perf tools: Kill event_t typedef, use 'union perf_event' instead
[linux-2.6.git] / tools / perf / builtin-sched.c
1 #include "builtin.h"
2 #include "perf.h"
3
4 #include "util/util.h"
5 #include "util/cache.h"
6 #include "util/symbol.h"
7 #include "util/thread.h"
8 #include "util/header.h"
9 #include "util/session.h"
10
11 #include "util/parse-options.h"
12 #include "util/trace-event.h"
13
14 #include "util/debug.h"
15
16 #include <sys/prctl.h>
17
18 #include <semaphore.h>
19 #include <pthread.h>
20 #include <math.h>
21
22 static char                     const *input_name = "perf.data";
23
24 static char                     default_sort_order[] = "avg, max, switch, runtime";
25 static const char               *sort_order = default_sort_order;
26
27 static int                      profile_cpu = -1;
28
29 #define PR_SET_NAME             15               /* Set process name */
30 #define MAX_CPUS                4096
31
32 static u64                      run_measurement_overhead;
33 static u64                      sleep_measurement_overhead;
34
35 #define COMM_LEN                20
36 #define SYM_LEN                 129
37
38 #define MAX_PID                 65536
39
40 static unsigned long            nr_tasks;
41
42 struct sched_atom;
43
44 struct task_desc {
45         unsigned long           nr;
46         unsigned long           pid;
47         char                    comm[COMM_LEN];
48
49         unsigned long           nr_events;
50         unsigned long           curr_event;
51         struct sched_atom       **atoms;
52
53         pthread_t               thread;
54         sem_t                   sleep_sem;
55
56         sem_t                   ready_for_work;
57         sem_t                   work_done_sem;
58
59         u64                     cpu_usage;
60 };
61
62 enum sched_event_type {
63         SCHED_EVENT_RUN,
64         SCHED_EVENT_SLEEP,
65         SCHED_EVENT_WAKEUP,
66         SCHED_EVENT_MIGRATION,
67 };
68
69 struct sched_atom {
70         enum sched_event_type   type;
71         int                     specific_wait;
72         u64                     timestamp;
73         u64                     duration;
74         unsigned long           nr;
75         sem_t                   *wait_sem;
76         struct task_desc        *wakee;
77 };
78
79 static struct task_desc         *pid_to_task[MAX_PID];
80
81 static struct task_desc         **tasks;
82
83 static pthread_mutex_t          start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
84 static u64                      start_time;
85
86 static pthread_mutex_t          work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
87
88 static unsigned long            nr_run_events;
89 static unsigned long            nr_sleep_events;
90 static unsigned long            nr_wakeup_events;
91
92 static unsigned long            nr_sleep_corrections;
93 static unsigned long            nr_run_events_optimized;
94
95 static unsigned long            targetless_wakeups;
96 static unsigned long            multitarget_wakeups;
97
98 static u64                      cpu_usage;
99 static u64                      runavg_cpu_usage;
100 static u64                      parent_cpu_usage;
101 static u64                      runavg_parent_cpu_usage;
102
103 static unsigned long            nr_runs;
104 static u64                      sum_runtime;
105 static u64                      sum_fluct;
106 static u64                      run_avg;
107
108 static unsigned int             replay_repeat = 10;
109 static unsigned long            nr_timestamps;
110 static unsigned long            nr_unordered_timestamps;
111 static unsigned long            nr_state_machine_bugs;
112 static unsigned long            nr_context_switch_bugs;
113 static unsigned long            nr_events;
114 static unsigned long            nr_lost_chunks;
115 static unsigned long            nr_lost_events;
116
117 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
118
119 enum thread_state {
120         THREAD_SLEEPING = 0,
121         THREAD_WAIT_CPU,
122         THREAD_SCHED_IN,
123         THREAD_IGNORE
124 };
125
126 struct work_atom {
127         struct list_head        list;
128         enum thread_state       state;
129         u64                     sched_out_time;
130         u64                     wake_up_time;
131         u64                     sched_in_time;
132         u64                     runtime;
133 };
134
135 struct work_atoms {
136         struct list_head        work_list;
137         struct thread           *thread;
138         struct rb_node          node;
139         u64                     max_lat;
140         u64                     max_lat_at;
141         u64                     total_lat;
142         u64                     nb_atoms;
143         u64                     total_runtime;
144 };
145
146 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
147
148 static struct rb_root           atom_root, sorted_atom_root;
149
150 static u64                      all_runtime;
151 static u64                      all_count;
152
153
154 static u64 get_nsecs(void)
155 {
156         struct timespec ts;
157
158         clock_gettime(CLOCK_MONOTONIC, &ts);
159
160         return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
161 }
162
163 static void burn_nsecs(u64 nsecs)
164 {
165         u64 T0 = get_nsecs(), T1;
166
167         do {
168                 T1 = get_nsecs();
169         } while (T1 + run_measurement_overhead < T0 + nsecs);
170 }
171
172 static void sleep_nsecs(u64 nsecs)
173 {
174         struct timespec ts;
175
176         ts.tv_nsec = nsecs % 999999999;
177         ts.tv_sec = nsecs / 999999999;
178
179         nanosleep(&ts, NULL);
180 }
181
182 static void calibrate_run_measurement_overhead(void)
183 {
184         u64 T0, T1, delta, min_delta = 1000000000ULL;
185         int i;
186
187         for (i = 0; i < 10; i++) {
188                 T0 = get_nsecs();
189                 burn_nsecs(0);
190                 T1 = get_nsecs();
191                 delta = T1-T0;
192                 min_delta = min(min_delta, delta);
193         }
194         run_measurement_overhead = min_delta;
195
196         printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
197 }
198
199 static void calibrate_sleep_measurement_overhead(void)
200 {
201         u64 T0, T1, delta, min_delta = 1000000000ULL;
202         int i;
203
204         for (i = 0; i < 10; i++) {
205                 T0 = get_nsecs();
206                 sleep_nsecs(10000);
207                 T1 = get_nsecs();
208                 delta = T1-T0;
209                 min_delta = min(min_delta, delta);
210         }
211         min_delta -= 10000;
212         sleep_measurement_overhead = min_delta;
213
214         printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
215 }
216
217 static struct sched_atom *
218 get_new_event(struct task_desc *task, u64 timestamp)
219 {
220         struct sched_atom *event = zalloc(sizeof(*event));
221         unsigned long idx = task->nr_events;
222         size_t size;
223
224         event->timestamp = timestamp;
225         event->nr = idx;
226
227         task->nr_events++;
228         size = sizeof(struct sched_atom *) * task->nr_events;
229         task->atoms = realloc(task->atoms, size);
230         BUG_ON(!task->atoms);
231
232         task->atoms[idx] = event;
233
234         return event;
235 }
236
237 static struct sched_atom *last_event(struct task_desc *task)
238 {
239         if (!task->nr_events)
240                 return NULL;
241
242         return task->atoms[task->nr_events - 1];
243 }
244
245 static void
246 add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
247 {
248         struct sched_atom *event, *curr_event = last_event(task);
249
250         /*
251          * optimize an existing RUN event by merging this one
252          * to it:
253          */
254         if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
255                 nr_run_events_optimized++;
256                 curr_event->duration += duration;
257                 return;
258         }
259
260         event = get_new_event(task, timestamp);
261
262         event->type = SCHED_EVENT_RUN;
263         event->duration = duration;
264
265         nr_run_events++;
266 }
267
268 static void
269 add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
270                        struct task_desc *wakee)
271 {
272         struct sched_atom *event, *wakee_event;
273
274         event = get_new_event(task, timestamp);
275         event->type = SCHED_EVENT_WAKEUP;
276         event->wakee = wakee;
277
278         wakee_event = last_event(wakee);
279         if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
280                 targetless_wakeups++;
281                 return;
282         }
283         if (wakee_event->wait_sem) {
284                 multitarget_wakeups++;
285                 return;
286         }
287
288         wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
289         sem_init(wakee_event->wait_sem, 0, 0);
290         wakee_event->specific_wait = 1;
291         event->wait_sem = wakee_event->wait_sem;
292
293         nr_wakeup_events++;
294 }
295
296 static void
297 add_sched_event_sleep(struct task_desc *task, u64 timestamp,
298                       u64 task_state __used)
299 {
300         struct sched_atom *event = get_new_event(task, timestamp);
301
302         event->type = SCHED_EVENT_SLEEP;
303
304         nr_sleep_events++;
305 }
306
307 static struct task_desc *register_pid(unsigned long pid, const char *comm)
308 {
309         struct task_desc *task;
310
311         BUG_ON(pid >= MAX_PID);
312
313         task = pid_to_task[pid];
314
315         if (task)
316                 return task;
317
318         task = zalloc(sizeof(*task));
319         task->pid = pid;
320         task->nr = nr_tasks;
321         strcpy(task->comm, comm);
322         /*
323          * every task starts in sleeping state - this gets ignored
324          * if there's no wakeup pointing to this sleep state:
325          */
326         add_sched_event_sleep(task, 0, 0);
327
328         pid_to_task[pid] = task;
329         nr_tasks++;
330         tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
331         BUG_ON(!tasks);
332         tasks[task->nr] = task;
333
334         if (verbose)
335                 printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
336
337         return task;
338 }
339
340
341 static void print_task_traces(void)
342 {
343         struct task_desc *task;
344         unsigned long i;
345
346         for (i = 0; i < nr_tasks; i++) {
347                 task = tasks[i];
348                 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
349                         task->nr, task->comm, task->pid, task->nr_events);
350         }
351 }
352
353 static void add_cross_task_wakeups(void)
354 {
355         struct task_desc *task1, *task2;
356         unsigned long i, j;
357
358         for (i = 0; i < nr_tasks; i++) {
359                 task1 = tasks[i];
360                 j = i + 1;
361                 if (j == nr_tasks)
362                         j = 0;
363                 task2 = tasks[j];
364                 add_sched_event_wakeup(task1, 0, task2);
365         }
366 }
367
368 static void
369 process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
370 {
371         int ret = 0;
372         u64 now;
373         long long delta;
374
375         now = get_nsecs();
376         delta = start_time + atom->timestamp - now;
377
378         switch (atom->type) {
379                 case SCHED_EVENT_RUN:
380                         burn_nsecs(atom->duration);
381                         break;
382                 case SCHED_EVENT_SLEEP:
383                         if (atom->wait_sem)
384                                 ret = sem_wait(atom->wait_sem);
385                         BUG_ON(ret);
386                         break;
387                 case SCHED_EVENT_WAKEUP:
388                         if (atom->wait_sem)
389                                 ret = sem_post(atom->wait_sem);
390                         BUG_ON(ret);
391                         break;
392                 case SCHED_EVENT_MIGRATION:
393                         break;
394                 default:
395                         BUG_ON(1);
396         }
397 }
398
399 static u64 get_cpu_usage_nsec_parent(void)
400 {
401         struct rusage ru;
402         u64 sum;
403         int err;
404
405         err = getrusage(RUSAGE_SELF, &ru);
406         BUG_ON(err);
407
408         sum =  ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
409         sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
410
411         return sum;
412 }
413
414 static int self_open_counters(void)
415 {
416         struct perf_event_attr attr;
417         int fd;
418
419         memset(&attr, 0, sizeof(attr));
420
421         attr.type = PERF_TYPE_SOFTWARE;
422         attr.config = PERF_COUNT_SW_TASK_CLOCK;
423
424         fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
425
426         if (fd < 0)
427                 die("Error: sys_perf_event_open() syscall returned"
428                     "with %d (%s)\n", fd, strerror(errno));
429         return fd;
430 }
431
432 static u64 get_cpu_usage_nsec_self(int fd)
433 {
434         u64 runtime;
435         int ret;
436
437         ret = read(fd, &runtime, sizeof(runtime));
438         BUG_ON(ret != sizeof(runtime));
439
440         return runtime;
441 }
442
443 static void *thread_func(void *ctx)
444 {
445         struct task_desc *this_task = ctx;
446         u64 cpu_usage_0, cpu_usage_1;
447         unsigned long i, ret;
448         char comm2[22];
449         int fd;
450
451         sprintf(comm2, ":%s", this_task->comm);
452         prctl(PR_SET_NAME, comm2);
453         fd = self_open_counters();
454
455 again:
456         ret = sem_post(&this_task->ready_for_work);
457         BUG_ON(ret);
458         ret = pthread_mutex_lock(&start_work_mutex);
459         BUG_ON(ret);
460         ret = pthread_mutex_unlock(&start_work_mutex);
461         BUG_ON(ret);
462
463         cpu_usage_0 = get_cpu_usage_nsec_self(fd);
464
465         for (i = 0; i < this_task->nr_events; i++) {
466                 this_task->curr_event = i;
467                 process_sched_event(this_task, this_task->atoms[i]);
468         }
469
470         cpu_usage_1 = get_cpu_usage_nsec_self(fd);
471         this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
472         ret = sem_post(&this_task->work_done_sem);
473         BUG_ON(ret);
474
475         ret = pthread_mutex_lock(&work_done_wait_mutex);
476         BUG_ON(ret);
477         ret = pthread_mutex_unlock(&work_done_wait_mutex);
478         BUG_ON(ret);
479
480         goto again;
481 }
482
483 static void create_tasks(void)
484 {
485         struct task_desc *task;
486         pthread_attr_t attr;
487         unsigned long i;
488         int err;
489
490         err = pthread_attr_init(&attr);
491         BUG_ON(err);
492         err = pthread_attr_setstacksize(&attr,
493                         (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
494         BUG_ON(err);
495         err = pthread_mutex_lock(&start_work_mutex);
496         BUG_ON(err);
497         err = pthread_mutex_lock(&work_done_wait_mutex);
498         BUG_ON(err);
499         for (i = 0; i < nr_tasks; i++) {
500                 task = tasks[i];
501                 sem_init(&task->sleep_sem, 0, 0);
502                 sem_init(&task->ready_for_work, 0, 0);
503                 sem_init(&task->work_done_sem, 0, 0);
504                 task->curr_event = 0;
505                 err = pthread_create(&task->thread, &attr, thread_func, task);
506                 BUG_ON(err);
507         }
508 }
509
510 static void wait_for_tasks(void)
511 {
512         u64 cpu_usage_0, cpu_usage_1;
513         struct task_desc *task;
514         unsigned long i, ret;
515
516         start_time = get_nsecs();
517         cpu_usage = 0;
518         pthread_mutex_unlock(&work_done_wait_mutex);
519
520         for (i = 0; i < nr_tasks; i++) {
521                 task = tasks[i];
522                 ret = sem_wait(&task->ready_for_work);
523                 BUG_ON(ret);
524                 sem_init(&task->ready_for_work, 0, 0);
525         }
526         ret = pthread_mutex_lock(&work_done_wait_mutex);
527         BUG_ON(ret);
528
529         cpu_usage_0 = get_cpu_usage_nsec_parent();
530
531         pthread_mutex_unlock(&start_work_mutex);
532
533         for (i = 0; i < nr_tasks; i++) {
534                 task = tasks[i];
535                 ret = sem_wait(&task->work_done_sem);
536                 BUG_ON(ret);
537                 sem_init(&task->work_done_sem, 0, 0);
538                 cpu_usage += task->cpu_usage;
539                 task->cpu_usage = 0;
540         }
541
542         cpu_usage_1 = get_cpu_usage_nsec_parent();
543         if (!runavg_cpu_usage)
544                 runavg_cpu_usage = cpu_usage;
545         runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
546
547         parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
548         if (!runavg_parent_cpu_usage)
549                 runavg_parent_cpu_usage = parent_cpu_usage;
550         runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
551                                    parent_cpu_usage)/10;
552
553         ret = pthread_mutex_lock(&start_work_mutex);
554         BUG_ON(ret);
555
556         for (i = 0; i < nr_tasks; i++) {
557                 task = tasks[i];
558                 sem_init(&task->sleep_sem, 0, 0);
559                 task->curr_event = 0;
560         }
561 }
562
563 static void run_one_test(void)
564 {
565         u64 T0, T1, delta, avg_delta, fluct, std_dev;
566
567         T0 = get_nsecs();
568         wait_for_tasks();
569         T1 = get_nsecs();
570
571         delta = T1 - T0;
572         sum_runtime += delta;
573         nr_runs++;
574
575         avg_delta = sum_runtime / nr_runs;
576         if (delta < avg_delta)
577                 fluct = avg_delta - delta;
578         else
579                 fluct = delta - avg_delta;
580         sum_fluct += fluct;
581         std_dev = sum_fluct / nr_runs / sqrt(nr_runs);
582         if (!run_avg)
583                 run_avg = delta;
584         run_avg = (run_avg*9 + delta)/10;
585
586         printf("#%-3ld: %0.3f, ",
587                 nr_runs, (double)delta/1000000.0);
588
589         printf("ravg: %0.2f, ",
590                 (double)run_avg/1e6);
591
592         printf("cpu: %0.2f / %0.2f",
593                 (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
594
595 #if 0
596         /*
597          * rusage statistics done by the parent, these are less
598          * accurate than the sum_exec_runtime based statistics:
599          */
600         printf(" [%0.2f / %0.2f]",
601                 (double)parent_cpu_usage/1e6,
602                 (double)runavg_parent_cpu_usage/1e6);
603 #endif
604
605         printf("\n");
606
607         if (nr_sleep_corrections)
608                 printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
609         nr_sleep_corrections = 0;
610 }
611
612 static void test_calibrations(void)
613 {
614         u64 T0, T1;
615
616         T0 = get_nsecs();
617         burn_nsecs(1e6);
618         T1 = get_nsecs();
619
620         printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
621
622         T0 = get_nsecs();
623         sleep_nsecs(1e6);
624         T1 = get_nsecs();
625
626         printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
627 }
628
629 #define FILL_FIELD(ptr, field, event, data)     \
630         ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
631
632 #define FILL_ARRAY(ptr, array, event, data)                     \
633 do {                                                            \
634         void *__array = raw_field_ptr(event, #array, data);     \
635         memcpy(ptr.array, __array, sizeof(ptr.array));  \
636 } while(0)
637
638 #define FILL_COMMON_FIELDS(ptr, event, data)                    \
639 do {                                                            \
640         FILL_FIELD(ptr, common_type, event, data);              \
641         FILL_FIELD(ptr, common_flags, event, data);             \
642         FILL_FIELD(ptr, common_preempt_count, event, data);     \
643         FILL_FIELD(ptr, common_pid, event, data);               \
644         FILL_FIELD(ptr, common_tgid, event, data);              \
645 } while (0)
646
647
648
649 struct trace_switch_event {
650         u32 size;
651
652         u16 common_type;
653         u8 common_flags;
654         u8 common_preempt_count;
655         u32 common_pid;
656         u32 common_tgid;
657
658         char prev_comm[16];
659         u32 prev_pid;
660         u32 prev_prio;
661         u64 prev_state;
662         char next_comm[16];
663         u32 next_pid;
664         u32 next_prio;
665 };
666
667 struct trace_runtime_event {
668         u32 size;
669
670         u16 common_type;
671         u8 common_flags;
672         u8 common_preempt_count;
673         u32 common_pid;
674         u32 common_tgid;
675
676         char comm[16];
677         u32 pid;
678         u64 runtime;
679         u64 vruntime;
680 };
681
682 struct trace_wakeup_event {
683         u32 size;
684
685         u16 common_type;
686         u8 common_flags;
687         u8 common_preempt_count;
688         u32 common_pid;
689         u32 common_tgid;
690
691         char comm[16];
692         u32 pid;
693
694         u32 prio;
695         u32 success;
696         u32 cpu;
697 };
698
699 struct trace_fork_event {
700         u32 size;
701
702         u16 common_type;
703         u8 common_flags;
704         u8 common_preempt_count;
705         u32 common_pid;
706         u32 common_tgid;
707
708         char parent_comm[16];
709         u32 parent_pid;
710         char child_comm[16];
711         u32 child_pid;
712 };
713
714 struct trace_migrate_task_event {
715         u32 size;
716
717         u16 common_type;
718         u8 common_flags;
719         u8 common_preempt_count;
720         u32 common_pid;
721         u32 common_tgid;
722
723         char comm[16];
724         u32 pid;
725
726         u32 prio;
727         u32 cpu;
728 };
729
730 struct trace_sched_handler {
731         void (*switch_event)(struct trace_switch_event *,
732                              struct perf_session *,
733                              struct event *,
734                              int cpu,
735                              u64 timestamp,
736                              struct thread *thread);
737
738         void (*runtime_event)(struct trace_runtime_event *,
739                               struct perf_session *,
740                               struct event *,
741                               int cpu,
742                               u64 timestamp,
743                               struct thread *thread);
744
745         void (*wakeup_event)(struct trace_wakeup_event *,
746                              struct perf_session *,
747                              struct event *,
748                              int cpu,
749                              u64 timestamp,
750                              struct thread *thread);
751
752         void (*fork_event)(struct trace_fork_event *,
753                            struct event *,
754                            int cpu,
755                            u64 timestamp,
756                            struct thread *thread);
757
758         void (*migrate_task_event)(struct trace_migrate_task_event *,
759                            struct perf_session *session,
760                            struct event *,
761                            int cpu,
762                            u64 timestamp,
763                            struct thread *thread);
764 };
765
766
767 static void
768 replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
769                     struct perf_session *session __used,
770                     struct event *event,
771                     int cpu __used,
772                     u64 timestamp __used,
773                     struct thread *thread __used)
774 {
775         struct task_desc *waker, *wakee;
776
777         if (verbose) {
778                 printf("sched_wakeup event %p\n", event);
779
780                 printf(" ... pid %d woke up %s/%d\n",
781                         wakeup_event->common_pid,
782                         wakeup_event->comm,
783                         wakeup_event->pid);
784         }
785
786         waker = register_pid(wakeup_event->common_pid, "<unknown>");
787         wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
788
789         add_sched_event_wakeup(waker, timestamp, wakee);
790 }
791
792 static u64 cpu_last_switched[MAX_CPUS];
793
794 static void
795 replay_switch_event(struct trace_switch_event *switch_event,
796                     struct perf_session *session __used,
797                     struct event *event,
798                     int cpu,
799                     u64 timestamp,
800                     struct thread *thread __used)
801 {
802         struct task_desc *prev, *next;
803         u64 timestamp0;
804         s64 delta;
805
806         if (verbose)
807                 printf("sched_switch event %p\n", event);
808
809         if (cpu >= MAX_CPUS || cpu < 0)
810                 return;
811
812         timestamp0 = cpu_last_switched[cpu];
813         if (timestamp0)
814                 delta = timestamp - timestamp0;
815         else
816                 delta = 0;
817
818         if (delta < 0)
819                 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
820
821         if (verbose) {
822                 printf(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
823                         switch_event->prev_comm, switch_event->prev_pid,
824                         switch_event->next_comm, switch_event->next_pid,
825                         delta);
826         }
827
828         prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
829         next = register_pid(switch_event->next_pid, switch_event->next_comm);
830
831         cpu_last_switched[cpu] = timestamp;
832
833         add_sched_event_run(prev, timestamp, delta);
834         add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
835 }
836
837
838 static void
839 replay_fork_event(struct trace_fork_event *fork_event,
840                   struct event *event,
841                   int cpu __used,
842                   u64 timestamp __used,
843                   struct thread *thread __used)
844 {
845         if (verbose) {
846                 printf("sched_fork event %p\n", event);
847                 printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
848                 printf("...  child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
849         }
850         register_pid(fork_event->parent_pid, fork_event->parent_comm);
851         register_pid(fork_event->child_pid, fork_event->child_comm);
852 }
853
854 static struct trace_sched_handler replay_ops  = {
855         .wakeup_event           = replay_wakeup_event,
856         .switch_event           = replay_switch_event,
857         .fork_event             = replay_fork_event,
858 };
859
860 struct sort_dimension {
861         const char              *name;
862         sort_fn_t               cmp;
863         struct list_head        list;
864 };
865
866 static LIST_HEAD(cmp_pid);
867
868 static int
869 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
870 {
871         struct sort_dimension *sort;
872         int ret = 0;
873
874         BUG_ON(list_empty(list));
875
876         list_for_each_entry(sort, list, list) {
877                 ret = sort->cmp(l, r);
878                 if (ret)
879                         return ret;
880         }
881
882         return ret;
883 }
884
885 static struct work_atoms *
886 thread_atoms_search(struct rb_root *root, struct thread *thread,
887                          struct list_head *sort_list)
888 {
889         struct rb_node *node = root->rb_node;
890         struct work_atoms key = { .thread = thread };
891
892         while (node) {
893                 struct work_atoms *atoms;
894                 int cmp;
895
896                 atoms = container_of(node, struct work_atoms, node);
897
898                 cmp = thread_lat_cmp(sort_list, &key, atoms);
899                 if (cmp > 0)
900                         node = node->rb_left;
901                 else if (cmp < 0)
902                         node = node->rb_right;
903                 else {
904                         BUG_ON(thread != atoms->thread);
905                         return atoms;
906                 }
907         }
908         return NULL;
909 }
910
911 static void
912 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
913                          struct list_head *sort_list)
914 {
915         struct rb_node **new = &(root->rb_node), *parent = NULL;
916
917         while (*new) {
918                 struct work_atoms *this;
919                 int cmp;
920
921                 this = container_of(*new, struct work_atoms, node);
922                 parent = *new;
923
924                 cmp = thread_lat_cmp(sort_list, data, this);
925
926                 if (cmp > 0)
927                         new = &((*new)->rb_left);
928                 else
929                         new = &((*new)->rb_right);
930         }
931
932         rb_link_node(&data->node, parent, new);
933         rb_insert_color(&data->node, root);
934 }
935
936 static void thread_atoms_insert(struct thread *thread)
937 {
938         struct work_atoms *atoms = zalloc(sizeof(*atoms));
939         if (!atoms)
940                 die("No memory");
941
942         atoms->thread = thread;
943         INIT_LIST_HEAD(&atoms->work_list);
944         __thread_latency_insert(&atom_root, atoms, &cmp_pid);
945 }
946
947 static void
948 latency_fork_event(struct trace_fork_event *fork_event __used,
949                    struct event *event __used,
950                    int cpu __used,
951                    u64 timestamp __used,
952                    struct thread *thread __used)
953 {
954         /* should insert the newcomer */
955 }
956
957 __used
958 static char sched_out_state(struct trace_switch_event *switch_event)
959 {
960         const char *str = TASK_STATE_TO_CHAR_STR;
961
962         return str[switch_event->prev_state];
963 }
964
965 static void
966 add_sched_out_event(struct work_atoms *atoms,
967                     char run_state,
968                     u64 timestamp)
969 {
970         struct work_atom *atom = zalloc(sizeof(*atom));
971         if (!atom)
972                 die("Non memory");
973
974         atom->sched_out_time = timestamp;
975
976         if (run_state == 'R') {
977                 atom->state = THREAD_WAIT_CPU;
978                 atom->wake_up_time = atom->sched_out_time;
979         }
980
981         list_add_tail(&atom->list, &atoms->work_list);
982 }
983
984 static void
985 add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
986 {
987         struct work_atom *atom;
988
989         BUG_ON(list_empty(&atoms->work_list));
990
991         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
992
993         atom->runtime += delta;
994         atoms->total_runtime += delta;
995 }
996
997 static void
998 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
999 {
1000         struct work_atom *atom;
1001         u64 delta;
1002
1003         if (list_empty(&atoms->work_list))
1004                 return;
1005
1006         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1007
1008         if (atom->state != THREAD_WAIT_CPU)
1009                 return;
1010
1011         if (timestamp < atom->wake_up_time) {
1012                 atom->state = THREAD_IGNORE;
1013                 return;
1014         }
1015
1016         atom->state = THREAD_SCHED_IN;
1017         atom->sched_in_time = timestamp;
1018
1019         delta = atom->sched_in_time - atom->wake_up_time;
1020         atoms->total_lat += delta;
1021         if (delta > atoms->max_lat) {
1022                 atoms->max_lat = delta;
1023                 atoms->max_lat_at = timestamp;
1024         }
1025         atoms->nb_atoms++;
1026 }
1027
1028 static void
1029 latency_switch_event(struct trace_switch_event *switch_event,
1030                      struct perf_session *session,
1031                      struct event *event __used,
1032                      int cpu,
1033                      u64 timestamp,
1034                      struct thread *thread __used)
1035 {
1036         struct work_atoms *out_events, *in_events;
1037         struct thread *sched_out, *sched_in;
1038         u64 timestamp0;
1039         s64 delta;
1040
1041         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1042
1043         timestamp0 = cpu_last_switched[cpu];
1044         cpu_last_switched[cpu] = timestamp;
1045         if (timestamp0)
1046                 delta = timestamp - timestamp0;
1047         else
1048                 delta = 0;
1049
1050         if (delta < 0)
1051                 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1052
1053
1054         sched_out = perf_session__findnew(session, switch_event->prev_pid);
1055         sched_in = perf_session__findnew(session, switch_event->next_pid);
1056
1057         out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1058         if (!out_events) {
1059                 thread_atoms_insert(sched_out);
1060                 out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1061                 if (!out_events)
1062                         die("out-event: Internal tree error");
1063         }
1064         add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
1065
1066         in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1067         if (!in_events) {
1068                 thread_atoms_insert(sched_in);
1069                 in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1070                 if (!in_events)
1071                         die("in-event: Internal tree error");
1072                 /*
1073                  * Take came in we have not heard about yet,
1074                  * add in an initial atom in runnable state:
1075                  */
1076                 add_sched_out_event(in_events, 'R', timestamp);
1077         }
1078         add_sched_in_event(in_events, timestamp);
1079 }
1080
1081 static void
1082 latency_runtime_event(struct trace_runtime_event *runtime_event,
1083                      struct perf_session *session,
1084                      struct event *event __used,
1085                      int cpu,
1086                      u64 timestamp,
1087                      struct thread *this_thread __used)
1088 {
1089         struct thread *thread = perf_session__findnew(session, runtime_event->pid);
1090         struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1091
1092         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1093         if (!atoms) {
1094                 thread_atoms_insert(thread);
1095                 atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1096                 if (!atoms)
1097                         die("in-event: Internal tree error");
1098                 add_sched_out_event(atoms, 'R', timestamp);
1099         }
1100
1101         add_runtime_event(atoms, runtime_event->runtime, timestamp);
1102 }
1103
1104 static void
1105 latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1106                      struct perf_session *session,
1107                      struct event *__event __used,
1108                      int cpu __used,
1109                      u64 timestamp,
1110                      struct thread *thread __used)
1111 {
1112         struct work_atoms *atoms;
1113         struct work_atom *atom;
1114         struct thread *wakee;
1115
1116         /* Note for later, it may be interesting to observe the failing cases */
1117         if (!wakeup_event->success)
1118                 return;
1119
1120         wakee = perf_session__findnew(session, wakeup_event->pid);
1121         atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1122         if (!atoms) {
1123                 thread_atoms_insert(wakee);
1124                 atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1125                 if (!atoms)
1126                         die("wakeup-event: Internal tree error");
1127                 add_sched_out_event(atoms, 'S', timestamp);
1128         }
1129
1130         BUG_ON(list_empty(&atoms->work_list));
1131
1132         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1133
1134         /*
1135          * You WILL be missing events if you've recorded only
1136          * one CPU, or are only looking at only one, so don't
1137          * make useless noise.
1138          */
1139         if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1140                 nr_state_machine_bugs++;
1141
1142         nr_timestamps++;
1143         if (atom->sched_out_time > timestamp) {
1144                 nr_unordered_timestamps++;
1145                 return;
1146         }
1147
1148         atom->state = THREAD_WAIT_CPU;
1149         atom->wake_up_time = timestamp;
1150 }
1151
1152 static void
1153 latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
1154                      struct perf_session *session,
1155                      struct event *__event __used,
1156                      int cpu __used,
1157                      u64 timestamp,
1158                      struct thread *thread __used)
1159 {
1160         struct work_atoms *atoms;
1161         struct work_atom *atom;
1162         struct thread *migrant;
1163
1164         /*
1165          * Only need to worry about migration when profiling one CPU.
1166          */
1167         if (profile_cpu == -1)
1168                 return;
1169
1170         migrant = perf_session__findnew(session, migrate_task_event->pid);
1171         atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1172         if (!atoms) {
1173                 thread_atoms_insert(migrant);
1174                 register_pid(migrant->pid, migrant->comm);
1175                 atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1176                 if (!atoms)
1177                         die("migration-event: Internal tree error");
1178                 add_sched_out_event(atoms, 'R', timestamp);
1179         }
1180
1181         BUG_ON(list_empty(&atoms->work_list));
1182
1183         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1184         atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1185
1186         nr_timestamps++;
1187
1188         if (atom->sched_out_time > timestamp)
1189                 nr_unordered_timestamps++;
1190 }
1191
1192 static struct trace_sched_handler lat_ops  = {
1193         .wakeup_event           = latency_wakeup_event,
1194         .switch_event           = latency_switch_event,
1195         .runtime_event          = latency_runtime_event,
1196         .fork_event             = latency_fork_event,
1197         .migrate_task_event     = latency_migrate_task_event,
1198 };
1199
1200 static void output_lat_thread(struct work_atoms *work_list)
1201 {
1202         int i;
1203         int ret;
1204         u64 avg;
1205
1206         if (!work_list->nb_atoms)
1207                 return;
1208         /*
1209          * Ignore idle threads:
1210          */
1211         if (!strcmp(work_list->thread->comm, "swapper"))
1212                 return;
1213
1214         all_runtime += work_list->total_runtime;
1215         all_count += work_list->nb_atoms;
1216
1217         ret = printf("  %s:%d ", work_list->thread->comm, work_list->thread->pid);
1218
1219         for (i = 0; i < 24 - ret; i++)
1220                 printf(" ");
1221
1222         avg = work_list->total_lat / work_list->nb_atoms;
1223
1224         printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1225               (double)work_list->total_runtime / 1e6,
1226                  work_list->nb_atoms, (double)avg / 1e6,
1227                  (double)work_list->max_lat / 1e6,
1228                  (double)work_list->max_lat_at / 1e9);
1229 }
1230
1231 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1232 {
1233         if (l->thread->pid < r->thread->pid)
1234                 return -1;
1235         if (l->thread->pid > r->thread->pid)
1236                 return 1;
1237
1238         return 0;
1239 }
1240
1241 static struct sort_dimension pid_sort_dimension = {
1242         .name                   = "pid",
1243         .cmp                    = pid_cmp,
1244 };
1245
1246 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1247 {
1248         u64 avgl, avgr;
1249
1250         if (!l->nb_atoms)
1251                 return -1;
1252
1253         if (!r->nb_atoms)
1254                 return 1;
1255
1256         avgl = l->total_lat / l->nb_atoms;
1257         avgr = r->total_lat / r->nb_atoms;
1258
1259         if (avgl < avgr)
1260                 return -1;
1261         if (avgl > avgr)
1262                 return 1;
1263
1264         return 0;
1265 }
1266
1267 static struct sort_dimension avg_sort_dimension = {
1268         .name                   = "avg",
1269         .cmp                    = avg_cmp,
1270 };
1271
1272 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1273 {
1274         if (l->max_lat < r->max_lat)
1275                 return -1;
1276         if (l->max_lat > r->max_lat)
1277                 return 1;
1278
1279         return 0;
1280 }
1281
1282 static struct sort_dimension max_sort_dimension = {
1283         .name                   = "max",
1284         .cmp                    = max_cmp,
1285 };
1286
1287 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1288 {
1289         if (l->nb_atoms < r->nb_atoms)
1290                 return -1;
1291         if (l->nb_atoms > r->nb_atoms)
1292                 return 1;
1293
1294         return 0;
1295 }
1296
1297 static struct sort_dimension switch_sort_dimension = {
1298         .name                   = "switch",
1299         .cmp                    = switch_cmp,
1300 };
1301
1302 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1303 {
1304         if (l->total_runtime < r->total_runtime)
1305                 return -1;
1306         if (l->total_runtime > r->total_runtime)
1307                 return 1;
1308
1309         return 0;
1310 }
1311
1312 static struct sort_dimension runtime_sort_dimension = {
1313         .name                   = "runtime",
1314         .cmp                    = runtime_cmp,
1315 };
1316
1317 static struct sort_dimension *available_sorts[] = {
1318         &pid_sort_dimension,
1319         &avg_sort_dimension,
1320         &max_sort_dimension,
1321         &switch_sort_dimension,
1322         &runtime_sort_dimension,
1323 };
1324
1325 #define NB_AVAILABLE_SORTS      (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1326
1327 static LIST_HEAD(sort_list);
1328
1329 static int sort_dimension__add(const char *tok, struct list_head *list)
1330 {
1331         int i;
1332
1333         for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1334                 if (!strcmp(available_sorts[i]->name, tok)) {
1335                         list_add_tail(&available_sorts[i]->list, list);
1336
1337                         return 0;
1338                 }
1339         }
1340
1341         return -1;
1342 }
1343
1344 static void setup_sorting(void);
1345
1346 static void sort_lat(void)
1347 {
1348         struct rb_node *node;
1349
1350         for (;;) {
1351                 struct work_atoms *data;
1352                 node = rb_first(&atom_root);
1353                 if (!node)
1354                         break;
1355
1356                 rb_erase(node, &atom_root);
1357                 data = rb_entry(node, struct work_atoms, node);
1358                 __thread_latency_insert(&sorted_atom_root, data, &sort_list);
1359         }
1360 }
1361
1362 static struct trace_sched_handler *trace_handler;
1363
1364 static void
1365 process_sched_wakeup_event(void *data, struct perf_session *session,
1366                            struct event *event,
1367                            int cpu __used,
1368                            u64 timestamp __used,
1369                            struct thread *thread __used)
1370 {
1371         struct trace_wakeup_event wakeup_event;
1372
1373         FILL_COMMON_FIELDS(wakeup_event, event, data);
1374
1375         FILL_ARRAY(wakeup_event, comm, event, data);
1376         FILL_FIELD(wakeup_event, pid, event, data);
1377         FILL_FIELD(wakeup_event, prio, event, data);
1378         FILL_FIELD(wakeup_event, success, event, data);
1379         FILL_FIELD(wakeup_event, cpu, event, data);
1380
1381         if (trace_handler->wakeup_event)
1382                 trace_handler->wakeup_event(&wakeup_event, session, event,
1383                                             cpu, timestamp, thread);
1384 }
1385
1386 /*
1387  * Track the current task - that way we can know whether there's any
1388  * weird events, such as a task being switched away that is not current.
1389  */
1390 static int max_cpu;
1391
1392 static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
1393
1394 static struct thread *curr_thread[MAX_CPUS];
1395
1396 static char next_shortname1 = 'A';
1397 static char next_shortname2 = '0';
1398
1399 static void
1400 map_switch_event(struct trace_switch_event *switch_event,
1401                  struct perf_session *session,
1402                  struct event *event __used,
1403                  int this_cpu,
1404                  u64 timestamp,
1405                  struct thread *thread __used)
1406 {
1407         struct thread *sched_out, *sched_in;
1408         int new_shortname;
1409         u64 timestamp0;
1410         s64 delta;
1411         int cpu;
1412
1413         BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1414
1415         if (this_cpu > max_cpu)
1416                 max_cpu = this_cpu;
1417
1418         timestamp0 = cpu_last_switched[this_cpu];
1419         cpu_last_switched[this_cpu] = timestamp;
1420         if (timestamp0)
1421                 delta = timestamp - timestamp0;
1422         else
1423                 delta = 0;
1424
1425         if (delta < 0)
1426                 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1427
1428
1429         sched_out = perf_session__findnew(session, switch_event->prev_pid);
1430         sched_in = perf_session__findnew(session, switch_event->next_pid);
1431
1432         curr_thread[this_cpu] = sched_in;
1433
1434         printf("  ");
1435
1436         new_shortname = 0;
1437         if (!sched_in->shortname[0]) {
1438                 sched_in->shortname[0] = next_shortname1;
1439                 sched_in->shortname[1] = next_shortname2;
1440
1441                 if (next_shortname1 < 'Z') {
1442                         next_shortname1++;
1443                 } else {
1444                         next_shortname1='A';
1445                         if (next_shortname2 < '9') {
1446                                 next_shortname2++;
1447                         } else {
1448                                 next_shortname2='0';
1449                         }
1450                 }
1451                 new_shortname = 1;
1452         }
1453
1454         for (cpu = 0; cpu <= max_cpu; cpu++) {
1455                 if (cpu != this_cpu)
1456                         printf(" ");
1457                 else
1458                         printf("*");
1459
1460                 if (curr_thread[cpu]) {
1461                         if (curr_thread[cpu]->pid)
1462                                 printf("%2s ", curr_thread[cpu]->shortname);
1463                         else
1464                                 printf(".  ");
1465                 } else
1466                         printf("   ");
1467         }
1468
1469         printf("  %12.6f secs ", (double)timestamp/1e9);
1470         if (new_shortname) {
1471                 printf("%s => %s:%d\n",
1472                         sched_in->shortname, sched_in->comm, sched_in->pid);
1473         } else {
1474                 printf("\n");
1475         }
1476 }
1477
1478
1479 static void
1480 process_sched_switch_event(void *data, struct perf_session *session,
1481                            struct event *event,
1482                            int this_cpu,
1483                            u64 timestamp __used,
1484                            struct thread *thread __used)
1485 {
1486         struct trace_switch_event switch_event;
1487
1488         FILL_COMMON_FIELDS(switch_event, event, data);
1489
1490         FILL_ARRAY(switch_event, prev_comm, event, data);
1491         FILL_FIELD(switch_event, prev_pid, event, data);
1492         FILL_FIELD(switch_event, prev_prio, event, data);
1493         FILL_FIELD(switch_event, prev_state, event, data);
1494         FILL_ARRAY(switch_event, next_comm, event, data);
1495         FILL_FIELD(switch_event, next_pid, event, data);
1496         FILL_FIELD(switch_event, next_prio, event, data);
1497
1498         if (curr_pid[this_cpu] != (u32)-1) {
1499                 /*
1500                  * Are we trying to switch away a PID that is
1501                  * not current?
1502                  */
1503                 if (curr_pid[this_cpu] != switch_event.prev_pid)
1504                         nr_context_switch_bugs++;
1505         }
1506         if (trace_handler->switch_event)
1507                 trace_handler->switch_event(&switch_event, session, event,
1508                                             this_cpu, timestamp, thread);
1509
1510         curr_pid[this_cpu] = switch_event.next_pid;
1511 }
1512
1513 static void
1514 process_sched_runtime_event(void *data, struct perf_session *session,
1515                            struct event *event,
1516                            int cpu __used,
1517                            u64 timestamp __used,
1518                            struct thread *thread __used)
1519 {
1520         struct trace_runtime_event runtime_event;
1521
1522         FILL_ARRAY(runtime_event, comm, event, data);
1523         FILL_FIELD(runtime_event, pid, event, data);
1524         FILL_FIELD(runtime_event, runtime, event, data);
1525         FILL_FIELD(runtime_event, vruntime, event, data);
1526
1527         if (trace_handler->runtime_event)
1528                 trace_handler->runtime_event(&runtime_event, session, event, cpu, timestamp, thread);
1529 }
1530
1531 static void
1532 process_sched_fork_event(void *data,
1533                          struct event *event,
1534                          int cpu __used,
1535                          u64 timestamp __used,
1536                          struct thread *thread __used)
1537 {
1538         struct trace_fork_event fork_event;
1539
1540         FILL_COMMON_FIELDS(fork_event, event, data);
1541
1542         FILL_ARRAY(fork_event, parent_comm, event, data);
1543         FILL_FIELD(fork_event, parent_pid, event, data);
1544         FILL_ARRAY(fork_event, child_comm, event, data);
1545         FILL_FIELD(fork_event, child_pid, event, data);
1546
1547         if (trace_handler->fork_event)
1548                 trace_handler->fork_event(&fork_event, event,
1549                                           cpu, timestamp, thread);
1550 }
1551
1552 static void
1553 process_sched_exit_event(struct event *event,
1554                          int cpu __used,
1555                          u64 timestamp __used,
1556                          struct thread *thread __used)
1557 {
1558         if (verbose)
1559                 printf("sched_exit event %p\n", event);
1560 }
1561
1562 static void
1563 process_sched_migrate_task_event(void *data, struct perf_session *session,
1564                            struct event *event,
1565                            int cpu __used,
1566                            u64 timestamp __used,
1567                            struct thread *thread __used)
1568 {
1569         struct trace_migrate_task_event migrate_task_event;
1570
1571         FILL_COMMON_FIELDS(migrate_task_event, event, data);
1572
1573         FILL_ARRAY(migrate_task_event, comm, event, data);
1574         FILL_FIELD(migrate_task_event, pid, event, data);
1575         FILL_FIELD(migrate_task_event, prio, event, data);
1576         FILL_FIELD(migrate_task_event, cpu, event, data);
1577
1578         if (trace_handler->migrate_task_event)
1579                 trace_handler->migrate_task_event(&migrate_task_event, session,
1580                                                  event, cpu, timestamp, thread);
1581 }
1582
1583 static void process_raw_event(union perf_event *raw_event __used,
1584                               struct perf_session *session, void *data, int cpu,
1585                               u64 timestamp, struct thread *thread)
1586 {
1587         struct event *event;
1588         int type;
1589
1590
1591         type = trace_parse_common_type(data);
1592         event = trace_find_event(type);
1593
1594         if (!strcmp(event->name, "sched_switch"))
1595                 process_sched_switch_event(data, session, event, cpu, timestamp, thread);
1596         if (!strcmp(event->name, "sched_stat_runtime"))
1597                 process_sched_runtime_event(data, session, event, cpu, timestamp, thread);
1598         if (!strcmp(event->name, "sched_wakeup"))
1599                 process_sched_wakeup_event(data, session, event, cpu, timestamp, thread);
1600         if (!strcmp(event->name, "sched_wakeup_new"))
1601                 process_sched_wakeup_event(data, session, event, cpu, timestamp, thread);
1602         if (!strcmp(event->name, "sched_process_fork"))
1603                 process_sched_fork_event(data, event, cpu, timestamp, thread);
1604         if (!strcmp(event->name, "sched_process_exit"))
1605                 process_sched_exit_event(event, cpu, timestamp, thread);
1606         if (!strcmp(event->name, "sched_migrate_task"))
1607                 process_sched_migrate_task_event(data, session, event, cpu, timestamp, thread);
1608 }
1609
1610 static int process_sample_event(union perf_event *event,
1611                                 struct perf_sample *sample,
1612                                 struct perf_session *session)
1613 {
1614         struct thread *thread;
1615
1616         if (!(session->sample_type & PERF_SAMPLE_RAW))
1617                 return 0;
1618
1619         thread = perf_session__findnew(session, sample->pid);
1620         if (thread == NULL) {
1621                 pr_debug("problem processing %d event, skipping it.\n",
1622                          event->header.type);
1623                 return -1;
1624         }
1625
1626         dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
1627
1628         if (profile_cpu != -1 && profile_cpu != (int)sample->cpu)
1629                 return 0;
1630
1631         process_raw_event(event, session, sample->raw_data, sample->cpu,
1632                           sample->time, thread);
1633
1634         return 0;
1635 }
1636
1637 static struct perf_event_ops event_ops = {
1638         .sample                 = process_sample_event,
1639         .comm                   = perf_event__process_comm,
1640         .lost                   = perf_event__process_lost,
1641         .fork                   = perf_event__process_task,
1642         .ordered_samples        = true,
1643 };
1644
1645 static int read_events(void)
1646 {
1647         int err = -EINVAL;
1648         struct perf_session *session = perf_session__new(input_name, O_RDONLY,
1649                                                          0, false, &event_ops);
1650         if (session == NULL)
1651                 return -ENOMEM;
1652
1653         if (perf_session__has_traces(session, "record -R")) {
1654                 err = perf_session__process_events(session, &event_ops);
1655                 nr_events      = session->hists.stats.nr_events[0];
1656                 nr_lost_events = session->hists.stats.total_lost;
1657                 nr_lost_chunks = session->hists.stats.nr_events[PERF_RECORD_LOST];
1658         }
1659
1660         perf_session__delete(session);
1661         return err;
1662 }
1663
1664 static void print_bad_events(void)
1665 {
1666         if (nr_unordered_timestamps && nr_timestamps) {
1667                 printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1668                         (double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
1669                         nr_unordered_timestamps, nr_timestamps);
1670         }
1671         if (nr_lost_events && nr_events) {
1672                 printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1673                         (double)nr_lost_events/(double)nr_events*100.0,
1674                         nr_lost_events, nr_events, nr_lost_chunks);
1675         }
1676         if (nr_state_machine_bugs && nr_timestamps) {
1677                 printf("  INFO: %.3f%% state machine bugs (%ld out of %ld)",
1678                         (double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
1679                         nr_state_machine_bugs, nr_timestamps);
1680                 if (nr_lost_events)
1681                         printf(" (due to lost events?)");
1682                 printf("\n");
1683         }
1684         if (nr_context_switch_bugs && nr_timestamps) {
1685                 printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1686                         (double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
1687                         nr_context_switch_bugs, nr_timestamps);
1688                 if (nr_lost_events)
1689                         printf(" (due to lost events?)");
1690                 printf("\n");
1691         }
1692 }
1693
1694 static void __cmd_lat(void)
1695 {
1696         struct rb_node *next;
1697
1698         setup_pager();
1699         read_events();
1700         sort_lat();
1701
1702         printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1703         printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at     |\n");
1704         printf(" ---------------------------------------------------------------------------------------------------------------\n");
1705
1706         next = rb_first(&sorted_atom_root);
1707
1708         while (next) {
1709                 struct work_atoms *work_list;
1710
1711                 work_list = rb_entry(next, struct work_atoms, node);
1712                 output_lat_thread(work_list);
1713                 next = rb_next(next);
1714         }
1715
1716         printf(" -----------------------------------------------------------------------------------------\n");
1717         printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
1718                 (double)all_runtime/1e6, all_count);
1719
1720         printf(" ---------------------------------------------------\n");
1721
1722         print_bad_events();
1723         printf("\n");
1724
1725 }
1726
1727 static struct trace_sched_handler map_ops  = {
1728         .wakeup_event           = NULL,
1729         .switch_event           = map_switch_event,
1730         .runtime_event          = NULL,
1731         .fork_event             = NULL,
1732 };
1733
1734 static void __cmd_map(void)
1735 {
1736         max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1737
1738         setup_pager();
1739         read_events();
1740         print_bad_events();
1741 }
1742
1743 static void __cmd_replay(void)
1744 {
1745         unsigned long i;
1746
1747         calibrate_run_measurement_overhead();
1748         calibrate_sleep_measurement_overhead();
1749
1750         test_calibrations();
1751
1752         read_events();
1753
1754         printf("nr_run_events:        %ld\n", nr_run_events);
1755         printf("nr_sleep_events:      %ld\n", nr_sleep_events);
1756         printf("nr_wakeup_events:     %ld\n", nr_wakeup_events);
1757
1758         if (targetless_wakeups)
1759                 printf("target-less wakeups:  %ld\n", targetless_wakeups);
1760         if (multitarget_wakeups)
1761                 printf("multi-target wakeups: %ld\n", multitarget_wakeups);
1762         if (nr_run_events_optimized)
1763                 printf("run atoms optimized: %ld\n",
1764                         nr_run_events_optimized);
1765
1766         print_task_traces();
1767         add_cross_task_wakeups();
1768
1769         create_tasks();
1770         printf("------------------------------------------------------------\n");
1771         for (i = 0; i < replay_repeat; i++)
1772                 run_one_test();
1773 }
1774
1775
1776 static const char * const sched_usage[] = {
1777         "perf sched [<options>] {record|latency|map|replay|trace}",
1778         NULL
1779 };
1780
1781 static const struct option sched_options[] = {
1782         OPT_STRING('i', "input", &input_name, "file",
1783                     "input file name"),
1784         OPT_INCR('v', "verbose", &verbose,
1785                     "be more verbose (show symbol address, etc)"),
1786         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1787                     "dump raw trace in ASCII"),
1788         OPT_END()
1789 };
1790
1791 static const char * const latency_usage[] = {
1792         "perf sched latency [<options>]",
1793         NULL
1794 };
1795
1796 static const struct option latency_options[] = {
1797         OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1798                    "sort by key(s): runtime, switch, avg, max"),
1799         OPT_INCR('v', "verbose", &verbose,
1800                     "be more verbose (show symbol address, etc)"),
1801         OPT_INTEGER('C', "CPU", &profile_cpu,
1802                     "CPU to profile on"),
1803         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1804                     "dump raw trace in ASCII"),
1805         OPT_END()
1806 };
1807
1808 static const char * const replay_usage[] = {
1809         "perf sched replay [<options>]",
1810         NULL
1811 };
1812
1813 static const struct option replay_options[] = {
1814         OPT_UINTEGER('r', "repeat", &replay_repeat,
1815                      "repeat the workload replay N times (-1: infinite)"),
1816         OPT_INCR('v', "verbose", &verbose,
1817                     "be more verbose (show symbol address, etc)"),
1818         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1819                     "dump raw trace in ASCII"),
1820         OPT_END()
1821 };
1822
1823 static void setup_sorting(void)
1824 {
1825         char *tmp, *tok, *str = strdup(sort_order);
1826
1827         for (tok = strtok_r(str, ", ", &tmp);
1828                         tok; tok = strtok_r(NULL, ", ", &tmp)) {
1829                 if (sort_dimension__add(tok, &sort_list) < 0) {
1830                         error("Unknown --sort key: `%s'", tok);
1831                         usage_with_options(latency_usage, latency_options);
1832                 }
1833         }
1834
1835         free(str);
1836
1837         sort_dimension__add("pid", &cmp_pid);
1838 }
1839
1840 static const char *record_args[] = {
1841         "record",
1842         "-a",
1843         "-R",
1844         "-f",
1845         "-m", "1024",
1846         "-c", "1",
1847         "-e", "sched:sched_switch",
1848         "-e", "sched:sched_stat_wait",
1849         "-e", "sched:sched_stat_sleep",
1850         "-e", "sched:sched_stat_iowait",
1851         "-e", "sched:sched_stat_runtime",
1852         "-e", "sched:sched_process_exit",
1853         "-e", "sched:sched_process_fork",
1854         "-e", "sched:sched_wakeup",
1855         "-e", "sched:sched_migrate_task",
1856 };
1857
1858 static int __cmd_record(int argc, const char **argv)
1859 {
1860         unsigned int rec_argc, i, j;
1861         const char **rec_argv;
1862
1863         rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1864         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1865
1866         if (rec_argv == NULL)
1867                 return -ENOMEM;
1868
1869         for (i = 0; i < ARRAY_SIZE(record_args); i++)
1870                 rec_argv[i] = strdup(record_args[i]);
1871
1872         for (j = 1; j < (unsigned int)argc; j++, i++)
1873                 rec_argv[i] = argv[j];
1874
1875         BUG_ON(i != rec_argc);
1876
1877         return cmd_record(i, rec_argv, NULL);
1878 }
1879
1880 int cmd_sched(int argc, const char **argv, const char *prefix __used)
1881 {
1882         argc = parse_options(argc, argv, sched_options, sched_usage,
1883                              PARSE_OPT_STOP_AT_NON_OPTION);
1884         if (!argc)
1885                 usage_with_options(sched_usage, sched_options);
1886
1887         /*
1888          * Aliased to 'perf script' for now:
1889          */
1890         if (!strcmp(argv[0], "script"))
1891                 return cmd_script(argc, argv, prefix);
1892
1893         symbol__init();
1894         if (!strncmp(argv[0], "rec", 3)) {
1895                 return __cmd_record(argc, argv);
1896         } else if (!strncmp(argv[0], "lat", 3)) {
1897                 trace_handler = &lat_ops;
1898                 if (argc > 1) {
1899                         argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1900                         if (argc)
1901                                 usage_with_options(latency_usage, latency_options);
1902                 }
1903                 setup_sorting();
1904                 __cmd_lat();
1905         } else if (!strcmp(argv[0], "map")) {
1906                 trace_handler = &map_ops;
1907                 setup_sorting();
1908                 __cmd_map();
1909         } else if (!strncmp(argv[0], "rep", 3)) {
1910                 trace_handler = &replay_ops;
1911                 if (argc) {
1912                         argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1913                         if (argc)
1914                                 usage_with_options(replay_usage, replay_options);
1915                 }
1916                 __cmd_replay();
1917         } else {
1918                 usage_with_options(sched_usage, sched_options);
1919         }
1920
1921         return 0;
1922 }