a87f45edfae848e07c295c7623097e235ffe8c78
[linux-2.6.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44
45 #include <asm/processor.h>
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
48 #include <asm/pgtable.h>
49
50 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
51 #include "coalesced_mmio.h"
52 #endif
53
54 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
55 #include <linux/pci.h>
56 #include <linux/interrupt.h>
57 #include "irq.h"
58 #endif
59
60 MODULE_AUTHOR("Qumranet");
61 MODULE_LICENSE("GPL");
62
63 DEFINE_SPINLOCK(kvm_lock);
64 LIST_HEAD(vm_list);
65
66 static cpumask_t cpus_hardware_enabled;
67
68 struct kmem_cache *kvm_vcpu_cache;
69 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
70
71 static __read_mostly struct preempt_ops kvm_preempt_ops;
72
73 struct dentry *kvm_debugfs_dir;
74
75 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
76                            unsigned long arg);
77
78 bool kvm_rebooting;
79
80 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
81 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
82                                                       int assigned_dev_id)
83 {
84         struct list_head *ptr;
85         struct kvm_assigned_dev_kernel *match;
86
87         list_for_each(ptr, head) {
88                 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
89                 if (match->assigned_dev_id == assigned_dev_id)
90                         return match;
91         }
92         return NULL;
93 }
94
95 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
96 {
97         struct kvm_assigned_dev_kernel *assigned_dev;
98
99         assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
100                                     interrupt_work);
101
102         /* This is taken to safely inject irq inside the guest. When
103          * the interrupt injection (or the ioapic code) uses a
104          * finer-grained lock, update this
105          */
106         mutex_lock(&assigned_dev->kvm->lock);
107         kvm_set_irq(assigned_dev->kvm,
108                     assigned_dev->irq_source_id,
109                     assigned_dev->guest_irq, 1);
110         mutex_unlock(&assigned_dev->kvm->lock);
111         kvm_put_kvm(assigned_dev->kvm);
112 }
113
114 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
115 {
116         struct kvm_assigned_dev_kernel *assigned_dev =
117                 (struct kvm_assigned_dev_kernel *) dev_id;
118
119         kvm_get_kvm(assigned_dev->kvm);
120         schedule_work(&assigned_dev->interrupt_work);
121         disable_irq_nosync(irq);
122         return IRQ_HANDLED;
123 }
124
125 /* Ack the irq line for an assigned device */
126 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
127 {
128         struct kvm_assigned_dev_kernel *dev;
129
130         if (kian->gsi == -1)
131                 return;
132
133         dev = container_of(kian, struct kvm_assigned_dev_kernel,
134                            ack_notifier);
135         kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
136         enable_irq(dev->host_irq);
137 }
138
139 static void kvm_free_assigned_device(struct kvm *kvm,
140                                      struct kvm_assigned_dev_kernel
141                                      *assigned_dev)
142 {
143         if (irqchip_in_kernel(kvm) && assigned_dev->irq_requested)
144                 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
145
146         kvm_unregister_irq_ack_notifier(kvm, &assigned_dev->ack_notifier);
147         kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
148
149         if (cancel_work_sync(&assigned_dev->interrupt_work))
150                 /* We had pending work. That means we will have to take
151                  * care of kvm_put_kvm.
152                  */
153                 kvm_put_kvm(kvm);
154
155         pci_release_regions(assigned_dev->dev);
156         pci_disable_device(assigned_dev->dev);
157         pci_dev_put(assigned_dev->dev);
158
159         list_del(&assigned_dev->list);
160         kfree(assigned_dev);
161 }
162
163 void kvm_free_all_assigned_devices(struct kvm *kvm)
164 {
165         struct list_head *ptr, *ptr2;
166         struct kvm_assigned_dev_kernel *assigned_dev;
167
168         list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
169                 assigned_dev = list_entry(ptr,
170                                           struct kvm_assigned_dev_kernel,
171                                           list);
172
173                 kvm_free_assigned_device(kvm, assigned_dev);
174         }
175 }
176
177 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
178                                    struct kvm_assigned_irq
179                                    *assigned_irq)
180 {
181         int r = 0;
182         struct kvm_assigned_dev_kernel *match;
183
184         mutex_lock(&kvm->lock);
185
186         match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
187                                       assigned_irq->assigned_dev_id);
188         if (!match) {
189                 mutex_unlock(&kvm->lock);
190                 return -EINVAL;
191         }
192
193         if (match->irq_requested) {
194                 match->guest_irq = assigned_irq->guest_irq;
195                 match->ack_notifier.gsi = assigned_irq->guest_irq;
196                 mutex_unlock(&kvm->lock);
197                 return 0;
198         }
199
200         INIT_WORK(&match->interrupt_work,
201                   kvm_assigned_dev_interrupt_work_handler);
202
203         if (irqchip_in_kernel(kvm)) {
204                 if (!capable(CAP_SYS_RAWIO)) {
205                         r = -EPERM;
206                         goto out_release;
207                 }
208
209                 if (assigned_irq->host_irq)
210                         match->host_irq = assigned_irq->host_irq;
211                 else
212                         match->host_irq = match->dev->irq;
213                 match->guest_irq = assigned_irq->guest_irq;
214                 match->ack_notifier.gsi = assigned_irq->guest_irq;
215                 match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
216                 kvm_register_irq_ack_notifier(kvm, &match->ack_notifier);
217                 r = kvm_request_irq_source_id(kvm);
218                 if (r < 0)
219                         goto out_release;
220                 else
221                         match->irq_source_id = r;
222
223                 /* Even though this is PCI, we don't want to use shared
224                  * interrupts. Sharing host devices with guest-assigned devices
225                  * on the same interrupt line is not a happy situation: there
226                  * are going to be long delays in accepting, acking, etc.
227                  */
228                 if (request_irq(match->host_irq, kvm_assigned_dev_intr, 0,
229                                 "kvm_assigned_device", (void *)match)) {
230                         r = -EIO;
231                         goto out_release;
232                 }
233         }
234
235         match->irq_requested = true;
236         mutex_unlock(&kvm->lock);
237         return r;
238 out_release:
239         mutex_unlock(&kvm->lock);
240         kvm_free_assigned_device(kvm, match);
241         return r;
242 }
243
244 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
245                                       struct kvm_assigned_pci_dev *assigned_dev)
246 {
247         int r = 0;
248         struct kvm_assigned_dev_kernel *match;
249         struct pci_dev *dev;
250
251         mutex_lock(&kvm->lock);
252
253         match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
254                                       assigned_dev->assigned_dev_id);
255         if (match) {
256                 /* device already assigned */
257                 r = -EINVAL;
258                 goto out;
259         }
260
261         match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
262         if (match == NULL) {
263                 printk(KERN_INFO "%s: Couldn't allocate memory\n",
264                        __func__);
265                 r = -ENOMEM;
266                 goto out;
267         }
268         dev = pci_get_bus_and_slot(assigned_dev->busnr,
269                                    assigned_dev->devfn);
270         if (!dev) {
271                 printk(KERN_INFO "%s: host device not found\n", __func__);
272                 r = -EINVAL;
273                 goto out_free;
274         }
275         if (pci_enable_device(dev)) {
276                 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
277                 r = -EBUSY;
278                 goto out_put;
279         }
280         r = pci_request_regions(dev, "kvm_assigned_device");
281         if (r) {
282                 printk(KERN_INFO "%s: Could not get access to device regions\n",
283                        __func__);
284                 goto out_disable;
285         }
286         match->assigned_dev_id = assigned_dev->assigned_dev_id;
287         match->host_busnr = assigned_dev->busnr;
288         match->host_devfn = assigned_dev->devfn;
289         match->dev = dev;
290
291         match->kvm = kvm;
292
293         list_add(&match->list, &kvm->arch.assigned_dev_head);
294
295         if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
296                 r = kvm_iommu_map_guest(kvm, match);
297                 if (r)
298                         goto out_list_del;
299         }
300
301 out:
302         mutex_unlock(&kvm->lock);
303         return r;
304 out_list_del:
305         list_del(&match->list);
306         pci_release_regions(dev);
307 out_disable:
308         pci_disable_device(dev);
309 out_put:
310         pci_dev_put(dev);
311 out_free:
312         kfree(match);
313         mutex_unlock(&kvm->lock);
314         return r;
315 }
316 #endif
317
318 static inline int valid_vcpu(int n)
319 {
320         return likely(n >= 0 && n < KVM_MAX_VCPUS);
321 }
322
323 inline int kvm_is_mmio_pfn(pfn_t pfn)
324 {
325         if (pfn_valid(pfn))
326                 return PageReserved(pfn_to_page(pfn));
327
328         return true;
329 }
330
331 /*
332  * Switches to specified vcpu, until a matching vcpu_put()
333  */
334 void vcpu_load(struct kvm_vcpu *vcpu)
335 {
336         int cpu;
337
338         mutex_lock(&vcpu->mutex);
339         cpu = get_cpu();
340         preempt_notifier_register(&vcpu->preempt_notifier);
341         kvm_arch_vcpu_load(vcpu, cpu);
342         put_cpu();
343 }
344
345 void vcpu_put(struct kvm_vcpu *vcpu)
346 {
347         preempt_disable();
348         kvm_arch_vcpu_put(vcpu);
349         preempt_notifier_unregister(&vcpu->preempt_notifier);
350         preempt_enable();
351         mutex_unlock(&vcpu->mutex);
352 }
353
354 static void ack_flush(void *_completed)
355 {
356 }
357
358 void kvm_flush_remote_tlbs(struct kvm *kvm)
359 {
360         int i, cpu, me;
361         cpumask_t cpus;
362         struct kvm_vcpu *vcpu;
363
364         me = get_cpu();
365         cpus_clear(cpus);
366         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
367                 vcpu = kvm->vcpus[i];
368                 if (!vcpu)
369                         continue;
370                 if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
371                         continue;
372                 cpu = vcpu->cpu;
373                 if (cpu != -1 && cpu != me)
374                         cpu_set(cpu, cpus);
375         }
376         if (cpus_empty(cpus))
377                 goto out;
378         ++kvm->stat.remote_tlb_flush;
379         smp_call_function_mask(cpus, ack_flush, NULL, 1);
380 out:
381         put_cpu();
382 }
383
384 void kvm_reload_remote_mmus(struct kvm *kvm)
385 {
386         int i, cpu, me;
387         cpumask_t cpus;
388         struct kvm_vcpu *vcpu;
389
390         me = get_cpu();
391         cpus_clear(cpus);
392         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
393                 vcpu = kvm->vcpus[i];
394                 if (!vcpu)
395                         continue;
396                 if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
397                         continue;
398                 cpu = vcpu->cpu;
399                 if (cpu != -1 && cpu != me)
400                         cpu_set(cpu, cpus);
401         }
402         if (cpus_empty(cpus))
403                 goto out;
404         smp_call_function_mask(cpus, ack_flush, NULL, 1);
405 out:
406         put_cpu();
407 }
408
409
410 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
411 {
412         struct page *page;
413         int r;
414
415         mutex_init(&vcpu->mutex);
416         vcpu->cpu = -1;
417         vcpu->kvm = kvm;
418         vcpu->vcpu_id = id;
419         init_waitqueue_head(&vcpu->wq);
420
421         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
422         if (!page) {
423                 r = -ENOMEM;
424                 goto fail;
425         }
426         vcpu->run = page_address(page);
427
428         r = kvm_arch_vcpu_init(vcpu);
429         if (r < 0)
430                 goto fail_free_run;
431         return 0;
432
433 fail_free_run:
434         free_page((unsigned long)vcpu->run);
435 fail:
436         return r;
437 }
438 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
439
440 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
441 {
442         kvm_arch_vcpu_uninit(vcpu);
443         free_page((unsigned long)vcpu->run);
444 }
445 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
446
447 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
448 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
449 {
450         return container_of(mn, struct kvm, mmu_notifier);
451 }
452
453 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
454                                              struct mm_struct *mm,
455                                              unsigned long address)
456 {
457         struct kvm *kvm = mmu_notifier_to_kvm(mn);
458         int need_tlb_flush;
459
460         /*
461          * When ->invalidate_page runs, the linux pte has been zapped
462          * already but the page is still allocated until
463          * ->invalidate_page returns. So if we increase the sequence
464          * here the kvm page fault will notice if the spte can't be
465          * established because the page is going to be freed. If
466          * instead the kvm page fault establishes the spte before
467          * ->invalidate_page runs, kvm_unmap_hva will release it
468          * before returning.
469          *
470          * The sequence increase only need to be seen at spin_unlock
471          * time, and not at spin_lock time.
472          *
473          * Increasing the sequence after the spin_unlock would be
474          * unsafe because the kvm page fault could then establish the
475          * pte after kvm_unmap_hva returned, without noticing the page
476          * is going to be freed.
477          */
478         spin_lock(&kvm->mmu_lock);
479         kvm->mmu_notifier_seq++;
480         need_tlb_flush = kvm_unmap_hva(kvm, address);
481         spin_unlock(&kvm->mmu_lock);
482
483         /* we've to flush the tlb before the pages can be freed */
484         if (need_tlb_flush)
485                 kvm_flush_remote_tlbs(kvm);
486
487 }
488
489 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
490                                                     struct mm_struct *mm,
491                                                     unsigned long start,
492                                                     unsigned long end)
493 {
494         struct kvm *kvm = mmu_notifier_to_kvm(mn);
495         int need_tlb_flush = 0;
496
497         spin_lock(&kvm->mmu_lock);
498         /*
499          * The count increase must become visible at unlock time as no
500          * spte can be established without taking the mmu_lock and
501          * count is also read inside the mmu_lock critical section.
502          */
503         kvm->mmu_notifier_count++;
504         for (; start < end; start += PAGE_SIZE)
505                 need_tlb_flush |= kvm_unmap_hva(kvm, start);
506         spin_unlock(&kvm->mmu_lock);
507
508         /* we've to flush the tlb before the pages can be freed */
509         if (need_tlb_flush)
510                 kvm_flush_remote_tlbs(kvm);
511 }
512
513 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
514                                                   struct mm_struct *mm,
515                                                   unsigned long start,
516                                                   unsigned long end)
517 {
518         struct kvm *kvm = mmu_notifier_to_kvm(mn);
519
520         spin_lock(&kvm->mmu_lock);
521         /*
522          * This sequence increase will notify the kvm page fault that
523          * the page that is going to be mapped in the spte could have
524          * been freed.
525          */
526         kvm->mmu_notifier_seq++;
527         /*
528          * The above sequence increase must be visible before the
529          * below count decrease but both values are read by the kvm
530          * page fault under mmu_lock spinlock so we don't need to add
531          * a smb_wmb() here in between the two.
532          */
533         kvm->mmu_notifier_count--;
534         spin_unlock(&kvm->mmu_lock);
535
536         BUG_ON(kvm->mmu_notifier_count < 0);
537 }
538
539 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
540                                               struct mm_struct *mm,
541                                               unsigned long address)
542 {
543         struct kvm *kvm = mmu_notifier_to_kvm(mn);
544         int young;
545
546         spin_lock(&kvm->mmu_lock);
547         young = kvm_age_hva(kvm, address);
548         spin_unlock(&kvm->mmu_lock);
549
550         if (young)
551                 kvm_flush_remote_tlbs(kvm);
552
553         return young;
554 }
555
556 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
557         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
558         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
559         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
560         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
561 };
562 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
563
564 static struct kvm *kvm_create_vm(void)
565 {
566         struct kvm *kvm = kvm_arch_create_vm();
567 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
568         struct page *page;
569 #endif
570
571         if (IS_ERR(kvm))
572                 goto out;
573
574 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
575         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
576         if (!page) {
577                 kfree(kvm);
578                 return ERR_PTR(-ENOMEM);
579         }
580         kvm->coalesced_mmio_ring =
581                         (struct kvm_coalesced_mmio_ring *)page_address(page);
582 #endif
583
584 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
585         {
586                 int err;
587                 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
588                 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
589                 if (err) {
590 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
591                         put_page(page);
592 #endif
593                         kfree(kvm);
594                         return ERR_PTR(err);
595                 }
596         }
597 #endif
598
599         kvm->mm = current->mm;
600         atomic_inc(&kvm->mm->mm_count);
601         spin_lock_init(&kvm->mmu_lock);
602         kvm_io_bus_init(&kvm->pio_bus);
603         mutex_init(&kvm->lock);
604         kvm_io_bus_init(&kvm->mmio_bus);
605         init_rwsem(&kvm->slots_lock);
606         atomic_set(&kvm->users_count, 1);
607         spin_lock(&kvm_lock);
608         list_add(&kvm->vm_list, &vm_list);
609         spin_unlock(&kvm_lock);
610 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
611         kvm_coalesced_mmio_init(kvm);
612 #endif
613 out:
614         return kvm;
615 }
616
617 /*
618  * Free any memory in @free but not in @dont.
619  */
620 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
621                                   struct kvm_memory_slot *dont)
622 {
623         if (!dont || free->rmap != dont->rmap)
624                 vfree(free->rmap);
625
626         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
627                 vfree(free->dirty_bitmap);
628
629         if (!dont || free->lpage_info != dont->lpage_info)
630                 vfree(free->lpage_info);
631
632         free->npages = 0;
633         free->dirty_bitmap = NULL;
634         free->rmap = NULL;
635         free->lpage_info = NULL;
636 }
637
638 void kvm_free_physmem(struct kvm *kvm)
639 {
640         int i;
641
642         for (i = 0; i < kvm->nmemslots; ++i)
643                 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
644 }
645
646 static void kvm_destroy_vm(struct kvm *kvm)
647 {
648         struct mm_struct *mm = kvm->mm;
649
650         spin_lock(&kvm_lock);
651         list_del(&kvm->vm_list);
652         spin_unlock(&kvm_lock);
653         kvm_io_bus_destroy(&kvm->pio_bus);
654         kvm_io_bus_destroy(&kvm->mmio_bus);
655 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
656         if (kvm->coalesced_mmio_ring != NULL)
657                 free_page((unsigned long)kvm->coalesced_mmio_ring);
658 #endif
659 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
660         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
661 #endif
662         kvm_arch_destroy_vm(kvm);
663         mmdrop(mm);
664 }
665
666 void kvm_get_kvm(struct kvm *kvm)
667 {
668         atomic_inc(&kvm->users_count);
669 }
670 EXPORT_SYMBOL_GPL(kvm_get_kvm);
671
672 void kvm_put_kvm(struct kvm *kvm)
673 {
674         if (atomic_dec_and_test(&kvm->users_count))
675                 kvm_destroy_vm(kvm);
676 }
677 EXPORT_SYMBOL_GPL(kvm_put_kvm);
678
679
680 static int kvm_vm_release(struct inode *inode, struct file *filp)
681 {
682         struct kvm *kvm = filp->private_data;
683
684         kvm_put_kvm(kvm);
685         return 0;
686 }
687
688 /*
689  * Allocate some memory and give it an address in the guest physical address
690  * space.
691  *
692  * Discontiguous memory is allowed, mostly for framebuffers.
693  *
694  * Must be called holding mmap_sem for write.
695  */
696 int __kvm_set_memory_region(struct kvm *kvm,
697                             struct kvm_userspace_memory_region *mem,
698                             int user_alloc)
699 {
700         int r;
701         gfn_t base_gfn;
702         unsigned long npages;
703         unsigned long i;
704         struct kvm_memory_slot *memslot;
705         struct kvm_memory_slot old, new;
706
707         r = -EINVAL;
708         /* General sanity checks */
709         if (mem->memory_size & (PAGE_SIZE - 1))
710                 goto out;
711         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
712                 goto out;
713         if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
714                 goto out;
715         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
716                 goto out;
717
718         memslot = &kvm->memslots[mem->slot];
719         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
720         npages = mem->memory_size >> PAGE_SHIFT;
721
722         if (!npages)
723                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
724
725         new = old = *memslot;
726
727         new.base_gfn = base_gfn;
728         new.npages = npages;
729         new.flags = mem->flags;
730
731         /* Disallow changing a memory slot's size. */
732         r = -EINVAL;
733         if (npages && old.npages && npages != old.npages)
734                 goto out_free;
735
736         /* Check for overlaps */
737         r = -EEXIST;
738         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
739                 struct kvm_memory_slot *s = &kvm->memslots[i];
740
741                 if (s == memslot)
742                         continue;
743                 if (!((base_gfn + npages <= s->base_gfn) ||
744                       (base_gfn >= s->base_gfn + s->npages)))
745                         goto out_free;
746         }
747
748         /* Free page dirty bitmap if unneeded */
749         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
750                 new.dirty_bitmap = NULL;
751
752         r = -ENOMEM;
753
754         /* Allocate if a slot is being created */
755 #ifndef CONFIG_S390
756         if (npages && !new.rmap) {
757                 new.rmap = vmalloc(npages * sizeof(struct page *));
758
759                 if (!new.rmap)
760                         goto out_free;
761
762                 memset(new.rmap, 0, npages * sizeof(*new.rmap));
763
764                 new.user_alloc = user_alloc;
765                 /*
766                  * hva_to_rmmap() serialzies with the mmu_lock and to be
767                  * safe it has to ignore memslots with !user_alloc &&
768                  * !userspace_addr.
769                  */
770                 if (user_alloc)
771                         new.userspace_addr = mem->userspace_addr;
772                 else
773                         new.userspace_addr = 0;
774         }
775         if (npages && !new.lpage_info) {
776                 int largepages = npages / KVM_PAGES_PER_HPAGE;
777                 if (npages % KVM_PAGES_PER_HPAGE)
778                         largepages++;
779                 if (base_gfn % KVM_PAGES_PER_HPAGE)
780                         largepages++;
781
782                 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
783
784                 if (!new.lpage_info)
785                         goto out_free;
786
787                 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
788
789                 if (base_gfn % KVM_PAGES_PER_HPAGE)
790                         new.lpage_info[0].write_count = 1;
791                 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
792                         new.lpage_info[largepages-1].write_count = 1;
793         }
794
795         /* Allocate page dirty bitmap if needed */
796         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
797                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
798
799                 new.dirty_bitmap = vmalloc(dirty_bytes);
800                 if (!new.dirty_bitmap)
801                         goto out_free;
802                 memset(new.dirty_bitmap, 0, dirty_bytes);
803         }
804 #endif /* not defined CONFIG_S390 */
805
806         if (!npages)
807                 kvm_arch_flush_shadow(kvm);
808
809         spin_lock(&kvm->mmu_lock);
810         if (mem->slot >= kvm->nmemslots)
811                 kvm->nmemslots = mem->slot + 1;
812
813         *memslot = new;
814         spin_unlock(&kvm->mmu_lock);
815
816         r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
817         if (r) {
818                 spin_lock(&kvm->mmu_lock);
819                 *memslot = old;
820                 spin_unlock(&kvm->mmu_lock);
821                 goto out_free;
822         }
823
824         kvm_free_physmem_slot(&old, &new);
825 #ifdef CONFIG_DMAR
826         /* map the pages in iommu page table */
827         r = kvm_iommu_map_pages(kvm, base_gfn, npages);
828         if (r)
829                 goto out;
830 #endif
831         return 0;
832
833 out_free:
834         kvm_free_physmem_slot(&new, &old);
835 out:
836         return r;
837
838 }
839 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
840
841 int kvm_set_memory_region(struct kvm *kvm,
842                           struct kvm_userspace_memory_region *mem,
843                           int user_alloc)
844 {
845         int r;
846
847         down_write(&kvm->slots_lock);
848         r = __kvm_set_memory_region(kvm, mem, user_alloc);
849         up_write(&kvm->slots_lock);
850         return r;
851 }
852 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
853
854 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
855                                    struct
856                                    kvm_userspace_memory_region *mem,
857                                    int user_alloc)
858 {
859         if (mem->slot >= KVM_MEMORY_SLOTS)
860                 return -EINVAL;
861         return kvm_set_memory_region(kvm, mem, user_alloc);
862 }
863
864 int kvm_get_dirty_log(struct kvm *kvm,
865                         struct kvm_dirty_log *log, int *is_dirty)
866 {
867         struct kvm_memory_slot *memslot;
868         int r, i;
869         int n;
870         unsigned long any = 0;
871
872         r = -EINVAL;
873         if (log->slot >= KVM_MEMORY_SLOTS)
874                 goto out;
875
876         memslot = &kvm->memslots[log->slot];
877         r = -ENOENT;
878         if (!memslot->dirty_bitmap)
879                 goto out;
880
881         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
882
883         for (i = 0; !any && i < n/sizeof(long); ++i)
884                 any = memslot->dirty_bitmap[i];
885
886         r = -EFAULT;
887         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
888                 goto out;
889
890         if (any)
891                 *is_dirty = 1;
892
893         r = 0;
894 out:
895         return r;
896 }
897
898 int is_error_page(struct page *page)
899 {
900         return page == bad_page;
901 }
902 EXPORT_SYMBOL_GPL(is_error_page);
903
904 int is_error_pfn(pfn_t pfn)
905 {
906         return pfn == bad_pfn;
907 }
908 EXPORT_SYMBOL_GPL(is_error_pfn);
909
910 static inline unsigned long bad_hva(void)
911 {
912         return PAGE_OFFSET;
913 }
914
915 int kvm_is_error_hva(unsigned long addr)
916 {
917         return addr == bad_hva();
918 }
919 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
920
921 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
922 {
923         int i;
924
925         for (i = 0; i < kvm->nmemslots; ++i) {
926                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
927
928                 if (gfn >= memslot->base_gfn
929                     && gfn < memslot->base_gfn + memslot->npages)
930                         return memslot;
931         }
932         return NULL;
933 }
934
935 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
936 {
937         gfn = unalias_gfn(kvm, gfn);
938         return __gfn_to_memslot(kvm, gfn);
939 }
940
941 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
942 {
943         int i;
944
945         gfn = unalias_gfn(kvm, gfn);
946         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
947                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
948
949                 if (gfn >= memslot->base_gfn
950                     && gfn < memslot->base_gfn + memslot->npages)
951                         return 1;
952         }
953         return 0;
954 }
955 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
956
957 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
958 {
959         struct kvm_memory_slot *slot;
960
961         gfn = unalias_gfn(kvm, gfn);
962         slot = __gfn_to_memslot(kvm, gfn);
963         if (!slot)
964                 return bad_hva();
965         return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
966 }
967 EXPORT_SYMBOL_GPL(gfn_to_hva);
968
969 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
970 {
971         struct page *page[1];
972         unsigned long addr;
973         int npages;
974         pfn_t pfn;
975
976         might_sleep();
977
978         addr = gfn_to_hva(kvm, gfn);
979         if (kvm_is_error_hva(addr)) {
980                 get_page(bad_page);
981                 return page_to_pfn(bad_page);
982         }
983
984         npages = get_user_pages_fast(addr, 1, 1, page);
985
986         if (unlikely(npages != 1)) {
987                 struct vm_area_struct *vma;
988
989                 down_read(&current->mm->mmap_sem);
990                 vma = find_vma(current->mm, addr);
991
992                 if (vma == NULL || addr < vma->vm_start ||
993                     !(vma->vm_flags & VM_PFNMAP)) {
994                         up_read(&current->mm->mmap_sem);
995                         get_page(bad_page);
996                         return page_to_pfn(bad_page);
997                 }
998
999                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1000                 up_read(&current->mm->mmap_sem);
1001                 BUG_ON(!kvm_is_mmio_pfn(pfn));
1002         } else
1003                 pfn = page_to_pfn(page[0]);
1004
1005         return pfn;
1006 }
1007
1008 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1009
1010 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1011 {
1012         pfn_t pfn;
1013
1014         pfn = gfn_to_pfn(kvm, gfn);
1015         if (!kvm_is_mmio_pfn(pfn))
1016                 return pfn_to_page(pfn);
1017
1018         WARN_ON(kvm_is_mmio_pfn(pfn));
1019
1020         get_page(bad_page);
1021         return bad_page;
1022 }
1023
1024 EXPORT_SYMBOL_GPL(gfn_to_page);
1025
1026 void kvm_release_page_clean(struct page *page)
1027 {
1028         kvm_release_pfn_clean(page_to_pfn(page));
1029 }
1030 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1031
1032 void kvm_release_pfn_clean(pfn_t pfn)
1033 {
1034         if (!kvm_is_mmio_pfn(pfn))
1035                 put_page(pfn_to_page(pfn));
1036 }
1037 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1038
1039 void kvm_release_page_dirty(struct page *page)
1040 {
1041         kvm_release_pfn_dirty(page_to_pfn(page));
1042 }
1043 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1044
1045 void kvm_release_pfn_dirty(pfn_t pfn)
1046 {
1047         kvm_set_pfn_dirty(pfn);
1048         kvm_release_pfn_clean(pfn);
1049 }
1050 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1051
1052 void kvm_set_page_dirty(struct page *page)
1053 {
1054         kvm_set_pfn_dirty(page_to_pfn(page));
1055 }
1056 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1057
1058 void kvm_set_pfn_dirty(pfn_t pfn)
1059 {
1060         if (!kvm_is_mmio_pfn(pfn)) {
1061                 struct page *page = pfn_to_page(pfn);
1062                 if (!PageReserved(page))
1063                         SetPageDirty(page);
1064         }
1065 }
1066 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1067
1068 void kvm_set_pfn_accessed(pfn_t pfn)
1069 {
1070         if (!kvm_is_mmio_pfn(pfn))
1071                 mark_page_accessed(pfn_to_page(pfn));
1072 }
1073 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1074
1075 void kvm_get_pfn(pfn_t pfn)
1076 {
1077         if (!kvm_is_mmio_pfn(pfn))
1078                 get_page(pfn_to_page(pfn));
1079 }
1080 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1081
1082 static int next_segment(unsigned long len, int offset)
1083 {
1084         if (len > PAGE_SIZE - offset)
1085                 return PAGE_SIZE - offset;
1086         else
1087                 return len;
1088 }
1089
1090 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1091                         int len)
1092 {
1093         int r;
1094         unsigned long addr;
1095
1096         addr = gfn_to_hva(kvm, gfn);
1097         if (kvm_is_error_hva(addr))
1098                 return -EFAULT;
1099         r = copy_from_user(data, (void __user *)addr + offset, len);
1100         if (r)
1101                 return -EFAULT;
1102         return 0;
1103 }
1104 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1105
1106 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1107 {
1108         gfn_t gfn = gpa >> PAGE_SHIFT;
1109         int seg;
1110         int offset = offset_in_page(gpa);
1111         int ret;
1112
1113         while ((seg = next_segment(len, offset)) != 0) {
1114                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1115                 if (ret < 0)
1116                         return ret;
1117                 offset = 0;
1118                 len -= seg;
1119                 data += seg;
1120                 ++gfn;
1121         }
1122         return 0;
1123 }
1124 EXPORT_SYMBOL_GPL(kvm_read_guest);
1125
1126 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1127                           unsigned long len)
1128 {
1129         int r;
1130         unsigned long addr;
1131         gfn_t gfn = gpa >> PAGE_SHIFT;
1132         int offset = offset_in_page(gpa);
1133
1134         addr = gfn_to_hva(kvm, gfn);
1135         if (kvm_is_error_hva(addr))
1136                 return -EFAULT;
1137         pagefault_disable();
1138         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1139         pagefault_enable();
1140         if (r)
1141                 return -EFAULT;
1142         return 0;
1143 }
1144 EXPORT_SYMBOL(kvm_read_guest_atomic);
1145
1146 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1147                          int offset, int len)
1148 {
1149         int r;
1150         unsigned long addr;
1151
1152         addr = gfn_to_hva(kvm, gfn);
1153         if (kvm_is_error_hva(addr))
1154                 return -EFAULT;
1155         r = copy_to_user((void __user *)addr + offset, data, len);
1156         if (r)
1157                 return -EFAULT;
1158         mark_page_dirty(kvm, gfn);
1159         return 0;
1160 }
1161 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1162
1163 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1164                     unsigned long len)
1165 {
1166         gfn_t gfn = gpa >> PAGE_SHIFT;
1167         int seg;
1168         int offset = offset_in_page(gpa);
1169         int ret;
1170
1171         while ((seg = next_segment(len, offset)) != 0) {
1172                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1173                 if (ret < 0)
1174                         return ret;
1175                 offset = 0;
1176                 len -= seg;
1177                 data += seg;
1178                 ++gfn;
1179         }
1180         return 0;
1181 }
1182
1183 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1184 {
1185         return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1186 }
1187 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1188
1189 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1190 {
1191         gfn_t gfn = gpa >> PAGE_SHIFT;
1192         int seg;
1193         int offset = offset_in_page(gpa);
1194         int ret;
1195
1196         while ((seg = next_segment(len, offset)) != 0) {
1197                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1198                 if (ret < 0)
1199                         return ret;
1200                 offset = 0;
1201                 len -= seg;
1202                 ++gfn;
1203         }
1204         return 0;
1205 }
1206 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1207
1208 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1209 {
1210         struct kvm_memory_slot *memslot;
1211
1212         gfn = unalias_gfn(kvm, gfn);
1213         memslot = __gfn_to_memslot(kvm, gfn);
1214         if (memslot && memslot->dirty_bitmap) {
1215                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1216
1217                 /* avoid RMW */
1218                 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1219                         set_bit(rel_gfn, memslot->dirty_bitmap);
1220         }
1221 }
1222
1223 /*
1224  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1225  */
1226 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1227 {
1228         DEFINE_WAIT(wait);
1229
1230         for (;;) {
1231                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1232
1233                 if (kvm_cpu_has_interrupt(vcpu) ||
1234                     kvm_cpu_has_pending_timer(vcpu) ||
1235                     kvm_arch_vcpu_runnable(vcpu)) {
1236                         set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1237                         break;
1238                 }
1239                 if (signal_pending(current))
1240                         break;
1241
1242                 vcpu_put(vcpu);
1243                 schedule();
1244                 vcpu_load(vcpu);
1245         }
1246
1247         finish_wait(&vcpu->wq, &wait);
1248 }
1249
1250 void kvm_resched(struct kvm_vcpu *vcpu)
1251 {
1252         if (!need_resched())
1253                 return;
1254         cond_resched();
1255 }
1256 EXPORT_SYMBOL_GPL(kvm_resched);
1257
1258 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1259 {
1260         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1261         struct page *page;
1262
1263         if (vmf->pgoff == 0)
1264                 page = virt_to_page(vcpu->run);
1265 #ifdef CONFIG_X86
1266         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1267                 page = virt_to_page(vcpu->arch.pio_data);
1268 #endif
1269 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1270         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1271                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1272 #endif
1273         else
1274                 return VM_FAULT_SIGBUS;
1275         get_page(page);
1276         vmf->page = page;
1277         return 0;
1278 }
1279
1280 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1281         .fault = kvm_vcpu_fault,
1282 };
1283
1284 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1285 {
1286         vma->vm_ops = &kvm_vcpu_vm_ops;
1287         return 0;
1288 }
1289
1290 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1291 {
1292         struct kvm_vcpu *vcpu = filp->private_data;
1293
1294         kvm_put_kvm(vcpu->kvm);
1295         return 0;
1296 }
1297
1298 static const struct file_operations kvm_vcpu_fops = {
1299         .release        = kvm_vcpu_release,
1300         .unlocked_ioctl = kvm_vcpu_ioctl,
1301         .compat_ioctl   = kvm_vcpu_ioctl,
1302         .mmap           = kvm_vcpu_mmap,
1303 };
1304
1305 /*
1306  * Allocates an inode for the vcpu.
1307  */
1308 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1309 {
1310         int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1311         if (fd < 0)
1312                 kvm_put_kvm(vcpu->kvm);
1313         return fd;
1314 }
1315
1316 /*
1317  * Creates some virtual cpus.  Good luck creating more than one.
1318  */
1319 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1320 {
1321         int r;
1322         struct kvm_vcpu *vcpu;
1323
1324         if (!valid_vcpu(n))
1325                 return -EINVAL;
1326
1327         vcpu = kvm_arch_vcpu_create(kvm, n);
1328         if (IS_ERR(vcpu))
1329                 return PTR_ERR(vcpu);
1330
1331         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1332
1333         r = kvm_arch_vcpu_setup(vcpu);
1334         if (r)
1335                 return r;
1336
1337         mutex_lock(&kvm->lock);
1338         if (kvm->vcpus[n]) {
1339                 r = -EEXIST;
1340                 goto vcpu_destroy;
1341         }
1342         kvm->vcpus[n] = vcpu;
1343         mutex_unlock(&kvm->lock);
1344
1345         /* Now it's all set up, let userspace reach it */
1346         kvm_get_kvm(kvm);
1347         r = create_vcpu_fd(vcpu);
1348         if (r < 0)
1349                 goto unlink;
1350         return r;
1351
1352 unlink:
1353         mutex_lock(&kvm->lock);
1354         kvm->vcpus[n] = NULL;
1355 vcpu_destroy:
1356         mutex_unlock(&kvm->lock);
1357         kvm_arch_vcpu_destroy(vcpu);
1358         return r;
1359 }
1360
1361 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1362 {
1363         if (sigset) {
1364                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1365                 vcpu->sigset_active = 1;
1366                 vcpu->sigset = *sigset;
1367         } else
1368                 vcpu->sigset_active = 0;
1369         return 0;
1370 }
1371
1372 static long kvm_vcpu_ioctl(struct file *filp,
1373                            unsigned int ioctl, unsigned long arg)
1374 {
1375         struct kvm_vcpu *vcpu = filp->private_data;
1376         void __user *argp = (void __user *)arg;
1377         int r;
1378         struct kvm_fpu *fpu = NULL;
1379         struct kvm_sregs *kvm_sregs = NULL;
1380
1381         if (vcpu->kvm->mm != current->mm)
1382                 return -EIO;
1383         switch (ioctl) {
1384         case KVM_RUN:
1385                 r = -EINVAL;
1386                 if (arg)
1387                         goto out;
1388                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1389                 break;
1390         case KVM_GET_REGS: {
1391                 struct kvm_regs *kvm_regs;
1392
1393                 r = -ENOMEM;
1394                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1395                 if (!kvm_regs)
1396                         goto out;
1397                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1398                 if (r)
1399                         goto out_free1;
1400                 r = -EFAULT;
1401                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1402                         goto out_free1;
1403                 r = 0;
1404 out_free1:
1405                 kfree(kvm_regs);
1406                 break;
1407         }
1408         case KVM_SET_REGS: {
1409                 struct kvm_regs *kvm_regs;
1410
1411                 r = -ENOMEM;
1412                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1413                 if (!kvm_regs)
1414                         goto out;
1415                 r = -EFAULT;
1416                 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1417                         goto out_free2;
1418                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1419                 if (r)
1420                         goto out_free2;
1421                 r = 0;
1422 out_free2:
1423                 kfree(kvm_regs);
1424                 break;
1425         }
1426         case KVM_GET_SREGS: {
1427                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1428                 r = -ENOMEM;
1429                 if (!kvm_sregs)
1430                         goto out;
1431                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1432                 if (r)
1433                         goto out;
1434                 r = -EFAULT;
1435                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1436                         goto out;
1437                 r = 0;
1438                 break;
1439         }
1440         case KVM_SET_SREGS: {
1441                 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1442                 r = -ENOMEM;
1443                 if (!kvm_sregs)
1444                         goto out;
1445                 r = -EFAULT;
1446                 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1447                         goto out;
1448                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1449                 if (r)
1450                         goto out;
1451                 r = 0;
1452                 break;
1453         }
1454         case KVM_GET_MP_STATE: {
1455                 struct kvm_mp_state mp_state;
1456
1457                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1458                 if (r)
1459                         goto out;
1460                 r = -EFAULT;
1461                 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1462                         goto out;
1463                 r = 0;
1464                 break;
1465         }
1466         case KVM_SET_MP_STATE: {
1467                 struct kvm_mp_state mp_state;
1468
1469                 r = -EFAULT;
1470                 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1471                         goto out;
1472                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1473                 if (r)
1474                         goto out;
1475                 r = 0;
1476                 break;
1477         }
1478         case KVM_TRANSLATE: {
1479                 struct kvm_translation tr;
1480
1481                 r = -EFAULT;
1482                 if (copy_from_user(&tr, argp, sizeof tr))
1483                         goto out;
1484                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1485                 if (r)
1486                         goto out;
1487                 r = -EFAULT;
1488                 if (copy_to_user(argp, &tr, sizeof tr))
1489                         goto out;
1490                 r = 0;
1491                 break;
1492         }
1493         case KVM_DEBUG_GUEST: {
1494                 struct kvm_debug_guest dbg;
1495
1496                 r = -EFAULT;
1497                 if (copy_from_user(&dbg, argp, sizeof dbg))
1498                         goto out;
1499                 r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
1500                 if (r)
1501                         goto out;
1502                 r = 0;
1503                 break;
1504         }
1505         case KVM_SET_SIGNAL_MASK: {
1506                 struct kvm_signal_mask __user *sigmask_arg = argp;
1507                 struct kvm_signal_mask kvm_sigmask;
1508                 sigset_t sigset, *p;
1509
1510                 p = NULL;
1511                 if (argp) {
1512                         r = -EFAULT;
1513                         if (copy_from_user(&kvm_sigmask, argp,
1514                                            sizeof kvm_sigmask))
1515                                 goto out;
1516                         r = -EINVAL;
1517                         if (kvm_sigmask.len != sizeof sigset)
1518                                 goto out;
1519                         r = -EFAULT;
1520                         if (copy_from_user(&sigset, sigmask_arg->sigset,
1521                                            sizeof sigset))
1522                                 goto out;
1523                         p = &sigset;
1524                 }
1525                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1526                 break;
1527         }
1528         case KVM_GET_FPU: {
1529                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1530                 r = -ENOMEM;
1531                 if (!fpu)
1532                         goto out;
1533                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1534                 if (r)
1535                         goto out;
1536                 r = -EFAULT;
1537                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1538                         goto out;
1539                 r = 0;
1540                 break;
1541         }
1542         case KVM_SET_FPU: {
1543                 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1544                 r = -ENOMEM;
1545                 if (!fpu)
1546                         goto out;
1547                 r = -EFAULT;
1548                 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1549                         goto out;
1550                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1551                 if (r)
1552                         goto out;
1553                 r = 0;
1554                 break;
1555         }
1556         default:
1557                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1558         }
1559 out:
1560         kfree(fpu);
1561         kfree(kvm_sregs);
1562         return r;
1563 }
1564
1565 static long kvm_vm_ioctl(struct file *filp,
1566                            unsigned int ioctl, unsigned long arg)
1567 {
1568         struct kvm *kvm = filp->private_data;
1569         void __user *argp = (void __user *)arg;
1570         int r;
1571
1572         if (kvm->mm != current->mm)
1573                 return -EIO;
1574         switch (ioctl) {
1575         case KVM_CREATE_VCPU:
1576                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1577                 if (r < 0)
1578                         goto out;
1579                 break;
1580         case KVM_SET_USER_MEMORY_REGION: {
1581                 struct kvm_userspace_memory_region kvm_userspace_mem;
1582
1583                 r = -EFAULT;
1584                 if (copy_from_user(&kvm_userspace_mem, argp,
1585                                                 sizeof kvm_userspace_mem))
1586                         goto out;
1587
1588                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1589                 if (r)
1590                         goto out;
1591                 break;
1592         }
1593         case KVM_GET_DIRTY_LOG: {
1594                 struct kvm_dirty_log log;
1595
1596                 r = -EFAULT;
1597                 if (copy_from_user(&log, argp, sizeof log))
1598                         goto out;
1599                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1600                 if (r)
1601                         goto out;
1602                 break;
1603         }
1604 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1605         case KVM_REGISTER_COALESCED_MMIO: {
1606                 struct kvm_coalesced_mmio_zone zone;
1607                 r = -EFAULT;
1608                 if (copy_from_user(&zone, argp, sizeof zone))
1609                         goto out;
1610                 r = -ENXIO;
1611                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1612                 if (r)
1613                         goto out;
1614                 r = 0;
1615                 break;
1616         }
1617         case KVM_UNREGISTER_COALESCED_MMIO: {
1618                 struct kvm_coalesced_mmio_zone zone;
1619                 r = -EFAULT;
1620                 if (copy_from_user(&zone, argp, sizeof zone))
1621                         goto out;
1622                 r = -ENXIO;
1623                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1624                 if (r)
1625                         goto out;
1626                 r = 0;
1627                 break;
1628         }
1629 #endif
1630 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
1631         case KVM_ASSIGN_PCI_DEVICE: {
1632                 struct kvm_assigned_pci_dev assigned_dev;
1633
1634                 r = -EFAULT;
1635                 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
1636                         goto out;
1637                 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
1638                 if (r)
1639                         goto out;
1640                 break;
1641         }
1642         case KVM_ASSIGN_IRQ: {
1643                 struct kvm_assigned_irq assigned_irq;
1644
1645                 r = -EFAULT;
1646                 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
1647                         goto out;
1648                 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
1649                 if (r)
1650                         goto out;
1651                 break;
1652         }
1653 #endif
1654         default:
1655                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1656         }
1657 out:
1658         return r;
1659 }
1660
1661 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1662 {
1663         struct page *page[1];
1664         unsigned long addr;
1665         int npages;
1666         gfn_t gfn = vmf->pgoff;
1667         struct kvm *kvm = vma->vm_file->private_data;
1668
1669         addr = gfn_to_hva(kvm, gfn);
1670         if (kvm_is_error_hva(addr))
1671                 return VM_FAULT_SIGBUS;
1672
1673         npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1674                                 NULL);
1675         if (unlikely(npages != 1))
1676                 return VM_FAULT_SIGBUS;
1677
1678         vmf->page = page[0];
1679         return 0;
1680 }
1681
1682 static struct vm_operations_struct kvm_vm_vm_ops = {
1683         .fault = kvm_vm_fault,
1684 };
1685
1686 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1687 {
1688         vma->vm_ops = &kvm_vm_vm_ops;
1689         return 0;
1690 }
1691
1692 static const struct file_operations kvm_vm_fops = {
1693         .release        = kvm_vm_release,
1694         .unlocked_ioctl = kvm_vm_ioctl,
1695         .compat_ioctl   = kvm_vm_ioctl,
1696         .mmap           = kvm_vm_mmap,
1697 };
1698
1699 static int kvm_dev_ioctl_create_vm(void)
1700 {
1701         int fd;
1702         struct kvm *kvm;
1703
1704         kvm = kvm_create_vm();
1705         if (IS_ERR(kvm))
1706                 return PTR_ERR(kvm);
1707         fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
1708         if (fd < 0)
1709                 kvm_put_kvm(kvm);
1710
1711         return fd;
1712 }
1713
1714 static long kvm_dev_ioctl(struct file *filp,
1715                           unsigned int ioctl, unsigned long arg)
1716 {
1717         long r = -EINVAL;
1718
1719         switch (ioctl) {
1720         case KVM_GET_API_VERSION:
1721                 r = -EINVAL;
1722                 if (arg)
1723                         goto out;
1724                 r = KVM_API_VERSION;
1725                 break;
1726         case KVM_CREATE_VM:
1727                 r = -EINVAL;
1728                 if (arg)
1729                         goto out;
1730                 r = kvm_dev_ioctl_create_vm();
1731                 break;
1732         case KVM_CHECK_EXTENSION:
1733                 r = kvm_dev_ioctl_check_extension(arg);
1734                 break;
1735         case KVM_GET_VCPU_MMAP_SIZE:
1736                 r = -EINVAL;
1737                 if (arg)
1738                         goto out;
1739                 r = PAGE_SIZE;     /* struct kvm_run */
1740 #ifdef CONFIG_X86
1741                 r += PAGE_SIZE;    /* pio data page */
1742 #endif
1743 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1744                 r += PAGE_SIZE;    /* coalesced mmio ring page */
1745 #endif
1746                 break;
1747         case KVM_TRACE_ENABLE:
1748         case KVM_TRACE_PAUSE:
1749         case KVM_TRACE_DISABLE:
1750                 r = kvm_trace_ioctl(ioctl, arg);
1751                 break;
1752         default:
1753                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1754         }
1755 out:
1756         return r;
1757 }
1758
1759 static struct file_operations kvm_chardev_ops = {
1760         .unlocked_ioctl = kvm_dev_ioctl,
1761         .compat_ioctl   = kvm_dev_ioctl,
1762 };
1763
1764 static struct miscdevice kvm_dev = {
1765         KVM_MINOR,
1766         "kvm",
1767         &kvm_chardev_ops,
1768 };
1769
1770 static void hardware_enable(void *junk)
1771 {
1772         int cpu = raw_smp_processor_id();
1773
1774         if (cpu_isset(cpu, cpus_hardware_enabled))
1775                 return;
1776         cpu_set(cpu, cpus_hardware_enabled);
1777         kvm_arch_hardware_enable(NULL);
1778 }
1779
1780 static void hardware_disable(void *junk)
1781 {
1782         int cpu = raw_smp_processor_id();
1783
1784         if (!cpu_isset(cpu, cpus_hardware_enabled))
1785                 return;
1786         cpu_clear(cpu, cpus_hardware_enabled);
1787         kvm_arch_hardware_disable(NULL);
1788 }
1789
1790 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1791                            void *v)
1792 {
1793         int cpu = (long)v;
1794
1795         val &= ~CPU_TASKS_FROZEN;
1796         switch (val) {
1797         case CPU_DYING:
1798                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1799                        cpu);
1800                 hardware_disable(NULL);
1801                 break;
1802         case CPU_UP_CANCELED:
1803                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1804                        cpu);
1805                 smp_call_function_single(cpu, hardware_disable, NULL, 1);
1806                 break;
1807         case CPU_ONLINE:
1808                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1809                        cpu);
1810                 smp_call_function_single(cpu, hardware_enable, NULL, 1);
1811                 break;
1812         }
1813         return NOTIFY_OK;
1814 }
1815
1816
1817 asmlinkage void kvm_handle_fault_on_reboot(void)
1818 {
1819         if (kvm_rebooting)
1820                 /* spin while reset goes on */
1821                 while (true)
1822                         ;
1823         /* Fault while not rebooting.  We want the trace. */
1824         BUG();
1825 }
1826 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
1827
1828 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1829                       void *v)
1830 {
1831         if (val == SYS_RESTART) {
1832                 /*
1833                  * Some (well, at least mine) BIOSes hang on reboot if
1834                  * in vmx root mode.
1835                  */
1836                 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1837                 kvm_rebooting = true;
1838                 on_each_cpu(hardware_disable, NULL, 1);
1839         }
1840         return NOTIFY_OK;
1841 }
1842
1843 static struct notifier_block kvm_reboot_notifier = {
1844         .notifier_call = kvm_reboot,
1845         .priority = 0,
1846 };
1847
1848 void kvm_io_bus_init(struct kvm_io_bus *bus)
1849 {
1850         memset(bus, 0, sizeof(*bus));
1851 }
1852
1853 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1854 {
1855         int i;
1856
1857         for (i = 0; i < bus->dev_count; i++) {
1858                 struct kvm_io_device *pos = bus->devs[i];
1859
1860                 kvm_iodevice_destructor(pos);
1861         }
1862 }
1863
1864 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
1865                                           gpa_t addr, int len, int is_write)
1866 {
1867         int i;
1868
1869         for (i = 0; i < bus->dev_count; i++) {
1870                 struct kvm_io_device *pos = bus->devs[i];
1871
1872                 if (pos->in_range(pos, addr, len, is_write))
1873                         return pos;
1874         }
1875
1876         return NULL;
1877 }
1878
1879 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
1880 {
1881         BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
1882
1883         bus->devs[bus->dev_count++] = dev;
1884 }
1885
1886 static struct notifier_block kvm_cpu_notifier = {
1887         .notifier_call = kvm_cpu_hotplug,
1888         .priority = 20, /* must be > scheduler priority */
1889 };
1890
1891 static int vm_stat_get(void *_offset, u64 *val)
1892 {
1893         unsigned offset = (long)_offset;
1894         struct kvm *kvm;
1895
1896         *val = 0;
1897         spin_lock(&kvm_lock);
1898         list_for_each_entry(kvm, &vm_list, vm_list)
1899                 *val += *(u32 *)((void *)kvm + offset);
1900         spin_unlock(&kvm_lock);
1901         return 0;
1902 }
1903
1904 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
1905
1906 static int vcpu_stat_get(void *_offset, u64 *val)
1907 {
1908         unsigned offset = (long)_offset;
1909         struct kvm *kvm;
1910         struct kvm_vcpu *vcpu;
1911         int i;
1912
1913         *val = 0;
1914         spin_lock(&kvm_lock);
1915         list_for_each_entry(kvm, &vm_list, vm_list)
1916                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
1917                         vcpu = kvm->vcpus[i];
1918                         if (vcpu)
1919                                 *val += *(u32 *)((void *)vcpu + offset);
1920                 }
1921         spin_unlock(&kvm_lock);
1922         return 0;
1923 }
1924
1925 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
1926
1927 static struct file_operations *stat_fops[] = {
1928         [KVM_STAT_VCPU] = &vcpu_stat_fops,
1929         [KVM_STAT_VM]   = &vm_stat_fops,
1930 };
1931
1932 static void kvm_init_debug(void)
1933 {
1934         struct kvm_stats_debugfs_item *p;
1935
1936         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
1937         for (p = debugfs_entries; p->name; ++p)
1938                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
1939                                                 (void *)(long)p->offset,
1940                                                 stat_fops[p->kind]);
1941 }
1942
1943 static void kvm_exit_debug(void)
1944 {
1945         struct kvm_stats_debugfs_item *p;
1946
1947         for (p = debugfs_entries; p->name; ++p)
1948                 debugfs_remove(p->dentry);
1949         debugfs_remove(kvm_debugfs_dir);
1950 }
1951
1952 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
1953 {
1954         hardware_disable(NULL);
1955         return 0;
1956 }
1957
1958 static int kvm_resume(struct sys_device *dev)
1959 {
1960         hardware_enable(NULL);
1961         return 0;
1962 }
1963
1964 static struct sysdev_class kvm_sysdev_class = {
1965         .name = "kvm",
1966         .suspend = kvm_suspend,
1967         .resume = kvm_resume,
1968 };
1969
1970 static struct sys_device kvm_sysdev = {
1971         .id = 0,
1972         .cls = &kvm_sysdev_class,
1973 };
1974
1975 struct page *bad_page;
1976 pfn_t bad_pfn;
1977
1978 static inline
1979 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
1980 {
1981         return container_of(pn, struct kvm_vcpu, preempt_notifier);
1982 }
1983
1984 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
1985 {
1986         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1987
1988         kvm_arch_vcpu_load(vcpu, cpu);
1989 }
1990
1991 static void kvm_sched_out(struct preempt_notifier *pn,
1992                           struct task_struct *next)
1993 {
1994         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1995
1996         kvm_arch_vcpu_put(vcpu);
1997 }
1998
1999 int kvm_init(void *opaque, unsigned int vcpu_size,
2000                   struct module *module)
2001 {
2002         int r;
2003         int cpu;
2004
2005         kvm_init_debug();
2006
2007         r = kvm_arch_init(opaque);
2008         if (r)
2009                 goto out_fail;
2010
2011         bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2012
2013         if (bad_page == NULL) {
2014                 r = -ENOMEM;
2015                 goto out;
2016         }
2017
2018         bad_pfn = page_to_pfn(bad_page);
2019
2020         r = kvm_arch_hardware_setup();
2021         if (r < 0)
2022                 goto out_free_0;
2023
2024         for_each_online_cpu(cpu) {
2025                 smp_call_function_single(cpu,
2026                                 kvm_arch_check_processor_compat,
2027                                 &r, 1);
2028                 if (r < 0)
2029                         goto out_free_1;
2030         }
2031
2032         on_each_cpu(hardware_enable, NULL, 1);
2033         r = register_cpu_notifier(&kvm_cpu_notifier);
2034         if (r)
2035                 goto out_free_2;
2036         register_reboot_notifier(&kvm_reboot_notifier);
2037
2038         r = sysdev_class_register(&kvm_sysdev_class);
2039         if (r)
2040                 goto out_free_3;
2041
2042         r = sysdev_register(&kvm_sysdev);
2043         if (r)
2044                 goto out_free_4;
2045
2046         /* A kmem cache lets us meet the alignment requirements of fx_save. */
2047         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2048                                            __alignof__(struct kvm_vcpu),
2049                                            0, NULL);
2050         if (!kvm_vcpu_cache) {
2051                 r = -ENOMEM;
2052                 goto out_free_5;
2053         }
2054
2055         kvm_chardev_ops.owner = module;
2056
2057         r = misc_register(&kvm_dev);
2058         if (r) {
2059                 printk(KERN_ERR "kvm: misc device register failed\n");
2060                 goto out_free;
2061         }
2062
2063         kvm_preempt_ops.sched_in = kvm_sched_in;
2064         kvm_preempt_ops.sched_out = kvm_sched_out;
2065
2066         return 0;
2067
2068 out_free:
2069         kmem_cache_destroy(kvm_vcpu_cache);
2070 out_free_5:
2071         sysdev_unregister(&kvm_sysdev);
2072 out_free_4:
2073         sysdev_class_unregister(&kvm_sysdev_class);
2074 out_free_3:
2075         unregister_reboot_notifier(&kvm_reboot_notifier);
2076         unregister_cpu_notifier(&kvm_cpu_notifier);
2077 out_free_2:
2078         on_each_cpu(hardware_disable, NULL, 1);
2079 out_free_1:
2080         kvm_arch_hardware_unsetup();
2081 out_free_0:
2082         __free_page(bad_page);
2083 out:
2084         kvm_arch_exit();
2085         kvm_exit_debug();
2086 out_fail:
2087         return r;
2088 }
2089 EXPORT_SYMBOL_GPL(kvm_init);
2090
2091 void kvm_exit(void)
2092 {
2093         kvm_trace_cleanup();
2094         misc_deregister(&kvm_dev);
2095         kmem_cache_destroy(kvm_vcpu_cache);
2096         sysdev_unregister(&kvm_sysdev);
2097         sysdev_class_unregister(&kvm_sysdev_class);
2098         unregister_reboot_notifier(&kvm_reboot_notifier);
2099         unregister_cpu_notifier(&kvm_cpu_notifier);
2100         on_each_cpu(hardware_disable, NULL, 1);
2101         kvm_arch_hardware_unsetup();
2102         kvm_arch_exit();
2103         kvm_exit_debug();
2104         __free_page(bad_page);
2105 }
2106 EXPORT_SYMBOL_GPL(kvm_exit);