perf timechart: Adjust perf timechart to the new power events
[linux-2.6.git] / tools / perf / builtin-timechart.c
1 /*
2  * builtin-timechart.c - make an svg timechart of system activity
3  *
4  * (C) Copyright 2009 Intel Corporation
5  *
6  * Authors:
7  *     Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; version 2
12  * of the License.
13  */
14
15 #include "builtin.h"
16
17 #include "util/util.h"
18
19 #include "util/color.h"
20 #include <linux/list.h>
21 #include "util/cache.h"
22 #include <linux/rbtree.h>
23 #include "util/symbol.h"
24 #include "util/callchain.h"
25 #include "util/strlist.h"
26
27 #include "perf.h"
28 #include "util/header.h"
29 #include "util/parse-options.h"
30 #include "util/parse-events.h"
31 #include "util/event.h"
32 #include "util/session.h"
33 #include "util/svghelper.h"
34
35 #define SUPPORT_OLD_POWER_EVENTS 1
36 #define PWR_EVENT_EXIT -1
37
38
39 static char             const *input_name = "perf.data";
40 static char             const *output_name = "output.svg";
41
42 static unsigned int     numcpus;
43 static u64              min_freq;       /* Lowest CPU frequency seen */
44 static u64              max_freq;       /* Highest CPU frequency seen */
45 static u64              turbo_frequency;
46
47 static u64              first_time, last_time;
48
49 static bool             power_only;
50
51
52 struct per_pid;
53 struct per_pidcomm;
54
55 struct cpu_sample;
56 struct power_event;
57 struct wake_event;
58
59 struct sample_wrapper;
60
61 /*
62  * Datastructure layout:
63  * We keep an list of "pid"s, matching the kernels notion of a task struct.
64  * Each "pid" entry, has a list of "comm"s.
65  *      this is because we want to track different programs different, while
66  *      exec will reuse the original pid (by design).
67  * Each comm has a list of samples that will be used to draw
68  * final graph.
69  */
70
71 struct per_pid {
72         struct per_pid *next;
73
74         int             pid;
75         int             ppid;
76
77         u64             start_time;
78         u64             end_time;
79         u64             total_time;
80         int             display;
81
82         struct per_pidcomm *all;
83         struct per_pidcomm *current;
84 };
85
86
87 struct per_pidcomm {
88         struct per_pidcomm *next;
89
90         u64             start_time;
91         u64             end_time;
92         u64             total_time;
93
94         int             Y;
95         int             display;
96
97         long            state;
98         u64             state_since;
99
100         char            *comm;
101
102         struct cpu_sample *samples;
103 };
104
105 struct sample_wrapper {
106         struct sample_wrapper *next;
107
108         u64             timestamp;
109         unsigned char   data[0];
110 };
111
112 #define TYPE_NONE       0
113 #define TYPE_RUNNING    1
114 #define TYPE_WAITING    2
115 #define TYPE_BLOCKED    3
116
117 struct cpu_sample {
118         struct cpu_sample *next;
119
120         u64 start_time;
121         u64 end_time;
122         int type;
123         int cpu;
124 };
125
126 static struct per_pid *all_data;
127
128 #define CSTATE 1
129 #define PSTATE 2
130
131 struct power_event {
132         struct power_event *next;
133         int type;
134         int state;
135         u64 start_time;
136         u64 end_time;
137         int cpu;
138 };
139
140 struct wake_event {
141         struct wake_event *next;
142         int waker;
143         int wakee;
144         u64 time;
145 };
146
147 static struct power_event    *power_events;
148 static struct wake_event     *wake_events;
149
150 struct process_filter;
151 struct process_filter {
152         char                    *name;
153         int                     pid;
154         struct process_filter   *next;
155 };
156
157 static struct process_filter *process_filter;
158
159
160 static struct per_pid *find_create_pid(int pid)
161 {
162         struct per_pid *cursor = all_data;
163
164         while (cursor) {
165                 if (cursor->pid == pid)
166                         return cursor;
167                 cursor = cursor->next;
168         }
169         cursor = malloc(sizeof(struct per_pid));
170         assert(cursor != NULL);
171         memset(cursor, 0, sizeof(struct per_pid));
172         cursor->pid = pid;
173         cursor->next = all_data;
174         all_data = cursor;
175         return cursor;
176 }
177
178 static void pid_set_comm(int pid, char *comm)
179 {
180         struct per_pid *p;
181         struct per_pidcomm *c;
182         p = find_create_pid(pid);
183         c = p->all;
184         while (c) {
185                 if (c->comm && strcmp(c->comm, comm) == 0) {
186                         p->current = c;
187                         return;
188                 }
189                 if (!c->comm) {
190                         c->comm = strdup(comm);
191                         p->current = c;
192                         return;
193                 }
194                 c = c->next;
195         }
196         c = malloc(sizeof(struct per_pidcomm));
197         assert(c != NULL);
198         memset(c, 0, sizeof(struct per_pidcomm));
199         c->comm = strdup(comm);
200         p->current = c;
201         c->next = p->all;
202         p->all = c;
203 }
204
205 static void pid_fork(int pid, int ppid, u64 timestamp)
206 {
207         struct per_pid *p, *pp;
208         p = find_create_pid(pid);
209         pp = find_create_pid(ppid);
210         p->ppid = ppid;
211         if (pp->current && pp->current->comm && !p->current)
212                 pid_set_comm(pid, pp->current->comm);
213
214         p->start_time = timestamp;
215         if (p->current) {
216                 p->current->start_time = timestamp;
217                 p->current->state_since = timestamp;
218         }
219 }
220
221 static void pid_exit(int pid, u64 timestamp)
222 {
223         struct per_pid *p;
224         p = find_create_pid(pid);
225         p->end_time = timestamp;
226         if (p->current)
227                 p->current->end_time = timestamp;
228 }
229
230 static void
231 pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
232 {
233         struct per_pid *p;
234         struct per_pidcomm *c;
235         struct cpu_sample *sample;
236
237         p = find_create_pid(pid);
238         c = p->current;
239         if (!c) {
240                 c = malloc(sizeof(struct per_pidcomm));
241                 assert(c != NULL);
242                 memset(c, 0, sizeof(struct per_pidcomm));
243                 p->current = c;
244                 c->next = p->all;
245                 p->all = c;
246         }
247
248         sample = malloc(sizeof(struct cpu_sample));
249         assert(sample != NULL);
250         memset(sample, 0, sizeof(struct cpu_sample));
251         sample->start_time = start;
252         sample->end_time = end;
253         sample->type = type;
254         sample->next = c->samples;
255         sample->cpu = cpu;
256         c->samples = sample;
257
258         if (sample->type == TYPE_RUNNING && end > start && start > 0) {
259                 c->total_time += (end-start);
260                 p->total_time += (end-start);
261         }
262
263         if (c->start_time == 0 || c->start_time > start)
264                 c->start_time = start;
265         if (p->start_time == 0 || p->start_time > start)
266                 p->start_time = start;
267
268         if (cpu > numcpus)
269                 numcpus = cpu;
270 }
271
272 #define MAX_CPUS 4096
273
274 static u64 cpus_cstate_start_times[MAX_CPUS];
275 static int cpus_cstate_state[MAX_CPUS];
276 static u64 cpus_pstate_start_times[MAX_CPUS];
277 static u64 cpus_pstate_state[MAX_CPUS];
278
279 static int process_comm_event(event_t *event, struct sample_data *sample __used,
280                               struct perf_session *session __used)
281 {
282         pid_set_comm(event->comm.tid, event->comm.comm);
283         return 0;
284 }
285
286 static int process_fork_event(event_t *event, struct sample_data *sample __used,
287                               struct perf_session *session __used)
288 {
289         pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
290         return 0;
291 }
292
293 static int process_exit_event(event_t *event, struct sample_data *sample __used,
294                               struct perf_session *session __used)
295 {
296         pid_exit(event->fork.pid, event->fork.time);
297         return 0;
298 }
299
300 struct trace_entry {
301         unsigned short          type;
302         unsigned char           flags;
303         unsigned char           preempt_count;
304         int                     pid;
305         int                     lock_depth;
306 };
307
308 #ifdef SUPPORT_OLD_POWER_EVENTS
309 static int use_old_power_events;
310 struct power_entry_old {
311         struct trace_entry te;
312         u64     type;
313         u64     value;
314         u64     cpu_id;
315 };
316 #endif
317
318 struct power_processor_entry {
319         struct trace_entry te;
320         u32     state;
321         u32     cpu_id;
322 };
323
324 #define TASK_COMM_LEN 16
325 struct wakeup_entry {
326         struct trace_entry te;
327         char comm[TASK_COMM_LEN];
328         int   pid;
329         int   prio;
330         int   success;
331 };
332
333 /*
334  * trace_flag_type is an enumeration that holds different
335  * states when a trace occurs. These are:
336  *  IRQS_OFF            - interrupts were disabled
337  *  IRQS_NOSUPPORT      - arch does not support irqs_disabled_flags
338  *  NEED_RESCED         - reschedule is requested
339  *  HARDIRQ             - inside an interrupt handler
340  *  SOFTIRQ             - inside a softirq handler
341  */
342 enum trace_flag_type {
343         TRACE_FLAG_IRQS_OFF             = 0x01,
344         TRACE_FLAG_IRQS_NOSUPPORT       = 0x02,
345         TRACE_FLAG_NEED_RESCHED         = 0x04,
346         TRACE_FLAG_HARDIRQ              = 0x08,
347         TRACE_FLAG_SOFTIRQ              = 0x10,
348 };
349
350
351
352 struct sched_switch {
353         struct trace_entry te;
354         char prev_comm[TASK_COMM_LEN];
355         int  prev_pid;
356         int  prev_prio;
357         long prev_state; /* Arjan weeps. */
358         char next_comm[TASK_COMM_LEN];
359         int  next_pid;
360         int  next_prio;
361 };
362
363 static void c_state_start(int cpu, u64 timestamp, int state)
364 {
365         cpus_cstate_start_times[cpu] = timestamp;
366         cpus_cstate_state[cpu] = state;
367 }
368
369 static void c_state_end(int cpu, u64 timestamp)
370 {
371         struct power_event *pwr;
372         pwr = malloc(sizeof(struct power_event));
373         if (!pwr)
374                 return;
375         memset(pwr, 0, sizeof(struct power_event));
376
377         pwr->state = cpus_cstate_state[cpu];
378         pwr->start_time = cpus_cstate_start_times[cpu];
379         pwr->end_time = timestamp;
380         pwr->cpu = cpu;
381         pwr->type = CSTATE;
382         pwr->next = power_events;
383
384         power_events = pwr;
385 }
386
387 static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
388 {
389         struct power_event *pwr;
390         pwr = malloc(sizeof(struct power_event));
391
392         if (new_freq > 8000000) /* detect invalid data */
393                 return;
394
395         if (!pwr)
396                 return;
397         memset(pwr, 0, sizeof(struct power_event));
398
399         pwr->state = cpus_pstate_state[cpu];
400         pwr->start_time = cpus_pstate_start_times[cpu];
401         pwr->end_time = timestamp;
402         pwr->cpu = cpu;
403         pwr->type = PSTATE;
404         pwr->next = power_events;
405
406         if (!pwr->start_time)
407                 pwr->start_time = first_time;
408
409         power_events = pwr;
410
411         cpus_pstate_state[cpu] = new_freq;
412         cpus_pstate_start_times[cpu] = timestamp;
413
414         if ((u64)new_freq > max_freq)
415                 max_freq = new_freq;
416
417         if (new_freq < min_freq || min_freq == 0)
418                 min_freq = new_freq;
419
420         if (new_freq == max_freq - 1000)
421                         turbo_frequency = max_freq;
422 }
423
424 static void
425 sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
426 {
427         struct wake_event *we;
428         struct per_pid *p;
429         struct wakeup_entry *wake = (void *)te;
430
431         we = malloc(sizeof(struct wake_event));
432         if (!we)
433                 return;
434
435         memset(we, 0, sizeof(struct wake_event));
436         we->time = timestamp;
437         we->waker = pid;
438
439         if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
440                 we->waker = -1;
441
442         we->wakee = wake->pid;
443         we->next = wake_events;
444         wake_events = we;
445         p = find_create_pid(we->wakee);
446
447         if (p && p->current && p->current->state == TYPE_NONE) {
448                 p->current->state_since = timestamp;
449                 p->current->state = TYPE_WAITING;
450         }
451         if (p && p->current && p->current->state == TYPE_BLOCKED) {
452                 pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
453                 p->current->state_since = timestamp;
454                 p->current->state = TYPE_WAITING;
455         }
456 }
457
458 static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
459 {
460         struct per_pid *p = NULL, *prev_p;
461         struct sched_switch *sw = (void *)te;
462
463
464         prev_p = find_create_pid(sw->prev_pid);
465
466         p = find_create_pid(sw->next_pid);
467
468         if (prev_p->current && prev_p->current->state != TYPE_NONE)
469                 pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
470         if (p && p->current) {
471                 if (p->current->state != TYPE_NONE)
472                         pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
473
474                 p->current->state_since = timestamp;
475                 p->current->state = TYPE_RUNNING;
476         }
477
478         if (prev_p->current) {
479                 prev_p->current->state = TYPE_NONE;
480                 prev_p->current->state_since = timestamp;
481                 if (sw->prev_state & 2)
482                         prev_p->current->state = TYPE_BLOCKED;
483                 if (sw->prev_state == 0)
484                         prev_p->current->state = TYPE_WAITING;
485         }
486 }
487
488
489 static int process_sample_event(event_t *event __used,
490                                 struct sample_data *sample,
491                                 struct perf_session *session)
492 {
493         struct trace_entry *te;
494
495         if (session->sample_type & PERF_SAMPLE_TIME) {
496                 if (!first_time || first_time > sample->time)
497                         first_time = sample->time;
498                 if (last_time < sample->time)
499                         last_time = sample->time;
500         }
501
502         te = (void *)sample->raw_data;
503         if (session->sample_type & PERF_SAMPLE_RAW && sample->raw_size > 0) {
504                 char *event_str;
505 #ifdef SUPPORT_OLD_POWER_EVENTS
506                 struct power_entry_old *peo;
507                 peo = (void *)te;
508 #endif
509                 event_str = perf_header__find_event(te->type);
510
511                 if (!event_str)
512                         return 0;
513
514                 if (strcmp(event_str, "power:cpu_idle") == 0) {
515                         struct power_processor_entry *ppe = (void *)te;
516                         if (ppe->state == (u32)PWR_EVENT_EXIT)
517                                 c_state_end(ppe->cpu_id, sample->time);
518                         else
519                                 c_state_start(ppe->cpu_id, sample->time,
520                                               ppe->state);
521                 }
522                 else if (strcmp(event_str, "power:cpu_frequency") == 0) {
523                         struct power_processor_entry *ppe = (void *)te;
524                         p_state_change(ppe->cpu_id, sample->time, ppe->state);
525                 }
526
527                 else if (strcmp(event_str, "sched:sched_wakeup") == 0)
528                         sched_wakeup(sample->cpu, sample->time, sample->pid, te);
529
530                 else if (strcmp(event_str, "sched:sched_switch") == 0)
531                         sched_switch(sample->cpu, sample->time, te);
532
533 #ifdef SUPPORT_OLD_POWER_EVENTS
534                 if (use_old_power_events) {
535                         if (strcmp(event_str, "power:power_start") == 0)
536                                 c_state_start(peo->cpu_id, sample->time,
537                                               peo->value);
538
539                         else if (strcmp(event_str, "power:power_end") == 0)
540                                 c_state_end(sample->cpu, sample->time);
541
542                         else if (strcmp(event_str,
543                                         "power:power_frequency") == 0)
544                                 p_state_change(peo->cpu_id, sample->time,
545                                                peo->value);
546                 }
547 #endif
548         }
549         return 0;
550 }
551
552 /*
553  * After the last sample we need to wrap up the current C/P state
554  * and close out each CPU for these.
555  */
556 static void end_sample_processing(void)
557 {
558         u64 cpu;
559         struct power_event *pwr;
560
561         for (cpu = 0; cpu <= numcpus; cpu++) {
562                 pwr = malloc(sizeof(struct power_event));
563                 if (!pwr)
564                         return;
565                 memset(pwr, 0, sizeof(struct power_event));
566
567                 /* C state */
568 #if 0
569                 pwr->state = cpus_cstate_state[cpu];
570                 pwr->start_time = cpus_cstate_start_times[cpu];
571                 pwr->end_time = last_time;
572                 pwr->cpu = cpu;
573                 pwr->type = CSTATE;
574                 pwr->next = power_events;
575
576                 power_events = pwr;
577 #endif
578                 /* P state */
579
580                 pwr = malloc(sizeof(struct power_event));
581                 if (!pwr)
582                         return;
583                 memset(pwr, 0, sizeof(struct power_event));
584
585                 pwr->state = cpus_pstate_state[cpu];
586                 pwr->start_time = cpus_pstate_start_times[cpu];
587                 pwr->end_time = last_time;
588                 pwr->cpu = cpu;
589                 pwr->type = PSTATE;
590                 pwr->next = power_events;
591
592                 if (!pwr->start_time)
593                         pwr->start_time = first_time;
594                 if (!pwr->state)
595                         pwr->state = min_freq;
596                 power_events = pwr;
597         }
598 }
599
600 /*
601  * Sort the pid datastructure
602  */
603 static void sort_pids(void)
604 {
605         struct per_pid *new_list, *p, *cursor, *prev;
606         /* sort by ppid first, then by pid, lowest to highest */
607
608         new_list = NULL;
609
610         while (all_data) {
611                 p = all_data;
612                 all_data = p->next;
613                 p->next = NULL;
614
615                 if (new_list == NULL) {
616                         new_list = p;
617                         p->next = NULL;
618                         continue;
619                 }
620                 prev = NULL;
621                 cursor = new_list;
622                 while (cursor) {
623                         if (cursor->ppid > p->ppid ||
624                                 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
625                                 /* must insert before */
626                                 if (prev) {
627                                         p->next = prev->next;
628                                         prev->next = p;
629                                         cursor = NULL;
630                                         continue;
631                                 } else {
632                                         p->next = new_list;
633                                         new_list = p;
634                                         cursor = NULL;
635                                         continue;
636                                 }
637                         }
638
639                         prev = cursor;
640                         cursor = cursor->next;
641                         if (!cursor)
642                                 prev->next = p;
643                 }
644         }
645         all_data = new_list;
646 }
647
648
649 static void draw_c_p_states(void)
650 {
651         struct power_event *pwr;
652         pwr = power_events;
653
654         /*
655          * two pass drawing so that the P state bars are on top of the C state blocks
656          */
657         while (pwr) {
658                 if (pwr->type == CSTATE)
659                         svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
660                 pwr = pwr->next;
661         }
662
663         pwr = power_events;
664         while (pwr) {
665                 if (pwr->type == PSTATE) {
666                         if (!pwr->state)
667                                 pwr->state = min_freq;
668                         svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
669                 }
670                 pwr = pwr->next;
671         }
672 }
673
674 static void draw_wakeups(void)
675 {
676         struct wake_event *we;
677         struct per_pid *p;
678         struct per_pidcomm *c;
679
680         we = wake_events;
681         while (we) {
682                 int from = 0, to = 0;
683                 char *task_from = NULL, *task_to = NULL;
684
685                 /* locate the column of the waker and wakee */
686                 p = all_data;
687                 while (p) {
688                         if (p->pid == we->waker || p->pid == we->wakee) {
689                                 c = p->all;
690                                 while (c) {
691                                         if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
692                                                 if (p->pid == we->waker && !from) {
693                                                         from = c->Y;
694                                                         task_from = strdup(c->comm);
695                                                 }
696                                                 if (p->pid == we->wakee && !to) {
697                                                         to = c->Y;
698                                                         task_to = strdup(c->comm);
699                                                 }
700                                         }
701                                         c = c->next;
702                                 }
703                                 c = p->all;
704                                 while (c) {
705                                         if (p->pid == we->waker && !from) {
706                                                 from = c->Y;
707                                                 task_from = strdup(c->comm);
708                                         }
709                                         if (p->pid == we->wakee && !to) {
710                                                 to = c->Y;
711                                                 task_to = strdup(c->comm);
712                                         }
713                                         c = c->next;
714                                 }
715                         }
716                         p = p->next;
717                 }
718
719                 if (!task_from) {
720                         task_from = malloc(40);
721                         sprintf(task_from, "[%i]", we->waker);
722                 }
723                 if (!task_to) {
724                         task_to = malloc(40);
725                         sprintf(task_to, "[%i]", we->wakee);
726                 }
727
728                 if (we->waker == -1)
729                         svg_interrupt(we->time, to);
730                 else if (from && to && abs(from - to) == 1)
731                         svg_wakeline(we->time, from, to);
732                 else
733                         svg_partial_wakeline(we->time, from, task_from, to, task_to);
734                 we = we->next;
735
736                 free(task_from);
737                 free(task_to);
738         }
739 }
740
741 static void draw_cpu_usage(void)
742 {
743         struct per_pid *p;
744         struct per_pidcomm *c;
745         struct cpu_sample *sample;
746         p = all_data;
747         while (p) {
748                 c = p->all;
749                 while (c) {
750                         sample = c->samples;
751                         while (sample) {
752                                 if (sample->type == TYPE_RUNNING)
753                                         svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
754
755                                 sample = sample->next;
756                         }
757                         c = c->next;
758                 }
759                 p = p->next;
760         }
761 }
762
763 static void draw_process_bars(void)
764 {
765         struct per_pid *p;
766         struct per_pidcomm *c;
767         struct cpu_sample *sample;
768         int Y = 0;
769
770         Y = 2 * numcpus + 2;
771
772         p = all_data;
773         while (p) {
774                 c = p->all;
775                 while (c) {
776                         if (!c->display) {
777                                 c->Y = 0;
778                                 c = c->next;
779                                 continue;
780                         }
781
782                         svg_box(Y, c->start_time, c->end_time, "process");
783                         sample = c->samples;
784                         while (sample) {
785                                 if (sample->type == TYPE_RUNNING)
786                                         svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
787                                 if (sample->type == TYPE_BLOCKED)
788                                         svg_box(Y, sample->start_time, sample->end_time, "blocked");
789                                 if (sample->type == TYPE_WAITING)
790                                         svg_waiting(Y, sample->start_time, sample->end_time);
791                                 sample = sample->next;
792                         }
793
794                         if (c->comm) {
795                                 char comm[256];
796                                 if (c->total_time > 5000000000) /* 5 seconds */
797                                         sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
798                                 else
799                                         sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
800
801                                 svg_text(Y, c->start_time, comm);
802                         }
803                         c->Y = Y;
804                         Y++;
805                         c = c->next;
806                 }
807                 p = p->next;
808         }
809 }
810
811 static void add_process_filter(const char *string)
812 {
813         struct process_filter *filt;
814         int pid;
815
816         pid = strtoull(string, NULL, 10);
817         filt = malloc(sizeof(struct process_filter));
818         if (!filt)
819                 return;
820
821         filt->name = strdup(string);
822         filt->pid  = pid;
823         filt->next = process_filter;
824
825         process_filter = filt;
826 }
827
828 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
829 {
830         struct process_filter *filt;
831         if (!process_filter)
832                 return 1;
833
834         filt = process_filter;
835         while (filt) {
836                 if (filt->pid && p->pid == filt->pid)
837                         return 1;
838                 if (strcmp(filt->name, c->comm) == 0)
839                         return 1;
840                 filt = filt->next;
841         }
842         return 0;
843 }
844
845 static int determine_display_tasks_filtered(void)
846 {
847         struct per_pid *p;
848         struct per_pidcomm *c;
849         int count = 0;
850
851         p = all_data;
852         while (p) {
853                 p->display = 0;
854                 if (p->start_time == 1)
855                         p->start_time = first_time;
856
857                 /* no exit marker, task kept running to the end */
858                 if (p->end_time == 0)
859                         p->end_time = last_time;
860
861                 c = p->all;
862
863                 while (c) {
864                         c->display = 0;
865
866                         if (c->start_time == 1)
867                                 c->start_time = first_time;
868
869                         if (passes_filter(p, c)) {
870                                 c->display = 1;
871                                 p->display = 1;
872                                 count++;
873                         }
874
875                         if (c->end_time == 0)
876                                 c->end_time = last_time;
877
878                         c = c->next;
879                 }
880                 p = p->next;
881         }
882         return count;
883 }
884
885 static int determine_display_tasks(u64 threshold)
886 {
887         struct per_pid *p;
888         struct per_pidcomm *c;
889         int count = 0;
890
891         if (process_filter)
892                 return determine_display_tasks_filtered();
893
894         p = all_data;
895         while (p) {
896                 p->display = 0;
897                 if (p->start_time == 1)
898                         p->start_time = first_time;
899
900                 /* no exit marker, task kept running to the end */
901                 if (p->end_time == 0)
902                         p->end_time = last_time;
903                 if (p->total_time >= threshold && !power_only)
904                         p->display = 1;
905
906                 c = p->all;
907
908                 while (c) {
909                         c->display = 0;
910
911                         if (c->start_time == 1)
912                                 c->start_time = first_time;
913
914                         if (c->total_time >= threshold && !power_only) {
915                                 c->display = 1;
916                                 count++;
917                         }
918
919                         if (c->end_time == 0)
920                                 c->end_time = last_time;
921
922                         c = c->next;
923                 }
924                 p = p->next;
925         }
926         return count;
927 }
928
929
930
931 #define TIME_THRESH 10000000
932
933 static void write_svg_file(const char *filename)
934 {
935         u64 i;
936         int count;
937
938         numcpus++;
939
940
941         count = determine_display_tasks(TIME_THRESH);
942
943         /* We'd like to show at least 15 tasks; be less picky if we have fewer */
944         if (count < 15)
945                 count = determine_display_tasks(TIME_THRESH / 10);
946
947         open_svg(filename, numcpus, count, first_time, last_time);
948
949         svg_time_grid();
950         svg_legenda();
951
952         for (i = 0; i < numcpus; i++)
953                 svg_cpu_box(i, max_freq, turbo_frequency);
954
955         draw_cpu_usage();
956         draw_process_bars();
957         draw_c_p_states();
958         draw_wakeups();
959
960         svg_close();
961 }
962
963 static struct perf_event_ops event_ops = {
964         .comm                   = process_comm_event,
965         .fork                   = process_fork_event,
966         .exit                   = process_exit_event,
967         .sample                 = process_sample_event,
968         .ordered_samples        = true,
969 };
970
971 static int __cmd_timechart(void)
972 {
973         struct perf_session *session = perf_session__new(input_name, O_RDONLY,
974                                                          0, false, &event_ops);
975         int ret = -EINVAL;
976
977         if (session == NULL)
978                 return -ENOMEM;
979
980         if (!perf_session__has_traces(session, "timechart record"))
981                 goto out_delete;
982
983         ret = perf_session__process_events(session, &event_ops);
984         if (ret)
985                 goto out_delete;
986
987         end_sample_processing();
988
989         sort_pids();
990
991         write_svg_file(output_name);
992
993         pr_info("Written %2.1f seconds of trace to %s.\n",
994                 (last_time - first_time) / 1000000000.0, output_name);
995 out_delete:
996         perf_session__delete(session);
997         return ret;
998 }
999
1000 static const char * const timechart_usage[] = {
1001         "perf timechart [<options>] {record}",
1002         NULL
1003 };
1004
1005 #ifdef SUPPORT_OLD_POWER_EVENTS
1006 static const char * const record_old_args[] = {
1007         "record",
1008         "-a",
1009         "-R",
1010         "-f",
1011         "-c", "1",
1012         "-e", "power:power_start",
1013         "-e", "power:power_end",
1014         "-e", "power:power_frequency",
1015         "-e", "sched:sched_wakeup",
1016         "-e", "sched:sched_switch",
1017 };
1018 #endif
1019
1020 static const char * const record_new_args[] = {
1021         "record",
1022         "-a",
1023         "-R",
1024         "-f",
1025         "-c", "1",
1026         "-e", "power:cpu_frequency",
1027         "-e", "power:cpu_idle",
1028         "-e", "sched:sched_wakeup",
1029         "-e", "sched:sched_switch",
1030 };
1031
1032 static int __cmd_record(int argc, const char **argv)
1033 {
1034         unsigned int rec_argc, i, j;
1035         const char **rec_argv;
1036         const char * const *record_args = record_new_args;
1037         unsigned int record_elems = ARRAY_SIZE(record_new_args);
1038
1039 #ifdef SUPPORT_OLD_POWER_EVENTS
1040         if (!is_valid_tracepoint("power:cpu_idle") &&
1041             is_valid_tracepoint("power:power_start")) {
1042                 use_old_power_events = 1;
1043                 record_args = record_old_args;
1044                 record_elems = ARRAY_SIZE(record_old_args);
1045         }
1046 #endif
1047
1048         rec_argc = record_elems + argc - 1;
1049         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1050
1051         if (rec_argv == NULL)
1052                 return -ENOMEM;
1053
1054         for (i = 0; i < record_elems; i++)
1055                 rec_argv[i] = strdup(record_args[i]);
1056
1057         for (j = 1; j < (unsigned int)argc; j++, i++)
1058                 rec_argv[i] = argv[j];
1059
1060         return cmd_record(i, rec_argv, NULL);
1061 }
1062
1063 static int
1064 parse_process(const struct option *opt __used, const char *arg, int __used unset)
1065 {
1066         if (arg)
1067                 add_process_filter(arg);
1068         return 0;
1069 }
1070
1071 static const struct option options[] = {
1072         OPT_STRING('i', "input", &input_name, "file",
1073                     "input file name"),
1074         OPT_STRING('o', "output", &output_name, "file",
1075                     "output file name"),
1076         OPT_INTEGER('w', "width", &svg_page_width,
1077                     "page width"),
1078         OPT_BOOLEAN('P', "power-only", &power_only,
1079                     "output power data only"),
1080         OPT_CALLBACK('p', "process", NULL, "process",
1081                       "process selector. Pass a pid or process name.",
1082                        parse_process),
1083         OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1084                     "Look for files with symbols relative to this directory"),
1085         OPT_END()
1086 };
1087
1088
1089 int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1090 {
1091         argc = parse_options(argc, argv, options, timechart_usage,
1092                         PARSE_OPT_STOP_AT_NON_OPTION);
1093
1094         symbol__init();
1095
1096         if (argc && !strncmp(argv[0], "rec", 3))
1097                 return __cmd_record(argc, argv);
1098         else if (argc)
1099                 usage_with_options(timechart_usage, options);
1100
1101         setup_pager();
1102
1103         return __cmd_timechart();
1104 }