KVM: Prepare memslot data structures for multiple hugepage sizes
[linux-2.6.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "iodev.h"
19
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46
47 #include <asm/processor.h>
48 #include <asm/io.h>
49 #include <asm/uaccess.h>
50 #include <asm/pgtable.h>
51
52 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
53 #include "coalesced_mmio.h"
54 #endif
55
56 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
57 #include <linux/pci.h>
58 #include <linux/interrupt.h>
59 #include "irq.h"
60 #endif
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/kvm.h>
64
65 MODULE_AUTHOR("Qumranet");
66 MODULE_LICENSE("GPL");
67
68 /*
69  * Ordering of locks:
70  *
71  *              kvm->lock --> kvm->irq_lock
72  */
73
74 DEFINE_SPINLOCK(kvm_lock);
75 LIST_HEAD(vm_list);
76
77 static cpumask_var_t cpus_hardware_enabled;
78
79 struct kmem_cache *kvm_vcpu_cache;
80 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
81
82 static __read_mostly struct preempt_ops kvm_preempt_ops;
83
84 struct dentry *kvm_debugfs_dir;
85
86 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
87                            unsigned long arg);
88
89 static bool kvm_rebooting;
90
91 static bool largepages_enabled = true;
92
93 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
94 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
95                                                       int assigned_dev_id)
96 {
97         struct list_head *ptr;
98         struct kvm_assigned_dev_kernel *match;
99
100         list_for_each(ptr, head) {
101                 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
102                 if (match->assigned_dev_id == assigned_dev_id)
103                         return match;
104         }
105         return NULL;
106 }
107
108 static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
109                                     *assigned_dev, int irq)
110 {
111         int i, index;
112         struct msix_entry *host_msix_entries;
113
114         host_msix_entries = assigned_dev->host_msix_entries;
115
116         index = -1;
117         for (i = 0; i < assigned_dev->entries_nr; i++)
118                 if (irq == host_msix_entries[i].vector) {
119                         index = i;
120                         break;
121                 }
122         if (index < 0) {
123                 printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
124                 return 0;
125         }
126
127         return index;
128 }
129
130 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
131 {
132         struct kvm_assigned_dev_kernel *assigned_dev;
133         struct kvm *kvm;
134         int i;
135
136         assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
137                                     interrupt_work);
138         kvm = assigned_dev->kvm;
139
140         mutex_lock(&kvm->irq_lock);
141         spin_lock_irq(&assigned_dev->assigned_dev_lock);
142         if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
143                 struct kvm_guest_msix_entry *guest_entries =
144                         assigned_dev->guest_msix_entries;
145                 for (i = 0; i < assigned_dev->entries_nr; i++) {
146                         if (!(guest_entries[i].flags &
147                                         KVM_ASSIGNED_MSIX_PENDING))
148                                 continue;
149                         guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
150                         kvm_set_irq(assigned_dev->kvm,
151                                     assigned_dev->irq_source_id,
152                                     guest_entries[i].vector, 1);
153                 }
154         } else
155                 kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
156                             assigned_dev->guest_irq, 1);
157
158         spin_unlock_irq(&assigned_dev->assigned_dev_lock);
159         mutex_unlock(&assigned_dev->kvm->irq_lock);
160 }
161
162 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
163 {
164         unsigned long flags;
165         struct kvm_assigned_dev_kernel *assigned_dev =
166                 (struct kvm_assigned_dev_kernel *) dev_id;
167
168         spin_lock_irqsave(&assigned_dev->assigned_dev_lock, flags);
169         if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
170                 int index = find_index_from_host_irq(assigned_dev, irq);
171                 if (index < 0)
172                         goto out;
173                 assigned_dev->guest_msix_entries[index].flags |=
174                         KVM_ASSIGNED_MSIX_PENDING;
175         }
176
177         schedule_work(&assigned_dev->interrupt_work);
178
179         if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_GUEST_INTX) {
180                 disable_irq_nosync(irq);
181                 assigned_dev->host_irq_disabled = true;
182         }
183
184 out:
185         spin_unlock_irqrestore(&assigned_dev->assigned_dev_lock, flags);
186         return IRQ_HANDLED;
187 }
188
189 /* Ack the irq line for an assigned device */
190 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
191 {
192         struct kvm_assigned_dev_kernel *dev;
193         unsigned long flags;
194
195         if (kian->gsi == -1)
196                 return;
197
198         dev = container_of(kian, struct kvm_assigned_dev_kernel,
199                            ack_notifier);
200
201         kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
202
203         /* The guest irq may be shared so this ack may be
204          * from another device.
205          */
206         spin_lock_irqsave(&dev->assigned_dev_lock, flags);
207         if (dev->host_irq_disabled) {
208                 enable_irq(dev->host_irq);
209                 dev->host_irq_disabled = false;
210         }
211         spin_unlock_irqrestore(&dev->assigned_dev_lock, flags);
212 }
213
214 static void deassign_guest_irq(struct kvm *kvm,
215                                struct kvm_assigned_dev_kernel *assigned_dev)
216 {
217         kvm_unregister_irq_ack_notifier(kvm, &assigned_dev->ack_notifier);
218         assigned_dev->ack_notifier.gsi = -1;
219
220         if (assigned_dev->irq_source_id != -1)
221                 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
222         assigned_dev->irq_source_id = -1;
223         assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
224 }
225
226 /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
227 static void deassign_host_irq(struct kvm *kvm,
228                               struct kvm_assigned_dev_kernel *assigned_dev)
229 {
230         /*
231          * In kvm_free_device_irq, cancel_work_sync return true if:
232          * 1. work is scheduled, and then cancelled.
233          * 2. work callback is executed.
234          *
235          * The first one ensured that the irq is disabled and no more events
236          * would happen. But for the second one, the irq may be enabled (e.g.
237          * for MSI). So we disable irq here to prevent further events.
238          *
239          * Notice this maybe result in nested disable if the interrupt type is
240          * INTx, but it's OK for we are going to free it.
241          *
242          * If this function is a part of VM destroy, please ensure that till
243          * now, the kvm state is still legal for probably we also have to wait
244          * interrupt_work done.
245          */
246         if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
247                 int i;
248                 for (i = 0; i < assigned_dev->entries_nr; i++)
249                         disable_irq_nosync(assigned_dev->
250                                            host_msix_entries[i].vector);
251
252                 cancel_work_sync(&assigned_dev->interrupt_work);
253
254                 for (i = 0; i < assigned_dev->entries_nr; i++)
255                         free_irq(assigned_dev->host_msix_entries[i].vector,
256                                  (void *)assigned_dev);
257
258                 assigned_dev->entries_nr = 0;
259                 kfree(assigned_dev->host_msix_entries);
260                 kfree(assigned_dev->guest_msix_entries);
261                 pci_disable_msix(assigned_dev->dev);
262         } else {
263                 /* Deal with MSI and INTx */
264                 disable_irq_nosync(assigned_dev->host_irq);
265                 cancel_work_sync(&assigned_dev->interrupt_work);
266
267                 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
268
269                 if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
270                         pci_disable_msi(assigned_dev->dev);
271         }
272
273         assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
274 }
275
276 static int kvm_deassign_irq(struct kvm *kvm,
277                             struct kvm_assigned_dev_kernel *assigned_dev,
278                             unsigned long irq_requested_type)
279 {
280         unsigned long guest_irq_type, host_irq_type;
281
282         if (!irqchip_in_kernel(kvm))
283                 return -EINVAL;
284         /* no irq assignment to deassign */
285         if (!assigned_dev->irq_requested_type)
286                 return -ENXIO;
287
288         host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
289         guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
290
291         if (host_irq_type)
292                 deassign_host_irq(kvm, assigned_dev);
293         if (guest_irq_type)
294                 deassign_guest_irq(kvm, assigned_dev);
295
296         return 0;
297 }
298
299 static void kvm_free_assigned_irq(struct kvm *kvm,
300                                   struct kvm_assigned_dev_kernel *assigned_dev)
301 {
302         kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
303 }
304
305 static void kvm_free_assigned_device(struct kvm *kvm,
306                                      struct kvm_assigned_dev_kernel
307                                      *assigned_dev)
308 {
309         kvm_free_assigned_irq(kvm, assigned_dev);
310
311         pci_reset_function(assigned_dev->dev);
312
313         pci_release_regions(assigned_dev->dev);
314         pci_disable_device(assigned_dev->dev);
315         pci_dev_put(assigned_dev->dev);
316
317         list_del(&assigned_dev->list);
318         kfree(assigned_dev);
319 }
320
321 void kvm_free_all_assigned_devices(struct kvm *kvm)
322 {
323         struct list_head *ptr, *ptr2;
324         struct kvm_assigned_dev_kernel *assigned_dev;
325
326         list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
327                 assigned_dev = list_entry(ptr,
328                                           struct kvm_assigned_dev_kernel,
329                                           list);
330
331                 kvm_free_assigned_device(kvm, assigned_dev);
332         }
333 }
334
335 static int assigned_device_enable_host_intx(struct kvm *kvm,
336                                             struct kvm_assigned_dev_kernel *dev)
337 {
338         dev->host_irq = dev->dev->irq;
339         /* Even though this is PCI, we don't want to use shared
340          * interrupts. Sharing host devices with guest-assigned devices
341          * on the same interrupt line is not a happy situation: there
342          * are going to be long delays in accepting, acking, etc.
343          */
344         if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
345                         0, "kvm_assigned_intx_device", (void *)dev))
346                 return -EIO;
347         return 0;
348 }
349
350 #ifdef __KVM_HAVE_MSI
351 static int assigned_device_enable_host_msi(struct kvm *kvm,
352                                            struct kvm_assigned_dev_kernel *dev)
353 {
354         int r;
355
356         if (!dev->dev->msi_enabled) {
357                 r = pci_enable_msi(dev->dev);
358                 if (r)
359                         return r;
360         }
361
362         dev->host_irq = dev->dev->irq;
363         if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
364                         "kvm_assigned_msi_device", (void *)dev)) {
365                 pci_disable_msi(dev->dev);
366                 return -EIO;
367         }
368
369         return 0;
370 }
371 #endif
372
373 #ifdef __KVM_HAVE_MSIX
374 static int assigned_device_enable_host_msix(struct kvm *kvm,
375                                             struct kvm_assigned_dev_kernel *dev)
376 {
377         int i, r = -EINVAL;
378
379         /* host_msix_entries and guest_msix_entries should have been
380          * initialized */
381         if (dev->entries_nr == 0)
382                 return r;
383
384         r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
385         if (r)
386                 return r;
387
388         for (i = 0; i < dev->entries_nr; i++) {
389                 r = request_irq(dev->host_msix_entries[i].vector,
390                                 kvm_assigned_dev_intr, 0,
391                                 "kvm_assigned_msix_device",
392                                 (void *)dev);
393                 /* FIXME: free requested_irq's on failure */
394                 if (r)
395                         return r;
396         }
397
398         return 0;
399 }
400
401 #endif
402
403 static int assigned_device_enable_guest_intx(struct kvm *kvm,
404                                 struct kvm_assigned_dev_kernel *dev,
405                                 struct kvm_assigned_irq *irq)
406 {
407         dev->guest_irq = irq->guest_irq;
408         dev->ack_notifier.gsi = irq->guest_irq;
409         return 0;
410 }
411
412 #ifdef __KVM_HAVE_MSI
413 static int assigned_device_enable_guest_msi(struct kvm *kvm,
414                         struct kvm_assigned_dev_kernel *dev,
415                         struct kvm_assigned_irq *irq)
416 {
417         dev->guest_irq = irq->guest_irq;
418         dev->ack_notifier.gsi = -1;
419         dev->host_irq_disabled = false;
420         return 0;
421 }
422 #endif
423 #ifdef __KVM_HAVE_MSIX
424 static int assigned_device_enable_guest_msix(struct kvm *kvm,
425                         struct kvm_assigned_dev_kernel *dev,
426                         struct kvm_assigned_irq *irq)
427 {
428         dev->guest_irq = irq->guest_irq;
429         dev->ack_notifier.gsi = -1;
430         dev->host_irq_disabled = false;
431         return 0;
432 }
433 #endif
434
435 static int assign_host_irq(struct kvm *kvm,
436                            struct kvm_assigned_dev_kernel *dev,
437                            __u32 host_irq_type)
438 {
439         int r = -EEXIST;
440
441         if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
442                 return r;
443
444         switch (host_irq_type) {
445         case KVM_DEV_IRQ_HOST_INTX:
446                 r = assigned_device_enable_host_intx(kvm, dev);
447                 break;
448 #ifdef __KVM_HAVE_MSI
449         case KVM_DEV_IRQ_HOST_MSI:
450                 r = assigned_device_enable_host_msi(kvm, dev);
451                 break;
452 #endif
453 #ifdef __KVM_HAVE_MSIX
454         case KVM_DEV_IRQ_HOST_MSIX:
455                 r = assigned_device_enable_host_msix(kvm, dev);
456                 break;
457 #endif
458         default:
459                 r = -EINVAL;
460         }
461
462         if (!r)
463                 dev->irq_requested_type |= host_irq_type;
464
465         return r;
466 }
467
468 static int assign_guest_irq(struct kvm *kvm,
469                             struct kvm_assigned_dev_kernel *dev,
470                             struct kvm_assigned_irq *irq,
471                             unsigned long guest_irq_type)
472 {
473         int id;
474         int r = -EEXIST;
475
476         if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
477                 return r;
478
479         id = kvm_request_irq_source_id(kvm);
480         if (id < 0)
481                 return id;
482
483         dev->irq_source_id = id;
484
485         switch (guest_irq_type) {
486         case KVM_DEV_IRQ_GUEST_INTX:
487                 r = assigned_device_enable_guest_intx(kvm, dev, irq);
488                 break;
489 #ifdef __KVM_HAVE_MSI
490         case KVM_DEV_IRQ_GUEST_MSI:
491                 r = assigned_device_enable_guest_msi(kvm, dev, irq);
492                 break;
493 #endif
494 #ifdef __KVM_HAVE_MSIX
495         case KVM_DEV_IRQ_GUEST_MSIX:
496                 r = assigned_device_enable_guest_msix(kvm, dev, irq);
497                 break;
498 #endif
499         default:
500                 r = -EINVAL;
501         }
502
503         if (!r) {
504                 dev->irq_requested_type |= guest_irq_type;
505                 kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
506         } else
507                 kvm_free_irq_source_id(kvm, dev->irq_source_id);
508
509         return r;
510 }
511
512 /* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
513 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
514                                    struct kvm_assigned_irq *assigned_irq)
515 {
516         int r = -EINVAL;
517         struct kvm_assigned_dev_kernel *match;
518         unsigned long host_irq_type, guest_irq_type;
519
520         if (!capable(CAP_SYS_RAWIO))
521                 return -EPERM;
522
523         if (!irqchip_in_kernel(kvm))
524                 return r;
525
526         mutex_lock(&kvm->lock);
527         r = -ENODEV;
528         match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
529                                       assigned_irq->assigned_dev_id);
530         if (!match)
531                 goto out;
532
533         host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
534         guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
535
536         r = -EINVAL;
537         /* can only assign one type at a time */
538         if (hweight_long(host_irq_type) > 1)
539                 goto out;
540         if (hweight_long(guest_irq_type) > 1)
541                 goto out;
542         if (host_irq_type == 0 && guest_irq_type == 0)
543                 goto out;
544
545         r = 0;
546         if (host_irq_type)
547                 r = assign_host_irq(kvm, match, host_irq_type);
548         if (r)
549                 goto out;
550
551         if (guest_irq_type)
552                 r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
553 out:
554         mutex_unlock(&kvm->lock);
555         return r;
556 }
557
558 static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
559                                          struct kvm_assigned_irq
560                                          *assigned_irq)
561 {
562         int r = -ENODEV;
563         struct kvm_assigned_dev_kernel *match;
564
565         mutex_lock(&kvm->lock);
566
567         match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
568                                       assigned_irq->assigned_dev_id);
569         if (!match)
570                 goto out;
571
572         r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
573 out:
574         mutex_unlock(&kvm->lock);
575         return r;
576 }
577
578 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
579                                       struct kvm_assigned_pci_dev *assigned_dev)
580 {
581         int r = 0;
582         struct kvm_assigned_dev_kernel *match;
583         struct pci_dev *dev;
584
585         down_read(&kvm->slots_lock);
586         mutex_lock(&kvm->lock);
587
588         match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
589                                       assigned_dev->assigned_dev_id);
590         if (match) {
591                 /* device already assigned */
592                 r = -EEXIST;
593                 goto out;
594         }
595
596         match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
597         if (match == NULL) {
598                 printk(KERN_INFO "%s: Couldn't allocate memory\n",
599                        __func__);
600                 r = -ENOMEM;
601                 goto out;
602         }
603         dev = pci_get_bus_and_slot(assigned_dev->busnr,
604                                    assigned_dev->devfn);
605         if (!dev) {
606                 printk(KERN_INFO "%s: host device not found\n", __func__);
607                 r = -EINVAL;
608                 goto out_free;
609         }
610         if (pci_enable_device(dev)) {
611                 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
612                 r = -EBUSY;
613                 goto out_put;
614         }
615         r = pci_request_regions(dev, "kvm_assigned_device");
616         if (r) {
617                 printk(KERN_INFO "%s: Could not get access to device regions\n",
618                        __func__);
619                 goto out_disable;
620         }
621
622         pci_reset_function(dev);
623
624         match->assigned_dev_id = assigned_dev->assigned_dev_id;
625         match->host_busnr = assigned_dev->busnr;
626         match->host_devfn = assigned_dev->devfn;
627         match->flags = assigned_dev->flags;
628         match->dev = dev;
629         spin_lock_init(&match->assigned_dev_lock);
630         match->irq_source_id = -1;
631         match->kvm = kvm;
632         match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
633         INIT_WORK(&match->interrupt_work,
634                   kvm_assigned_dev_interrupt_work_handler);
635
636         list_add(&match->list, &kvm->arch.assigned_dev_head);
637
638         if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
639                 if (!kvm->arch.iommu_domain) {
640                         r = kvm_iommu_map_guest(kvm);
641                         if (r)
642                                 goto out_list_del;
643                 }
644                 r = kvm_assign_device(kvm, match);
645                 if (r)
646                         goto out_list_del;
647         }
648
649 out:
650         mutex_unlock(&kvm->lock);
651         up_read(&kvm->slots_lock);
652         return r;
653 out_list_del:
654         list_del(&match->list);
655         pci_release_regions(dev);
656 out_disable:
657         pci_disable_device(dev);
658 out_put:
659         pci_dev_put(dev);
660 out_free:
661         kfree(match);
662         mutex_unlock(&kvm->lock);
663         up_read(&kvm->slots_lock);
664         return r;
665 }
666 #endif
667
668 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
669 static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
670                 struct kvm_assigned_pci_dev *assigned_dev)
671 {
672         int r = 0;
673         struct kvm_assigned_dev_kernel *match;
674
675         mutex_lock(&kvm->lock);
676
677         match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
678                                       assigned_dev->assigned_dev_id);
679         if (!match) {
680                 printk(KERN_INFO "%s: device hasn't been assigned before, "
681                   "so cannot be deassigned\n", __func__);
682                 r = -EINVAL;
683                 goto out;
684         }
685
686         if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
687                 kvm_deassign_device(kvm, match);
688
689         kvm_free_assigned_device(kvm, match);
690
691 out:
692         mutex_unlock(&kvm->lock);
693         return r;
694 }
695 #endif
696
697 inline int kvm_is_mmio_pfn(pfn_t pfn)
698 {
699         if (pfn_valid(pfn)) {
700                 struct page *page = compound_head(pfn_to_page(pfn));
701                 return PageReserved(page);
702         }
703
704         return true;
705 }
706
707 /*
708  * Switches to specified vcpu, until a matching vcpu_put()
709  */
710 void vcpu_load(struct kvm_vcpu *vcpu)
711 {
712         int cpu;
713
714         mutex_lock(&vcpu->mutex);
715         cpu = get_cpu();
716         preempt_notifier_register(&vcpu->preempt_notifier);
717         kvm_arch_vcpu_load(vcpu, cpu);
718         put_cpu();
719 }
720
721 void vcpu_put(struct kvm_vcpu *vcpu)
722 {
723         preempt_disable();
724         kvm_arch_vcpu_put(vcpu);
725         preempt_notifier_unregister(&vcpu->preempt_notifier);
726         preempt_enable();
727         mutex_unlock(&vcpu->mutex);
728 }
729
730 static void ack_flush(void *_completed)
731 {
732 }
733
734 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
735 {
736         int i, cpu, me;
737         cpumask_var_t cpus;
738         bool called = true;
739         struct kvm_vcpu *vcpu;
740
741         if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
742                 cpumask_clear(cpus);
743
744         me = get_cpu();
745         spin_lock(&kvm->requests_lock);
746         kvm_for_each_vcpu(i, vcpu, kvm) {
747                 if (test_and_set_bit(req, &vcpu->requests))
748                         continue;
749                 cpu = vcpu->cpu;
750                 if (cpus != NULL && cpu != -1 && cpu != me)
751                         cpumask_set_cpu(cpu, cpus);
752         }
753         if (unlikely(cpus == NULL))
754                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
755         else if (!cpumask_empty(cpus))
756                 smp_call_function_many(cpus, ack_flush, NULL, 1);
757         else
758                 called = false;
759         spin_unlock(&kvm->requests_lock);
760         put_cpu();
761         free_cpumask_var(cpus);
762         return called;
763 }
764
765 void kvm_flush_remote_tlbs(struct kvm *kvm)
766 {
767         if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
768                 ++kvm->stat.remote_tlb_flush;
769 }
770
771 void kvm_reload_remote_mmus(struct kvm *kvm)
772 {
773         make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
774 }
775
776 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
777 {
778         struct page *page;
779         int r;
780
781         mutex_init(&vcpu->mutex);
782         vcpu->cpu = -1;
783         vcpu->kvm = kvm;
784         vcpu->vcpu_id = id;
785         init_waitqueue_head(&vcpu->wq);
786
787         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
788         if (!page) {
789                 r = -ENOMEM;
790                 goto fail;
791         }
792         vcpu->run = page_address(page);
793
794         r = kvm_arch_vcpu_init(vcpu);
795         if (r < 0)
796                 goto fail_free_run;
797         return 0;
798
799 fail_free_run:
800         free_page((unsigned long)vcpu->run);
801 fail:
802         return r;
803 }
804 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
805
806 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
807 {
808         kvm_arch_vcpu_uninit(vcpu);
809         free_page((unsigned long)vcpu->run);
810 }
811 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
812
813 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
814 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
815 {
816         return container_of(mn, struct kvm, mmu_notifier);
817 }
818
819 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
820                                              struct mm_struct *mm,
821                                              unsigned long address)
822 {
823         struct kvm *kvm = mmu_notifier_to_kvm(mn);
824         int need_tlb_flush;
825
826         /*
827          * When ->invalidate_page runs, the linux pte has been zapped
828          * already but the page is still allocated until
829          * ->invalidate_page returns. So if we increase the sequence
830          * here the kvm page fault will notice if the spte can't be
831          * established because the page is going to be freed. If
832          * instead the kvm page fault establishes the spte before
833          * ->invalidate_page runs, kvm_unmap_hva will release it
834          * before returning.
835          *
836          * The sequence increase only need to be seen at spin_unlock
837          * time, and not at spin_lock time.
838          *
839          * Increasing the sequence after the spin_unlock would be
840          * unsafe because the kvm page fault could then establish the
841          * pte after kvm_unmap_hva returned, without noticing the page
842          * is going to be freed.
843          */
844         spin_lock(&kvm->mmu_lock);
845         kvm->mmu_notifier_seq++;
846         need_tlb_flush = kvm_unmap_hva(kvm, address);
847         spin_unlock(&kvm->mmu_lock);
848
849         /* we've to flush the tlb before the pages can be freed */
850         if (need_tlb_flush)
851                 kvm_flush_remote_tlbs(kvm);
852
853 }
854
855 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
856                                                     struct mm_struct *mm,
857                                                     unsigned long start,
858                                                     unsigned long end)
859 {
860         struct kvm *kvm = mmu_notifier_to_kvm(mn);
861         int need_tlb_flush = 0;
862
863         spin_lock(&kvm->mmu_lock);
864         /*
865          * The count increase must become visible at unlock time as no
866          * spte can be established without taking the mmu_lock and
867          * count is also read inside the mmu_lock critical section.
868          */
869         kvm->mmu_notifier_count++;
870         for (; start < end; start += PAGE_SIZE)
871                 need_tlb_flush |= kvm_unmap_hva(kvm, start);
872         spin_unlock(&kvm->mmu_lock);
873
874         /* we've to flush the tlb before the pages can be freed */
875         if (need_tlb_flush)
876                 kvm_flush_remote_tlbs(kvm);
877 }
878
879 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
880                                                   struct mm_struct *mm,
881                                                   unsigned long start,
882                                                   unsigned long end)
883 {
884         struct kvm *kvm = mmu_notifier_to_kvm(mn);
885
886         spin_lock(&kvm->mmu_lock);
887         /*
888          * This sequence increase will notify the kvm page fault that
889          * the page that is going to be mapped in the spte could have
890          * been freed.
891          */
892         kvm->mmu_notifier_seq++;
893         /*
894          * The above sequence increase must be visible before the
895          * below count decrease but both values are read by the kvm
896          * page fault under mmu_lock spinlock so we don't need to add
897          * a smb_wmb() here in between the two.
898          */
899         kvm->mmu_notifier_count--;
900         spin_unlock(&kvm->mmu_lock);
901
902         BUG_ON(kvm->mmu_notifier_count < 0);
903 }
904
905 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
906                                               struct mm_struct *mm,
907                                               unsigned long address)
908 {
909         struct kvm *kvm = mmu_notifier_to_kvm(mn);
910         int young;
911
912         spin_lock(&kvm->mmu_lock);
913         young = kvm_age_hva(kvm, address);
914         spin_unlock(&kvm->mmu_lock);
915
916         if (young)
917                 kvm_flush_remote_tlbs(kvm);
918
919         return young;
920 }
921
922 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
923                                      struct mm_struct *mm)
924 {
925         struct kvm *kvm = mmu_notifier_to_kvm(mn);
926         kvm_arch_flush_shadow(kvm);
927 }
928
929 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
930         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
931         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
932         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
933         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
934         .release                = kvm_mmu_notifier_release,
935 };
936 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
937
938 static struct kvm *kvm_create_vm(void)
939 {
940         struct kvm *kvm = kvm_arch_create_vm();
941 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
942         struct page *page;
943 #endif
944
945         if (IS_ERR(kvm))
946                 goto out;
947 #ifdef CONFIG_HAVE_KVM_IRQCHIP
948         INIT_LIST_HEAD(&kvm->irq_routing);
949         INIT_HLIST_HEAD(&kvm->mask_notifier_list);
950 #endif
951
952 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
953         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
954         if (!page) {
955                 kfree(kvm);
956                 return ERR_PTR(-ENOMEM);
957         }
958         kvm->coalesced_mmio_ring =
959                         (struct kvm_coalesced_mmio_ring *)page_address(page);
960 #endif
961
962 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
963         {
964                 int err;
965                 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
966                 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
967                 if (err) {
968 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
969                         put_page(page);
970 #endif
971                         kfree(kvm);
972                         return ERR_PTR(err);
973                 }
974         }
975 #endif
976
977         kvm->mm = current->mm;
978         atomic_inc(&kvm->mm->mm_count);
979         spin_lock_init(&kvm->mmu_lock);
980         spin_lock_init(&kvm->requests_lock);
981         kvm_io_bus_init(&kvm->pio_bus);
982         kvm_irqfd_init(kvm);
983         mutex_init(&kvm->lock);
984         mutex_init(&kvm->irq_lock);
985         kvm_io_bus_init(&kvm->mmio_bus);
986         init_rwsem(&kvm->slots_lock);
987         atomic_set(&kvm->users_count, 1);
988         spin_lock(&kvm_lock);
989         list_add(&kvm->vm_list, &vm_list);
990         spin_unlock(&kvm_lock);
991 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
992         kvm_coalesced_mmio_init(kvm);
993 #endif
994 out:
995         return kvm;
996 }
997
998 /*
999  * Free any memory in @free but not in @dont.
1000  */
1001 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
1002                                   struct kvm_memory_slot *dont)
1003 {
1004         int i;
1005
1006         if (!dont || free->rmap != dont->rmap)
1007                 vfree(free->rmap);
1008
1009         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
1010                 vfree(free->dirty_bitmap);
1011
1012
1013         for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
1014                 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
1015                         vfree(free->lpage_info[i]);
1016                         free->lpage_info[i] = NULL;
1017                 }
1018         }
1019
1020         free->npages = 0;
1021         free->dirty_bitmap = NULL;
1022         free->rmap = NULL;
1023 }
1024
1025 void kvm_free_physmem(struct kvm *kvm)
1026 {
1027         int i;
1028
1029         for (i = 0; i < kvm->nmemslots; ++i)
1030                 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
1031 }
1032
1033 static void kvm_destroy_vm(struct kvm *kvm)
1034 {
1035         struct mm_struct *mm = kvm->mm;
1036
1037         kvm_arch_sync_events(kvm);
1038         spin_lock(&kvm_lock);
1039         list_del(&kvm->vm_list);
1040         spin_unlock(&kvm_lock);
1041         kvm_free_irq_routing(kvm);
1042         kvm_io_bus_destroy(&kvm->pio_bus);
1043         kvm_io_bus_destroy(&kvm->mmio_bus);
1044 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1045         if (kvm->coalesced_mmio_ring != NULL)
1046                 free_page((unsigned long)kvm->coalesced_mmio_ring);
1047 #endif
1048 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1049         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1050 #else
1051         kvm_arch_flush_shadow(kvm);
1052 #endif
1053         kvm_arch_destroy_vm(kvm);
1054         mmdrop(mm);
1055 }
1056
1057 void kvm_get_kvm(struct kvm *kvm)
1058 {
1059         atomic_inc(&kvm->users_count);
1060 }
1061 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1062
1063 void kvm_put_kvm(struct kvm *kvm)
1064 {
1065         if (atomic_dec_and_test(&kvm->users_count))
1066                 kvm_destroy_vm(kvm);
1067 }
1068 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1069
1070
1071 static int kvm_vm_release(struct inode *inode, struct file *filp)
1072 {
1073         struct kvm *kvm = filp->private_data;
1074
1075         kvm_irqfd_release(kvm);
1076
1077         kvm_put_kvm(kvm);
1078         return 0;
1079 }
1080
1081 /*
1082  * Allocate some memory and give it an address in the guest physical address
1083  * space.
1084  *
1085  * Discontiguous memory is allowed, mostly for framebuffers.
1086  *
1087  * Must be called holding mmap_sem for write.
1088  */
1089 int __kvm_set_memory_region(struct kvm *kvm,
1090                             struct kvm_userspace_memory_region *mem,
1091                             int user_alloc)
1092 {
1093         int r;
1094         gfn_t base_gfn;
1095         unsigned long npages, ugfn;
1096         int lpages;
1097         unsigned long i, j;
1098         struct kvm_memory_slot *memslot;
1099         struct kvm_memory_slot old, new;
1100
1101         r = -EINVAL;
1102         /* General sanity checks */
1103         if (mem->memory_size & (PAGE_SIZE - 1))
1104                 goto out;
1105         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1106                 goto out;
1107         if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
1108                 goto out;
1109         if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
1110                 goto out;
1111         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1112                 goto out;
1113
1114         memslot = &kvm->memslots[mem->slot];
1115         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1116         npages = mem->memory_size >> PAGE_SHIFT;
1117
1118         if (!npages)
1119                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1120
1121         new = old = *memslot;
1122
1123         new.base_gfn = base_gfn;
1124         new.npages = npages;
1125         new.flags = mem->flags;
1126
1127         /* Disallow changing a memory slot's size. */
1128         r = -EINVAL;
1129         if (npages && old.npages && npages != old.npages)
1130                 goto out_free;
1131
1132         /* Check for overlaps */
1133         r = -EEXIST;
1134         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1135                 struct kvm_memory_slot *s = &kvm->memslots[i];
1136
1137                 if (s == memslot || !s->npages)
1138                         continue;
1139                 if (!((base_gfn + npages <= s->base_gfn) ||
1140                       (base_gfn >= s->base_gfn + s->npages)))
1141                         goto out_free;
1142         }
1143
1144         /* Free page dirty bitmap if unneeded */
1145         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1146                 new.dirty_bitmap = NULL;
1147
1148         r = -ENOMEM;
1149
1150         /* Allocate if a slot is being created */
1151 #ifndef CONFIG_S390
1152         if (npages && !new.rmap) {
1153                 new.rmap = vmalloc(npages * sizeof(struct page *));
1154
1155                 if (!new.rmap)
1156                         goto out_free;
1157
1158                 memset(new.rmap, 0, npages * sizeof(*new.rmap));
1159
1160                 new.user_alloc = user_alloc;
1161                 /*
1162                  * hva_to_rmmap() serialzies with the mmu_lock and to be
1163                  * safe it has to ignore memslots with !user_alloc &&
1164                  * !userspace_addr.
1165                  */
1166                 if (user_alloc)
1167                         new.userspace_addr = mem->userspace_addr;
1168                 else
1169                         new.userspace_addr = 0;
1170         }
1171         if (!npages)
1172                 goto skip_lpage;
1173
1174         for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
1175                 int level = i + 2;
1176
1177                 /* Avoid unused variable warning if no large pages */
1178                 (void)level;
1179
1180                 if (new.lpage_info[i])
1181                         continue;
1182
1183                 lpages = 1 + (base_gfn + npages - 1) /
1184                              KVM_PAGES_PER_HPAGE(level);
1185                 lpages -= base_gfn / KVM_PAGES_PER_HPAGE(level);
1186
1187                 new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
1188
1189                 if (!new.lpage_info[i])
1190                         goto out_free;
1191
1192                 memset(new.lpage_info[i], 0,
1193                        lpages * sizeof(*new.lpage_info[i]));
1194
1195                 if (base_gfn % KVM_PAGES_PER_HPAGE(level))
1196                         new.lpage_info[i][0].write_count = 1;
1197                 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE(level))
1198                         new.lpage_info[i][lpages - 1].write_count = 1;
1199                 ugfn = new.userspace_addr >> PAGE_SHIFT;
1200                 /*
1201                  * If the gfn and userspace address are not aligned wrt each
1202                  * other, or if explicitly asked to, disable large page
1203                  * support for this slot
1204                  */
1205                 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
1206                     !largepages_enabled)
1207                         for (j = 0; j < lpages; ++j)
1208                                 new.lpage_info[i][j].write_count = 1;
1209         }
1210
1211 skip_lpage:
1212
1213         /* Allocate page dirty bitmap if needed */
1214         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1215                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
1216
1217                 new.dirty_bitmap = vmalloc(dirty_bytes);
1218                 if (!new.dirty_bitmap)
1219                         goto out_free;
1220                 memset(new.dirty_bitmap, 0, dirty_bytes);
1221                 if (old.npages)
1222                         kvm_arch_flush_shadow(kvm);
1223         }
1224 #else  /* not defined CONFIG_S390 */
1225         new.user_alloc = user_alloc;
1226         if (user_alloc)
1227                 new.userspace_addr = mem->userspace_addr;
1228 #endif /* not defined CONFIG_S390 */
1229
1230         if (!npages)
1231                 kvm_arch_flush_shadow(kvm);
1232
1233         spin_lock(&kvm->mmu_lock);
1234         if (mem->slot >= kvm->nmemslots)
1235                 kvm->nmemslots = mem->slot + 1;
1236
1237         *memslot = new;
1238         spin_unlock(&kvm->mmu_lock);
1239
1240         r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1241         if (r) {
1242                 spin_lock(&kvm->mmu_lock);
1243                 *memslot = old;
1244                 spin_unlock(&kvm->mmu_lock);
1245                 goto out_free;
1246         }
1247
1248         kvm_free_physmem_slot(&old, npages ? &new : NULL);
1249         /* Slot deletion case: we have to update the current slot */
1250         spin_lock(&kvm->mmu_lock);
1251         if (!npages)
1252                 *memslot = old;
1253         spin_unlock(&kvm->mmu_lock);
1254 #ifdef CONFIG_DMAR
1255         /* map the pages in iommu page table */
1256         r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1257         if (r)
1258                 goto out;
1259 #endif
1260         return 0;
1261
1262 out_free:
1263         kvm_free_physmem_slot(&new, &old);
1264 out:
1265         return r;
1266
1267 }
1268 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1269
1270 int kvm_set_memory_region(struct kvm *kvm,
1271                           struct kvm_userspace_memory_region *mem,
1272                           int user_alloc)
1273 {
1274         int r;
1275
1276         down_write(&kvm->slots_lock);
1277         r = __kvm_set_memory_region(kvm, mem, user_alloc);
1278         up_write(&kvm->slots_lock);
1279         return r;
1280 }
1281 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1282
1283 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1284                                    struct
1285                                    kvm_userspace_memory_region *mem,
1286                                    int user_alloc)
1287 {
1288         if (mem->slot >= KVM_MEMORY_SLOTS)
1289                 return -EINVAL;
1290         return kvm_set_memory_region(kvm, mem, user_alloc);
1291 }
1292
1293 int kvm_get_dirty_log(struct kvm *kvm,
1294                         struct kvm_dirty_log *log, int *is_dirty)
1295 {
1296         struct kvm_memory_slot *memslot;
1297         int r, i;
1298         int n;
1299         unsigned long any = 0;
1300
1301         r = -EINVAL;
1302         if (log->slot >= KVM_MEMORY_SLOTS)
1303                 goto out;
1304
1305         memslot = &kvm->memslots[log->slot];
1306         r = -ENOENT;
1307         if (!memslot->dirty_bitmap)
1308                 goto out;
1309
1310         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1311
1312         for (i = 0; !any && i < n/sizeof(long); ++i)
1313                 any = memslot->dirty_bitmap[i];
1314
1315         r = -EFAULT;
1316         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1317                 goto out;
1318
1319         if (any)
1320                 *is_dirty = 1;
1321
1322         r = 0;
1323 out:
1324         return r;
1325 }
1326
1327 void kvm_disable_largepages(void)
1328 {
1329         largepages_enabled = false;
1330 }
1331 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1332
1333 int is_error_page(struct page *page)
1334 {
1335         return page == bad_page;
1336 }
1337 EXPORT_SYMBOL_GPL(is_error_page);
1338
1339 int is_error_pfn(pfn_t pfn)
1340 {
1341         return pfn == bad_pfn;
1342 }
1343 EXPORT_SYMBOL_GPL(is_error_pfn);
1344
1345 static inline unsigned long bad_hva(void)
1346 {
1347         return PAGE_OFFSET;
1348 }
1349
1350 int kvm_is_error_hva(unsigned long addr)
1351 {
1352         return addr == bad_hva();
1353 }
1354 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1355
1356 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1357 {
1358         int i;
1359
1360         for (i = 0; i < kvm->nmemslots; ++i) {
1361                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1362
1363                 if (gfn >= memslot->base_gfn
1364                     && gfn < memslot->base_gfn + memslot->npages)
1365                         return memslot;
1366         }
1367         return NULL;
1368 }
1369 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1370
1371 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1372 {
1373         gfn = unalias_gfn(kvm, gfn);
1374         return gfn_to_memslot_unaliased(kvm, gfn);
1375 }
1376
1377 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1378 {
1379         int i;
1380
1381         gfn = unalias_gfn(kvm, gfn);
1382         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1383                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1384
1385                 if (gfn >= memslot->base_gfn
1386                     && gfn < memslot->base_gfn + memslot->npages)
1387                         return 1;
1388         }
1389         return 0;
1390 }
1391 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1392
1393 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1394 {
1395         struct kvm_memory_slot *slot;
1396
1397         gfn = unalias_gfn(kvm, gfn);
1398         slot = gfn_to_memslot_unaliased(kvm, gfn);
1399         if (!slot)
1400                 return bad_hva();
1401         return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1402 }
1403 EXPORT_SYMBOL_GPL(gfn_to_hva);
1404
1405 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1406 {
1407         struct page *page[1];
1408         unsigned long addr;
1409         int npages;
1410         pfn_t pfn;
1411
1412         might_sleep();
1413
1414         addr = gfn_to_hva(kvm, gfn);
1415         if (kvm_is_error_hva(addr)) {
1416                 get_page(bad_page);
1417                 return page_to_pfn(bad_page);
1418         }
1419
1420         npages = get_user_pages_fast(addr, 1, 1, page);
1421
1422         if (unlikely(npages != 1)) {
1423                 struct vm_area_struct *vma;
1424
1425                 down_read(&current->mm->mmap_sem);
1426                 vma = find_vma(current->mm, addr);
1427
1428                 if (vma == NULL || addr < vma->vm_start ||
1429                     !(vma->vm_flags & VM_PFNMAP)) {
1430                         up_read(&current->mm->mmap_sem);
1431                         get_page(bad_page);
1432                         return page_to_pfn(bad_page);
1433                 }
1434
1435                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1436                 up_read(&current->mm->mmap_sem);
1437                 BUG_ON(!kvm_is_mmio_pfn(pfn));
1438         } else
1439                 pfn = page_to_pfn(page[0]);
1440
1441         return pfn;
1442 }
1443
1444 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1445
1446 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1447 {
1448         pfn_t pfn;
1449
1450         pfn = gfn_to_pfn(kvm, gfn);
1451         if (!kvm_is_mmio_pfn(pfn))
1452                 return pfn_to_page(pfn);
1453
1454         WARN_ON(kvm_is_mmio_pfn(pfn));
1455
1456         get_page(bad_page);
1457         return bad_page;
1458 }
1459
1460 EXPORT_SYMBOL_GPL(gfn_to_page);
1461
1462 void kvm_release_page_clean(struct page *page)
1463 {
1464         kvm_release_pfn_clean(page_to_pfn(page));
1465 }
1466 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1467
1468 void kvm_release_pfn_clean(pfn_t pfn)
1469 {
1470         if (!kvm_is_mmio_pfn(pfn))
1471                 put_page(pfn_to_page(pfn));
1472 }
1473 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1474
1475 void kvm_release_page_dirty(struct page *page)
1476 {
1477         kvm_release_pfn_dirty(page_to_pfn(page));
1478 }
1479 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1480
1481 void kvm_release_pfn_dirty(pfn_t pfn)
1482 {
1483         kvm_set_pfn_dirty(pfn);
1484         kvm_release_pfn_clean(pfn);
1485 }
1486 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1487
1488 void kvm_set_page_dirty(struct page *page)
1489 {
1490         kvm_set_pfn_dirty(page_to_pfn(page));
1491 }
1492 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1493
1494 void kvm_set_pfn_dirty(pfn_t pfn)
1495 {
1496         if (!kvm_is_mmio_pfn(pfn)) {
1497                 struct page *page = pfn_to_page(pfn);
1498                 if (!PageReserved(page))
1499                         SetPageDirty(page);
1500         }
1501 }
1502 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1503
1504 void kvm_set_pfn_accessed(pfn_t pfn)
1505 {
1506         if (!kvm_is_mmio_pfn(pfn))
1507                 mark_page_accessed(pfn_to_page(pfn));
1508 }
1509 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1510
1511 void kvm_get_pfn(pfn_t pfn)
1512 {
1513         if (!kvm_is_mmio_pfn(pfn))
1514                 get_page(pfn_to_page(pfn));
1515 }
1516 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1517
1518 static int next_segment(unsigned long len, int offset)
1519 {
1520         if (len > PAGE_SIZE - offset)
1521                 return PAGE_SIZE - offset;
1522         else
1523                 return len;
1524 }
1525
1526 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1527                         int len)
1528 {
1529         int r;
1530         unsigned long addr;
1531
1532         addr = gfn_to_hva(kvm, gfn);
1533         if (kvm_is_error_hva(addr))
1534                 return -EFAULT;
1535         r = copy_from_user(data, (void __user *)addr + offset, len);
1536         if (r)
1537                 return -EFAULT;
1538         return 0;
1539 }
1540 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1541
1542 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1543 {
1544         gfn_t gfn = gpa >> PAGE_SHIFT;
1545         int seg;
1546         int offset = offset_in_page(gpa);
1547         int ret;
1548
1549         while ((seg = next_segment(len, offset)) != 0) {
1550                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1551                 if (ret < 0)
1552                         return ret;
1553                 offset = 0;
1554                 len -= seg;
1555                 data += seg;
1556                 ++gfn;
1557         }
1558         return 0;
1559 }
1560 EXPORT_SYMBOL_GPL(kvm_read_guest);
1561
1562 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1563                           unsigned long len)
1564 {
1565         int r;
1566         unsigned long addr;
1567         gfn_t gfn = gpa >> PAGE_SHIFT;
1568         int offset = offset_in_page(gpa);
1569
1570         addr = gfn_to_hva(kvm, gfn);
1571         if (kvm_is_error_hva(addr))
1572                 return -EFAULT;
1573         pagefault_disable();
1574         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1575         pagefault_enable();
1576         if (r)
1577                 return -EFAULT;
1578         return 0;
1579 }
1580 EXPORT_SYMBOL(kvm_read_guest_atomic);
1581
1582 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1583                          int offset, int len)
1584 {
1585         int r;
1586         unsigned long addr;
1587
1588         addr = gfn_to_hva(kvm, gfn);
1589         if (kvm_is_error_hva(addr))
1590                 return -EFAULT;
1591         r = copy_to_user((void __user *)addr + offset, data, len);
1592         if (r)
1593                 return -EFAULT;
1594         mark_page_dirty(kvm, gfn);
1595         return 0;
1596 }
1597 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1598
1599 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1600                     unsigned long len)
1601 {
1602         gfn_t gfn = gpa >> PAGE_SHIFT;
1603         int seg;
1604         int offset = offset_in_page(gpa);
1605         int ret;
1606
1607         while ((seg = next_segment(len, offset)) != 0) {
1608                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1609                 if (ret < 0)
1610                         return ret;
1611                 offset = 0;
1612                 len -= seg;
1613                 data += seg;
1614                 ++gfn;
1615         }
1616         return 0;
1617 }
1618
1619 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1620 {
1621         return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1622 }
1623 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1624
1625 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1626 {
1627         gfn_t gfn = gpa >> PAGE_SHIFT;
1628         int seg;
1629         int offset = offset_in_page(gpa);
1630         int ret;
1631
1632         while ((seg = next_segment(len, offset)) != 0) {
1633                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1634                 if (ret < 0)
1635                         return ret;
1636                 offset = 0;
1637                 len -= seg;
1638                 ++gfn;
1639         }
1640         return 0;
1641 }
1642 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1643
1644 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1645 {
1646         struct kvm_memory_slot *memslot;
1647
1648         gfn = unalias_gfn(kvm, gfn);
1649         memslot = gfn_to_memslot_unaliased(kvm, gfn);
1650         if (memslot && memslot->dirty_bitmap) {
1651                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1652
1653                 /* avoid RMW */
1654                 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1655                         set_bit(rel_gfn, memslot->dirty_bitmap);
1656         }
1657 }
1658
1659 /*
1660  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1661  */
1662 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1663 {
1664         DEFINE_WAIT(wait);
1665
1666         for (;;) {
1667                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1668
1669                 if ((kvm_arch_interrupt_allowed(vcpu) &&
1670                                         kvm_cpu_has_interrupt(vcpu)) ||
1671                                 kvm_arch_vcpu_runnable(vcpu)) {
1672                         set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1673                         break;
1674                 }
1675                 if (kvm_cpu_has_pending_timer(vcpu))
1676                         break;
1677                 if (signal_pending(current))
1678                         break;
1679
1680                 vcpu_put(vcpu);
1681                 schedule();
1682                 vcpu_load(vcpu);
1683         }
1684
1685         finish_wait(&vcpu->wq, &wait);
1686 }
1687
1688 void kvm_resched(struct kvm_vcpu *vcpu)
1689 {
1690         if (!need_resched())
1691                 return;
1692         cond_resched();
1693 }
1694 EXPORT_SYMBOL_GPL(kvm_resched);
1695
1696 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1697 {
1698         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1699         struct page *page;
1700
1701         if (vmf->pgoff == 0)
1702                 page = virt_to_page(vcpu->run);
1703 #ifdef CONFIG_X86
1704         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1705                 page = virt_to_page(vcpu->arch.pio_data);
1706 #endif
1707 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1708         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1709                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1710 #endif
1711         else
1712                 return VM_FAULT_SIGBUS;
1713         get_page(page);
1714         vmf->page = page;
1715         return 0;
1716 }
1717
1718 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1719         .fault = kvm_vcpu_fault,
1720 };
1721
1722 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1723 {
1724         vma->vm_ops = &kvm_vcpu_vm_ops;
1725         return 0;
1726 }
1727
1728 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1729 {
1730         struct kvm_vcpu *vcpu = filp->private_data;
1731
1732         kvm_put_kvm(vcpu->kvm);
1733         return 0;
1734 }
1735
1736 static struct file_operations kvm_vcpu_fops = {
1737         .release        = kvm_vcpu_release,
1738         .unlocked_ioctl = kvm_vcpu_ioctl,
1739         .compat_ioctl   = kvm_vcpu_ioctl,
1740         .mmap           = kvm_vcpu_mmap,
1741 };
1742
1743 /*
1744  * Allocates an inode for the vcpu.
1745  */
1746 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1747 {
1748         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1749 }
1750
1751 /*
1752  * Creates some virtual cpus.  Good luck creating more than one.
1753  */
1754 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1755 {
1756         int r;
1757         struct kvm_vcpu *vcpu, *v;
1758
1759         vcpu = kvm_arch_vcpu_create(kvm, id);
1760         if (IS_ERR(vcpu))
1761                 return PTR_ERR(vcpu);
1762
1763         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1764
1765         r = kvm_arch_vcpu_setup(vcpu);
1766         if (r)
1767                 return r;
1768
1769         mutex_lock(&kvm->lock);
1770         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1771                 r = -EINVAL;
1772                 goto vcpu_destroy;
1773         }
1774
1775         kvm_for_each_vcpu(r, v, kvm)
1776                 if (v->vcpu_id == id) {
1777                         r = -EEXIST;
1778                         goto vcpu_destroy;
1779                 }
1780
1781         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1782
1783         /* Now it's all set up, let userspace reach it */
1784         kvm_get_kvm(kvm);
1785         r = create_vcpu_fd(vcpu);
1786         if (r < 0) {
1787                 kvm_put_kvm(kvm);
1788                 goto vcpu_destroy;
1789         }
1790
1791         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1792         smp_wmb();
1793         atomic_inc(&kvm->online_vcpus);
1794
1795 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1796         if (kvm->bsp_vcpu_id == id)
1797                 kvm->bsp_vcpu = vcpu;
1798 #endif
1799         mutex_unlock(&kvm->lock);
1800         return r;
1801
1802 vcpu_destroy:
1803         mutex_unlock(&kvm->lock);
1804         kvm_arch_vcpu_destroy(vcpu);
1805         return r;
1806 }
1807
1808 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1809 {
1810         if (sigset) {
1811                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1812                 vcpu->sigset_active = 1;
1813                 vcpu->sigset = *sigset;
1814         } else
1815                 vcpu->sigset_active = 0;
1816         return 0;
1817 }
1818
1819 #ifdef __KVM_HAVE_MSIX
1820 static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
1821                                     struct kvm_assigned_msix_nr *entry_nr)
1822 {
1823         int r = 0;
1824         struct kvm_assigned_dev_kernel *adev;
1825
1826         mutex_lock(&kvm->lock);
1827
1828         adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1829                                       entry_nr->assigned_dev_id);
1830         if (!adev) {
1831                 r = -EINVAL;
1832                 goto msix_nr_out;
1833         }
1834
1835         if (adev->entries_nr == 0) {
1836                 adev->entries_nr = entry_nr->entry_nr;
1837                 if (adev->entries_nr == 0 ||
1838                     adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
1839                         r = -EINVAL;
1840                         goto msix_nr_out;
1841                 }
1842
1843                 adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
1844                                                 entry_nr->entry_nr,
1845                                                 GFP_KERNEL);
1846                 if (!adev->host_msix_entries) {
1847                         r = -ENOMEM;
1848                         goto msix_nr_out;
1849                 }
1850                 adev->guest_msix_entries = kzalloc(
1851                                 sizeof(struct kvm_guest_msix_entry) *
1852                                 entry_nr->entry_nr, GFP_KERNEL);
1853                 if (!adev->guest_msix_entries) {
1854                         kfree(adev->host_msix_entries);
1855                         r = -ENOMEM;
1856                         goto msix_nr_out;
1857                 }
1858         } else /* Not allowed set MSI-X number twice */
1859                 r = -EINVAL;
1860 msix_nr_out:
1861         mutex_unlock(&kvm->lock);
1862         return r;
1863 }
1864
1865 static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
1866                                        struct kvm_assigned_msix_entry *entry)
1867 {
1868         int r = 0, i;
1869         struct kvm_assigned_dev_kernel *adev;
1870
1871         mutex_lock(&kvm->lock);
1872
1873         adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
1874                                       entry->assigned_dev_id);
1875
1876         if (!adev) {
1877                 r = -EINVAL;
1878                 goto msix_entry_out;
1879         }
1880
1881         for (i = 0; i < adev->entries_nr; i++)
1882                 if (adev->guest_msix_entries[i].vector == 0 ||
1883                     adev->guest_msix_entries[i].entry == entry->entry) {
1884                         adev->guest_msix_entries[i].entry = entry->entry;
1885                         adev->guest_msix_entries[i].vector = entry->gsi;
1886                         adev->host_msix_entries[i].entry = entry->entry;
1887                         break;
1888                 }
1889         if (i == adev->entries_nr) {
1890                 r = -ENOSPC;
1891                 goto msix_entry_out;
1892         }
1893
1894 msix_entry_out:
1895         mutex_unlock(&kvm->lock);
1896
1897         return r;
1898 }
1899 #endif
1900
1901 static long kvm_vcpu_ioctl(struct file *filp,
1902                            unsigned int ioctl, unsigned long arg)
1903 {
1904         struct kvm_vcpu *vcpu = filp->private_data;
1905         void __user *argp = (void __user *)arg;
1906         int r;
1907         struct kvm_fpu *fpu = NULL;
1908         struct kvm_sregs *kvm_sregs = NULL;
1909
1910         if (vcpu->kvm->mm != current->mm)
1911                 return -EIO;
1912         switch (ioctl) {
1913         case KVM_RUN:
1914                 r = -EINVAL;
1915                 if (arg)
1916                         goto out;
1917                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1918                 break;
1919         case KVM_GET_REGS: {
1920                 struct kvm_regs *kvm_regs;
1921
1922                 r = -ENOMEM;
1923                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1924                 if (!kvm_regs)
1925                         goto out;
1926                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1927                 if (r)
1928                         goto out_free1;
1929                 r = -EFAULT;
1930                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1931                         goto out_free1;
1932                 r = 0;
1933 out_free1:
1934                 kfree(kvm_regs);
1935                 break;
1936         }
1937         case KVM_SET_REGS: {
1938                 struct kvm_regs *kvm_regs;
1939
1940                 r = -ENOMEM;
1941                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1942                 if (!kvm_regs)
1943                         goto out;
1944                 r = -EFAULT;
1945                 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1946                         goto out_free2;
1947                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1948                 if (r)
1949                         goto out_free2;
1950                 r = 0;
1951 out_free2:
1952                 kfree(kvm_regs);
1953                 break;
1954         }
1955         case KVM_GET_SREGS: {
1956                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1957                 r = -ENOMEM;
1958                 if (!kvm_sregs)
1959                         goto out;
1960                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1961                 if (r)
1962                         goto out;
1963                 r = -EFAULT;
1964                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1965                         goto out;
1966                 r = 0;
1967                 break;
1968         }
1969         case KVM_SET_SREGS: {
1970                 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1971                 r = -ENOMEM;
1972                 if (!kvm_sregs)
1973                         goto out;
1974                 r = -EFAULT;
1975                 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1976                         goto out;
1977                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1978                 if (r)
1979                         goto out;
1980                 r = 0;
1981                 break;
1982         }
1983         case KVM_GET_MP_STATE: {
1984                 struct kvm_mp_state mp_state;
1985
1986                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1987                 if (r)
1988                         goto out;
1989                 r = -EFAULT;
1990                 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1991                         goto out;
1992                 r = 0;
1993                 break;
1994         }
1995         case KVM_SET_MP_STATE: {
1996                 struct kvm_mp_state mp_state;
1997
1998                 r = -EFAULT;
1999                 if (copy_from_user(&mp_state, argp, sizeof mp_state))
2000                         goto out;
2001                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2002                 if (r)
2003                         goto out;
2004                 r = 0;
2005                 break;
2006         }
2007         case KVM_TRANSLATE: {
2008                 struct kvm_translation tr;
2009
2010                 r = -EFAULT;
2011                 if (copy_from_user(&tr, argp, sizeof tr))
2012                         goto out;
2013                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2014                 if (r)
2015                         goto out;
2016                 r = -EFAULT;
2017                 if (copy_to_user(argp, &tr, sizeof tr))
2018                         goto out;
2019                 r = 0;
2020                 break;
2021         }
2022         case KVM_SET_GUEST_DEBUG: {
2023                 struct kvm_guest_debug dbg;
2024
2025                 r = -EFAULT;
2026                 if (copy_from_user(&dbg, argp, sizeof dbg))
2027                         goto out;
2028                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2029                 if (r)
2030                         goto out;
2031                 r = 0;
2032                 break;
2033         }
2034         case KVM_SET_SIGNAL_MASK: {
2035                 struct kvm_signal_mask __user *sigmask_arg = argp;
2036                 struct kvm_signal_mask kvm_sigmask;
2037                 sigset_t sigset, *p;
2038
2039                 p = NULL;
2040                 if (argp) {
2041                         r = -EFAULT;
2042                         if (copy_from_user(&kvm_sigmask, argp,
2043                                            sizeof kvm_sigmask))
2044                                 goto out;
2045                         r = -EINVAL;
2046                         if (kvm_sigmask.len != sizeof sigset)
2047                                 goto out;
2048                         r = -EFAULT;
2049                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2050                                            sizeof sigset))
2051                                 goto out;
2052                         p = &sigset;
2053                 }
2054                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2055                 break;
2056         }
2057         case KVM_GET_FPU: {
2058                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2059                 r = -ENOMEM;
2060                 if (!fpu)
2061                         goto out;
2062                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2063                 if (r)
2064                         goto out;
2065                 r = -EFAULT;
2066                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2067                         goto out;
2068                 r = 0;
2069                 break;
2070         }
2071         case KVM_SET_FPU: {
2072                 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2073                 r = -ENOMEM;
2074                 if (!fpu)
2075                         goto out;
2076                 r = -EFAULT;
2077                 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
2078                         goto out;
2079                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2080                 if (r)
2081                         goto out;
2082                 r = 0;
2083                 break;
2084         }
2085         default:
2086                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2087         }
2088 out:
2089         kfree(fpu);
2090         kfree(kvm_sregs);
2091         return r;
2092 }
2093
2094 static long kvm_vm_ioctl(struct file *filp,
2095                            unsigned int ioctl, unsigned long arg)
2096 {
2097         struct kvm *kvm = filp->private_data;
2098         void __user *argp = (void __user *)arg;
2099         int r;
2100
2101         if (kvm->mm != current->mm)
2102                 return -EIO;
2103         switch (ioctl) {
2104         case KVM_CREATE_VCPU:
2105                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2106                 if (r < 0)
2107                         goto out;
2108                 break;
2109         case KVM_SET_USER_MEMORY_REGION: {
2110                 struct kvm_userspace_memory_region kvm_userspace_mem;
2111
2112                 r = -EFAULT;
2113                 if (copy_from_user(&kvm_userspace_mem, argp,
2114                                                 sizeof kvm_userspace_mem))
2115                         goto out;
2116
2117                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2118                 if (r)
2119                         goto out;
2120                 break;
2121         }
2122         case KVM_GET_DIRTY_LOG: {
2123                 struct kvm_dirty_log log;
2124
2125                 r = -EFAULT;
2126                 if (copy_from_user(&log, argp, sizeof log))
2127                         goto out;
2128                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2129                 if (r)
2130                         goto out;
2131                 break;
2132         }
2133 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2134         case KVM_REGISTER_COALESCED_MMIO: {
2135                 struct kvm_coalesced_mmio_zone zone;
2136                 r = -EFAULT;
2137                 if (copy_from_user(&zone, argp, sizeof zone))
2138                         goto out;
2139                 r = -ENXIO;
2140                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2141                 if (r)
2142                         goto out;
2143                 r = 0;
2144                 break;
2145         }
2146         case KVM_UNREGISTER_COALESCED_MMIO: {
2147                 struct kvm_coalesced_mmio_zone zone;
2148                 r = -EFAULT;
2149                 if (copy_from_user(&zone, argp, sizeof zone))
2150                         goto out;
2151                 r = -ENXIO;
2152                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2153                 if (r)
2154                         goto out;
2155                 r = 0;
2156                 break;
2157         }
2158 #endif
2159 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
2160         case KVM_ASSIGN_PCI_DEVICE: {
2161                 struct kvm_assigned_pci_dev assigned_dev;
2162
2163                 r = -EFAULT;
2164                 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2165                         goto out;
2166                 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
2167                 if (r)
2168                         goto out;
2169                 break;
2170         }
2171         case KVM_ASSIGN_IRQ: {
2172                 r = -EOPNOTSUPP;
2173                 break;
2174         }
2175 #ifdef KVM_CAP_ASSIGN_DEV_IRQ
2176         case KVM_ASSIGN_DEV_IRQ: {
2177                 struct kvm_assigned_irq assigned_irq;
2178
2179                 r = -EFAULT;
2180                 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2181                         goto out;
2182                 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
2183                 if (r)
2184                         goto out;
2185                 break;
2186         }
2187         case KVM_DEASSIGN_DEV_IRQ: {
2188                 struct kvm_assigned_irq assigned_irq;
2189
2190                 r = -EFAULT;
2191                 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
2192                         goto out;
2193                 r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
2194                 if (r)
2195                         goto out;
2196                 break;
2197         }
2198 #endif
2199 #endif
2200 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
2201         case KVM_DEASSIGN_PCI_DEVICE: {
2202                 struct kvm_assigned_pci_dev assigned_dev;
2203
2204                 r = -EFAULT;
2205                 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
2206                         goto out;
2207                 r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
2208                 if (r)
2209                         goto out;
2210                 break;
2211         }
2212 #endif
2213 #ifdef KVM_CAP_IRQ_ROUTING
2214         case KVM_SET_GSI_ROUTING: {
2215                 struct kvm_irq_routing routing;
2216                 struct kvm_irq_routing __user *urouting;
2217                 struct kvm_irq_routing_entry *entries;
2218
2219                 r = -EFAULT;
2220                 if (copy_from_user(&routing, argp, sizeof(routing)))
2221                         goto out;
2222                 r = -EINVAL;
2223                 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2224                         goto out;
2225                 if (routing.flags)
2226                         goto out;
2227                 r = -ENOMEM;
2228                 entries = vmalloc(routing.nr * sizeof(*entries));
2229                 if (!entries)
2230                         goto out;
2231                 r = -EFAULT;
2232                 urouting = argp;
2233                 if (copy_from_user(entries, urouting->entries,
2234                                    routing.nr * sizeof(*entries)))
2235                         goto out_free_irq_routing;
2236                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2237                                         routing.flags);
2238         out_free_irq_routing:
2239                 vfree(entries);
2240                 break;
2241         }
2242 #ifdef __KVM_HAVE_MSIX
2243         case KVM_ASSIGN_SET_MSIX_NR: {
2244                 struct kvm_assigned_msix_nr entry_nr;
2245                 r = -EFAULT;
2246                 if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
2247                         goto out;
2248                 r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
2249                 if (r)
2250                         goto out;
2251                 break;
2252         }
2253         case KVM_ASSIGN_SET_MSIX_ENTRY: {
2254                 struct kvm_assigned_msix_entry entry;
2255                 r = -EFAULT;
2256                 if (copy_from_user(&entry, argp, sizeof entry))
2257                         goto out;
2258                 r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
2259                 if (r)
2260                         goto out;
2261                 break;
2262         }
2263 #endif
2264 #endif /* KVM_CAP_IRQ_ROUTING */
2265         case KVM_IRQFD: {
2266                 struct kvm_irqfd data;
2267
2268                 r = -EFAULT;
2269                 if (copy_from_user(&data, argp, sizeof data))
2270                         goto out;
2271                 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2272                 break;
2273         }
2274 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2275         case KVM_SET_BOOT_CPU_ID:
2276                 r = 0;
2277                 if (atomic_read(&kvm->online_vcpus) != 0)
2278                         r = -EBUSY;
2279                 else
2280                         kvm->bsp_vcpu_id = arg;
2281                 break;
2282 #endif
2283         default:
2284                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2285         }
2286 out:
2287         return r;
2288 }
2289
2290 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2291 {
2292         struct page *page[1];
2293         unsigned long addr;
2294         int npages;
2295         gfn_t gfn = vmf->pgoff;
2296         struct kvm *kvm = vma->vm_file->private_data;
2297
2298         addr = gfn_to_hva(kvm, gfn);
2299         if (kvm_is_error_hva(addr))
2300                 return VM_FAULT_SIGBUS;
2301
2302         npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2303                                 NULL);
2304         if (unlikely(npages != 1))
2305                 return VM_FAULT_SIGBUS;
2306
2307         vmf->page = page[0];
2308         return 0;
2309 }
2310
2311 static struct vm_operations_struct kvm_vm_vm_ops = {
2312         .fault = kvm_vm_fault,
2313 };
2314
2315 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2316 {
2317         vma->vm_ops = &kvm_vm_vm_ops;
2318         return 0;
2319 }
2320
2321 static struct file_operations kvm_vm_fops = {
2322         .release        = kvm_vm_release,
2323         .unlocked_ioctl = kvm_vm_ioctl,
2324         .compat_ioctl   = kvm_vm_ioctl,
2325         .mmap           = kvm_vm_mmap,
2326 };
2327
2328 static int kvm_dev_ioctl_create_vm(void)
2329 {
2330         int fd;
2331         struct kvm *kvm;
2332
2333         kvm = kvm_create_vm();
2334         if (IS_ERR(kvm))
2335                 return PTR_ERR(kvm);
2336         fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
2337         if (fd < 0)
2338                 kvm_put_kvm(kvm);
2339
2340         return fd;
2341 }
2342
2343 static long kvm_dev_ioctl_check_extension_generic(long arg)
2344 {
2345         switch (arg) {
2346         case KVM_CAP_USER_MEMORY:
2347         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2348         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2349 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2350         case KVM_CAP_SET_BOOT_CPU_ID:
2351 #endif
2352                 return 1;
2353 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2354         case KVM_CAP_IRQ_ROUTING:
2355                 return KVM_MAX_IRQ_ROUTES;
2356 #endif
2357         default:
2358                 break;
2359         }
2360         return kvm_dev_ioctl_check_extension(arg);
2361 }
2362
2363 static long kvm_dev_ioctl(struct file *filp,
2364                           unsigned int ioctl, unsigned long arg)
2365 {
2366         long r = -EINVAL;
2367
2368         switch (ioctl) {
2369         case KVM_GET_API_VERSION:
2370                 r = -EINVAL;
2371                 if (arg)
2372                         goto out;
2373                 r = KVM_API_VERSION;
2374                 break;
2375         case KVM_CREATE_VM:
2376                 r = -EINVAL;
2377                 if (arg)
2378                         goto out;
2379                 r = kvm_dev_ioctl_create_vm();
2380                 break;
2381         case KVM_CHECK_EXTENSION:
2382                 r = kvm_dev_ioctl_check_extension_generic(arg);
2383                 break;
2384         case KVM_GET_VCPU_MMAP_SIZE:
2385                 r = -EINVAL;
2386                 if (arg)
2387                         goto out;
2388                 r = PAGE_SIZE;     /* struct kvm_run */
2389 #ifdef CONFIG_X86
2390                 r += PAGE_SIZE;    /* pio data page */
2391 #endif
2392 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2393                 r += PAGE_SIZE;    /* coalesced mmio ring page */
2394 #endif
2395                 break;
2396         case KVM_TRACE_ENABLE:
2397         case KVM_TRACE_PAUSE:
2398         case KVM_TRACE_DISABLE:
2399                 r = kvm_trace_ioctl(ioctl, arg);
2400                 break;
2401         default:
2402                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2403         }
2404 out:
2405         return r;
2406 }
2407
2408 static struct file_operations kvm_chardev_ops = {
2409         .unlocked_ioctl = kvm_dev_ioctl,
2410         .compat_ioctl   = kvm_dev_ioctl,
2411 };
2412
2413 static struct miscdevice kvm_dev = {
2414         KVM_MINOR,
2415         "kvm",
2416         &kvm_chardev_ops,
2417 };
2418
2419 static void hardware_enable(void *junk)
2420 {
2421         int cpu = raw_smp_processor_id();
2422
2423         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2424                 return;
2425         cpumask_set_cpu(cpu, cpus_hardware_enabled);
2426         kvm_arch_hardware_enable(NULL);
2427 }
2428
2429 static void hardware_disable(void *junk)
2430 {
2431         int cpu = raw_smp_processor_id();
2432
2433         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2434                 return;
2435         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2436         kvm_arch_hardware_disable(NULL);
2437 }
2438
2439 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2440                            void *v)
2441 {
2442         int cpu = (long)v;
2443
2444         val &= ~CPU_TASKS_FROZEN;
2445         switch (val) {
2446         case CPU_DYING:
2447                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2448                        cpu);
2449                 hardware_disable(NULL);
2450                 break;
2451         case CPU_UP_CANCELED:
2452                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2453                        cpu);
2454                 smp_call_function_single(cpu, hardware_disable, NULL, 1);
2455                 break;
2456         case CPU_ONLINE:
2457                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2458                        cpu);
2459                 smp_call_function_single(cpu, hardware_enable, NULL, 1);
2460                 break;
2461         }
2462         return NOTIFY_OK;
2463 }
2464
2465
2466 asmlinkage void kvm_handle_fault_on_reboot(void)
2467 {
2468         if (kvm_rebooting)
2469                 /* spin while reset goes on */
2470                 while (true)
2471                         ;
2472         /* Fault while not rebooting.  We want the trace. */
2473         BUG();
2474 }
2475 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2476
2477 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2478                       void *v)
2479 {
2480         /*
2481          * Some (well, at least mine) BIOSes hang on reboot if
2482          * in vmx root mode.
2483          *
2484          * And Intel TXT required VMX off for all cpu when system shutdown.
2485          */
2486         printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2487         kvm_rebooting = true;
2488         on_each_cpu(hardware_disable, NULL, 1);
2489         return NOTIFY_OK;
2490 }
2491
2492 static struct notifier_block kvm_reboot_notifier = {
2493         .notifier_call = kvm_reboot,
2494         .priority = 0,
2495 };
2496
2497 void kvm_io_bus_init(struct kvm_io_bus *bus)
2498 {
2499         memset(bus, 0, sizeof(*bus));
2500 }
2501
2502 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2503 {
2504         int i;
2505
2506         for (i = 0; i < bus->dev_count; i++) {
2507                 struct kvm_io_device *pos = bus->devs[i];
2508
2509                 kvm_iodevice_destructor(pos);
2510         }
2511 }
2512
2513 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
2514                                           gpa_t addr, int len, int is_write)
2515 {
2516         int i;
2517
2518         for (i = 0; i < bus->dev_count; i++) {
2519                 struct kvm_io_device *pos = bus->devs[i];
2520
2521                 if (kvm_iodevice_in_range(pos, addr, len, is_write))
2522                         return pos;
2523         }
2524
2525         return NULL;
2526 }
2527
2528 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2529 {
2530         BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2531
2532         bus->devs[bus->dev_count++] = dev;
2533 }
2534
2535 static struct notifier_block kvm_cpu_notifier = {
2536         .notifier_call = kvm_cpu_hotplug,
2537         .priority = 20, /* must be > scheduler priority */
2538 };
2539
2540 static int vm_stat_get(void *_offset, u64 *val)
2541 {
2542         unsigned offset = (long)_offset;
2543         struct kvm *kvm;
2544
2545         *val = 0;
2546         spin_lock(&kvm_lock);
2547         list_for_each_entry(kvm, &vm_list, vm_list)
2548                 *val += *(u32 *)((void *)kvm + offset);
2549         spin_unlock(&kvm_lock);
2550         return 0;
2551 }
2552
2553 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2554
2555 static int vcpu_stat_get(void *_offset, u64 *val)
2556 {
2557         unsigned offset = (long)_offset;
2558         struct kvm *kvm;
2559         struct kvm_vcpu *vcpu;
2560         int i;
2561
2562         *val = 0;
2563         spin_lock(&kvm_lock);
2564         list_for_each_entry(kvm, &vm_list, vm_list)
2565                 kvm_for_each_vcpu(i, vcpu, kvm)
2566                         *val += *(u32 *)((void *)vcpu + offset);
2567
2568         spin_unlock(&kvm_lock);
2569         return 0;
2570 }
2571
2572 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2573
2574 static struct file_operations *stat_fops[] = {
2575         [KVM_STAT_VCPU] = &vcpu_stat_fops,
2576         [KVM_STAT_VM]   = &vm_stat_fops,
2577 };
2578
2579 static void kvm_init_debug(void)
2580 {
2581         struct kvm_stats_debugfs_item *p;
2582
2583         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2584         for (p = debugfs_entries; p->name; ++p)
2585                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2586                                                 (void *)(long)p->offset,
2587                                                 stat_fops[p->kind]);
2588 }
2589
2590 static void kvm_exit_debug(void)
2591 {
2592         struct kvm_stats_debugfs_item *p;
2593
2594         for (p = debugfs_entries; p->name; ++p)
2595                 debugfs_remove(p->dentry);
2596         debugfs_remove(kvm_debugfs_dir);
2597 }
2598
2599 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2600 {
2601         hardware_disable(NULL);
2602         return 0;
2603 }
2604
2605 static int kvm_resume(struct sys_device *dev)
2606 {
2607         hardware_enable(NULL);
2608         return 0;
2609 }
2610
2611 static struct sysdev_class kvm_sysdev_class = {
2612         .name = "kvm",
2613         .suspend = kvm_suspend,
2614         .resume = kvm_resume,
2615 };
2616
2617 static struct sys_device kvm_sysdev = {
2618         .id = 0,
2619         .cls = &kvm_sysdev_class,
2620 };
2621
2622 struct page *bad_page;
2623 pfn_t bad_pfn;
2624
2625 static inline
2626 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2627 {
2628         return container_of(pn, struct kvm_vcpu, preempt_notifier);
2629 }
2630
2631 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2632 {
2633         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2634
2635         kvm_arch_vcpu_load(vcpu, cpu);
2636 }
2637
2638 static void kvm_sched_out(struct preempt_notifier *pn,
2639                           struct task_struct *next)
2640 {
2641         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2642
2643         kvm_arch_vcpu_put(vcpu);
2644 }
2645
2646 int kvm_init(void *opaque, unsigned int vcpu_size,
2647                   struct module *module)
2648 {
2649         int r;
2650         int cpu;
2651
2652         kvm_init_debug();
2653
2654         r = kvm_arch_init(opaque);
2655         if (r)
2656                 goto out_fail;
2657
2658         bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2659
2660         if (bad_page == NULL) {
2661                 r = -ENOMEM;
2662                 goto out;
2663         }
2664
2665         bad_pfn = page_to_pfn(bad_page);
2666
2667         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2668                 r = -ENOMEM;
2669                 goto out_free_0;
2670         }
2671
2672         r = kvm_arch_hardware_setup();
2673         if (r < 0)
2674                 goto out_free_0a;
2675
2676         for_each_online_cpu(cpu) {
2677                 smp_call_function_single(cpu,
2678                                 kvm_arch_check_processor_compat,
2679                                 &r, 1);
2680                 if (r < 0)
2681                         goto out_free_1;
2682         }
2683
2684         on_each_cpu(hardware_enable, NULL, 1);
2685         r = register_cpu_notifier(&kvm_cpu_notifier);
2686         if (r)
2687                 goto out_free_2;
2688         register_reboot_notifier(&kvm_reboot_notifier);
2689
2690         r = sysdev_class_register(&kvm_sysdev_class);
2691         if (r)
2692                 goto out_free_3;
2693
2694         r = sysdev_register(&kvm_sysdev);
2695         if (r)
2696                 goto out_free_4;
2697
2698         /* A kmem cache lets us meet the alignment requirements of fx_save. */
2699         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2700                                            __alignof__(struct kvm_vcpu),
2701                                            0, NULL);
2702         if (!kvm_vcpu_cache) {
2703                 r = -ENOMEM;
2704                 goto out_free_5;
2705         }
2706
2707         kvm_chardev_ops.owner = module;
2708         kvm_vm_fops.owner = module;
2709         kvm_vcpu_fops.owner = module;
2710
2711         r = misc_register(&kvm_dev);
2712         if (r) {
2713                 printk(KERN_ERR "kvm: misc device register failed\n");
2714                 goto out_free;
2715         }
2716
2717         kvm_preempt_ops.sched_in = kvm_sched_in;
2718         kvm_preempt_ops.sched_out = kvm_sched_out;
2719
2720         return 0;
2721
2722 out_free:
2723         kmem_cache_destroy(kvm_vcpu_cache);
2724 out_free_5:
2725         sysdev_unregister(&kvm_sysdev);
2726 out_free_4:
2727         sysdev_class_unregister(&kvm_sysdev_class);
2728 out_free_3:
2729         unregister_reboot_notifier(&kvm_reboot_notifier);
2730         unregister_cpu_notifier(&kvm_cpu_notifier);
2731 out_free_2:
2732         on_each_cpu(hardware_disable, NULL, 1);
2733 out_free_1:
2734         kvm_arch_hardware_unsetup();
2735 out_free_0a:
2736         free_cpumask_var(cpus_hardware_enabled);
2737 out_free_0:
2738         __free_page(bad_page);
2739 out:
2740         kvm_arch_exit();
2741         kvm_exit_debug();
2742 out_fail:
2743         return r;
2744 }
2745 EXPORT_SYMBOL_GPL(kvm_init);
2746
2747 void kvm_exit(void)
2748 {
2749         kvm_trace_cleanup();
2750         tracepoint_synchronize_unregister();
2751         misc_deregister(&kvm_dev);
2752         kmem_cache_destroy(kvm_vcpu_cache);
2753         sysdev_unregister(&kvm_sysdev);
2754         sysdev_class_unregister(&kvm_sysdev_class);
2755         unregister_reboot_notifier(&kvm_reboot_notifier);
2756         unregister_cpu_notifier(&kvm_cpu_notifier);
2757         on_each_cpu(hardware_disable, NULL, 1);
2758         kvm_arch_hardware_unsetup();
2759         kvm_arch_exit();
2760         kvm_exit_debug();
2761         free_cpumask_var(cpus_hardware_enabled);
2762         __free_page(bad_page);
2763 }
2764 EXPORT_SYMBOL_GPL(kvm_exit);