memory_region(kvm, mem, user_alloc);
1292 }
1293
1294 int kvm_get_dirty_log(struct kvm *kvm,
1295                         struct kvm_dirty_log *log, int *is_dirty)
1296 {
1297         struct kvm_memory_slot *memslot;
1298         int r, i;
1299         int n;
1300         unsigned long any = 0;
1301
1302         r = -EINVAL;
1303         if (log->slot >= KVM_MEMORY_SLOTS)
1304                 goto out;
1305
1306         memslot = &kvm->memslots[log->slot];
1307         r = -ENOENT;
1308         if (!memslot->dirty_bitmap)
1309                 goto out;
1310
1311         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1312
1313         for (i = 0; !any && i < n/sizeof(long); ++i)
1314                 any = memslot->dirty_bitmap[i];
1315
1316         r = -EFAULT;
1317         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1318                 goto out;
1319
1320         if (any)
1321                 *is_dirty = 1;
1322
1323         r = 0;
1324 out:
1325         return r;
1326 }
1327
1328 void kvm_disable_largepages(void)
1329 {
1330         largepages_enabled = false;
1331 }
1332 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1333
1334 int is_error_page(struct page *page)
1335 {
1336         return page == bad_page;
1337 }
1338 EXPORT_SYMBOL_GPL(is_error_page);
1339
1340 int is_error_pfn(pfn_t pfn)
1341 {
1342         return pfn == bad_pfn;
1343 }
1344 EXPORT_SYMBOL_GPL(is_error_pfn);
1345
1346 static inline unsigned long bad_hva(void)
1347 {
1348         return PAGE_OFFSET;
1349 }
1350
1351 int kvm_is_error_hva(unsigned long addr)
1352 {
1353         return addr == bad_hva();
1354 }
1355 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1356
1357 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1358 {
1359         int i;
1360
1361         for (i = 0; i < kvm->nmemslots; ++i) {
1362                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1363
1364                 if (gfn >= memslot->base_gfn
1365                     && gfn < memslot->base_gfn + memslot->npages)
1366                         return memslot;
1367         }
1368         return NULL;
1369 }
1370 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1371
1372 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1373 {
1374         gfn = unalias_gfn(kvm, gfn);
1375         return gfn_to_memslot_unaliased(kvm, gfn);
1376 }
1377
1378 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1379 {
1380         int i;
1381
1382         gfn = unalias_gfn(kvm, gfn);
1383         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1384                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1385
1386                 if (gfn >= memslot->base_gfn
1387                     && gfn < memslot->base_gfn + memslot->npages)
1388                         return 1;
1389         }
1390         return 0;
1391 }
1392 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1393
1394 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1395 {
1396         struct kvm_memory_slot *slot;
1397
1398         gfn = unalias_gfn(kvm, gfn);
1399         slot = gfn_to_memslot_unaliased(kvm, gfn);
1400         if (!slot)
1401                 return bad_hva();
1402         return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1403 }
1404 EXPORT_SYMBOL_GPL(gfn_to_hva);
1405
1406 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1407 {
1408         struct page *page[1];
1409         unsigned long addr;
1410         int npages;
1411         pfn_t pfn;
1412
1413         might_sleep();
1414
1415         addr = gfn_to_hva(kvm, gfn);
1416         if (kvm_is_error_hva(addr)) {
1417                 get_page(bad_page);
1418                 return page_to_pfn(bad_page);
1419         }
1420
1421         npages = get_user_pages_fast(addr, 1, 1, page);
1422
1423         if (unlikely(npages != 1)) {
1424                 struct vm_area_struct *vma;
1425
1426                 down_read(&current->mm->mmap_sem);
1427                 vma = find_vma(current->mm, addr);
1428
1429                 if (vma == NULL || addr < vma->vm_start ||
1430                     !(vma->vm_flags & VM_PFNMAP)) {
1431                         up_read(&current->mm->mmap_sem);
1432                         get_page(bad_page);
1433                         return page_to_pfn(bad_page);
1434                 }
1435
1436                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1437                 up_read(&current->mm->mmap_sem);
1438                 BUG_ON(!kvm_is_mmio_pfn(pfn));
1439         } else
1440                 pfn = page_to_pfn(page[0]);
1441
1442         return pfn;
1443 }
1444
1445 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1446
1447 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1448 {
1449         pfn_t pfn;
1450
1451         pfn = gfn_to_pfn(kvm, gfn);
1452         if (!kvm_is_mmio_pfn(pfn))
1453                 return pfn_to_page(pfn);
1454
1455         WARN_ON(kvm_is_mmio_pfn(pfn));
1456
1457         get_page(bad_page);
1458         return bad_page;
1459 }
1460
1461 EXPORT_SYMBOL_GPL(gfn_to_page);
1462
1463 void kvm_release_page_clean(struct page *page)
1464 {
1465         kvm_release_pfn_clean(page_to_pfn(page));
1466 }
1467 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1468
1469 void kvm_release_pfn_clean(pfn_t pfn)
1470 {
1471         if (!kvm_is_mmio_pfn(pfn))
1472                 put_page(pfn_to_page(pfn));
1473 }
1474 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1475
1476 void kvm_release_page_dirty(struct page *page)
1477 {
1478         kvm_release_pfn_dirty(page_to_pfn(page));
1479 }
1480 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1481
1482 void kvm_release_pfn_dirty(pfn_t pfn)
1483 {
1484         kvm_set_pfn_dirty(pfn);
1485         kvm_release_pfn_clean(pfn);
1486 }
1487 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1488
1489 void kvm_set_page_dirty(struct page *page)
1490 {
1491         kvm_set_pfn_dirty(page_to_pfn(page));
1492 }
1493 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1494
1495 void kvm_set_pfn_dirty(pfn_t pfn)
1496 {
1497         if (!kvm_is_mmio_pfn(pfn)) {
1498                 struct page *page = pfn_to_page(pfn);
1499                 if (!PageReserved(page))
1500                         SetPageDirty(page);
1501         }
1502 }
1503 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1504
1505 void kvm_set_pfn_accessed(pfn_t pfn)
1506 {
1507         if (!kvm_is_mmio_pfn(pfn))
1508                 mark_page_accessed(pfn_to_page(pfn));
1509 }
1510 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1511
1512 void kvm_get_pfn(pfn_t pfn)
1513 {
1514         if (!kvm_is_mmio_pfn(pfn))
1515                 get_page(pfn_to_page(pfn));
1516 }
1517 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1518
1519 static int next_segment(unsigned long len, int offset)
1520 {
1521         if (len > PAGE_SIZE - offset)
1522                 return PAGE_SIZE - offset;
1523         else
1524                 return len;
1525 }
1526
1527 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1528                         int len)
1529 {
1530         int r;
1531         unsigned long addr;
1532
1533         addr = gfn_to_hva(kvm, gfn);
1534         if (kvm_is_error_hva(addr))
1535                 return -EFAULT;
1536         r = copy_from_user(data, (void __user *)addr + offset, len);
1537         if (r)
1538                 return -EFAULT;
1539         return 0;
1540 }
1541 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1542
1543 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1544 {
1545         gfn_t gfn = gpa >> PAGE_SHIFT;
1546         int seg;
1547         int offset = offset_in_page(gpa);
1548         int ret;
1549
1550         while ((seg = next_segment(len, offset)) != 0) {
1551                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1552                 if (ret < 0)
1553                         return ret;
1554                 offset = 0;
1555                 len -= seg;
1556                 data += seg;
1557                 ++gfn;
1558         }
1559         return 0;
1560 }
1561 EXPORT_SYMBOL_GPL(kvm_read_guest);
1562
1563 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1564                           unsigned long len)
1565 {
1566         int r;
1567         unsigned long addr;
1568         gfn_t gfn = gpa >> PAGE_SHIFT;
1569         int offset = offset_in_page(gpa);
1570
1571         addr = gfn_to_hva(kvm, gfn);
1572         if (kvm_is_error_hva(addr))
1573                 return -EFAULT;
1574         pagefault_disable();
1575         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1576         pagefault_enable();
1577         if (r)
1578                 return -EFAULT;
1579         return 0;
1580 }
1581 EXPORT_SYMBOL(kvm_read_guest_atomic);
1582
1583 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1584                          int offset, int len)
1585 {
1586         int r;
1587         unsigned long addr;
1588
1589         addr = gfn_to_hva(kvm, gfn);
1590         if (kvm_is_error_hva(addr))
1591                 return -EFAULT;
1592         r = copy_to_user((void __user *)addr + offset, data, len);
1593         if (r)
1594                 return -EFAULT;
1595         mark_page_dirty(kvm, gfn);
1596         return 0;
1597 }
1598 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1599
1600 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1601                     unsigned long len)
1602 {
1603         gfn_t gfn = gpa >> PAGE_SHIFT;
1604         int seg;
1605         int offset = offset_in_page(gpa);
1606         int ret;
1607
1608         while ((seg = next_segment(len, offset)) != 0) {
1609                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1610                 if (ret < 0)
1611                         return ret;
1612                 offset = 0;
1613                 len -= seg;
1614                 data += seg;
1615                 ++gfn;
1616         }
1617         return 0;
1618 }
1619
1620 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1621 {
1622         return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1623 }
1624 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1625
1626 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1627 {
1628         gfn_t gfn = gpa >> PAGE_SHIFT;
1629         int seg;
1630         int offset = offset_in_page(gpa);
1631         int ret;
1632
1633         while ((seg = next_segment(len, offset)) != 0) {
1634                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1635                 if (ret < 0)
1636                         return ret;
1637                 offset = 0;
1638                 len -= seg;
1639                 ++gfn;
1640         }
1641         return 0;
1642 }
1643 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1644
1645 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1646 {
1647         struct kvm_memory_slot *memslot;
1648
1649         gfn = unalias_gfn(kvm, gfn);
1650         memslot = gfn_to_memslot_unaliased(kvm, gfn);
1651         if (memslot && memslot->dirty_bitmap) {
1652                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1653
1654                 /* avoid RMW */
1655                 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1656                         set_bit(rel_gfn, memslot->dirty_bitmap);
1657         }
1658 }
1659
1660 /*
1661  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1662  */
1663 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1664 {
1665         DEFINE_WAIT(wait);
1666
1667         for (;;) {
1668                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1669
1670                 if (kvm_arch_vcpu_runnable(vcpu)) {
1671                         set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1672                         break;
1673                 }
1674                 if (kvm_cpu_has_pending_timer(vcpu))
1675                         break;
1676                 if (signal_pending(current))
1677                         break;
1678
1679                 vcpu_put(vcpu);
1680                 schedule();
1681                 vcpu_load(vcpu);
1682         }
1683
1684         finish_wait(&vcpu->wq, &wait);
1685 }
1686
1687 void kvm_resched(struct kvm_vcpu *vcpu)
1688 {
1689         if (!need_resched())
1690                 return;
1691         cond_resched();
1692 }
1693 EXPORT_SYMBOL_GPL(kvm_resched);
1694
1695 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1696 {
1697         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1698         struct page *page;
1699
1700         if (vmf->pgoff == 0)
1701                 page = virt_to_page(vcpu->run);
1702 #ifdef CONFIG_X86
1703         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1704                 page = virt_to_page(vcpu->arch.pio_data);
1705 #endif
1706 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1707         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1708                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1709 #endif
1710         else
1711                 return VM_FAULT_SIGBUS;
1712         get_page(page);
1713         vmf->page = page;
1714         return 0;
1715 }
1716
1717 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1718         .fault = kvm_vcpu_fault,
1719 };
1720
1721 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1722 {
1723         vma->vm_ops = &kvm_vcpu_vm_ops;
1724         return 0;
1725 }
1726
1727 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1728 {
1729         struct kvm_vcpu *vcpu = filp->private_data;
1730
1731         kvm_put_kvm(vcpu->kvm);
1732         return 0;
1733 }
1734
1735 static struct file_operations kvm_vcpu_fops = {
1736         .release        = kvm_vcpu_release,
1737         .unlocked_ioctl = kvm_vcpu_ioctl,
1738         .compat_ioctl   = kvm_vcpu_ioctl,
1739         .mmap           = kvm_vcpu_mmap,
1740 };
1741
1742 /*
1743  * Allocates an inode for the vcpu.
1744  */
1745 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1746 {
1747         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1748 }
1749
1750 /*
1751  * Creates some virtual cpus.  Good luck creating more than one.
1752  */
1753 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1754 {
1755         int r;
1756         struct kvm_vcpu *vcpu, *v;
1757
1758         vcpu = kvm_arch_vcpu_create(kvm, id);
1759         if (IS_ERR(vcpu))
1760                 return PTR_ERR(vcpu);
1761
1762         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1763
1764         r = kvm_arch_vcpu_setup(vcpu);
1765         if (r)
1766                 return r;
1767
1768         mutex_lock(&kvm->lock);
1769         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1770                 r = -EINVAL;
1771                 goto vcpu_destroy;
1772         }
1773
1774         kvm_for_each_vcpu(r, v, kvm)
1775                 if (v->vcpu_id == id) {
1776                         r = -EEXIST;
1777                         goto vcpu_destroy;
1778                 }
1779
1780         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1781
1782         /* Now it's all set up, let userspace reach it */
1783         kvm_get_kvm(kvm);
1784         r = create_vcpu_fd(vcpu);
1785         if (r < 0) {
1786                 kvm_put_kvm(kvm);
1787                 goto vcpu_destroy;
1788         }
1789
1790         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1791         smp_wmb();
1792         atomic_inc(&kvm->online_vcpus);
1793
1794 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1795         if (kvm->bsp_vcpu_id == id)
1796                 kvm->bsp_vcpu = vcpu;
1797 #endif
1798         mutex_unlock(&kvm->lock);
1799         return r;
1800
1801 vcpu_destroy:
1802         mutex_unlock(&kvm->lock);
1803         kvm_arch_vcpu_destroy(vcpu);
1804         return r;
1805 }
1806
1807 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1808 {
1809         if (sigset) {
1810                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1811                 vcpu->sigset_active = 1;
1812                 vcpu->sigset = *sigset;
1813         } else
1814                 vcpu->sigset_active = 0;
1815         return 0;
1816 }
1817
1818 #ifdef __KVM_HAVE_MSIX
1819 static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
1820                                     struct kvm_assigned_msix_nr *entry_nr)
1821 {
1822         int r = 0;
1823         struct kvm_assigned_dev_kernel *adev;
1824
1825         mutex_lock(&kvm->lock);
1826
1827         adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1828                                       entry_nr->assigned_dev_id);
1829         if (!adev) {
1830                 r = -EINVAL;
1831                 goto msix_nr_out;
1832         }
1833
1834         if (adev->entries_nr == 0) {
1835                 adev->entries_nr = entry_nr->entry_nr;
1836                 if (adev->entries_nr == 0 ||
1837                     adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
1838                         r = -EINVAL;
1839                         goto msix_nr_out;
1840                 }
1841
1842                 adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
1843                                                 entry_nr->entry_nr,
1844                                                 GFP_KERNEL);
1845                 if (!adev->host_msix_entries) {
1846                         r = -ENOMEM;
1847                         goto msix_nr_out;
1848                 }
1849                 adev->guest_msix_entries = kzalloc(
1850                                 sizeof(struct kvm_guest_msix_entry) *
1851                                 entry_nr->entry_nr, GFP_KERNEL);
1852                 if (!adev->guest_msix_entries) {
1853                         kfree(adev->host_msix_entries);
1854                         r = -ENOMEM;
1855                         goto msix_nr_out;
1856                 }
1857         } else /* Not allowed set MSI-X number twice */
1858                 r = -EINVAL;
1859 msix_nr_out:
1860         mutex_unlock(&kvm->lock);
1861         return r;
1862 }
1863
1864 static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
1865                                        struct kvm_assigned_msix_entry *entry)
1866 {
1867         int r = 0, i;
1868         struct kvm_assigned_dev_kernel *adev;
1869
1870         mutex_lock(&kvm->lock);
1871
1872         adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1873                                       entry->assigned_dev_id);
1874
1875         if (!adev) {
1876                 r = -EINVAL;
1877                 goto msix_entry_out;
1878         }
1879
1880         for (i = 0; i < adev->entries_nr; i++)
1881                 if (adev->guest_msix_entries[i].vector == 0 ||
1882                     adev->guest_msix_entries[i].entry == entry->entry) {
1883                         adev->guest_msix_entries[i].entry = entry->entry;
1884                         adev->guest_msix_entries[i].vector = entry->gsi;
1885                         adev->host_msix_entries[i].entry = entry->entry;
1886                         break;
1887                 }
1888         if (i == adev->entries_nr) {
1889                 r = -ENOSPC;
1890                 goto msix_entry_out;
1891         }
1892
1893 msix_entry_out:
1894         mutex_unlock(&kvm->lock);
1895
1896         return r;
1897 }
1898 #endif
1899
1900 static long kvm_vcpu_ioctl(struct file *filp,
1901                            unsigned int ioctl, unsigned long arg)
1902 {
1903         struct kvm_vcpu *vcpu = filp->private_data;
1904         void __user *argp = (void __user *)arg;
1905         int r;
1906         struct kvm_fpu *fpu = NULL;
1907         struct kvm_sregs *kvm_sregs = NULL;
1908
1909         if (vcpu->kvm->mm != current->mm)
1910                 return -EIO;
1911         switch (ioctl) {
1912         case KVM_RUN:
1913                 r = -EINVAL;
1914                 if (arg)
1915                         goto out;
1916                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1917                 break;
1918         case KVM_GET_REGS: {
1919                 struct kvm_regs *kvm_regs;
1920
1921                 r = -ENOMEM;
1922                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1923                 if (!kvm_regs)
1924                         goto out;
1925                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1926                 if (r)
1927                         goto out_free1;
1928                 r = -EFAULT;
1929                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1930                         goto out_free1;
1931                 r = 0;
1932 out_free1:
1933                 kfree(kvm_regs);
1934                 break;
1935         }
1936         case KVM_SET_REGS: {
1937                 struct kvm_regs *kvm_regs;
1938
1939                 r = -ENOMEM;
1940                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1941                 if (!kvm_regs)
1942                         goto out;
1943                 r = -EFAULT;
1944                 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1945                         goto out_free2;
1946                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1947                 if (r)
1948                         goto out_free2;
1949                 r = 0;
1950 out_free2:
1951                 kfree(kvm_regs);
1952                 break;
1953         }
1954         case KVM_GET_SREGS: {
1955                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1956                 r = -ENOMEM;
1957                 if (!kvm_sregs)
1958                         goto out;
1959                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1960                 if (r)
1961                         goto out;
1962                 r = -EFAULT;
1963                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1964                         goto out;
1965                 r = 0;
1966                 break;
1967         }
1968         case KVM_SET_SREGS: {
1969                 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1970                 r = -ENOMEM;
1971                 if (!kvm_sregs)
1972                         goto out;
1973                 r = -EFAULT;
1974                 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1975                         goto out;
1976                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1977                 if (r)
1978                         goto out;
1979                 r = 0;
1980                 break;
1981         }
1982         case KVM_GET_MP_STATE: {
1983                 struct kvm_mp_state mp_state;
1984
1985                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1986                 if (r)
1987                         goto out;
1988                 r = -EFAULT;
1989                 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1990                         goto out;
1991                 r = 0;
1992                 break;
1993         }
1994         case KVM_SET_MP_STATE: {
1995                 struct kvm_mp_state mp_state;
1996
1997                 r = -EFAULT;
1998                 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1999                         goto out;
2000                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2001                 if (r)
2002                         goto out;
2003                 r = 0;
2004                 break;
2005         }
2006         case KVM_TRANSLATE: {
2007                 struct kvm_translation tr;
2008
2009                 r = -EFAULT;
2010                 if (copy_from_user(&tr, argp, sizeof tr))
2011                         goto out;
2012                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2013                 if (r)
2014                         goto out;
2015                 r = -EFAULT;
2016                 if (copy_to_user(argp, &tr, sizeof tr))
2017                         goto out;
2018                 r = 0;
2019                 break;
2020         }
2021         case KVM_SET_GUEST_DEBUG: {
2022                 struct kvm_guest_debug dbg;
2023
2024                 r = -EFAULT;
2025                 if (copy_from_user(&dbg, argp, sizeof dbg))
2026                         goto out;
2027                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2028                 if (r)
2029                         goto out;
2030                 r = 0;
2031                 break;
2032         }
2033         case KVM_SET_SIGNAL_MASK: {
2034                 struct kvm_signal_mask __user *sigmask_arg = argp;
2035                 struct kvm_signal_mask kvm_sigmask;
2036                 sigset_t sigset, *p;
2037
2038                 p = NULL;
2039                 if (argp) {
2040                         r = -EFAULT;
2041                         if (copy_from_user(&kvm_sigmask, argp,
2042                                            sizeof kvm_sigmask))
2043                                 goto out;
2044                         r = -EINVAL;
2045                         if (kvm_sigmask.len != sizeof sigset)
2046                                 goto out;
2047                         r = -EFAULT;
2048                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2049                                            sizeof sigset))
2050                                 goto out;
2051                         p = &sigset;
2052                 }
2053                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2054                 break;
2055         }
2056         case KVM_GET_FPU: {
2057                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2058                 r = -ENOMEM;
2059                 if (!fpu)
2060                         goto out;
2061                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2062                 if (r)
2063                         goto out;
2064                 r = -EFAULT;
2065                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2066                         goto out;
2067                 r = 0;
2068                 break;
2069         }
2070         case KVM_SET_FPU: {
2071                 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2072                 r = -ENOMEM;
2073                 if (!fpu)
2074                         goto out;
2075                 r = -EFAULT;
2076                 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
2077                         goto out;
2078                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2079                 if (r)
2080                         goto out;
2081                 r = 0;
2082                 break;
2083         }
2084         default:
2085                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2086         }
2087 out:
2088         kfree(fpu);
2089         kfree(kvm_sregs);
2090         return r;
2091 }
2092
2093 static long kvm_vm_ioctl(struct file *filp,
2094                            unsigned int ioctl, unsigned long arg)
2095 {
2096         struct kvm *kvm = filp->private_data;
2097         void __user *argp = (void __user *)arg;
2098         int r;
2099
2100         if (kvm->mm != current->mm)
2101                 return -EIO;
2102         switch (ioctl) {
2103         case KVM_CREATE_VCPU:
2104                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2105                 if (r < 0)
2106                         goto out;
2107                 break;
2108         case KVM_SET_USER_MEMORY_REGION: {
2109                 struct kvm_userspace_memory_region kvm_userspace_mem;
2110
2111                 r = -EFAULT;
2112                 if (copy_from_user(&kvm_userspace_mem, argp,
2113                                                 sizeof kvm_userspace_mem))
2114                         goto out;
2115
2116                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2117                 if (r)
2118                         goto out;
2119                 break;
2120         }
2121         case KVM_GET_DIRTY_LOG: {
2122                 struct kvm_dirty_log log;
2123
2124                 r = -EFAULT;
2125                 if (copy_from_user(&log, argp, sizeof log))
2126                         goto out;
2127                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2128                 if (r)
2129                         goto out;
2130                 break;
2131         }
2132 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2133         case KVM_REGISTER_COALESCED_MMIO: {
2134                 struct kvm_coalesced_mmio_zone zone;
2135                 r = -EFAULT;
2136                 if (copy_from_user(&zone, argp, sizeof zone))
2137                         goto out;
2138                 r = -ENXIO;
2139                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2140                 if (r)
2141                         goto out;
2142                 r = 0;
2143                 break;
2144         }
2145         case KVM_UNREGISTER_COALESCED_MMIO: {
2146                 struct kvm_coalesced_mmio_zone zone;
2147                 r = -EFAULT;
2148                 if (copy_from_user(&zone, argp, sizeof zone))
2149                         goto out;
2150                 r = -ENXIO;
2151                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2152                 if (r)
2153                         goto out;
2154                 r = 0;
2155                 break;
2156         }
2157 #endif
2158 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
2159         case KVM_ASSIGN_PCI_DEVICE: {
2160                 struct kvm_assigned_pci_dev assigned_dev;
2161
2162                 r = -EFAULT;
2163                 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2164                         goto out;
2165                 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
2166                 if (r)
2167                         goto out;
2168                 break;
2169         }
2170         case KVM_ASSIGN_IRQ: {
2171                 r = -EOPNOTSUPP;
2172                 break;
2173         }
2174 #ifdef KVM_CAP_ASSIGN_DEV_IRQ
2175         case KVM_ASSIGN_DEV_IRQ: {
2176                 struct kvm_assigned_irq assigned_irq;
2177
2178                 r = -EFAULT;
2179                 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2180                         goto out;
2181                 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
2182                 if (r)
2183                         goto out;
2184                 break;
2185         }
2186         case KVM_DEASSIGN_DEV_IRQ: {
2187                 struct kvm_assigned_irq assigned_irq;
2188
2189                 r = -EFAULT;
2190                 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2191                         goto out;
2192                 r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
2193                 if (r)
2194                         goto out;
2195                 break;
2196         }
2197 #endif
2198 #endif
2199 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
2200         case KVM_DEASSIGN_PCI_DEVICE: {
2201                 struct kvm_assigned_pci_dev assigned_dev;
2202
2203                 r = -EFAULT;
2204                 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2205                         goto out;
2206                 r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
2207                 if (r)
2208                         goto out;
2209                 break;
2210         }
2211 #endif
2212 #ifdef KVM_CAP_IRQ_ROUTING
2213         case KVM_SET_GSI_ROUTING: {
2214                 struct kvm_irq_routing routing;
2215                 struct kvm_irq_routing __user *urouting;
2216                 struct kvm_irq_routing_entry *entries;
2217
2218                 r = -EFAULT;
2219                 if (copy_from_user(&routing, argp, sizeof(routing)))
2220                         goto out;
2221                 r = -EINVAL;
2222                 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2223                         goto out;
2224                 if (routing.flags)
2225                         goto out;
2226                 r = -ENOMEM;
2227                 entries = vmalloc(routing.nr * sizeof(*entries));
2228                 if (!entries)
2229                         goto out;
2230                 r = -EFAULT;
2231                 urouting = argp;
2232                 if (copy_from_user(entries, urouting->entries,
2233                                    routing.nr * sizeof(*entries)))
2234                         goto out_free_irq_routing;
2235                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2236                                         routing.flags);
2237         out_free_irq_routing:
2238                 vfree(entries);
2239                 break;
2240         }
2241 #endif /* KVM_CAP_IRQ_ROUTING */
2242 #ifdef __KVM_HAVE_MSIX
2243         case KVM_ASSIGN_SET_MSIX_NR: {
2244                 struct kvm_assigned_msix_nr entry_nr;
2245                 r = -EFAULT;
2246                 if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
2247                         goto out;
2248                 r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
2249                 if (r)
2250                         goto out;
2251                 break;
2252         }
2253         case KVM_ASSIGN_SET_MSIX_ENTRY: {
2254                 struct kvm_assigned_msix_entry entry;
2255                 r = -EFAULT;
2256                 if (copy_from_user(&entry, argp, sizeof entry))
2257                         goto out;
2258                 r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
2259                 if (r)
2260                         goto out;
2261                 break;
2262         }
2263 #endif
2264         case KVM_IRQFD: {
2265                 struct kvm_irqfd data;
2266
2267                 r = -EFAULT;
2268                 if (copy_from_user(&data, argp, sizeof data))
2269                         goto out;
2270                 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2271                 break;
2272         }
2273         case KVM_IOEVENTFD: {
2274                 struct kvm_ioeventfd data;
2275
2276                 r = -EFAULT;
2277                 if (copy_from_user(&data, argp, sizeof data))
2278                         goto out;
2279                 r = kvm_ioeventfd(kvm, &data);
2280                 break;
2281         }
2282 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2283         case KVM_SET_BOOT_CPU_ID:
2284                 r = 0;
2285                 mutex_lock(&kvm->lock);
2286                 if (atomic_read(&kvm->online_vcpus) != 0)
2287                         r = -EBUSY;
2288                 else
2289                         kvm->bsp_vcpu_id = arg;
2290                 mutex_unlock(&kvm->lock);
2291                 break;
2292 #endif
2293         default:
2294                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2295         }
2296 out:
2297         return r;
2298 }
2299
2300 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2301 {
2302         struct page *page[1];
2303         unsigned long addr;
2304         int npages;
2305         gfn_t gfn = vmf->pgoff;
2306         struct kvm *kvm = vma->vm_file->private_data;
2307
2308         addr = gfn_to_hva(kvm, gfn);
2309         if (kvm_is_error_hva(addr))
2310                 return VM_FAULT_SIGBUS;
2311
2312         npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2313                                 NULL);
2314         if (unlikely(npages != 1))
2315                 return VM_FAULT_SIGBUS;
2316
2317         vmf->page = page[0];
2318         return 0;
2319 }
2320
2321 static struct vm_operations_struct kvm_vm_vm_ops = {
2322         .fault = kvm_vm_fault,
2323 };
2324
2325 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2326 {
2327         vma->vm_ops = &kvm_vm_vm_ops;
2328         return 0;
2329 }
2330
2331 static struct file_operations kvm_vm_fops = {
2332         .release        = kvm_vm_release,
2333         .unlocked_ioctl = kvm_vm_ioctl,
2334         .compat_ioctl   = kvm_vm_ioctl,
2335         .mmap           = kvm_vm_mmap,
2336 };
2337
2338 static int kvm_dev_ioctl_create_vm(void)
2339 {
2340         int fd;
2341         struct kvm *kvm;
2342
2343         kvm = kvm_create_vm();
2344         if (IS_ERR(kvm))
2345                 return PTR_ERR(kvm);
2346         fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
2347         if (fd < 0)
2348                 kvm_put_kvm(kvm);
2349
2350         return fd;
2351 }
2352
2353 static long kvm_dev_ioctl_check_extension_generic(long arg)
2354 {
2355         switch (arg) {
2356         case KVM_CAP_USER_MEMORY:
2357         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2358         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2359 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2360         case KVM_CAP_SET_BOOT_CPU_ID:
2361 #endif
2362                 return 1;
2363 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2364         case KVM_CAP_IRQ_ROUTING:
2365                 return KVM_MAX_IRQ_ROUTES;
2366 #endif
2367         default:
2368                 break;
2369         }
2370         return kvm_dev_ioctl_check_extension(arg);
2371 }
2372
2373 static long kvm_dev_ioctl(struct file *filp,
2374                           unsigned int ioctl, unsigned long arg)
2375 {
2376         long r = -EINVAL;
2377
2378         switch (ioctl) {
2379         case KVM_GET_API_VERSION:
2380                 r = -EINVAL;
2381                 if (arg)
2382                         goto out;
2383                 r = KVM_API_VERSION;
2384                 break;
2385         case KVM_CREATE_VM:
2386                 r = -EINVAL;
2387                 if (arg)
2388                         goto out;
2389                 r = kvm_dev_ioctl_create_vm();
2390                 break;
2391         case KVM_CHECK_EXTENSION:
2392                 r = kvm_dev_ioctl_check_extension_generic(arg);
2393                 break;
2394         case KVM_GET_VCPU_MMAP_SIZE:
2395                 r = -EINVAL;
2396                 if (arg)
2397                         goto out;
2398                 r = PAGE_SIZE;     /* struct kvm_run */
2399 #ifdef CONFIG_X86
2400                 r += PAGE_SIZE;    /* pio data page */
2401 #endif
2402 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2403                 r += PAGE_SIZE;    /* coalesced mmio ring page */
2404 #endif
2405                 break;
2406         case KVM_TRACE_ENABLE:
2407         case KVM_TRACE_PAUSE:
2408         case KVM_TRACE_DISABLE:
2409                 r = -EOPNOTSUPP;
2410                 break;
2411         default:
2412                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2413         }
2414 out:
2415         return r;
2416 }
2417
2418 static struct file_operations kvm_chardev_ops = {
2419         .unlocked_ioctl = kvm_dev_ioctl,
2420         .compat_ioctl   = kvm_dev_ioctl,
2421 };
2422
2423 static struct miscdevice kvm_dev = {
2424         KVM_MINOR,
2425         "kvm",
2426         &kvm_chardev_ops,
2427 };
2428
2429 static void hardware_enable(void *junk)
2430 {
2431         int cpu = raw_smp_processor_id();
2432
2433         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2434                 return;
2435         cpumask_set_cpu(cpu, cpus_hardware_enabled);
2436         kvm_arch_hardware_enable(NULL);
2437 }
2438
2439 static void hardware_disable(void *junk)
2440 {
2441         int cpu = raw_smp_processor_id();
2442
2443         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2444                 return;
2445         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2446         kvm_arch_hardware_disable(NULL);
2447 }
2448
2449 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2450                            void *v)
2451 {
2452         int cpu = (long)v;
2453
2454         val &= ~CPU_TASKS_FROZEN;
2455         switch (val) {
2456         case CPU_DYING:
2457                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2458                        cpu);
2459                 hardware_disable(NULL);
2460                 break;
2461         case CPU_UP_CANCELED:
2462                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2463                        cpu);
2464                 smp_call_function_single(cpu, hardware_disable, NULL, 1);
2465                 break;
2466         case CPU_ONLINE:
2467                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2468                        cpu);
2469                 smp_call_function_single(cpu, hardware_enable, NULL, 1);
2470                 break;
2471         }
2472         return NOTIFY_OK;
2473 }
2474
2475
2476 asmlinkage void kvm_handle_fault_on_reboot(void)
2477 {
2478         if (kvm_rebooting)
2479                 /* spin while reset goes on */
2480                 while (true)
2481                         ;
2482         /* Fault while not rebooting.  We want the trace. */
2483         BUG();
2484 }
2485 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2486
2487 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2488                       void *v)
2489 {
2490         /*
2491          * Some (well, at least mine) BIOSes hang on reboot if
2492          * in vmx root mode.
2493          *
2494          * And Intel TXT required VMX off for all cpu when system shutdown.
2495          */
2496         printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2497         kvm_rebooting = true;
2498         on_each_cpu(hardware_disable, NULL, 1);
2499         return NOTIFY_OK;
2500 }
2501
2502 static struct notifier_block kvm_reboot_notifier = {
2503         .notifier_call = kvm_reboot,
2504         .priority = 0,
2505 };
2506
2507 void kvm_io_bus_init(struct kvm_io_bus *bus)
2508 {
2509         memset(bus, 0, sizeof(*bus));
2510 }
2511
2512 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2513 {
2514         int i;
2515
2516         for (i = 0; i < bus->dev_count; i++) {
2517                 struct kvm_io_device *pos = bus->devs[i];
2518
2519                 kvm_iodevice_destructor(pos);
2520         }
2521 }
2522
2523 /* kvm_io_bus_write - called under kvm->slots_lock */
2524 int kvm_io_bus_write(struct kvm_io_bus *bus, gpa_t addr,
2525                      int len, const void *val)
2526 {
2527         int i;
2528         for (i = 0; i < bus->dev_count; i++)
2529                 if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
2530                         return 0;
2531         return -EOPNOTSUPP;
2532 }
2533
2534 /* kvm_io_bus_read - called under kvm->slots_lock */
2535 int kvm_io_bus_read(struct kvm_io_bus *bus, gpa_t addr, int len, void *val)
2536 {
2537         int i;
2538         for (i = 0; i < bus->dev_count; i++)
2539                 if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
2540                         return 0;
2541         return -EOPNOTSUPP;
2542 }
2543
2544 int kvm_io_bus_register_dev(struct kvm *kvm, struct kvm_io_bus *bus,
2545                              struct kvm_io_device *dev)
2546 {
2547         int ret;
2548
2549         down_write(&kvm->slots_lock);
2550         ret = __kvm_io_bus_register_dev(bus, dev);
2551         up_write(&kvm->slots_lock);
2552
2553         return ret;
2554 }
2555
2556 /* An unlocked version. Caller must have write lock on slots_lock. */
2557 int __kvm_io_bus_register_dev(struct kvm_io_bus *bus,
2558                               struct kvm_io_device *dev)
2559 {
2560         if (bus->dev_count > NR_IOBUS_DEVS-1)
2561                 return -ENOSPC;
2562
2563         bus->devs[bus->dev_count++] = dev;
2564
2565         return 0;
2566 }
2567
2568 void kvm_io_bus_unregister_dev(struct kvm *kvm,
2569                                struct kvm_io_bus *bus,
2570                                struct kvm_io_device *dev)
2571 {
2572         down_write(&kvm->slots_lock);
2573         __kvm_io_bus_unregister_dev(bus, dev);
2574         up_write(&kvm->slots_lock);
2575 }
2576
2577 /* An unlocked version. Caller must have write lock on slots_lock. */
2578 void __kvm_io_bus_unregister_dev(struct kvm_io_bus *bus,
2579                                  struct kvm_io_device *dev)
2580 {
2581         int i;
2582
2583         for (i = 0; i < bus->dev_count; i++)
2584                 if (bus->devs[i] == dev) {
2585                         bus->devs[i] = bus->devs[--bus->dev_count];
2586                         break;
2587                 }
2588 }
2589
2590 static struct notifier_block kvm_cpu_notifier = {
2591         .notifier_call = kvm_cpu_hotplug,
2592         .priority = 20, /* must be > scheduler priority */
2593 };
2594
2595 static int vm_stat_get(void *_offset, u64 *val)
2596 {
2597         unsigned offset = (long)_offset;
2598         struct kvm *kvm;
2599
2600         *val = 0;
2601         spin_lock(&kvm_lock);
2602         list_for_each_entry(kvm, &vm_list, vm_list)
2603                 *val += *(u32 *)((void *)kvm + offset);
2604         spin_unlock(&kvm_lock);
2605         return 0;
2606 }
2607
2608 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2609
2610 static int vcpu_stat_get(void *_offset, u64 *val)
2611 {
2612         unsigned offset = (long)_offset;
2613         struct kvm *kvm;
2614         struct kvm_vcpu *vcpu;
2615         int i;
2616
2617         *val = 0;
2618         spin_lock(&kvm_lock);
2619         list_for_each_entry(kvm, &vm_list, vm_list)
2620                 kvm_for_each_vcpu(i, vcpu, kvm)
2621                         *val += *(u32 *)((void *)vcpu + offset);
2622
2623         spin_unlock(&kvm_lock);
2624         return 0;
2625 }
2626
2627 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2628
2629 static struct file_operations *stat_fops[] = {
2630         [KVM_STAT_VCPU] = &vcpu_stat_fops,
2631         [KVM_STAT_VM]   = &vm_stat_fops,
2632 };
2633
2634 static void kvm_init_debug(void)
2635 {
2636         struct kvm_stats_debugfs_item *p;
2637
2638         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2639         for (p = debugfs_entries; p->name; ++p)
2640                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2641                                                 (void *)(long)p->offset,
2642                                                 stat_fops[p->kind]);
2643 }
2644
2645 static void kvm_exit_debug(void)
2646 {
2647         struct kvm_stats_debugfs_item *p;
2648
2649         for (p = debugfs_entries; p->name; ++p)
2650                 debugfs_remove(p->dentry);
2651         debugfs_remove(kvm_debugfs_dir);
2652 }
2653
2654 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2655 {
2656         hardware_disable(NULL);
2657         return 0;
2658 }
2659
2660 static int kvm_resume(struct sys_device *dev)
2661 {
2662         hardware_enable(NULL);
2663         return 0;
2664 }
2665
2666 static struct sysdev_class kvm_sysdev_class = {
2667         .name = "kvm",
2668         .suspend = kvm_suspend,
2669         .resume = kvm_resume,
2670 };
2671
2672 static struct sys_device kvm_sysdev = {
2673         .id = 0,
2674         .cls = &kvm_sysdev_class,
2675 };
2676
2677 struct page *bad_page;
2678 pfn_t bad_pfn;
2679
2680 static inline
2681 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2682 {
2683         return container_of(pn, struct kvm_vcpu, preempt_notifier);
2684 }
2685
2686 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2687 {
2688         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2689
2690         kvm_arch_vcpu_load(vcpu, cpu);
2691 }
2692
2693 static void kvm_sched_out(struct preempt_notifier *pn,
2694                           struct task_struct *next)
2695 {
2696         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2697
2698         kvm_arch_vcpu_put(vcpu);
2699 }
2700
2701 int kvm_init(void *opaque, unsigned int vcpu_size,
2702                   struct module *module)
2703 {
2704         int r;
2705         int cpu;
2706
2707         kvm_init_debug();
2708
2709         r = kvm_arch_init(opaque);
2710         if (r)
2711                 goto out_fail;
2712
2713         bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2714
2715         if (bad_page == NULL) {
2716                 r = -ENOMEM;
2717                 goto out;
2718         }
2719
2720         bad_pfn = page_to_pfn(bad_page);
2721
2722         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2723                 r = -ENOMEM;
2724                 goto out_free_0;
2725         }
2726
2727         r = kvm_arch_hardware_setup();
2728         if (r < 0)
2729                 goto out_free_0a;
2730
2731         for_each_online_cpu(cpu) {
2732                 smp_call_function_single(cpu,
2733                                 kvm_arch_check_processor_compat,
2734                                 &r, 1);
2735                 if (r < 0)
2736                         goto out_free_1;
2737         }
2738
2739         on_each_cpu(hardware_enable, NULL, 1);
2740         r = register_cpu_notifier(&kvm_cpu_notifier);
2741         if (r)
2742                 goto out_free_2;
2743         register_reboot_notifier(&kvm_reboot_notifier);
2744
2745         r = sysdev_class_register(&kvm_sysdev_class);
2746         if (r)
2747                 goto out_free_3;
2748
2749         r = sysdev_register(&kvm_sysdev);
2750         if (r)
2751                 goto out_free_4;
2752
2753         /* A kmem cache lets us meet the alignment requirements of fx_save. */
2754         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2755                                            __alignof__(struct kvm_vcpu),
2756                                            0, NULL);
2757         if (!kvm_vcpu_cache) {
2758                 r = -ENOMEM;
2759                 goto out_free_5;
2760         }
2761
2762         kvm_chardev_ops.owner = module;
2763         kvm_vm_fops.owner = module;
2764         kvm_vcpu_fops.owner = module;
2765
2766         r = misc_register(&kvm_dev);
2767         if (r) {
2768                 printk(KERN_ERR "kvm: misc device register failed\n");
2769                 goto out_free;
2770         }
2771
2772         kvm_preempt_ops.sched_in = kvm_sched_in;
2773         kvm_preempt_ops.sched_out = kvm_sched_out;
2774
2775         return 0;
2776
2777 out_free:
2778         kmem_cache_destroy(kvm_vcpu_cache);
2779 out_free_5:
2780         sysdev_unregister(&kvm_sysdev);
2781 out_free_4:
2782         sysdev_class_unregister(&kvm_sysdev_class);
2783 out_free_3:
2784         unregister_reboot_notifier(&kvm_reboot_notifier);
2785         unregister_cpu_notifier(&kvm_cpu_notifier);
2786 out_free_2:
2787         on_each_cpu(hardware_disable, NULL, 1);
2788 out_free_1:
2789         kvm_arch_hardware_unsetup();
2790 out_free_0a:
2791         free_cpumask_var(cpus_hardware_enabled);
2792 out_free_0:
2793         __free_page(bad_page);
2794 out:
2795         kvm_arch_exit();
2796 out_fail:
2797         kvm_exit_debug();
2798         return r;
2799 }
2800 EXPORT_SYMBOL_GPL(kvm_init);
2801
2802 void kvm_exit(void)
2803 {
2804         tracepoint_synchronize_unregister();
2805         misc_deregister(&kvm_dev);
2806         kmem_cache_destroy(kvm_vcpu_cache);
2807         sysdev_unregister(&kvm_sysdev);
2808         sysdev_class_unregister(&kvm_sysdev_class);
2809         unregister_reboot_notifier(&kvm_reboot_notifier);
2810         unregister_cpu_notifier(&kvm_cpu_notifier);
2811         on_each_cpu(hardware_disable, NULL, 1);
2812         kvm_arch_hardware_unsetup();
2813         kvm_arch_exit();
2814         kvm_exit_debug();
2815         free_cpumask_var(cpus_hardware_enabled);
2816         __free_page(bad_page);
2817 }
2818 EXPORT_SYMBOL_GPL(kvm_exit);