ALSA: usb: USB3 SuperSpeed sound support
[linux-2.6.git] / sound / usb / midi.c
1 /*
2  * usbmidi.c - ALSA USB MIDI driver
3  *
4  * Copyright (c) 2002-2009 Clemens Ladisch
5  * All rights reserved.
6  *
7  * Based on the OSS usb-midi driver by NAGANO Daisuke,
8  *          NetBSD's umidi driver by Takuya SHIOZAKI,
9  *          the "USB Device Class Definition for MIDI Devices" by Roland
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions, and the following disclaimer,
16  *    without modification.
17  * 2. The name of the author may not be used to endorse or promote products
18  *    derived from this software without specific prior written permission.
19  *
20  * Alternatively, this software may be distributed and/or modified under the
21  * terms of the GNU General Public License as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any later
23  * version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
29  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37
38 #include <linux/kernel.h>
39 #include <linux/types.h>
40 #include <linux/bitops.h>
41 #include <linux/interrupt.h>
42 #include <linux/spinlock.h>
43 #include <linux/string.h>
44 #include <linux/init.h>
45 #include <linux/slab.h>
46 #include <linux/timer.h>
47 #include <linux/usb.h>
48 #include <linux/wait.h>
49 #include <linux/usb/audio.h>
50
51 #include <sound/core.h>
52 #include <sound/control.h>
53 #include <sound/rawmidi.h>
54 #include <sound/asequencer.h>
55 #include "usbaudio.h"
56 #include "midi.h"
57 #include "helper.h"
58
59 /*
60  * define this to log all USB packets
61  */
62 /* #define DUMP_PACKETS */
63
64 /*
65  * how long to wait after some USB errors, so that khubd can disconnect() us
66  * without too many spurious errors
67  */
68 #define ERROR_DELAY_JIFFIES (HZ / 10)
69
70 #define OUTPUT_URBS 7
71 #define INPUT_URBS 7
72
73
74 MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>");
75 MODULE_DESCRIPTION("USB Audio/MIDI helper module");
76 MODULE_LICENSE("Dual BSD/GPL");
77
78
79 struct usb_ms_header_descriptor {
80         __u8  bLength;
81         __u8  bDescriptorType;
82         __u8  bDescriptorSubtype;
83         __u8  bcdMSC[2];
84         __le16 wTotalLength;
85 } __attribute__ ((packed));
86
87 struct usb_ms_endpoint_descriptor {
88         __u8  bLength;
89         __u8  bDescriptorType;
90         __u8  bDescriptorSubtype;
91         __u8  bNumEmbMIDIJack;
92         __u8  baAssocJackID[0];
93 } __attribute__ ((packed));
94
95 struct snd_usb_midi_in_endpoint;
96 struct snd_usb_midi_out_endpoint;
97 struct snd_usb_midi_endpoint;
98
99 struct usb_protocol_ops {
100         void (*input)(struct snd_usb_midi_in_endpoint*, uint8_t*, int);
101         void (*output)(struct snd_usb_midi_out_endpoint *ep, struct urb *urb);
102         void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t);
103         void (*init_out_endpoint)(struct snd_usb_midi_out_endpoint*);
104         void (*finish_out_endpoint)(struct snd_usb_midi_out_endpoint*);
105 };
106
107 struct snd_usb_midi {
108         struct usb_device *dev;
109         struct snd_card *card;
110         struct usb_interface *iface;
111         const struct snd_usb_audio_quirk *quirk;
112         struct snd_rawmidi *rmidi;
113         struct usb_protocol_ops* usb_protocol_ops;
114         struct list_head list;
115         struct timer_list error_timer;
116         spinlock_t disc_lock;
117         struct mutex mutex;
118         u32 usb_id;
119         int next_midi_device;
120
121         struct snd_usb_midi_endpoint {
122                 struct snd_usb_midi_out_endpoint *out;
123                 struct snd_usb_midi_in_endpoint *in;
124         } endpoints[MIDI_MAX_ENDPOINTS];
125         unsigned long input_triggered;
126         unsigned int opened;
127         unsigned char disconnected;
128
129         struct snd_kcontrol *roland_load_ctl;
130 };
131
132 struct snd_usb_midi_out_endpoint {
133         struct snd_usb_midi* umidi;
134         struct out_urb_context {
135                 struct urb *urb;
136                 struct snd_usb_midi_out_endpoint *ep;
137         } urbs[OUTPUT_URBS];
138         unsigned int active_urbs;
139         unsigned int drain_urbs;
140         int max_transfer;               /* size of urb buffer */
141         struct tasklet_struct tasklet;
142         unsigned int next_urb;
143         spinlock_t buffer_lock;
144
145         struct usbmidi_out_port {
146                 struct snd_usb_midi_out_endpoint* ep;
147                 struct snd_rawmidi_substream *substream;
148                 int active;
149                 uint8_t cable;          /* cable number << 4 */
150                 uint8_t state;
151 #define STATE_UNKNOWN   0
152 #define STATE_1PARAM    1
153 #define STATE_2PARAM_1  2
154 #define STATE_2PARAM_2  3
155 #define STATE_SYSEX_0   4
156 #define STATE_SYSEX_1   5
157 #define STATE_SYSEX_2   6
158                 uint8_t data[2];
159         } ports[0x10];
160         int current_port;
161
162         wait_queue_head_t drain_wait;
163 };
164
165 struct snd_usb_midi_in_endpoint {
166         struct snd_usb_midi* umidi;
167         struct urb* urbs[INPUT_URBS];
168         struct usbmidi_in_port {
169                 struct snd_rawmidi_substream *substream;
170                 u8 running_status_length;
171         } ports[0x10];
172         u8 seen_f5;
173         u8 error_resubmit;
174         int current_port;
175 };
176
177 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep);
178
179 static const uint8_t snd_usbmidi_cin_length[] = {
180         0, 0, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 2, 2, 3, 1
181 };
182
183 /*
184  * Submits the URB, with error handling.
185  */
186 static int snd_usbmidi_submit_urb(struct urb* urb, gfp_t flags)
187 {
188         int err = usb_submit_urb(urb, flags);
189         if (err < 0 && err != -ENODEV)
190                 snd_printk(KERN_ERR "usb_submit_urb: %d\n", err);
191         return err;
192 }
193
194 /*
195  * Error handling for URB completion functions.
196  */
197 static int snd_usbmidi_urb_error(int status)
198 {
199         switch (status) {
200         /* manually unlinked, or device gone */
201         case -ENOENT:
202         case -ECONNRESET:
203         case -ESHUTDOWN:
204         case -ENODEV:
205                 return -ENODEV;
206         /* errors that might occur during unplugging */
207         case -EPROTO:
208         case -ETIME:
209         case -EILSEQ:
210                 return -EIO;
211         default:
212                 snd_printk(KERN_ERR "urb status %d\n", status);
213                 return 0; /* continue */
214         }
215 }
216
217 /*
218  * Receives a chunk of MIDI data.
219  */
220 static void snd_usbmidi_input_data(struct snd_usb_midi_in_endpoint* ep, int portidx,
221                                    uint8_t* data, int length)
222 {
223         struct usbmidi_in_port* port = &ep->ports[portidx];
224
225         if (!port->substream) {
226                 snd_printd("unexpected port %d!\n", portidx);
227                 return;
228         }
229         if (!test_bit(port->substream->number, &ep->umidi->input_triggered))
230                 return;
231         snd_rawmidi_receive(port->substream, data, length);
232 }
233
234 #ifdef DUMP_PACKETS
235 static void dump_urb(const char *type, const u8 *data, int length)
236 {
237         snd_printk(KERN_DEBUG "%s packet: [", type);
238         for (; length > 0; ++data, --length)
239                 printk(" %02x", *data);
240         printk(" ]\n");
241 }
242 #else
243 #define dump_urb(type, data, length) /* nothing */
244 #endif
245
246 /*
247  * Processes the data read from the device.
248  */
249 static void snd_usbmidi_in_urb_complete(struct urb* urb)
250 {
251         struct snd_usb_midi_in_endpoint* ep = urb->context;
252
253         if (urb->status == 0) {
254                 dump_urb("received", urb->transfer_buffer, urb->actual_length);
255                 ep->umidi->usb_protocol_ops->input(ep, urb->transfer_buffer,
256                                                    urb->actual_length);
257         } else {
258                 int err = snd_usbmidi_urb_error(urb->status);
259                 if (err < 0) {
260                         if (err != -ENODEV) {
261                                 ep->error_resubmit = 1;
262                                 mod_timer(&ep->umidi->error_timer,
263                                           jiffies + ERROR_DELAY_JIFFIES);
264                         }
265                         return;
266                 }
267         }
268
269         urb->dev = ep->umidi->dev;
270         snd_usbmidi_submit_urb(urb, GFP_ATOMIC);
271 }
272
273 static void snd_usbmidi_out_urb_complete(struct urb* urb)
274 {
275         struct out_urb_context *context = urb->context;
276         struct snd_usb_midi_out_endpoint* ep = context->ep;
277         unsigned int urb_index;
278
279         spin_lock(&ep->buffer_lock);
280         urb_index = context - ep->urbs;
281         ep->active_urbs &= ~(1 << urb_index);
282         if (unlikely(ep->drain_urbs)) {
283                 ep->drain_urbs &= ~(1 << urb_index);
284                 wake_up(&ep->drain_wait);
285         }
286         spin_unlock(&ep->buffer_lock);
287         if (urb->status < 0) {
288                 int err = snd_usbmidi_urb_error(urb->status);
289                 if (err < 0) {
290                         if (err != -ENODEV)
291                                 mod_timer(&ep->umidi->error_timer,
292                                           jiffies + ERROR_DELAY_JIFFIES);
293                         return;
294                 }
295         }
296         snd_usbmidi_do_output(ep);
297 }
298
299 /*
300  * This is called when some data should be transferred to the device
301  * (from one or more substreams).
302  */
303 static void snd_usbmidi_do_output(struct snd_usb_midi_out_endpoint* ep)
304 {
305         unsigned int urb_index;
306         struct urb* urb;
307         unsigned long flags;
308
309         spin_lock_irqsave(&ep->buffer_lock, flags);
310         if (ep->umidi->disconnected) {
311                 spin_unlock_irqrestore(&ep->buffer_lock, flags);
312                 return;
313         }
314
315         urb_index = ep->next_urb;
316         for (;;) {
317                 if (!(ep->active_urbs & (1 << urb_index))) {
318                         urb = ep->urbs[urb_index].urb;
319                         urb->transfer_buffer_length = 0;
320                         ep->umidi->usb_protocol_ops->output(ep, urb);
321                         if (urb->transfer_buffer_length == 0)
322                                 break;
323
324                         dump_urb("sending", urb->transfer_buffer,
325                                  urb->transfer_buffer_length);
326                         urb->dev = ep->umidi->dev;
327                         if (snd_usbmidi_submit_urb(urb, GFP_ATOMIC) < 0)
328                                 break;
329                         ep->active_urbs |= 1 << urb_index;
330                 }
331                 if (++urb_index >= OUTPUT_URBS)
332                         urb_index = 0;
333                 if (urb_index == ep->next_urb)
334                         break;
335         }
336         ep->next_urb = urb_index;
337         spin_unlock_irqrestore(&ep->buffer_lock, flags);
338 }
339
340 static void snd_usbmidi_out_tasklet(unsigned long data)
341 {
342         struct snd_usb_midi_out_endpoint* ep = (struct snd_usb_midi_out_endpoint *) data;
343
344         snd_usbmidi_do_output(ep);
345 }
346
347 /* called after transfers had been interrupted due to some USB error */
348 static void snd_usbmidi_error_timer(unsigned long data)
349 {
350         struct snd_usb_midi *umidi = (struct snd_usb_midi *)data;
351         unsigned int i, j;
352
353         spin_lock(&umidi->disc_lock);
354         if (umidi->disconnected) {
355                 spin_unlock(&umidi->disc_lock);
356                 return;
357         }
358         for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
359                 struct snd_usb_midi_in_endpoint *in = umidi->endpoints[i].in;
360                 if (in && in->error_resubmit) {
361                         in->error_resubmit = 0;
362                         for (j = 0; j < INPUT_URBS; ++j) {
363                                 in->urbs[j]->dev = umidi->dev;
364                                 snd_usbmidi_submit_urb(in->urbs[j], GFP_ATOMIC);
365                         }
366                 }
367                 if (umidi->endpoints[i].out)
368                         snd_usbmidi_do_output(umidi->endpoints[i].out);
369         }
370         spin_unlock(&umidi->disc_lock);
371 }
372
373 /* helper function to send static data that may not DMA-able */
374 static int send_bulk_static_data(struct snd_usb_midi_out_endpoint* ep,
375                                  const void *data, int len)
376 {
377         int err = 0;
378         void *buf = kmemdup(data, len, GFP_KERNEL);
379         if (!buf)
380                 return -ENOMEM;
381         dump_urb("sending", buf, len);
382         if (ep->urbs[0].urb)
383                 err = usb_bulk_msg(ep->umidi->dev, ep->urbs[0].urb->pipe,
384                                    buf, len, NULL, 250);
385         kfree(buf);
386         return err;
387 }
388
389 /*
390  * Standard USB MIDI protocol: see the spec.
391  * Midiman protocol: like the standard protocol, but the control byte is the
392  * fourth byte in each packet, and uses length instead of CIN.
393  */
394
395 static void snd_usbmidi_standard_input(struct snd_usb_midi_in_endpoint* ep,
396                                        uint8_t* buffer, int buffer_length)
397 {
398         int i;
399
400         for (i = 0; i + 3 < buffer_length; i += 4)
401                 if (buffer[i] != 0) {
402                         int cable = buffer[i] >> 4;
403                         int length = snd_usbmidi_cin_length[buffer[i] & 0x0f];
404                         snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length);
405                 }
406 }
407
408 static void snd_usbmidi_midiman_input(struct snd_usb_midi_in_endpoint* ep,
409                                       uint8_t* buffer, int buffer_length)
410 {
411         int i;
412
413         for (i = 0; i + 3 < buffer_length; i += 4)
414                 if (buffer[i + 3] != 0) {
415                         int port = buffer[i + 3] >> 4;
416                         int length = buffer[i + 3] & 3;
417                         snd_usbmidi_input_data(ep, port, &buffer[i], length);
418                 }
419 }
420
421 /*
422  * Buggy M-Audio device: running status on input results in a packet that has
423  * the data bytes but not the status byte and that is marked with CIN 4.
424  */
425 static void snd_usbmidi_maudio_broken_running_status_input(
426                                         struct snd_usb_midi_in_endpoint* ep,
427                                         uint8_t* buffer, int buffer_length)
428 {
429         int i;
430
431         for (i = 0; i + 3 < buffer_length; i += 4)
432                 if (buffer[i] != 0) {
433                         int cable = buffer[i] >> 4;
434                         u8 cin = buffer[i] & 0x0f;
435                         struct usbmidi_in_port *port = &ep->ports[cable];
436                         int length;
437
438                         length = snd_usbmidi_cin_length[cin];
439                         if (cin == 0xf && buffer[i + 1] >= 0xf8)
440                                 ; /* realtime msg: no running status change */
441                         else if (cin >= 0x8 && cin <= 0xe)
442                                 /* channel msg */
443                                 port->running_status_length = length - 1;
444                         else if (cin == 0x4 &&
445                                  port->running_status_length != 0 &&
446                                  buffer[i + 1] < 0x80)
447                                 /* CIN 4 that is not a SysEx */
448                                 length = port->running_status_length;
449                         else
450                                 /*
451                                  * All other msgs cannot begin running status.
452                                  * (A channel msg sent as two or three CIN 0xF
453                                  * packets could in theory, but this device
454                                  * doesn't use this format.)
455                                  */
456                                 port->running_status_length = 0;
457                         snd_usbmidi_input_data(ep, cable, &buffer[i + 1], length);
458                 }
459 }
460
461 /*
462  * CME protocol: like the standard protocol, but SysEx commands are sent as a
463  * single USB packet preceded by a 0x0F byte.
464  */
465 static void snd_usbmidi_cme_input(struct snd_usb_midi_in_endpoint *ep,
466                                   uint8_t *buffer, int buffer_length)
467 {
468         if (buffer_length < 2 || (buffer[0] & 0x0f) != 0x0f)
469                 snd_usbmidi_standard_input(ep, buffer, buffer_length);
470         else
471                 snd_usbmidi_input_data(ep, buffer[0] >> 4,
472                                        &buffer[1], buffer_length - 1);
473 }
474
475 /*
476  * Adds one USB MIDI packet to the output buffer.
477  */
478 static void snd_usbmidi_output_standard_packet(struct urb* urb, uint8_t p0,
479                                                uint8_t p1, uint8_t p2, uint8_t p3)
480 {
481
482         uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
483         buf[0] = p0;
484         buf[1] = p1;
485         buf[2] = p2;
486         buf[3] = p3;
487         urb->transfer_buffer_length += 4;
488 }
489
490 /*
491  * Adds one Midiman packet to the output buffer.
492  */
493 static void snd_usbmidi_output_midiman_packet(struct urb* urb, uint8_t p0,
494                                               uint8_t p1, uint8_t p2, uint8_t p3)
495 {
496
497         uint8_t* buf = (uint8_t*)urb->transfer_buffer + urb->transfer_buffer_length;
498         buf[0] = p1;
499         buf[1] = p2;
500         buf[2] = p3;
501         buf[3] = (p0 & 0xf0) | snd_usbmidi_cin_length[p0 & 0x0f];
502         urb->transfer_buffer_length += 4;
503 }
504
505 /*
506  * Converts MIDI commands to USB MIDI packets.
507  */
508 static void snd_usbmidi_transmit_byte(struct usbmidi_out_port* port,
509                                       uint8_t b, struct urb* urb)
510 {
511         uint8_t p0 = port->cable;
512         void (*output_packet)(struct urb*, uint8_t, uint8_t, uint8_t, uint8_t) =
513                 port->ep->umidi->usb_protocol_ops->output_packet;
514
515         if (b >= 0xf8) {
516                 output_packet(urb, p0 | 0x0f, b, 0, 0);
517         } else if (b >= 0xf0) {
518                 switch (b) {
519                 case 0xf0:
520                         port->data[0] = b;
521                         port->state = STATE_SYSEX_1;
522                         break;
523                 case 0xf1:
524                 case 0xf3:
525                         port->data[0] = b;
526                         port->state = STATE_1PARAM;
527                         break;
528                 case 0xf2:
529                         port->data[0] = b;
530                         port->state = STATE_2PARAM_1;
531                         break;
532                 case 0xf4:
533                 case 0xf5:
534                         port->state = STATE_UNKNOWN;
535                         break;
536                 case 0xf6:
537                         output_packet(urb, p0 | 0x05, 0xf6, 0, 0);
538                         port->state = STATE_UNKNOWN;
539                         break;
540                 case 0xf7:
541                         switch (port->state) {
542                         case STATE_SYSEX_0:
543                                 output_packet(urb, p0 | 0x05, 0xf7, 0, 0);
544                                 break;
545                         case STATE_SYSEX_1:
546                                 output_packet(urb, p0 | 0x06, port->data[0], 0xf7, 0);
547                                 break;
548                         case STATE_SYSEX_2:
549                                 output_packet(urb, p0 | 0x07, port->data[0], port->data[1], 0xf7);
550                                 break;
551                         }
552                         port->state = STATE_UNKNOWN;
553                         break;
554                 }
555         } else if (b >= 0x80) {
556                 port->data[0] = b;
557                 if (b >= 0xc0 && b <= 0xdf)
558                         port->state = STATE_1PARAM;
559                 else
560                         port->state = STATE_2PARAM_1;
561         } else { /* b < 0x80 */
562                 switch (port->state) {
563                 case STATE_1PARAM:
564                         if (port->data[0] < 0xf0) {
565                                 p0 |= port->data[0] >> 4;
566                         } else {
567                                 p0 |= 0x02;
568                                 port->state = STATE_UNKNOWN;
569                         }
570                         output_packet(urb, p0, port->data[0], b, 0);
571                         break;
572                 case STATE_2PARAM_1:
573                         port->data[1] = b;
574                         port->state = STATE_2PARAM_2;
575                         break;
576                 case STATE_2PARAM_2:
577                         if (port->data[0] < 0xf0) {
578                                 p0 |= port->data[0] >> 4;
579                                 port->state = STATE_2PARAM_1;
580                         } else {
581                                 p0 |= 0x03;
582                                 port->state = STATE_UNKNOWN;
583                         }
584                         output_packet(urb, p0, port->data[0], port->data[1], b);
585                         break;
586                 case STATE_SYSEX_0:
587                         port->data[0] = b;
588                         port->state = STATE_SYSEX_1;
589                         break;
590                 case STATE_SYSEX_1:
591                         port->data[1] = b;
592                         port->state = STATE_SYSEX_2;
593                         break;
594                 case STATE_SYSEX_2:
595                         output_packet(urb, p0 | 0x04, port->data[0], port->data[1], b);
596                         port->state = STATE_SYSEX_0;
597                         break;
598                 }
599         }
600 }
601
602 static void snd_usbmidi_standard_output(struct snd_usb_midi_out_endpoint* ep,
603                                         struct urb *urb)
604 {
605         int p;
606
607         /* FIXME: lower-numbered ports can starve higher-numbered ports */
608         for (p = 0; p < 0x10; ++p) {
609                 struct usbmidi_out_port* port = &ep->ports[p];
610                 if (!port->active)
611                         continue;
612                 while (urb->transfer_buffer_length + 3 < ep->max_transfer) {
613                         uint8_t b;
614                         if (snd_rawmidi_transmit(port->substream, &b, 1) != 1) {
615                                 port->active = 0;
616                                 break;
617                         }
618                         snd_usbmidi_transmit_byte(port, b, urb);
619                 }
620         }
621 }
622
623 static struct usb_protocol_ops snd_usbmidi_standard_ops = {
624         .input = snd_usbmidi_standard_input,
625         .output = snd_usbmidi_standard_output,
626         .output_packet = snd_usbmidi_output_standard_packet,
627 };
628
629 static struct usb_protocol_ops snd_usbmidi_midiman_ops = {
630         .input = snd_usbmidi_midiman_input,
631         .output = snd_usbmidi_standard_output,
632         .output_packet = snd_usbmidi_output_midiman_packet,
633 };
634
635 static struct usb_protocol_ops snd_usbmidi_maudio_broken_running_status_ops = {
636         .input = snd_usbmidi_maudio_broken_running_status_input,
637         .output = snd_usbmidi_standard_output,
638         .output_packet = snd_usbmidi_output_standard_packet,
639 };
640
641 static struct usb_protocol_ops snd_usbmidi_cme_ops = {
642         .input = snd_usbmidi_cme_input,
643         .output = snd_usbmidi_standard_output,
644         .output_packet = snd_usbmidi_output_standard_packet,
645 };
646
647 /*
648  * AKAI MPD16 protocol:
649  *
650  * For control port (endpoint 1):
651  * ==============================
652  * One or more chunks consisting of first byte of (0x10 | msg_len) and then a
653  * SysEx message (msg_len=9 bytes long).
654  *
655  * For data port (endpoint 2):
656  * ===========================
657  * One or more chunks consisting of first byte of (0x20 | msg_len) and then a
658  * MIDI message (msg_len bytes long)
659  *
660  * Messages sent: Active Sense, Note On, Poly Pressure, Control Change.
661  */
662 static void snd_usbmidi_akai_input(struct snd_usb_midi_in_endpoint *ep,
663                                    uint8_t *buffer, int buffer_length)
664 {
665         unsigned int pos = 0;
666         unsigned int len = (unsigned int)buffer_length;
667         while (pos < len) {
668                 unsigned int port = (buffer[pos] >> 4) - 1;
669                 unsigned int msg_len = buffer[pos] & 0x0f;
670                 pos++;
671                 if (pos + msg_len <= len && port < 2)
672                         snd_usbmidi_input_data(ep, 0, &buffer[pos], msg_len);
673                 pos += msg_len;
674         }
675 }
676
677 #define MAX_AKAI_SYSEX_LEN 9
678
679 static void snd_usbmidi_akai_output(struct snd_usb_midi_out_endpoint *ep,
680                                     struct urb *urb)
681 {
682         uint8_t *msg;
683         int pos, end, count, buf_end;
684         uint8_t tmp[MAX_AKAI_SYSEX_LEN];
685         struct snd_rawmidi_substream *substream = ep->ports[0].substream;
686
687         if (!ep->ports[0].active)
688                 return;
689
690         msg = urb->transfer_buffer + urb->transfer_buffer_length;
691         buf_end = ep->max_transfer - MAX_AKAI_SYSEX_LEN - 1;
692
693         /* only try adding more data when there's space for at least 1 SysEx */
694         while (urb->transfer_buffer_length < buf_end) {
695                 count = snd_rawmidi_transmit_peek(substream,
696                                                   tmp, MAX_AKAI_SYSEX_LEN);
697                 if (!count) {
698                         ep->ports[0].active = 0;
699                         return;
700                 }
701                 /* try to skip non-SysEx data */
702                 for (pos = 0; pos < count && tmp[pos] != 0xF0; pos++)
703                         ;
704
705                 if (pos > 0) {
706                         snd_rawmidi_transmit_ack(substream, pos);
707                         continue;
708                 }
709
710                 /* look for the start or end marker */
711                 for (end = 1; end < count && tmp[end] < 0xF0; end++)
712                         ;
713
714                 /* next SysEx started before the end of current one */
715                 if (end < count && tmp[end] == 0xF0) {
716                         /* it's incomplete - drop it */
717                         snd_rawmidi_transmit_ack(substream, end);
718                         continue;
719                 }
720                 /* SysEx complete */
721                 if (end < count && tmp[end] == 0xF7) {
722                         /* queue it, ack it, and get the next one */
723                         count = end + 1;
724                         msg[0] = 0x10 | count;
725                         memcpy(&msg[1], tmp, count);
726                         snd_rawmidi_transmit_ack(substream, count);
727                         urb->transfer_buffer_length += count + 1;
728                         msg += count + 1;
729                         continue;
730                 }
731                 /* less than 9 bytes and no end byte - wait for more */
732                 if (count < MAX_AKAI_SYSEX_LEN) {
733                         ep->ports[0].active = 0;
734                         return;
735                 }
736                 /* 9 bytes and no end marker in sight - malformed, skip it */
737                 snd_rawmidi_transmit_ack(substream, count);
738         }
739 }
740
741 static struct usb_protocol_ops snd_usbmidi_akai_ops = {
742         .input = snd_usbmidi_akai_input,
743         .output = snd_usbmidi_akai_output,
744 };
745
746 /*
747  * Novation USB MIDI protocol: number of data bytes is in the first byte
748  * (when receiving) (+1!) or in the second byte (when sending); data begins
749  * at the third byte.
750  */
751
752 static void snd_usbmidi_novation_input(struct snd_usb_midi_in_endpoint* ep,
753                                        uint8_t* buffer, int buffer_length)
754 {
755         if (buffer_length < 2 || !buffer[0] || buffer_length < buffer[0] + 1)
756                 return;
757         snd_usbmidi_input_data(ep, 0, &buffer[2], buffer[0] - 1);
758 }
759
760 static void snd_usbmidi_novation_output(struct snd_usb_midi_out_endpoint* ep,
761                                         struct urb *urb)
762 {
763         uint8_t* transfer_buffer;
764         int count;
765
766         if (!ep->ports[0].active)
767                 return;
768         transfer_buffer = urb->transfer_buffer;
769         count = snd_rawmidi_transmit(ep->ports[0].substream,
770                                      &transfer_buffer[2],
771                                      ep->max_transfer - 2);
772         if (count < 1) {
773                 ep->ports[0].active = 0;
774                 return;
775         }
776         transfer_buffer[0] = 0;
777         transfer_buffer[1] = count;
778         urb->transfer_buffer_length = 2 + count;
779 }
780
781 static struct usb_protocol_ops snd_usbmidi_novation_ops = {
782         .input = snd_usbmidi_novation_input,
783         .output = snd_usbmidi_novation_output,
784 };
785
786 /*
787  * "raw" protocol: used by the MOTU FastLane.
788  */
789
790 static void snd_usbmidi_raw_input(struct snd_usb_midi_in_endpoint* ep,
791                                   uint8_t* buffer, int buffer_length)
792 {
793         snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
794 }
795
796 static void snd_usbmidi_raw_output(struct snd_usb_midi_out_endpoint* ep,
797                                    struct urb *urb)
798 {
799         int count;
800
801         if (!ep->ports[0].active)
802                 return;
803         count = snd_rawmidi_transmit(ep->ports[0].substream,
804                                      urb->transfer_buffer,
805                                      ep->max_transfer);
806         if (count < 1) {
807                 ep->ports[0].active = 0;
808                 return;
809         }
810         urb->transfer_buffer_length = count;
811 }
812
813 static struct usb_protocol_ops snd_usbmidi_raw_ops = {
814         .input = snd_usbmidi_raw_input,
815         .output = snd_usbmidi_raw_output,
816 };
817
818 static void snd_usbmidi_us122l_input(struct snd_usb_midi_in_endpoint *ep,
819                                      uint8_t *buffer, int buffer_length)
820 {
821         if (buffer_length != 9)
822                 return;
823         buffer_length = 8;
824         while (buffer_length && buffer[buffer_length - 1] == 0xFD)
825                 buffer_length--;
826         if (buffer_length)
827                 snd_usbmidi_input_data(ep, 0, buffer, buffer_length);
828 }
829
830 static void snd_usbmidi_us122l_output(struct snd_usb_midi_out_endpoint *ep,
831                                       struct urb *urb)
832 {
833         int count;
834
835         if (!ep->ports[0].active)
836                 return;
837         switch (snd_usb_get_speed(ep->umidi->dev)) {
838         case USB_SPEED_HIGH:
839         case USB_SPEED_SUPER:
840                 count = 1;
841                 break;
842         default:
843                 count = 2;
844         }
845         count = snd_rawmidi_transmit(ep->ports[0].substream,
846                                      urb->transfer_buffer,
847                                      count);
848         if (count < 1) {
849                 ep->ports[0].active = 0;
850                 return;
851         }
852
853         memset(urb->transfer_buffer + count, 0xFD, 9 - count);
854         urb->transfer_buffer_length = count;
855 }
856
857 static struct usb_protocol_ops snd_usbmidi_122l_ops = {
858         .input = snd_usbmidi_us122l_input,
859         .output = snd_usbmidi_us122l_output,
860 };
861
862 /*
863  * Emagic USB MIDI protocol: raw MIDI with "F5 xx" port switching.
864  */
865
866 static void snd_usbmidi_emagic_init_out(struct snd_usb_midi_out_endpoint* ep)
867 {
868         static const u8 init_data[] = {
869                 /* initialization magic: "get version" */
870                 0xf0,
871                 0x00, 0x20, 0x31,       /* Emagic */
872                 0x64,                   /* Unitor8 */
873                 0x0b,                   /* version number request */
874                 0x00,                   /* command version */
875                 0x00,                   /* EEPROM, box 0 */
876                 0xf7
877         };
878         send_bulk_static_data(ep, init_data, sizeof(init_data));
879         /* while we're at it, pour on more magic */
880         send_bulk_static_data(ep, init_data, sizeof(init_data));
881 }
882
883 static void snd_usbmidi_emagic_finish_out(struct snd_usb_midi_out_endpoint* ep)
884 {
885         static const u8 finish_data[] = {
886                 /* switch to patch mode with last preset */
887                 0xf0,
888                 0x00, 0x20, 0x31,       /* Emagic */
889                 0x64,                   /* Unitor8 */
890                 0x10,                   /* patch switch command */
891                 0x00,                   /* command version */
892                 0x7f,                   /* to all boxes */
893                 0x40,                   /* last preset in EEPROM */
894                 0xf7
895         };
896         send_bulk_static_data(ep, finish_data, sizeof(finish_data));
897 }
898
899 static void snd_usbmidi_emagic_input(struct snd_usb_midi_in_endpoint* ep,
900                                      uint8_t* buffer, int buffer_length)
901 {
902         int i;
903
904         /* FF indicates end of valid data */
905         for (i = 0; i < buffer_length; ++i)
906                 if (buffer[i] == 0xff) {
907                         buffer_length = i;
908                         break;
909                 }
910
911         /* handle F5 at end of last buffer */
912         if (ep->seen_f5)
913                 goto switch_port;
914
915         while (buffer_length > 0) {
916                 /* determine size of data until next F5 */
917                 for (i = 0; i < buffer_length; ++i)
918                         if (buffer[i] == 0xf5)
919                                 break;
920                 snd_usbmidi_input_data(ep, ep->current_port, buffer, i);
921                 buffer += i;
922                 buffer_length -= i;
923
924                 if (buffer_length <= 0)
925                         break;
926                 /* assert(buffer[0] == 0xf5); */
927                 ep->seen_f5 = 1;
928                 ++buffer;
929                 --buffer_length;
930
931         switch_port:
932                 if (buffer_length <= 0)
933                         break;
934                 if (buffer[0] < 0x80) {
935                         ep->current_port = (buffer[0] - 1) & 15;
936                         ++buffer;
937                         --buffer_length;
938                 }
939                 ep->seen_f5 = 0;
940         }
941 }
942
943 static void snd_usbmidi_emagic_output(struct snd_usb_midi_out_endpoint* ep,
944                                       struct urb *urb)
945 {
946         int port0 = ep->current_port;
947         uint8_t* buf = urb->transfer_buffer;
948         int buf_free = ep->max_transfer;
949         int length, i;
950
951         for (i = 0; i < 0x10; ++i) {
952                 /* round-robin, starting at the last current port */
953                 int portnum = (port0 + i) & 15;
954                 struct usbmidi_out_port* port = &ep->ports[portnum];
955
956                 if (!port->active)
957                         continue;
958                 if (snd_rawmidi_transmit_peek(port->substream, buf, 1) != 1) {
959                         port->active = 0;
960                         continue;
961                 }
962
963                 if (portnum != ep->current_port) {
964                         if (buf_free < 2)
965                                 break;
966                         ep->current_port = portnum;
967                         buf[0] = 0xf5;
968                         buf[1] = (portnum + 1) & 15;
969                         buf += 2;
970                         buf_free -= 2;
971                 }
972
973                 if (buf_free < 1)
974                         break;
975                 length = snd_rawmidi_transmit(port->substream, buf, buf_free);
976                 if (length > 0) {
977                         buf += length;
978                         buf_free -= length;
979                         if (buf_free < 1)
980                                 break;
981                 }
982         }
983         if (buf_free < ep->max_transfer && buf_free > 0) {
984                 *buf = 0xff;
985                 --buf_free;
986         }
987         urb->transfer_buffer_length = ep->max_transfer - buf_free;
988 }
989
990 static struct usb_protocol_ops snd_usbmidi_emagic_ops = {
991         .input = snd_usbmidi_emagic_input,
992         .output = snd_usbmidi_emagic_output,
993         .init_out_endpoint = snd_usbmidi_emagic_init_out,
994         .finish_out_endpoint = snd_usbmidi_emagic_finish_out,
995 };
996
997
998 static void update_roland_altsetting(struct snd_usb_midi* umidi)
999 {
1000         struct usb_interface *intf;
1001         struct usb_host_interface *hostif;
1002         struct usb_interface_descriptor *intfd;
1003         int is_light_load;
1004
1005         intf = umidi->iface;
1006         is_light_load = intf->cur_altsetting != intf->altsetting;
1007         if (umidi->roland_load_ctl->private_value == is_light_load)
1008                 return;
1009         hostif = &intf->altsetting[umidi->roland_load_ctl->private_value];
1010         intfd = get_iface_desc(hostif);
1011         snd_usbmidi_input_stop(&umidi->list);
1012         usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
1013                           intfd->bAlternateSetting);
1014         snd_usbmidi_input_start(&umidi->list);
1015 }
1016
1017 static void substream_open(struct snd_rawmidi_substream *substream, int open)
1018 {
1019         struct snd_usb_midi* umidi = substream->rmidi->private_data;
1020         struct snd_kcontrol *ctl;
1021
1022         mutex_lock(&umidi->mutex);
1023         if (open) {
1024                 if (umidi->opened++ == 0 && umidi->roland_load_ctl) {
1025                         ctl = umidi->roland_load_ctl;
1026                         ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1027                         snd_ctl_notify(umidi->card,
1028                                        SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
1029                         update_roland_altsetting(umidi);
1030                 }
1031         } else {
1032                 if (--umidi->opened == 0 && umidi->roland_load_ctl) {
1033                         ctl = umidi->roland_load_ctl;
1034                         ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1035                         snd_ctl_notify(umidi->card,
1036                                        SNDRV_CTL_EVENT_MASK_INFO, &ctl->id);
1037                 }
1038         }
1039         mutex_unlock(&umidi->mutex);
1040 }
1041
1042 static int snd_usbmidi_output_open(struct snd_rawmidi_substream *substream)
1043 {
1044         struct snd_usb_midi* umidi = substream->rmidi->private_data;
1045         struct usbmidi_out_port* port = NULL;
1046         int i, j;
1047
1048         for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
1049                 if (umidi->endpoints[i].out)
1050                         for (j = 0; j < 0x10; ++j)
1051                                 if (umidi->endpoints[i].out->ports[j].substream == substream) {
1052                                         port = &umidi->endpoints[i].out->ports[j];
1053                                         break;
1054                                 }
1055         if (!port) {
1056                 snd_BUG();
1057                 return -ENXIO;
1058         }
1059         substream->runtime->private_data = port;
1060         port->state = STATE_UNKNOWN;
1061         substream_open(substream, 1);
1062         return 0;
1063 }
1064
1065 static int snd_usbmidi_output_close(struct snd_rawmidi_substream *substream)
1066 {
1067         substream_open(substream, 0);
1068         return 0;
1069 }
1070
1071 static void snd_usbmidi_output_trigger(struct snd_rawmidi_substream *substream, int up)
1072 {
1073         struct usbmidi_out_port* port = (struct usbmidi_out_port*)substream->runtime->private_data;
1074
1075         port->active = up;
1076         if (up) {
1077                 if (port->ep->umidi->disconnected) {
1078                         /* gobble up remaining bytes to prevent wait in
1079                          * snd_rawmidi_drain_output */
1080                         while (!snd_rawmidi_transmit_empty(substream))
1081                                 snd_rawmidi_transmit_ack(substream, 1);
1082                         return;
1083                 }
1084                 tasklet_schedule(&port->ep->tasklet);
1085         }
1086 }
1087
1088 static void snd_usbmidi_output_drain(struct snd_rawmidi_substream *substream)
1089 {
1090         struct usbmidi_out_port* port = substream->runtime->private_data;
1091         struct snd_usb_midi_out_endpoint *ep = port->ep;
1092         unsigned int drain_urbs;
1093         DEFINE_WAIT(wait);
1094         long timeout = msecs_to_jiffies(50);
1095
1096         if (ep->umidi->disconnected)
1097                 return;
1098         /*
1099          * The substream buffer is empty, but some data might still be in the
1100          * currently active URBs, so we have to wait for those to complete.
1101          */
1102         spin_lock_irq(&ep->buffer_lock);
1103         drain_urbs = ep->active_urbs;
1104         if (drain_urbs) {
1105                 ep->drain_urbs |= drain_urbs;
1106                 do {
1107                         prepare_to_wait(&ep->drain_wait, &wait,
1108                                         TASK_UNINTERRUPTIBLE);
1109                         spin_unlock_irq(&ep->buffer_lock);
1110                         timeout = schedule_timeout(timeout);
1111                         spin_lock_irq(&ep->buffer_lock);
1112                         drain_urbs &= ep->drain_urbs;
1113                 } while (drain_urbs && timeout);
1114                 finish_wait(&ep->drain_wait, &wait);
1115         }
1116         spin_unlock_irq(&ep->buffer_lock);
1117 }
1118
1119 static int snd_usbmidi_input_open(struct snd_rawmidi_substream *substream)
1120 {
1121         substream_open(substream, 1);
1122         return 0;
1123 }
1124
1125 static int snd_usbmidi_input_close(struct snd_rawmidi_substream *substream)
1126 {
1127         substream_open(substream, 0);
1128         return 0;
1129 }
1130
1131 static void snd_usbmidi_input_trigger(struct snd_rawmidi_substream *substream, int up)
1132 {
1133         struct snd_usb_midi* umidi = substream->rmidi->private_data;
1134
1135         if (up)
1136                 set_bit(substream->number, &umidi->input_triggered);
1137         else
1138                 clear_bit(substream->number, &umidi->input_triggered);
1139 }
1140
1141 static struct snd_rawmidi_ops snd_usbmidi_output_ops = {
1142         .open = snd_usbmidi_output_open,
1143         .close = snd_usbmidi_output_close,
1144         .trigger = snd_usbmidi_output_trigger,
1145         .drain = snd_usbmidi_output_drain,
1146 };
1147
1148 static struct snd_rawmidi_ops snd_usbmidi_input_ops = {
1149         .open = snd_usbmidi_input_open,
1150         .close = snd_usbmidi_input_close,
1151         .trigger = snd_usbmidi_input_trigger
1152 };
1153
1154 static void free_urb_and_buffer(struct snd_usb_midi *umidi, struct urb *urb,
1155                                 unsigned int buffer_length)
1156 {
1157         usb_free_coherent(umidi->dev, buffer_length,
1158                           urb->transfer_buffer, urb->transfer_dma);
1159         usb_free_urb(urb);
1160 }
1161
1162 /*
1163  * Frees an input endpoint.
1164  * May be called when ep hasn't been initialized completely.
1165  */
1166 static void snd_usbmidi_in_endpoint_delete(struct snd_usb_midi_in_endpoint* ep)
1167 {
1168         unsigned int i;
1169
1170         for (i = 0; i < INPUT_URBS; ++i)
1171                 if (ep->urbs[i])
1172                         free_urb_and_buffer(ep->umidi, ep->urbs[i],
1173                                             ep->urbs[i]->transfer_buffer_length);
1174         kfree(ep);
1175 }
1176
1177 /*
1178  * Creates an input endpoint.
1179  */
1180 static int snd_usbmidi_in_endpoint_create(struct snd_usb_midi* umidi,
1181                                           struct snd_usb_midi_endpoint_info* ep_info,
1182                                           struct snd_usb_midi_endpoint* rep)
1183 {
1184         struct snd_usb_midi_in_endpoint* ep;
1185         void* buffer;
1186         unsigned int pipe;
1187         int length;
1188         unsigned int i;
1189
1190         rep->in = NULL;
1191         ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1192         if (!ep)
1193                 return -ENOMEM;
1194         ep->umidi = umidi;
1195
1196         for (i = 0; i < INPUT_URBS; ++i) {
1197                 ep->urbs[i] = usb_alloc_urb(0, GFP_KERNEL);
1198                 if (!ep->urbs[i]) {
1199                         snd_usbmidi_in_endpoint_delete(ep);
1200                         return -ENOMEM;
1201                 }
1202         }
1203         if (ep_info->in_interval)
1204                 pipe = usb_rcvintpipe(umidi->dev, ep_info->in_ep);
1205         else
1206                 pipe = usb_rcvbulkpipe(umidi->dev, ep_info->in_ep);
1207         length = usb_maxpacket(umidi->dev, pipe, 0);
1208         for (i = 0; i < INPUT_URBS; ++i) {
1209                 buffer = usb_alloc_coherent(umidi->dev, length, GFP_KERNEL,
1210                                             &ep->urbs[i]->transfer_dma);
1211                 if (!buffer) {
1212                         snd_usbmidi_in_endpoint_delete(ep);
1213                         return -ENOMEM;
1214                 }
1215                 if (ep_info->in_interval)
1216                         usb_fill_int_urb(ep->urbs[i], umidi->dev,
1217                                          pipe, buffer, length,
1218                                          snd_usbmidi_in_urb_complete,
1219                                          ep, ep_info->in_interval);
1220                 else
1221                         usb_fill_bulk_urb(ep->urbs[i], umidi->dev,
1222                                           pipe, buffer, length,
1223                                           snd_usbmidi_in_urb_complete, ep);
1224                 ep->urbs[i]->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1225         }
1226
1227         rep->in = ep;
1228         return 0;
1229 }
1230
1231 /*
1232  * Frees an output endpoint.
1233  * May be called when ep hasn't been initialized completely.
1234  */
1235 static void snd_usbmidi_out_endpoint_clear(struct snd_usb_midi_out_endpoint *ep)
1236 {
1237         unsigned int i;
1238
1239         for (i = 0; i < OUTPUT_URBS; ++i)
1240                 if (ep->urbs[i].urb) {
1241                         free_urb_and_buffer(ep->umidi, ep->urbs[i].urb,
1242                                             ep->max_transfer);
1243                         ep->urbs[i].urb = NULL;
1244                 }
1245 }
1246
1247 static void snd_usbmidi_out_endpoint_delete(struct snd_usb_midi_out_endpoint *ep)
1248 {
1249         snd_usbmidi_out_endpoint_clear(ep);
1250         kfree(ep);
1251 }
1252
1253 /*
1254  * Creates an output endpoint, and initializes output ports.
1255  */
1256 static int snd_usbmidi_out_endpoint_create(struct snd_usb_midi* umidi,
1257                                            struct snd_usb_midi_endpoint_info* ep_info,
1258                                            struct snd_usb_midi_endpoint* rep)
1259 {
1260         struct snd_usb_midi_out_endpoint* ep;
1261         unsigned int i;
1262         unsigned int pipe;
1263         void* buffer;
1264
1265         rep->out = NULL;
1266         ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1267         if (!ep)
1268                 return -ENOMEM;
1269         ep->umidi = umidi;
1270
1271         for (i = 0; i < OUTPUT_URBS; ++i) {
1272                 ep->urbs[i].urb = usb_alloc_urb(0, GFP_KERNEL);
1273                 if (!ep->urbs[i].urb) {
1274                         snd_usbmidi_out_endpoint_delete(ep);
1275                         return -ENOMEM;
1276                 }
1277                 ep->urbs[i].ep = ep;
1278         }
1279         if (ep_info->out_interval)
1280                 pipe = usb_sndintpipe(umidi->dev, ep_info->out_ep);
1281         else
1282                 pipe = usb_sndbulkpipe(umidi->dev, ep_info->out_ep);
1283         switch (umidi->usb_id) {
1284         default:
1285                 ep->max_transfer = usb_maxpacket(umidi->dev, pipe, 1);
1286                 break;
1287                 /*
1288                  * Various chips declare a packet size larger than 4 bytes, but
1289                  * do not actually work with larger packets:
1290                  */
1291         case USB_ID(0x0a92, 0x1020): /* ESI M4U */
1292         case USB_ID(0x1430, 0x474b): /* RedOctane GH MIDI INTERFACE */
1293         case USB_ID(0x15ca, 0x0101): /* Textech USB Midi Cable */
1294         case USB_ID(0x15ca, 0x1806): /* Textech USB Midi Cable */
1295         case USB_ID(0x1a86, 0x752d): /* QinHeng CH345 "USB2.0-MIDI" */
1296                 ep->max_transfer = 4;
1297                 break;
1298         }
1299         for (i = 0; i < OUTPUT_URBS; ++i) {
1300                 buffer = usb_alloc_coherent(umidi->dev,
1301                                             ep->max_transfer, GFP_KERNEL,
1302                                             &ep->urbs[i].urb->transfer_dma);
1303                 if (!buffer) {
1304                         snd_usbmidi_out_endpoint_delete(ep);
1305                         return -ENOMEM;
1306                 }
1307                 if (ep_info->out_interval)
1308                         usb_fill_int_urb(ep->urbs[i].urb, umidi->dev,
1309                                          pipe, buffer, ep->max_transfer,
1310                                          snd_usbmidi_out_urb_complete,
1311                                          &ep->urbs[i], ep_info->out_interval);
1312                 else
1313                         usb_fill_bulk_urb(ep->urbs[i].urb, umidi->dev,
1314                                           pipe, buffer, ep->max_transfer,
1315                                           snd_usbmidi_out_urb_complete,
1316                                           &ep->urbs[i]);
1317                 ep->urbs[i].urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1318         }
1319
1320         spin_lock_init(&ep->buffer_lock);
1321         tasklet_init(&ep->tasklet, snd_usbmidi_out_tasklet, (unsigned long)ep);
1322         init_waitqueue_head(&ep->drain_wait);
1323
1324         for (i = 0; i < 0x10; ++i)
1325                 if (ep_info->out_cables & (1 << i)) {
1326                         ep->ports[i].ep = ep;
1327                         ep->ports[i].cable = i << 4;
1328                 }
1329
1330         if (umidi->usb_protocol_ops->init_out_endpoint)
1331                 umidi->usb_protocol_ops->init_out_endpoint(ep);
1332
1333         rep->out = ep;
1334         return 0;
1335 }
1336
1337 /*
1338  * Frees everything.
1339  */
1340 static void snd_usbmidi_free(struct snd_usb_midi* umidi)
1341 {
1342         int i;
1343
1344         for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1345                 struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
1346                 if (ep->out)
1347                         snd_usbmidi_out_endpoint_delete(ep->out);
1348                 if (ep->in)
1349                         snd_usbmidi_in_endpoint_delete(ep->in);
1350         }
1351         mutex_destroy(&umidi->mutex);
1352         kfree(umidi);
1353 }
1354
1355 /*
1356  * Unlinks all URBs (must be done before the usb_device is deleted).
1357  */
1358 void snd_usbmidi_disconnect(struct list_head* p)
1359 {
1360         struct snd_usb_midi* umidi;
1361         unsigned int i, j;
1362
1363         umidi = list_entry(p, struct snd_usb_midi, list);
1364         /*
1365          * an URB's completion handler may start the timer and
1366          * a timer may submit an URB. To reliably break the cycle
1367          * a flag under lock must be used
1368          */
1369         spin_lock_irq(&umidi->disc_lock);
1370         umidi->disconnected = 1;
1371         spin_unlock_irq(&umidi->disc_lock);
1372         for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1373                 struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
1374                 if (ep->out)
1375                         tasklet_kill(&ep->out->tasklet);
1376                 if (ep->out) {
1377                         for (j = 0; j < OUTPUT_URBS; ++j)
1378                                 usb_kill_urb(ep->out->urbs[j].urb);
1379                         if (umidi->usb_protocol_ops->finish_out_endpoint)
1380                                 umidi->usb_protocol_ops->finish_out_endpoint(ep->out);
1381                         ep->out->active_urbs = 0;
1382                         if (ep->out->drain_urbs) {
1383                                 ep->out->drain_urbs = 0;
1384                                 wake_up(&ep->out->drain_wait);
1385                         }
1386                 }
1387                 if (ep->in)
1388                         for (j = 0; j < INPUT_URBS; ++j)
1389                                 usb_kill_urb(ep->in->urbs[j]);
1390                 /* free endpoints here; later call can result in Oops */
1391                 if (ep->out)
1392                         snd_usbmidi_out_endpoint_clear(ep->out);
1393                 if (ep->in) {
1394                         snd_usbmidi_in_endpoint_delete(ep->in);
1395                         ep->in = NULL;
1396                 }
1397         }
1398         del_timer_sync(&umidi->error_timer);
1399 }
1400
1401 static void snd_usbmidi_rawmidi_free(struct snd_rawmidi *rmidi)
1402 {
1403         struct snd_usb_midi* umidi = rmidi->private_data;
1404         snd_usbmidi_free(umidi);
1405 }
1406
1407 static struct snd_rawmidi_substream *snd_usbmidi_find_substream(struct snd_usb_midi* umidi,
1408                                                                 int stream, int number)
1409 {
1410         struct list_head* list;
1411
1412         list_for_each(list, &umidi->rmidi->streams[stream].substreams) {
1413                 struct snd_rawmidi_substream *substream = list_entry(list, struct snd_rawmidi_substream, list);
1414                 if (substream->number == number)
1415                         return substream;
1416         }
1417         return NULL;
1418 }
1419
1420 /*
1421  * This list specifies names for ports that do not fit into the standard
1422  * "(product) MIDI (n)" schema because they aren't external MIDI ports,
1423  * such as internal control or synthesizer ports.
1424  */
1425 static struct port_info {
1426         u32 id;
1427         short int port;
1428         short int voices;
1429         const char *name;
1430         unsigned int seq_flags;
1431 } snd_usbmidi_port_info[] = {
1432 #define PORT_INFO(vendor, product, num, name_, voices_, flags) \
1433         { .id = USB_ID(vendor, product), \
1434           .port = num, .voices = voices_, \
1435           .name = name_, .seq_flags = flags }
1436 #define EXTERNAL_PORT(vendor, product, num, name) \
1437         PORT_INFO(vendor, product, num, name, 0, \
1438                   SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1439                   SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1440                   SNDRV_SEQ_PORT_TYPE_PORT)
1441 #define CONTROL_PORT(vendor, product, num, name) \
1442         PORT_INFO(vendor, product, num, name, 0, \
1443                   SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1444                   SNDRV_SEQ_PORT_TYPE_HARDWARE)
1445 #define ROLAND_SYNTH_PORT(vendor, product, num, name, voices) \
1446         PORT_INFO(vendor, product, num, name, voices, \
1447                   SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1448                   SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1449                   SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
1450                   SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
1451                   SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
1452                   SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1453                   SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1454 #define SOUNDCANVAS_PORT(vendor, product, num, name, voices) \
1455         PORT_INFO(vendor, product, num, name, voices, \
1456                   SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC | \
1457                   SNDRV_SEQ_PORT_TYPE_MIDI_GM | \
1458                   SNDRV_SEQ_PORT_TYPE_MIDI_GM2 | \
1459                   SNDRV_SEQ_PORT_TYPE_MIDI_GS | \
1460                   SNDRV_SEQ_PORT_TYPE_MIDI_XG | \
1461                   SNDRV_SEQ_PORT_TYPE_MIDI_MT32 | \
1462                   SNDRV_SEQ_PORT_TYPE_HARDWARE | \
1463                   SNDRV_SEQ_PORT_TYPE_SYNTHESIZER)
1464         /* Roland UA-100 */
1465         CONTROL_PORT(0x0582, 0x0000, 2, "%s Control"),
1466         /* Roland SC-8850 */
1467         SOUNDCANVAS_PORT(0x0582, 0x0003, 0, "%s Part A", 128),
1468         SOUNDCANVAS_PORT(0x0582, 0x0003, 1, "%s Part B", 128),
1469         SOUNDCANVAS_PORT(0x0582, 0x0003, 2, "%s Part C", 128),
1470         SOUNDCANVAS_PORT(0x0582, 0x0003, 3, "%s Part D", 128),
1471         EXTERNAL_PORT(0x0582, 0x0003, 4, "%s MIDI 1"),
1472         EXTERNAL_PORT(0x0582, 0x0003, 5, "%s MIDI 2"),
1473         /* Roland U-8 */
1474         EXTERNAL_PORT(0x0582, 0x0004, 0, "%s MIDI"),
1475         CONTROL_PORT(0x0582, 0x0004, 1, "%s Control"),
1476         /* Roland SC-8820 */
1477         SOUNDCANVAS_PORT(0x0582, 0x0007, 0, "%s Part A", 64),
1478         SOUNDCANVAS_PORT(0x0582, 0x0007, 1, "%s Part B", 64),
1479         EXTERNAL_PORT(0x0582, 0x0007, 2, "%s MIDI"),
1480         /* Roland SK-500 */
1481         SOUNDCANVAS_PORT(0x0582, 0x000b, 0, "%s Part A", 64),
1482         SOUNDCANVAS_PORT(0x0582, 0x000b, 1, "%s Part B", 64),
1483         EXTERNAL_PORT(0x0582, 0x000b, 2, "%s MIDI"),
1484         /* Roland SC-D70 */
1485         SOUNDCANVAS_PORT(0x0582, 0x000c, 0, "%s Part A", 64),
1486         SOUNDCANVAS_PORT(0x0582, 0x000c, 1, "%s Part B", 64),
1487         EXTERNAL_PORT(0x0582, 0x000c, 2, "%s MIDI"),
1488         /* Edirol UM-880 */
1489         CONTROL_PORT(0x0582, 0x0014, 8, "%s Control"),
1490         /* Edirol SD-90 */
1491         ROLAND_SYNTH_PORT(0x0582, 0x0016, 0, "%s Part A", 128),
1492         ROLAND_SYNTH_PORT(0x0582, 0x0016, 1, "%s Part B", 128),
1493         EXTERNAL_PORT(0x0582, 0x0016, 2, "%s MIDI 1"),
1494         EXTERNAL_PORT(0x0582, 0x0016, 3, "%s MIDI 2"),
1495         /* Edirol UM-550 */
1496         CONTROL_PORT(0x0582, 0x0023, 5, "%s Control"),
1497         /* Edirol SD-20 */
1498         ROLAND_SYNTH_PORT(0x0582, 0x0027, 0, "%s Part A", 64),
1499         ROLAND_SYNTH_PORT(0x0582, 0x0027, 1, "%s Part B", 64),
1500         EXTERNAL_PORT(0x0582, 0x0027, 2, "%s MIDI"),
1501         /* Edirol SD-80 */
1502         ROLAND_SYNTH_PORT(0x0582, 0x0029, 0, "%s Part A", 128),
1503         ROLAND_SYNTH_PORT(0x0582, 0x0029, 1, "%s Part B", 128),
1504         EXTERNAL_PORT(0x0582, 0x0029, 2, "%s MIDI 1"),
1505         EXTERNAL_PORT(0x0582, 0x0029, 3, "%s MIDI 2"),
1506         /* Edirol UA-700 */
1507         EXTERNAL_PORT(0x0582, 0x002b, 0, "%s MIDI"),
1508         CONTROL_PORT(0x0582, 0x002b, 1, "%s Control"),
1509         /* Roland VariOS */
1510         EXTERNAL_PORT(0x0582, 0x002f, 0, "%s MIDI"),
1511         EXTERNAL_PORT(0x0582, 0x002f, 1, "%s External MIDI"),
1512         EXTERNAL_PORT(0x0582, 0x002f, 2, "%s Sync"),
1513         /* Edirol PCR */
1514         EXTERNAL_PORT(0x0582, 0x0033, 0, "%s MIDI"),
1515         EXTERNAL_PORT(0x0582, 0x0033, 1, "%s 1"),
1516         EXTERNAL_PORT(0x0582, 0x0033, 2, "%s 2"),
1517         /* BOSS GS-10 */
1518         EXTERNAL_PORT(0x0582, 0x003b, 0, "%s MIDI"),
1519         CONTROL_PORT(0x0582, 0x003b, 1, "%s Control"),
1520         /* Edirol UA-1000 */
1521         EXTERNAL_PORT(0x0582, 0x0044, 0, "%s MIDI"),
1522         CONTROL_PORT(0x0582, 0x0044, 1, "%s Control"),
1523         /* Edirol UR-80 */
1524         EXTERNAL_PORT(0x0582, 0x0048, 0, "%s MIDI"),
1525         EXTERNAL_PORT(0x0582, 0x0048, 1, "%s 1"),
1526         EXTERNAL_PORT(0x0582, 0x0048, 2, "%s 2"),
1527         /* Edirol PCR-A */
1528         EXTERNAL_PORT(0x0582, 0x004d, 0, "%s MIDI"),
1529         EXTERNAL_PORT(0x0582, 0x004d, 1, "%s 1"),
1530         EXTERNAL_PORT(0x0582, 0x004d, 2, "%s 2"),
1531         /* Edirol UM-3EX */
1532         CONTROL_PORT(0x0582, 0x009a, 3, "%s Control"),
1533         /* M-Audio MidiSport 8x8 */
1534         CONTROL_PORT(0x0763, 0x1031, 8, "%s Control"),
1535         CONTROL_PORT(0x0763, 0x1033, 8, "%s Control"),
1536         /* MOTU Fastlane */
1537         EXTERNAL_PORT(0x07fd, 0x0001, 0, "%s MIDI A"),
1538         EXTERNAL_PORT(0x07fd, 0x0001, 1, "%s MIDI B"),
1539         /* Emagic Unitor8/AMT8/MT4 */
1540         EXTERNAL_PORT(0x086a, 0x0001, 8, "%s Broadcast"),
1541         EXTERNAL_PORT(0x086a, 0x0002, 8, "%s Broadcast"),
1542         EXTERNAL_PORT(0x086a, 0x0003, 4, "%s Broadcast"),
1543         /* Akai MPD16 */
1544         CONTROL_PORT(0x09e8, 0x0062, 0, "%s Control"),
1545         PORT_INFO(0x09e8, 0x0062, 1, "%s MIDI", 0,
1546                 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC |
1547                 SNDRV_SEQ_PORT_TYPE_HARDWARE),
1548         /* Access Music Virus TI */
1549         EXTERNAL_PORT(0x133e, 0x0815, 0, "%s MIDI"),
1550         PORT_INFO(0x133e, 0x0815, 1, "%s Synth", 0,
1551                 SNDRV_SEQ_PORT_TYPE_MIDI_GENERIC |
1552                 SNDRV_SEQ_PORT_TYPE_HARDWARE |
1553                 SNDRV_SEQ_PORT_TYPE_SYNTHESIZER),
1554 };
1555
1556 static struct port_info *find_port_info(struct snd_usb_midi* umidi, int number)
1557 {
1558         int i;
1559
1560         for (i = 0; i < ARRAY_SIZE(snd_usbmidi_port_info); ++i) {
1561                 if (snd_usbmidi_port_info[i].id == umidi->usb_id &&
1562                     snd_usbmidi_port_info[i].port == number)
1563                         return &snd_usbmidi_port_info[i];
1564         }
1565         return NULL;
1566 }
1567
1568 static void snd_usbmidi_get_port_info(struct snd_rawmidi *rmidi, int number,
1569                                       struct snd_seq_port_info *seq_port_info)
1570 {
1571         struct snd_usb_midi *umidi = rmidi->private_data;
1572         struct port_info *port_info;
1573
1574         /* TODO: read port flags from descriptors */
1575         port_info = find_port_info(umidi, number);
1576         if (port_info) {
1577                 seq_port_info->type = port_info->seq_flags;
1578                 seq_port_info->midi_voices = port_info->voices;
1579         }
1580 }
1581
1582 static void snd_usbmidi_init_substream(struct snd_usb_midi* umidi,
1583                                        int stream, int number,
1584                                        struct snd_rawmidi_substream ** rsubstream)
1585 {
1586         struct port_info *port_info;
1587         const char *name_format;
1588
1589         struct snd_rawmidi_substream *substream = snd_usbmidi_find_substream(umidi, stream, number);
1590         if (!substream) {
1591                 snd_printd(KERN_ERR "substream %d:%d not found\n", stream, number);
1592                 return;
1593         }
1594
1595         /* TODO: read port name from jack descriptor */
1596         port_info = find_port_info(umidi, number);
1597         name_format = port_info ? port_info->name : "%s MIDI %d";
1598         snprintf(substream->name, sizeof(substream->name),
1599                  name_format, umidi->card->shortname, number + 1);
1600
1601         *rsubstream = substream;
1602 }
1603
1604 /*
1605  * Creates the endpoints and their ports.
1606  */
1607 static int snd_usbmidi_create_endpoints(struct snd_usb_midi* umidi,
1608                                         struct snd_usb_midi_endpoint_info* endpoints)
1609 {
1610         int i, j, err;
1611         int out_ports = 0, in_ports = 0;
1612
1613         for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1614                 if (endpoints[i].out_cables) {
1615                         err = snd_usbmidi_out_endpoint_create(umidi, &endpoints[i],
1616                                                               &umidi->endpoints[i]);
1617                         if (err < 0)
1618                                 return err;
1619                 }
1620                 if (endpoints[i].in_cables) {
1621                         err = snd_usbmidi_in_endpoint_create(umidi, &endpoints[i],
1622                                                              &umidi->endpoints[i]);
1623                         if (err < 0)
1624                                 return err;
1625                 }
1626
1627                 for (j = 0; j < 0x10; ++j) {
1628                         if (endpoints[i].out_cables & (1 << j)) {
1629                                 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, out_ports,
1630                                                            &umidi->endpoints[i].out->ports[j].substream);
1631                                 ++out_ports;
1632                         }
1633                         if (endpoints[i].in_cables & (1 << j)) {
1634                                 snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, in_ports,
1635                                                            &umidi->endpoints[i].in->ports[j].substream);
1636                                 ++in_ports;
1637                         }
1638                 }
1639         }
1640         snd_printdd(KERN_INFO "created %d output and %d input ports\n",
1641                     out_ports, in_ports);
1642         return 0;
1643 }
1644
1645 /*
1646  * Returns MIDIStreaming device capabilities.
1647  */
1648 static int snd_usbmidi_get_ms_info(struct snd_usb_midi* umidi,
1649                                    struct snd_usb_midi_endpoint_info* endpoints)
1650 {
1651         struct usb_interface* intf;
1652         struct usb_host_interface *hostif;
1653         struct usb_interface_descriptor* intfd;
1654         struct usb_ms_header_descriptor* ms_header;
1655         struct usb_host_endpoint *hostep;
1656         struct usb_endpoint_descriptor* ep;
1657         struct usb_ms_endpoint_descriptor* ms_ep;
1658         int i, epidx;
1659
1660         intf = umidi->iface;
1661         if (!intf)
1662                 return -ENXIO;
1663         hostif = &intf->altsetting[0];
1664         intfd = get_iface_desc(hostif);
1665         ms_header = (struct usb_ms_header_descriptor*)hostif->extra;
1666         if (hostif->extralen >= 7 &&
1667             ms_header->bLength >= 7 &&
1668             ms_header->bDescriptorType == USB_DT_CS_INTERFACE &&
1669             ms_header->bDescriptorSubtype == UAC_HEADER)
1670                 snd_printdd(KERN_INFO "MIDIStreaming version %02x.%02x\n",
1671                             ms_header->bcdMSC[1], ms_header->bcdMSC[0]);
1672         else
1673                 snd_printk(KERN_WARNING "MIDIStreaming interface descriptor not found\n");
1674
1675         epidx = 0;
1676         for (i = 0; i < intfd->bNumEndpoints; ++i) {
1677                 hostep = &hostif->endpoint[i];
1678                 ep = get_ep_desc(hostep);
1679                 if (!usb_endpoint_xfer_bulk(ep) && !usb_endpoint_xfer_int(ep))
1680                         continue;
1681                 ms_ep = (struct usb_ms_endpoint_descriptor*)hostep->extra;
1682                 if (hostep->extralen < 4 ||
1683                     ms_ep->bLength < 4 ||
1684                     ms_ep->bDescriptorType != USB_DT_CS_ENDPOINT ||
1685                     ms_ep->bDescriptorSubtype != UAC_MS_GENERAL)
1686                         continue;
1687                 if (usb_endpoint_dir_out(ep)) {
1688                         if (endpoints[epidx].out_ep) {
1689                                 if (++epidx >= MIDI_MAX_ENDPOINTS) {
1690                                         snd_printk(KERN_WARNING "too many endpoints\n");
1691                                         break;
1692                                 }
1693                         }
1694                         endpoints[epidx].out_ep = usb_endpoint_num(ep);
1695                         if (usb_endpoint_xfer_int(ep))
1696                                 endpoints[epidx].out_interval = ep->bInterval;
1697                         else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
1698                                 /*
1699                                  * Low speed bulk transfers don't exist, so
1700                                  * force interrupt transfers for devices like
1701                                  * ESI MIDI Mate that try to use them anyway.
1702                                  */
1703                                 endpoints[epidx].out_interval = 1;
1704                         endpoints[epidx].out_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
1705                         snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
1706                                     ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
1707                 } else {
1708                         if (endpoints[epidx].in_ep) {
1709                                 if (++epidx >= MIDI_MAX_ENDPOINTS) {
1710                                         snd_printk(KERN_WARNING "too many endpoints\n");
1711                                         break;
1712                                 }
1713                         }
1714                         endpoints[epidx].in_ep = usb_endpoint_num(ep);
1715                         if (usb_endpoint_xfer_int(ep))
1716                                 endpoints[epidx].in_interval = ep->bInterval;
1717                         else if (snd_usb_get_speed(umidi->dev) == USB_SPEED_LOW)
1718                                 endpoints[epidx].in_interval = 1;
1719                         endpoints[epidx].in_cables = (1 << ms_ep->bNumEmbMIDIJack) - 1;
1720                         snd_printdd(KERN_INFO "EP %02X: %d jack(s)\n",
1721                                     ep->bEndpointAddress, ms_ep->bNumEmbMIDIJack);
1722                 }
1723         }
1724         return 0;
1725 }
1726
1727 static int roland_load_info(struct snd_kcontrol *kcontrol,
1728                             struct snd_ctl_elem_info *info)
1729 {
1730         static const char *const names[] = { "High Load", "Light Load" };
1731
1732         info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1733         info->count = 1;
1734         info->value.enumerated.items = 2;
1735         if (info->value.enumerated.item > 1)
1736                 info->value.enumerated.item = 1;
1737         strcpy(info->value.enumerated.name, names[info->value.enumerated.item]);
1738         return 0;
1739 }
1740
1741 static int roland_load_get(struct snd_kcontrol *kcontrol,
1742                            struct snd_ctl_elem_value *value)
1743 {
1744         value->value.enumerated.item[0] = kcontrol->private_value;
1745         return 0;
1746 }
1747
1748 static int roland_load_put(struct snd_kcontrol *kcontrol,
1749                            struct snd_ctl_elem_value *value)
1750 {
1751         struct snd_usb_midi* umidi = kcontrol->private_data;
1752         int changed;
1753
1754         if (value->value.enumerated.item[0] > 1)
1755                 return -EINVAL;
1756         mutex_lock(&umidi->mutex);
1757         changed = value->value.enumerated.item[0] != kcontrol->private_value;
1758         if (changed)
1759                 kcontrol->private_value = value->value.enumerated.item[0];
1760         mutex_unlock(&umidi->mutex);
1761         return changed;
1762 }
1763
1764 static struct snd_kcontrol_new roland_load_ctl = {
1765         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1766         .name = "MIDI Input Mode",
1767         .info = roland_load_info,
1768         .get = roland_load_get,
1769         .put = roland_load_put,
1770         .private_value = 1,
1771 };
1772
1773 /*
1774  * On Roland devices, use the second alternate setting to be able to use
1775  * the interrupt input endpoint.
1776  */
1777 static void snd_usbmidi_switch_roland_altsetting(struct snd_usb_midi* umidi)
1778 {
1779         struct usb_interface* intf;
1780         struct usb_host_interface *hostif;
1781         struct usb_interface_descriptor* intfd;
1782
1783         intf = umidi->iface;
1784         if (!intf || intf->num_altsetting != 2)
1785                 return;
1786
1787         hostif = &intf->altsetting[1];
1788         intfd = get_iface_desc(hostif);
1789         if (intfd->bNumEndpoints != 2 ||
1790             (get_endpoint(hostif, 0)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_BULK ||
1791             (get_endpoint(hostif, 1)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_INT)
1792                 return;
1793
1794         snd_printdd(KERN_INFO "switching to altsetting %d with int ep\n",
1795                     intfd->bAlternateSetting);
1796         usb_set_interface(umidi->dev, intfd->bInterfaceNumber,
1797                           intfd->bAlternateSetting);
1798
1799         umidi->roland_load_ctl = snd_ctl_new1(&roland_load_ctl, umidi);
1800         if (snd_ctl_add(umidi->card, umidi->roland_load_ctl) < 0)
1801                 umidi->roland_load_ctl = NULL;
1802 }
1803
1804 /*
1805  * Try to find any usable endpoints in the interface.
1806  */
1807 static int snd_usbmidi_detect_endpoints(struct snd_usb_midi* umidi,
1808                                         struct snd_usb_midi_endpoint_info* endpoint,
1809                                         int max_endpoints)
1810 {
1811         struct usb_interface* intf;
1812         struct usb_host_interface *hostif;
1813         struct usb_interface_descriptor* intfd;
1814         struct usb_endpoint_descriptor* epd;
1815         int i, out_eps = 0, in_eps = 0;
1816
1817         if (USB_ID_VENDOR(umidi->usb_id) == 0x0582)
1818                 snd_usbmidi_switch_roland_altsetting(umidi);
1819
1820         if (endpoint[0].out_ep || endpoint[0].in_ep)
1821                 return 0;
1822
1823         intf = umidi->iface;
1824         if (!intf || intf->num_altsetting < 1)
1825                 return -ENOENT;
1826         hostif = intf->cur_altsetting;
1827         intfd = get_iface_desc(hostif);
1828
1829         for (i = 0; i < intfd->bNumEndpoints; ++i) {
1830                 epd = get_endpoint(hostif, i);
1831                 if (!usb_endpoint_xfer_bulk(epd) &&
1832                     !usb_endpoint_xfer_int(epd))
1833                         continue;
1834                 if (out_eps < max_endpoints &&
1835                     usb_endpoint_dir_out(epd)) {
1836                         endpoint[out_eps].out_ep = usb_endpoint_num(epd);
1837                         if (usb_endpoint_xfer_int(epd))
1838                                 endpoint[out_eps].out_interval = epd->bInterval;
1839                         ++out_eps;
1840                 }
1841                 if (in_eps < max_endpoints &&
1842                     usb_endpoint_dir_in(epd)) {
1843                         endpoint[in_eps].in_ep = usb_endpoint_num(epd);
1844                         if (usb_endpoint_xfer_int(epd))
1845                                 endpoint[in_eps].in_interval = epd->bInterval;
1846                         ++in_eps;
1847                 }
1848         }
1849         return (out_eps || in_eps) ? 0 : -ENOENT;
1850 }
1851
1852 /*
1853  * Detects the endpoints for one-port-per-endpoint protocols.
1854  */
1855 static int snd_usbmidi_detect_per_port_endpoints(struct snd_usb_midi* umidi,
1856                                                  struct snd_usb_midi_endpoint_info* endpoints)
1857 {
1858         int err, i;
1859
1860         err = snd_usbmidi_detect_endpoints(umidi, endpoints, MIDI_MAX_ENDPOINTS);
1861         for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
1862                 if (endpoints[i].out_ep)
1863                         endpoints[i].out_cables = 0x0001;
1864                 if (endpoints[i].in_ep)
1865                         endpoints[i].in_cables = 0x0001;
1866         }
1867         return err;
1868 }
1869
1870 /*
1871  * Detects the endpoints and ports of Yamaha devices.
1872  */
1873 static int snd_usbmidi_detect_yamaha(struct snd_usb_midi* umidi,
1874                                      struct snd_usb_midi_endpoint_info* endpoint)
1875 {
1876         struct usb_interface* intf;
1877         struct usb_host_interface *hostif;
1878         struct usb_interface_descriptor* intfd;
1879         uint8_t* cs_desc;
1880
1881         intf = umidi->iface;
1882         if (!intf)
1883                 return -ENOENT;
1884         hostif = intf->altsetting;
1885         intfd = get_iface_desc(hostif);
1886         if (intfd->bNumEndpoints < 1)
1887                 return -ENOENT;
1888
1889         /*
1890          * For each port there is one MIDI_IN/OUT_JACK descriptor, not
1891          * necessarily with any useful contents.  So simply count 'em.
1892          */
1893         for (cs_desc = hostif->extra;
1894              cs_desc < hostif->extra + hostif->extralen && cs_desc[0] >= 2;
1895              cs_desc += cs_desc[0]) {
1896                 if (cs_desc[1] == USB_DT_CS_INTERFACE) {
1897                         if (cs_desc[2] == UAC_MIDI_IN_JACK)
1898                                 endpoint->in_cables = (endpoint->in_cables << 1) | 1;
1899                         else if (cs_desc[2] == UAC_MIDI_OUT_JACK)
1900                                 endpoint->out_cables = (endpoint->out_cables << 1) | 1;
1901                 }
1902         }
1903         if (!endpoint->in_cables && !endpoint->out_cables)
1904                 return -ENOENT;
1905
1906         return snd_usbmidi_detect_endpoints(umidi, endpoint, 1);
1907 }
1908
1909 /*
1910  * Creates the endpoints and their ports for Midiman devices.
1911  */
1912 static int snd_usbmidi_create_endpoints_midiman(struct snd_usb_midi* umidi,
1913                                                 struct snd_usb_midi_endpoint_info* endpoint)
1914 {
1915         struct snd_usb_midi_endpoint_info ep_info;
1916         struct usb_interface* intf;
1917         struct usb_host_interface *hostif;
1918         struct usb_interface_descriptor* intfd;
1919         struct usb_endpoint_descriptor* epd;
1920         int cable, err;
1921
1922         intf = umidi->iface;
1923         if (!intf)
1924                 return -ENOENT;
1925         hostif = intf->altsetting;
1926         intfd = get_iface_desc(hostif);
1927         /*
1928          * The various MidiSport devices have more or less random endpoint
1929          * numbers, so we have to identify the endpoints by their index in
1930          * the descriptor array, like the driver for that other OS does.
1931          *
1932          * There is one interrupt input endpoint for all input ports, one
1933          * bulk output endpoint for even-numbered ports, and one for odd-
1934          * numbered ports.  Both bulk output endpoints have corresponding
1935          * input bulk endpoints (at indices 1 and 3) which aren't used.
1936          */
1937         if (intfd->bNumEndpoints < (endpoint->out_cables > 0x0001 ? 5 : 3)) {
1938                 snd_printdd(KERN_ERR "not enough endpoints\n");
1939                 return -ENOENT;
1940         }
1941
1942         epd = get_endpoint(hostif, 0);
1943         if (!usb_endpoint_dir_in(epd) || !usb_endpoint_xfer_int(epd)) {
1944                 snd_printdd(KERN_ERR "endpoint[0] isn't interrupt\n");
1945                 return -ENXIO;
1946         }
1947         epd = get_endpoint(hostif, 2);
1948         if (!usb_endpoint_dir_out(epd) || !usb_endpoint_xfer_bulk(epd)) {
1949                 snd_printdd(KERN_ERR "endpoint[2] isn't bulk output\n");
1950                 return -ENXIO;
1951         }
1952         if (endpoint->out_cables > 0x0001) {
1953                 epd = get_endpoint(hostif, 4);
1954                 if (!usb_endpoint_dir_out(epd) ||
1955                     !usb_endpoint_xfer_bulk(epd)) {
1956                         snd_printdd(KERN_ERR "endpoint[4] isn't bulk output\n");
1957                         return -ENXIO;
1958                 }
1959         }
1960
1961         ep_info.out_ep = get_endpoint(hostif, 2)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
1962         ep_info.out_interval = 0;
1963         ep_info.out_cables = endpoint->out_cables & 0x5555;
1964         err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
1965         if (err < 0)
1966                 return err;
1967
1968         ep_info.in_ep = get_endpoint(hostif, 0)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
1969         ep_info.in_interval = get_endpoint(hostif, 0)->bInterval;
1970         ep_info.in_cables = endpoint->in_cables;
1971         err = snd_usbmidi_in_endpoint_create(umidi, &ep_info, &umidi->endpoints[0]);
1972         if (err < 0)
1973                 return err;
1974
1975         if (endpoint->out_cables > 0x0001) {
1976                 ep_info.out_ep = get_endpoint(hostif, 4)->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
1977                 ep_info.out_cables = endpoint->out_cables & 0xaaaa;
1978                 err = snd_usbmidi_out_endpoint_create(umidi, &ep_info, &umidi->endpoints[1]);
1979                 if (err < 0)
1980                         return err;
1981         }
1982
1983         for (cable = 0; cable < 0x10; ++cable) {
1984                 if (endpoint->out_cables & (1 << cable))
1985                         snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_OUTPUT, cable,
1986                                                    &umidi->endpoints[cable & 1].out->ports[cable].substream);
1987                 if (endpoint->in_cables & (1 << cable))
1988                         snd_usbmidi_init_substream(umidi, SNDRV_RAWMIDI_STREAM_INPUT, cable,
1989                                                    &umidi->endpoints[0].in->ports[cable].substream);
1990         }
1991         return 0;
1992 }
1993
1994 static struct snd_rawmidi_global_ops snd_usbmidi_ops = {
1995         .get_port_info = snd_usbmidi_get_port_info,
1996 };
1997
1998 static int snd_usbmidi_create_rawmidi(struct snd_usb_midi* umidi,
1999                                       int out_ports, int in_ports)
2000 {
2001         struct snd_rawmidi *rmidi;
2002         int err;
2003
2004         err = snd_rawmidi_new(umidi->card, "USB MIDI",
2005                               umidi->next_midi_device++,
2006                               out_ports, in_ports, &rmidi);
2007         if (err < 0)
2008                 return err;
2009         strcpy(rmidi->name, umidi->card->shortname);
2010         rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
2011                             SNDRV_RAWMIDI_INFO_INPUT |
2012                             SNDRV_RAWMIDI_INFO_DUPLEX;
2013         rmidi->ops = &snd_usbmidi_ops;
2014         rmidi->private_data = umidi;
2015         rmidi->private_free = snd_usbmidi_rawmidi_free;
2016         snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_usbmidi_output_ops);
2017         snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_usbmidi_input_ops);
2018
2019         umidi->rmidi = rmidi;
2020         return 0;
2021 }
2022
2023 /*
2024  * Temporarily stop input.
2025  */
2026 void snd_usbmidi_input_stop(struct list_head* p)
2027 {
2028         struct snd_usb_midi* umidi;
2029         unsigned int i, j;
2030
2031         umidi = list_entry(p, struct snd_usb_midi, list);
2032         for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
2033                 struct snd_usb_midi_endpoint* ep = &umidi->endpoints[i];
2034                 if (ep->in)
2035                         for (j = 0; j < INPUT_URBS; ++j)
2036                                 usb_kill_urb(ep->in->urbs[j]);
2037         }
2038 }
2039
2040 static void snd_usbmidi_input_start_ep(struct snd_usb_midi_in_endpoint* ep)
2041 {
2042         unsigned int i;
2043
2044         if (!ep)
2045                 return;
2046         for (i = 0; i < INPUT_URBS; ++i) {
2047                 struct urb* urb = ep->urbs[i];
2048                 urb->dev = ep->umidi->dev;
2049                 snd_usbmidi_submit_urb(urb, GFP_KERNEL);
2050         }
2051 }
2052
2053 /*
2054  * Resume input after a call to snd_usbmidi_input_stop().
2055  */
2056 void snd_usbmidi_input_start(struct list_head* p)
2057 {
2058         struct snd_usb_midi* umidi;
2059         int i;
2060
2061         umidi = list_entry(p, struct snd_usb_midi, list);
2062         for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
2063                 snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
2064 }
2065
2066 /*
2067  * Creates and registers everything needed for a MIDI streaming interface.
2068  */
2069 int snd_usbmidi_create(struct snd_card *card,
2070                        struct usb_interface* iface,
2071                        struct list_head *midi_list,
2072                        const struct snd_usb_audio_quirk* quirk)
2073 {
2074         struct snd_usb_midi* umidi;
2075         struct snd_usb_midi_endpoint_info endpoints[MIDI_MAX_ENDPOINTS];
2076         int out_ports, in_ports;
2077         int i, err;
2078
2079         umidi = kzalloc(sizeof(*umidi), GFP_KERNEL);
2080         if (!umidi)
2081                 return -ENOMEM;
2082         umidi->dev = interface_to_usbdev(iface);
2083         umidi->card = card;
2084         umidi->iface = iface;
2085         umidi->quirk = quirk;
2086         umidi->usb_protocol_ops = &snd_usbmidi_standard_ops;
2087         init_timer(&umidi->error_timer);
2088         spin_lock_init(&umidi->disc_lock);
2089         mutex_init(&umidi->mutex);
2090         umidi->usb_id = USB_ID(le16_to_cpu(umidi->dev->descriptor.idVendor),
2091                                le16_to_cpu(umidi->dev->descriptor.idProduct));
2092         umidi->error_timer.function = snd_usbmidi_error_timer;
2093         umidi->error_timer.data = (unsigned long)umidi;
2094
2095         /* detect the endpoint(s) to use */
2096         memset(endpoints, 0, sizeof(endpoints));
2097         switch (quirk ? quirk->type : QUIRK_MIDI_STANDARD_INTERFACE) {
2098         case QUIRK_MIDI_STANDARD_INTERFACE:
2099                 err = snd_usbmidi_get_ms_info(umidi, endpoints);
2100                 if (umidi->usb_id == USB_ID(0x0763, 0x0150)) /* M-Audio Uno */
2101                         umidi->usb_protocol_ops =
2102                                 &snd_usbmidi_maudio_broken_running_status_ops;
2103                 break;
2104         case QUIRK_MIDI_US122L:
2105                 umidi->usb_protocol_ops = &snd_usbmidi_122l_ops;
2106                 /* fall through */
2107         case QUIRK_MIDI_FIXED_ENDPOINT:
2108                 memcpy(&endpoints[0], quirk->data,
2109                        sizeof(struct snd_usb_midi_endpoint_info));
2110                 err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
2111                 break;
2112         case QUIRK_MIDI_YAMAHA:
2113                 err = snd_usbmidi_detect_yamaha(umidi, &endpoints[0]);
2114                 break;
2115         case QUIRK_MIDI_MIDIMAN:
2116                 umidi->usb_protocol_ops = &snd_usbmidi_midiman_ops;
2117                 memcpy(&endpoints[0], quirk->data,
2118                        sizeof(struct snd_usb_midi_endpoint_info));
2119                 err = 0;
2120                 break;
2121         case QUIRK_MIDI_NOVATION:
2122                 umidi->usb_protocol_ops = &snd_usbmidi_novation_ops;
2123                 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2124                 break;
2125         case QUIRK_MIDI_FASTLANE:
2126                 umidi->usb_protocol_ops = &snd_usbmidi_raw_ops;
2127                 /*
2128                  * Interface 1 contains isochronous endpoints, but with the same
2129                  * numbers as in interface 0.  Since it is interface 1 that the
2130                  * USB core has most recently seen, these descriptors are now
2131                  * associated with the endpoint numbers.  This will foul up our
2132                  * attempts to submit bulk/interrupt URBs to the endpoints in
2133                  * interface 0, so we have to make sure that the USB core looks
2134                  * again at interface 0 by calling usb_set_interface() on it.
2135                  */
2136                 usb_set_interface(umidi->dev, 0, 0);
2137                 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2138                 break;
2139         case QUIRK_MIDI_EMAGIC:
2140                 umidi->usb_protocol_ops = &snd_usbmidi_emagic_ops;
2141                 memcpy(&endpoints[0], quirk->data,
2142                        sizeof(struct snd_usb_midi_endpoint_info));
2143                 err = snd_usbmidi_detect_endpoints(umidi, &endpoints[0], 1);
2144                 break;
2145         case QUIRK_MIDI_CME:
2146                 umidi->usb_protocol_ops = &snd_usbmidi_cme_ops;
2147                 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2148                 break;
2149         case QUIRK_MIDI_AKAI:
2150                 umidi->usb_protocol_ops = &snd_usbmidi_akai_ops;
2151                 err = snd_usbmidi_detect_per_port_endpoints(umidi, endpoints);
2152                 /* endpoint 1 is input-only */
2153                 endpoints[1].out_cables = 0;
2154                 break;
2155         default:
2156                 snd_printd(KERN_ERR "invalid quirk type %d\n", quirk->type);
2157                 err = -ENXIO;
2158                 break;
2159         }
2160         if (err < 0) {
2161                 kfree(umidi);
2162                 return err;
2163         }
2164
2165         /* create rawmidi device */
2166         out_ports = 0;
2167         in_ports = 0;
2168         for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i) {
2169                 out_ports += hweight16(endpoints[i].out_cables);
2170                 in_ports += hweight16(endpoints[i].in_cables);
2171         }
2172         err = snd_usbmidi_create_rawmidi(umidi, out_ports, in_ports);
2173         if (err < 0) {
2174                 kfree(umidi);
2175                 return err;
2176         }
2177
2178         /* create endpoint/port structures */
2179         if (quirk && quirk->type == QUIRK_MIDI_MIDIMAN)
2180                 err = snd_usbmidi_create_endpoints_midiman(umidi, &endpoints[0]);
2181         else
2182                 err = snd_usbmidi_create_endpoints(umidi, endpoints);
2183         if (err < 0) {
2184                 snd_usbmidi_free(umidi);
2185                 return err;
2186         }
2187
2188         list_add_tail(&umidi->list, midi_list);
2189
2190         for (i = 0; i < MIDI_MAX_ENDPOINTS; ++i)
2191                 snd_usbmidi_input_start_ep(umidi->endpoints[i].in);
2192         return 0;
2193 }
2194
2195 EXPORT_SYMBOL(snd_usbmidi_create);
2196 EXPORT_SYMBOL(snd_usbmidi_input_stop);
2197 EXPORT_SYMBOL(snd_usbmidi_input_start);
2198 EXPORT_SYMBOL(snd_usbmidi_disconnect);