ASoC: soc core allow machine driver to register the card
[linux-2.6.git] / sound / soc / soc-core.c
1 /*
2  * soc-core.c  --  ALSA SoC Audio Layer
3  *
4  * Copyright 2005 Wolfson Microelectronics PLC.
5  * Copyright 2005 Openedhand Ltd.
6  * Copyright (C) 2010 Slimlogic Ltd.
7  * Copyright (C) 2010 Texas Instruments Inc.
8  *
9  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10  *         with code, comments and ideas from :-
11  *         Richard Purdie <richard@openedhand.com>
12  *
13  *  This program is free software; you can redistribute  it and/or modify it
14  *  under  the terms of  the GNU General  Public License as published by the
15  *  Free Software Foundation;  either version 2 of the  License, or (at your
16  *  option) any later version.
17  *
18  *  TODO:
19  *   o Add hw rules to enforce rates, etc.
20  *   o More testing with other codecs/machines.
21  *   o Add more codecs and platforms to ensure good API coverage.
22  *   o Support TDM on PCM and I2S
23  */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h>
35 #include <sound/core.h>
36 #include <sound/jack.h>
37 #include <sound/pcm.h>
38 #include <sound/pcm_params.h>
39 #include <sound/soc.h>
40 #include <sound/initval.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/asoc.h>
44
45 #define NAME_SIZE       32
46
47 static DEFINE_MUTEX(pcm_mutex);
48 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
49
50 #ifdef CONFIG_DEBUG_FS
51 struct dentry *snd_soc_debugfs_root;
52 EXPORT_SYMBOL_GPL(snd_soc_debugfs_root);
53 #endif
54
55 static DEFINE_MUTEX(client_mutex);
56 static LIST_HEAD(card_list);
57 static LIST_HEAD(dai_list);
58 static LIST_HEAD(platform_list);
59 static LIST_HEAD(codec_list);
60
61 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
62
63 /*
64  * This is a timeout to do a DAPM powerdown after a stream is closed().
65  * It can be used to eliminate pops between different playback streams, e.g.
66  * between two audio tracks.
67  */
68 static int pmdown_time = 5000;
69 module_param(pmdown_time, int, 0);
70 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
71
72 /* codec register dump */
73 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
74 {
75         int ret, i, step = 1, count = 0;
76
77         if (!codec->driver->reg_cache_size)
78                 return 0;
79
80         if (codec->driver->reg_cache_step)
81                 step = codec->driver->reg_cache_step;
82
83         count += sprintf(buf, "%s registers\n", codec->name);
84         for (i = 0; i < codec->driver->reg_cache_size; i += step) {
85                 if (codec->readable_register && !codec->readable_register(codec, i))
86                         continue;
87
88                 count += sprintf(buf + count, "%2x: ", i);
89                 if (count >= PAGE_SIZE - 1)
90                         break;
91
92                 if (codec->driver->display_register) {
93                         count += codec->driver->display_register(codec, buf + count,
94                                                          PAGE_SIZE - count, i);
95                 } else {
96                         /* If the read fails it's almost certainly due to
97                          * the register being volatile and the device being
98                          * powered off.
99                          */
100                         ret = snd_soc_read(codec, i);
101                         if (ret >= 0)
102                                 count += snprintf(buf + count,
103                                                   PAGE_SIZE - count,
104                                                   "%4x", ret);
105                         else
106                                 count += snprintf(buf + count,
107                                                   PAGE_SIZE - count,
108                                                   "<no data: %d>", ret);
109                 }
110
111                 if (count >= PAGE_SIZE - 1)
112                         break;
113
114                 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
115                 if (count >= PAGE_SIZE - 1)
116                         break;
117         }
118
119         /* Truncate count; min() would cause a warning */
120         if (count >= PAGE_SIZE)
121                 count = PAGE_SIZE - 1;
122
123         return count;
124 }
125 static ssize_t codec_reg_show(struct device *dev,
126         struct device_attribute *attr, char *buf)
127 {
128         struct snd_soc_pcm_runtime *rtd =
129                         container_of(dev, struct snd_soc_pcm_runtime, dev);
130
131         return soc_codec_reg_show(rtd->codec, buf);
132 }
133
134 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
135
136 static ssize_t pmdown_time_show(struct device *dev,
137                                 struct device_attribute *attr, char *buf)
138 {
139         struct snd_soc_pcm_runtime *rtd =
140                         container_of(dev, struct snd_soc_pcm_runtime, dev);
141
142         return sprintf(buf, "%ld\n", rtd->pmdown_time);
143 }
144
145 static ssize_t pmdown_time_set(struct device *dev,
146                                struct device_attribute *attr,
147                                const char *buf, size_t count)
148 {
149         struct snd_soc_pcm_runtime *rtd =
150                         container_of(dev, struct snd_soc_pcm_runtime, dev);
151         int ret;
152
153         ret = strict_strtol(buf, 10, &rtd->pmdown_time);
154         if (ret)
155                 return ret;
156
157         return count;
158 }
159
160 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
161
162 #ifdef CONFIG_DEBUG_FS
163 static int codec_reg_open_file(struct inode *inode, struct file *file)
164 {
165         file->private_data = inode->i_private;
166         return 0;
167 }
168
169 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
170                                size_t count, loff_t *ppos)
171 {
172         ssize_t ret;
173         struct snd_soc_codec *codec = file->private_data;
174         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
175         if (!buf)
176                 return -ENOMEM;
177         ret = soc_codec_reg_show(codec, buf);
178         if (ret >= 0)
179                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
180         kfree(buf);
181         return ret;
182 }
183
184 static ssize_t codec_reg_write_file(struct file *file,
185                 const char __user *user_buf, size_t count, loff_t *ppos)
186 {
187         char buf[32];
188         int buf_size;
189         char *start = buf;
190         unsigned long reg, value;
191         int step = 1;
192         struct snd_soc_codec *codec = file->private_data;
193
194         buf_size = min(count, (sizeof(buf)-1));
195         if (copy_from_user(buf, user_buf, buf_size))
196                 return -EFAULT;
197         buf[buf_size] = 0;
198
199         if (codec->driver->reg_cache_step)
200                 step = codec->driver->reg_cache_step;
201
202         while (*start == ' ')
203                 start++;
204         reg = simple_strtoul(start, &start, 16);
205         if ((reg >= codec->driver->reg_cache_size) || (reg % step))
206                 return -EINVAL;
207         while (*start == ' ')
208                 start++;
209         if (strict_strtoul(start, 16, &value))
210                 return -EINVAL;
211
212         /* Userspace has been fiddling around behind the kernel's back */
213         add_taint(TAINT_USER);
214
215         snd_soc_write(codec, reg, value);
216         return buf_size;
217 }
218
219 static const struct file_operations codec_reg_fops = {
220         .open = codec_reg_open_file,
221         .read = codec_reg_read_file,
222         .write = codec_reg_write_file,
223         .llseek = default_llseek,
224 };
225
226 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
227 {
228         struct dentry *debugfs_card_root = codec->card->debugfs_card_root;
229
230         codec->debugfs_codec_root = debugfs_create_dir(codec->name,
231                                                        debugfs_card_root);
232         if (!codec->debugfs_codec_root) {
233                 printk(KERN_WARNING
234                        "ASoC: Failed to create codec debugfs directory\n");
235                 return;
236         }
237
238         codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
239                                                  codec->debugfs_codec_root,
240                                                  codec, &codec_reg_fops);
241         if (!codec->debugfs_reg)
242                 printk(KERN_WARNING
243                        "ASoC: Failed to create codec register debugfs file\n");
244
245         codec->dapm.debugfs_dapm = debugfs_create_dir("dapm",
246                                                  codec->debugfs_codec_root);
247         if (!codec->dapm.debugfs_dapm)
248                 printk(KERN_WARNING
249                        "Failed to create DAPM debugfs directory\n");
250
251         snd_soc_dapm_debugfs_init(&codec->dapm);
252 }
253
254 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
255 {
256         debugfs_remove_recursive(codec->debugfs_codec_root);
257 }
258
259 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
260                                     size_t count, loff_t *ppos)
261 {
262         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
263         ssize_t len, ret = 0;
264         struct snd_soc_codec *codec;
265
266         if (!buf)
267                 return -ENOMEM;
268
269         list_for_each_entry(codec, &codec_list, list) {
270                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
271                                codec->name);
272                 if (len >= 0)
273                         ret += len;
274                 if (ret > PAGE_SIZE) {
275                         ret = PAGE_SIZE;
276                         break;
277                 }
278         }
279
280         if (ret >= 0)
281                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
282
283         kfree(buf);
284
285         return ret;
286 }
287
288 static const struct file_operations codec_list_fops = {
289         .read = codec_list_read_file,
290         .llseek = default_llseek,/* read accesses f_pos */
291 };
292
293 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
294                                   size_t count, loff_t *ppos)
295 {
296         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
297         ssize_t len, ret = 0;
298         struct snd_soc_dai *dai;
299
300         if (!buf)
301                 return -ENOMEM;
302
303         list_for_each_entry(dai, &dai_list, list) {
304                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
305                 if (len >= 0)
306                         ret += len;
307                 if (ret > PAGE_SIZE) {
308                         ret = PAGE_SIZE;
309                         break;
310                 }
311         }
312
313         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
314
315         kfree(buf);
316
317         return ret;
318 }
319
320 static const struct file_operations dai_list_fops = {
321         .read = dai_list_read_file,
322         .llseek = default_llseek,/* read accesses f_pos */
323 };
324
325 static ssize_t platform_list_read_file(struct file *file,
326                                        char __user *user_buf,
327                                        size_t count, loff_t *ppos)
328 {
329         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
330         ssize_t len, ret = 0;
331         struct snd_soc_platform *platform;
332
333         if (!buf)
334                 return -ENOMEM;
335
336         list_for_each_entry(platform, &platform_list, list) {
337                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
338                                platform->name);
339                 if (len >= 0)
340                         ret += len;
341                 if (ret > PAGE_SIZE) {
342                         ret = PAGE_SIZE;
343                         break;
344                 }
345         }
346
347         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
348
349         kfree(buf);
350
351         return ret;
352 }
353
354 static const struct file_operations platform_list_fops = {
355         .read = platform_list_read_file,
356         .llseek = default_llseek,/* read accesses f_pos */
357 };
358
359 static void soc_init_card_debugfs(struct snd_soc_card *card)
360 {
361         card->debugfs_card_root = debugfs_create_dir(card->name,
362                                                      snd_soc_debugfs_root);
363         if (!card->debugfs_card_root) {
364                 dev_warn(card->dev,
365                          "ASoC: Failed to create codec debugfs directory\n");
366                 return;
367         }
368
369         card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
370                                                     card->debugfs_card_root,
371                                                     &card->pop_time);
372         if (!card->debugfs_pop_time)
373                 dev_warn(card->dev,
374                        "Failed to create pop time debugfs file\n");
375 }
376
377 static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
378 {
379         debugfs_remove_recursive(card->debugfs_card_root);
380 }
381
382 #else
383
384 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
385 {
386 }
387
388 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
389 {
390 }
391
392 static inline void soc_init_card_debugfs(struct snd_soc_card *card)
393 {
394 }
395
396 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
397 {
398 }
399 #endif
400
401 #ifdef CONFIG_SND_SOC_AC97_BUS
402 /* unregister ac97 codec */
403 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
404 {
405         if (codec->ac97->dev.bus)
406                 device_unregister(&codec->ac97->dev);
407         return 0;
408 }
409
410 /* stop no dev release warning */
411 static void soc_ac97_device_release(struct device *dev){}
412
413 /* register ac97 codec to bus */
414 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
415 {
416         int err;
417
418         codec->ac97->dev.bus = &ac97_bus_type;
419         codec->ac97->dev.parent = codec->card->dev;
420         codec->ac97->dev.release = soc_ac97_device_release;
421
422         dev_set_name(&codec->ac97->dev, "%d-%d:%s",
423                      codec->card->snd_card->number, 0, codec->name);
424         err = device_register(&codec->ac97->dev);
425         if (err < 0) {
426                 snd_printk(KERN_ERR "Can't register ac97 bus\n");
427                 codec->ac97->dev.bus = NULL;
428                 return err;
429         }
430         return 0;
431 }
432 #endif
433
434 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
435 {
436         struct snd_soc_pcm_runtime *rtd = substream->private_data;
437         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
438         struct snd_soc_dai *codec_dai = rtd->codec_dai;
439         int ret;
440
441         if (codec_dai->driver->symmetric_rates || cpu_dai->driver->symmetric_rates ||
442                         rtd->dai_link->symmetric_rates) {
443                 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n",
444                                 rtd->rate);
445
446                 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
447                                                    SNDRV_PCM_HW_PARAM_RATE,
448                                                    rtd->rate,
449                                                    rtd->rate);
450                 if (ret < 0) {
451                         dev_err(&rtd->dev,
452                                 "Unable to apply rate symmetry constraint: %d\n", ret);
453                         return ret;
454                 }
455         }
456
457         return 0;
458 }
459
460 /*
461  * Called by ALSA when a PCM substream is opened, the runtime->hw record is
462  * then initialized and any private data can be allocated. This also calls
463  * startup for the cpu DAI, platform, machine and codec DAI.
464  */
465 static int soc_pcm_open(struct snd_pcm_substream *substream)
466 {
467         struct snd_soc_pcm_runtime *rtd = substream->private_data;
468         struct snd_pcm_runtime *runtime = substream->runtime;
469         struct snd_soc_platform *platform = rtd->platform;
470         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
471         struct snd_soc_dai *codec_dai = rtd->codec_dai;
472         struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
473         struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
474         int ret = 0;
475
476         mutex_lock(&pcm_mutex);
477
478         /* startup the audio subsystem */
479         if (cpu_dai->driver->ops->startup) {
480                 ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
481                 if (ret < 0) {
482                         printk(KERN_ERR "asoc: can't open interface %s\n",
483                                 cpu_dai->name);
484                         goto out;
485                 }
486         }
487
488         if (platform->driver->ops->open) {
489                 ret = platform->driver->ops->open(substream);
490                 if (ret < 0) {
491                         printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
492                         goto platform_err;
493                 }
494         }
495
496         if (codec_dai->driver->ops->startup) {
497                 ret = codec_dai->driver->ops->startup(substream, codec_dai);
498                 if (ret < 0) {
499                         printk(KERN_ERR "asoc: can't open codec %s\n",
500                                 codec_dai->name);
501                         goto codec_dai_err;
502                 }
503         }
504
505         if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
506                 ret = rtd->dai_link->ops->startup(substream);
507                 if (ret < 0) {
508                         printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
509                         goto machine_err;
510                 }
511         }
512
513         /* Check that the codec and cpu DAIs are compatible */
514         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
515                 runtime->hw.rate_min =
516                         max(codec_dai_drv->playback.rate_min,
517                             cpu_dai_drv->playback.rate_min);
518                 runtime->hw.rate_max =
519                         min(codec_dai_drv->playback.rate_max,
520                             cpu_dai_drv->playback.rate_max);
521                 runtime->hw.channels_min =
522                         max(codec_dai_drv->playback.channels_min,
523                                 cpu_dai_drv->playback.channels_min);
524                 runtime->hw.channels_max =
525                         min(codec_dai_drv->playback.channels_max,
526                                 cpu_dai_drv->playback.channels_max);
527                 runtime->hw.formats =
528                         codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
529                 runtime->hw.rates =
530                         codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
531                 if (codec_dai_drv->playback.rates
532                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
533                         runtime->hw.rates |= cpu_dai_drv->playback.rates;
534                 if (cpu_dai_drv->playback.rates
535                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
536                         runtime->hw.rates |= codec_dai_drv->playback.rates;
537         } else {
538                 runtime->hw.rate_min =
539                         max(codec_dai_drv->capture.rate_min,
540                             cpu_dai_drv->capture.rate_min);
541                 runtime->hw.rate_max =
542                         min(codec_dai_drv->capture.rate_max,
543                             cpu_dai_drv->capture.rate_max);
544                 runtime->hw.channels_min =
545                         max(codec_dai_drv->capture.channels_min,
546                                 cpu_dai_drv->capture.channels_min);
547                 runtime->hw.channels_max =
548                         min(codec_dai_drv->capture.channels_max,
549                                 cpu_dai_drv->capture.channels_max);
550                 runtime->hw.formats =
551                         codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
552                 runtime->hw.rates =
553                         codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
554                 if (codec_dai_drv->capture.rates
555                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
556                         runtime->hw.rates |= cpu_dai_drv->capture.rates;
557                 if (cpu_dai_drv->capture.rates
558                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
559                         runtime->hw.rates |= codec_dai_drv->capture.rates;
560         }
561
562         snd_pcm_limit_hw_rates(runtime);
563         if (!runtime->hw.rates) {
564                 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
565                         codec_dai->name, cpu_dai->name);
566                 goto config_err;
567         }
568         if (!runtime->hw.formats) {
569                 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
570                         codec_dai->name, cpu_dai->name);
571                 goto config_err;
572         }
573         if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
574                 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
575                                 codec_dai->name, cpu_dai->name);
576                 goto config_err;
577         }
578
579         /* Symmetry only applies if we've already got an active stream. */
580         if (cpu_dai->active || codec_dai->active) {
581                 ret = soc_pcm_apply_symmetry(substream);
582                 if (ret != 0)
583                         goto config_err;
584         }
585
586         pr_debug("asoc: %s <-> %s info:\n",
587                         codec_dai->name, cpu_dai->name);
588         pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
589         pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
590                  runtime->hw.channels_max);
591         pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
592                  runtime->hw.rate_max);
593
594         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
595                 cpu_dai->playback_active++;
596                 codec_dai->playback_active++;
597         } else {
598                 cpu_dai->capture_active++;
599                 codec_dai->capture_active++;
600         }
601         cpu_dai->active++;
602         codec_dai->active++;
603         rtd->codec->active++;
604         mutex_unlock(&pcm_mutex);
605         return 0;
606
607 config_err:
608         if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
609                 rtd->dai_link->ops->shutdown(substream);
610
611 machine_err:
612         if (codec_dai->driver->ops->shutdown)
613                 codec_dai->driver->ops->shutdown(substream, codec_dai);
614
615 codec_dai_err:
616         if (platform->driver->ops->close)
617                 platform->driver->ops->close(substream);
618
619 platform_err:
620         if (cpu_dai->driver->ops->shutdown)
621                 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
622 out:
623         mutex_unlock(&pcm_mutex);
624         return ret;
625 }
626
627 /*
628  * Power down the audio subsystem pmdown_time msecs after close is called.
629  * This is to ensure there are no pops or clicks in between any music tracks
630  * due to DAPM power cycling.
631  */
632 static void close_delayed_work(struct work_struct *work)
633 {
634         struct snd_soc_pcm_runtime *rtd =
635                         container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
636         struct snd_soc_dai *codec_dai = rtd->codec_dai;
637
638         mutex_lock(&pcm_mutex);
639
640         pr_debug("pop wq checking: %s status: %s waiting: %s\n",
641                  codec_dai->driver->playback.stream_name,
642                  codec_dai->playback_active ? "active" : "inactive",
643                  codec_dai->pop_wait ? "yes" : "no");
644
645         /* are we waiting on this codec DAI stream */
646         if (codec_dai->pop_wait == 1) {
647                 codec_dai->pop_wait = 0;
648                 snd_soc_dapm_stream_event(rtd,
649                         codec_dai->driver->playback.stream_name,
650                         SND_SOC_DAPM_STREAM_STOP);
651         }
652
653         mutex_unlock(&pcm_mutex);
654 }
655
656 /*
657  * Called by ALSA when a PCM substream is closed. Private data can be
658  * freed here. The cpu DAI, codec DAI, machine and platform are also
659  * shutdown.
660  */
661 static int soc_codec_close(struct snd_pcm_substream *substream)
662 {
663         struct snd_soc_pcm_runtime *rtd = substream->private_data;
664         struct snd_soc_platform *platform = rtd->platform;
665         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
666         struct snd_soc_dai *codec_dai = rtd->codec_dai;
667         struct snd_soc_codec *codec = rtd->codec;
668
669         mutex_lock(&pcm_mutex);
670
671         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
672                 cpu_dai->playback_active--;
673                 codec_dai->playback_active--;
674         } else {
675                 cpu_dai->capture_active--;
676                 codec_dai->capture_active--;
677         }
678
679         cpu_dai->active--;
680         codec_dai->active--;
681         codec->active--;
682
683         /* Muting the DAC suppresses artifacts caused during digital
684          * shutdown, for example from stopping clocks.
685          */
686         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
687                 snd_soc_dai_digital_mute(codec_dai, 1);
688
689         if (cpu_dai->driver->ops->shutdown)
690                 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
691
692         if (codec_dai->driver->ops->shutdown)
693                 codec_dai->driver->ops->shutdown(substream, codec_dai);
694
695         if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
696                 rtd->dai_link->ops->shutdown(substream);
697
698         if (platform->driver->ops->close)
699                 platform->driver->ops->close(substream);
700         cpu_dai->runtime = NULL;
701
702         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
703                 /* start delayed pop wq here for playback streams */
704                 codec_dai->pop_wait = 1;
705                 schedule_delayed_work(&rtd->delayed_work,
706                         msecs_to_jiffies(rtd->pmdown_time));
707         } else {
708                 /* capture streams can be powered down now */
709                 snd_soc_dapm_stream_event(rtd,
710                         codec_dai->driver->capture.stream_name,
711                         SND_SOC_DAPM_STREAM_STOP);
712         }
713
714         mutex_unlock(&pcm_mutex);
715         return 0;
716 }
717
718 /*
719  * Called by ALSA when the PCM substream is prepared, can set format, sample
720  * rate, etc.  This function is non atomic and can be called multiple times,
721  * it can refer to the runtime info.
722  */
723 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
724 {
725         struct snd_soc_pcm_runtime *rtd = substream->private_data;
726         struct snd_soc_platform *platform = rtd->platform;
727         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
728         struct snd_soc_dai *codec_dai = rtd->codec_dai;
729         int ret = 0;
730
731         mutex_lock(&pcm_mutex);
732
733         if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
734                 ret = rtd->dai_link->ops->prepare(substream);
735                 if (ret < 0) {
736                         printk(KERN_ERR "asoc: machine prepare error\n");
737                         goto out;
738                 }
739         }
740
741         if (platform->driver->ops->prepare) {
742                 ret = platform->driver->ops->prepare(substream);
743                 if (ret < 0) {
744                         printk(KERN_ERR "asoc: platform prepare error\n");
745                         goto out;
746                 }
747         }
748
749         if (codec_dai->driver->ops->prepare) {
750                 ret = codec_dai->driver->ops->prepare(substream, codec_dai);
751                 if (ret < 0) {
752                         printk(KERN_ERR "asoc: codec DAI prepare error\n");
753                         goto out;
754                 }
755         }
756
757         if (cpu_dai->driver->ops->prepare) {
758                 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
759                 if (ret < 0) {
760                         printk(KERN_ERR "asoc: cpu DAI prepare error\n");
761                         goto out;
762                 }
763         }
764
765         /* cancel any delayed stream shutdown that is pending */
766         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
767             codec_dai->pop_wait) {
768                 codec_dai->pop_wait = 0;
769                 cancel_delayed_work(&rtd->delayed_work);
770         }
771
772         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
773                 snd_soc_dapm_stream_event(rtd,
774                                           codec_dai->driver->playback.stream_name,
775                                           SND_SOC_DAPM_STREAM_START);
776         else
777                 snd_soc_dapm_stream_event(rtd,
778                                           codec_dai->driver->capture.stream_name,
779                                           SND_SOC_DAPM_STREAM_START);
780
781         snd_soc_dai_digital_mute(codec_dai, 0);
782
783 out:
784         mutex_unlock(&pcm_mutex);
785         return ret;
786 }
787
788 /*
789  * Called by ALSA when the hardware params are set by application. This
790  * function can also be called multiple times and can allocate buffers
791  * (using snd_pcm_lib_* ). It's non-atomic.
792  */
793 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
794                                 struct snd_pcm_hw_params *params)
795 {
796         struct snd_soc_pcm_runtime *rtd = substream->private_data;
797         struct snd_soc_platform *platform = rtd->platform;
798         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
799         struct snd_soc_dai *codec_dai = rtd->codec_dai;
800         int ret = 0;
801
802         mutex_lock(&pcm_mutex);
803
804         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
805                 ret = rtd->dai_link->ops->hw_params(substream, params);
806                 if (ret < 0) {
807                         printk(KERN_ERR "asoc: machine hw_params failed\n");
808                         goto out;
809                 }
810         }
811
812         if (codec_dai->driver->ops->hw_params) {
813                 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
814                 if (ret < 0) {
815                         printk(KERN_ERR "asoc: can't set codec %s hw params\n",
816                                 codec_dai->name);
817                         goto codec_err;
818                 }
819         }
820
821         if (cpu_dai->driver->ops->hw_params) {
822                 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
823                 if (ret < 0) {
824                         printk(KERN_ERR "asoc: interface %s hw params failed\n",
825                                 cpu_dai->name);
826                         goto interface_err;
827                 }
828         }
829
830         if (platform->driver->ops->hw_params) {
831                 ret = platform->driver->ops->hw_params(substream, params);
832                 if (ret < 0) {
833                         printk(KERN_ERR "asoc: platform %s hw params failed\n",
834                                 platform->name);
835                         goto platform_err;
836                 }
837         }
838
839         rtd->rate = params_rate(params);
840
841 out:
842         mutex_unlock(&pcm_mutex);
843         return ret;
844
845 platform_err:
846         if (cpu_dai->driver->ops->hw_free)
847                 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
848
849 interface_err:
850         if (codec_dai->driver->ops->hw_free)
851                 codec_dai->driver->ops->hw_free(substream, codec_dai);
852
853 codec_err:
854         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
855                 rtd->dai_link->ops->hw_free(substream);
856
857         mutex_unlock(&pcm_mutex);
858         return ret;
859 }
860
861 /*
862  * Frees resources allocated by hw_params, can be called multiple times
863  */
864 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
865 {
866         struct snd_soc_pcm_runtime *rtd = substream->private_data;
867         struct snd_soc_platform *platform = rtd->platform;
868         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
869         struct snd_soc_dai *codec_dai = rtd->codec_dai;
870         struct snd_soc_codec *codec = rtd->codec;
871
872         mutex_lock(&pcm_mutex);
873
874         /* apply codec digital mute */
875         if (!codec->active)
876                 snd_soc_dai_digital_mute(codec_dai, 1);
877
878         /* free any machine hw params */
879         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
880                 rtd->dai_link->ops->hw_free(substream);
881
882         /* free any DMA resources */
883         if (platform->driver->ops->hw_free)
884                 platform->driver->ops->hw_free(substream);
885
886         /* now free hw params for the DAIs  */
887         if (codec_dai->driver->ops->hw_free)
888                 codec_dai->driver->ops->hw_free(substream, codec_dai);
889
890         if (cpu_dai->driver->ops->hw_free)
891                 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
892
893         mutex_unlock(&pcm_mutex);
894         return 0;
895 }
896
897 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
898 {
899         struct snd_soc_pcm_runtime *rtd = substream->private_data;
900         struct snd_soc_platform *platform = rtd->platform;
901         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
902         struct snd_soc_dai *codec_dai = rtd->codec_dai;
903         int ret;
904
905         if (codec_dai->driver->ops->trigger) {
906                 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
907                 if (ret < 0)
908                         return ret;
909         }
910
911         if (platform->driver->ops->trigger) {
912                 ret = platform->driver->ops->trigger(substream, cmd);
913                 if (ret < 0)
914                         return ret;
915         }
916
917         if (cpu_dai->driver->ops->trigger) {
918                 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
919                 if (ret < 0)
920                         return ret;
921         }
922         return 0;
923 }
924
925 /*
926  * soc level wrapper for pointer callback
927  * If cpu_dai, codec_dai, platform driver has the delay callback, than
928  * the runtime->delay will be updated accordingly.
929  */
930 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
931 {
932         struct snd_soc_pcm_runtime *rtd = substream->private_data;
933         struct snd_soc_platform *platform = rtd->platform;
934         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
935         struct snd_soc_dai *codec_dai = rtd->codec_dai;
936         struct snd_pcm_runtime *runtime = substream->runtime;
937         snd_pcm_uframes_t offset = 0;
938         snd_pcm_sframes_t delay = 0;
939
940         if (platform->driver->ops->pointer)
941                 offset = platform->driver->ops->pointer(substream);
942
943         if (cpu_dai->driver->ops->delay)
944                 delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
945
946         if (codec_dai->driver->ops->delay)
947                 delay += codec_dai->driver->ops->delay(substream, codec_dai);
948
949         if (platform->driver->delay)
950                 delay += platform->driver->delay(substream, codec_dai);
951
952         runtime->delay = delay;
953
954         return offset;
955 }
956
957 /* ASoC PCM operations */
958 static struct snd_pcm_ops soc_pcm_ops = {
959         .open           = soc_pcm_open,
960         .close          = soc_codec_close,
961         .hw_params      = soc_pcm_hw_params,
962         .hw_free        = soc_pcm_hw_free,
963         .prepare        = soc_pcm_prepare,
964         .trigger        = soc_pcm_trigger,
965         .pointer        = soc_pcm_pointer,
966 };
967
968 #ifdef CONFIG_PM
969 /* powers down audio subsystem for suspend */
970 static int soc_suspend(struct device *dev)
971 {
972         struct platform_device *pdev = to_platform_device(dev);
973         struct snd_soc_card *card = platform_get_drvdata(pdev);
974         struct snd_soc_codec *codec;
975         int i;
976
977         /* If the initialization of this soc device failed, there is no codec
978          * associated with it. Just bail out in this case.
979          */
980         if (list_empty(&card->codec_dev_list))
981                 return 0;
982
983         /* Due to the resume being scheduled into a workqueue we could
984         * suspend before that's finished - wait for it to complete.
985          */
986         snd_power_lock(card->snd_card);
987         snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
988         snd_power_unlock(card->snd_card);
989
990         /* we're going to block userspace touching us until resume completes */
991         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
992
993         /* mute any active DACs */
994         for (i = 0; i < card->num_rtd; i++) {
995                 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
996                 struct snd_soc_dai_driver *drv = dai->driver;
997
998                 if (card->rtd[i].dai_link->ignore_suspend)
999                         continue;
1000
1001                 if (drv->ops->digital_mute && dai->playback_active)
1002                         drv->ops->digital_mute(dai, 1);
1003         }
1004
1005         /* suspend all pcms */
1006         for (i = 0; i < card->num_rtd; i++) {
1007                 if (card->rtd[i].dai_link->ignore_suspend)
1008                         continue;
1009
1010                 snd_pcm_suspend_all(card->rtd[i].pcm);
1011         }
1012
1013         if (card->suspend_pre)
1014                 card->suspend_pre(pdev, PMSG_SUSPEND);
1015
1016         for (i = 0; i < card->num_rtd; i++) {
1017                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1018                 struct snd_soc_platform *platform = card->rtd[i].platform;
1019
1020                 if (card->rtd[i].dai_link->ignore_suspend)
1021                         continue;
1022
1023                 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
1024                         cpu_dai->driver->suspend(cpu_dai);
1025                 if (platform->driver->suspend && !platform->suspended) {
1026                         platform->driver->suspend(cpu_dai);
1027                         platform->suspended = 1;
1028                 }
1029         }
1030
1031         /* close any waiting streams and save state */
1032         for (i = 0; i < card->num_rtd; i++) {
1033                 flush_delayed_work_sync(&card->rtd[i].delayed_work);
1034                 card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level;
1035         }
1036
1037         for (i = 0; i < card->num_rtd; i++) {
1038                 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1039
1040                 if (card->rtd[i].dai_link->ignore_suspend)
1041                         continue;
1042
1043                 if (driver->playback.stream_name != NULL)
1044                         snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1045                                 SND_SOC_DAPM_STREAM_SUSPEND);
1046
1047                 if (driver->capture.stream_name != NULL)
1048                         snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1049                                 SND_SOC_DAPM_STREAM_SUSPEND);
1050         }
1051
1052         /* suspend all CODECs */
1053         list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1054                 /* If there are paths active then the CODEC will be held with
1055                  * bias _ON and should not be suspended. */
1056                 if (!codec->suspended && codec->driver->suspend) {
1057                         switch (codec->dapm.bias_level) {
1058                         case SND_SOC_BIAS_STANDBY:
1059                         case SND_SOC_BIAS_OFF:
1060                                 codec->driver->suspend(codec, PMSG_SUSPEND);
1061                                 codec->suspended = 1;
1062                                 break;
1063                         default:
1064                                 dev_dbg(codec->dev, "CODEC is on over suspend\n");
1065                                 break;
1066                         }
1067                 }
1068         }
1069
1070         for (i = 0; i < card->num_rtd; i++) {
1071                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1072
1073                 if (card->rtd[i].dai_link->ignore_suspend)
1074                         continue;
1075
1076                 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
1077                         cpu_dai->driver->suspend(cpu_dai);
1078         }
1079
1080         if (card->suspend_post)
1081                 card->suspend_post(pdev, PMSG_SUSPEND);
1082
1083         return 0;
1084 }
1085
1086 /* deferred resume work, so resume can complete before we finished
1087  * setting our codec back up, which can be very slow on I2C
1088  */
1089 static void soc_resume_deferred(struct work_struct *work)
1090 {
1091         struct snd_soc_card *card =
1092                         container_of(work, struct snd_soc_card, deferred_resume_work);
1093         struct platform_device *pdev = to_platform_device(card->dev);
1094         struct snd_soc_codec *codec;
1095         int i;
1096
1097         /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
1098          * so userspace apps are blocked from touching us
1099          */
1100
1101         dev_dbg(card->dev, "starting resume work\n");
1102
1103         /* Bring us up into D2 so that DAPM starts enabling things */
1104         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
1105
1106         if (card->resume_pre)
1107                 card->resume_pre(pdev);
1108
1109         /* resume AC97 DAIs */
1110         for (i = 0; i < card->num_rtd; i++) {
1111                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1112
1113                 if (card->rtd[i].dai_link->ignore_suspend)
1114                         continue;
1115
1116                 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
1117                         cpu_dai->driver->resume(cpu_dai);
1118         }
1119
1120         list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1121                 /* If the CODEC was idle over suspend then it will have been
1122                  * left with bias OFF or STANDBY and suspended so we must now
1123                  * resume.  Otherwise the suspend was suppressed.
1124                  */
1125                 if (codec->driver->resume && codec->suspended) {
1126                         switch (codec->dapm.bias_level) {
1127                         case SND_SOC_BIAS_STANDBY:
1128                         case SND_SOC_BIAS_OFF:
1129                                 codec->driver->resume(codec);
1130                                 codec->suspended = 0;
1131                                 break;
1132                         default:
1133                                 dev_dbg(codec->dev, "CODEC was on over suspend\n");
1134                                 break;
1135                         }
1136                 }
1137         }
1138
1139         for (i = 0; i < card->num_rtd; i++) {
1140                 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1141
1142                 if (card->rtd[i].dai_link->ignore_suspend)
1143                         continue;
1144
1145                 if (driver->playback.stream_name != NULL)
1146                         snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1147                                 SND_SOC_DAPM_STREAM_RESUME);
1148
1149                 if (driver->capture.stream_name != NULL)
1150                         snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1151                                 SND_SOC_DAPM_STREAM_RESUME);
1152         }
1153
1154         /* unmute any active DACs */
1155         for (i = 0; i < card->num_rtd; i++) {
1156                 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1157                 struct snd_soc_dai_driver *drv = dai->driver;
1158
1159                 if (card->rtd[i].dai_link->ignore_suspend)
1160                         continue;
1161
1162                 if (drv->ops->digital_mute && dai->playback_active)
1163                         drv->ops->digital_mute(dai, 0);
1164         }
1165
1166         for (i = 0; i < card->num_rtd; i++) {
1167                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1168                 struct snd_soc_platform *platform = card->rtd[i].platform;
1169
1170                 if (card->rtd[i].dai_link->ignore_suspend)
1171                         continue;
1172
1173                 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1174                         cpu_dai->driver->resume(cpu_dai);
1175                 if (platform->driver->resume && platform->suspended) {
1176                         platform->driver->resume(cpu_dai);
1177                         platform->suspended = 0;
1178                 }
1179         }
1180
1181         if (card->resume_post)
1182                 card->resume_post(pdev);
1183
1184         dev_dbg(card->dev, "resume work completed\n");
1185
1186         /* userspace can access us now we are back as we were before */
1187         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1188 }
1189
1190 /* powers up audio subsystem after a suspend */
1191 static int soc_resume(struct device *dev)
1192 {
1193         struct platform_device *pdev = to_platform_device(dev);
1194         struct snd_soc_card *card = platform_get_drvdata(pdev);
1195         int i;
1196
1197         /* AC97 devices might have other drivers hanging off them so
1198          * need to resume immediately.  Other drivers don't have that
1199          * problem and may take a substantial amount of time to resume
1200          * due to I/O costs and anti-pop so handle them out of line.
1201          */
1202         for (i = 0; i < card->num_rtd; i++) {
1203                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1204                 if (cpu_dai->driver->ac97_control) {
1205                         dev_dbg(dev, "Resuming AC97 immediately\n");
1206                         soc_resume_deferred(&card->deferred_resume_work);
1207                 } else {
1208                         dev_dbg(dev, "Scheduling resume work\n");
1209                         if (!schedule_work(&card->deferred_resume_work))
1210                                 dev_err(dev, "resume work item may be lost\n");
1211                 }
1212         }
1213
1214         return 0;
1215 }
1216 #else
1217 #define soc_suspend     NULL
1218 #define soc_resume      NULL
1219 #endif
1220
1221 static struct snd_soc_dai_ops null_dai_ops = {
1222 };
1223
1224 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1225 {
1226         struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1227         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1228         struct snd_soc_codec *codec;
1229         struct snd_soc_platform *platform;
1230         struct snd_soc_dai *codec_dai, *cpu_dai;
1231
1232         if (rtd->complete)
1233                 return 1;
1234         dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1235
1236         /* do we already have the CPU DAI for this link ? */
1237         if (rtd->cpu_dai) {
1238                 goto find_codec;
1239         }
1240         /* no, then find CPU DAI from registered DAIs*/
1241         list_for_each_entry(cpu_dai, &dai_list, list) {
1242                 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1243
1244                         if (!try_module_get(cpu_dai->dev->driver->owner))
1245                                 return -ENODEV;
1246
1247                         rtd->cpu_dai = cpu_dai;
1248                         goto find_codec;
1249                 }
1250         }
1251         dev_dbg(card->dev, "CPU DAI %s not registered\n",
1252                         dai_link->cpu_dai_name);
1253
1254 find_codec:
1255         /* do we already have the CODEC for this link ? */
1256         if (rtd->codec) {
1257                 goto find_platform;
1258         }
1259
1260         /* no, then find CODEC from registered CODECs*/
1261         list_for_each_entry(codec, &codec_list, list) {
1262                 if (!strcmp(codec->name, dai_link->codec_name)) {
1263                         rtd->codec = codec;
1264
1265                         /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1266                         list_for_each_entry(codec_dai, &dai_list, list) {
1267                                 if (codec->dev == codec_dai->dev &&
1268                                                 !strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1269                                         rtd->codec_dai = codec_dai;
1270                                         goto find_platform;
1271                                 }
1272                         }
1273                         dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1274                                         dai_link->codec_dai_name);
1275
1276                         goto find_platform;
1277                 }
1278         }
1279         dev_dbg(card->dev, "CODEC %s not registered\n",
1280                         dai_link->codec_name);
1281
1282 find_platform:
1283         /* do we already have the CODEC DAI for this link ? */
1284         if (rtd->platform) {
1285                 goto out;
1286         }
1287         /* no, then find CPU DAI from registered DAIs*/
1288         list_for_each_entry(platform, &platform_list, list) {
1289                 if (!strcmp(platform->name, dai_link->platform_name)) {
1290                         rtd->platform = platform;
1291                         goto out;
1292                 }
1293         }
1294
1295         dev_dbg(card->dev, "platform %s not registered\n",
1296                         dai_link->platform_name);
1297         return 0;
1298
1299 out:
1300         /* mark rtd as complete if we found all 4 of our client devices */
1301         if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1302                 rtd->complete = 1;
1303                 card->num_rtd++;
1304         }
1305         return 1;
1306 }
1307
1308 static void soc_remove_codec(struct snd_soc_codec *codec)
1309 {
1310         int err;
1311
1312         if (codec->driver->remove) {
1313                 err = codec->driver->remove(codec);
1314                 if (err < 0)
1315                         dev_err(codec->dev,
1316                                 "asoc: failed to remove %s: %d\n",
1317                                 codec->name, err);
1318         }
1319
1320         /* Make sure all DAPM widgets are freed */
1321         snd_soc_dapm_free(&codec->dapm);
1322
1323         soc_cleanup_codec_debugfs(codec);
1324         codec->probed = 0;
1325         list_del(&codec->card_list);
1326         module_put(codec->dev->driver->owner);
1327 }
1328
1329 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1330 {
1331         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1332         struct snd_soc_codec *codec = rtd->codec;
1333         struct snd_soc_platform *platform = rtd->platform;
1334         struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1335         int err;
1336
1337         /* unregister the rtd device */
1338         if (rtd->dev_registered) {
1339                 device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1340                 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1341                 device_unregister(&rtd->dev);
1342                 rtd->dev_registered = 0;
1343         }
1344
1345         /* remove the CODEC DAI */
1346         if (codec_dai && codec_dai->probed) {
1347                 if (codec_dai->driver->remove) {
1348                         err = codec_dai->driver->remove(codec_dai);
1349                         if (err < 0)
1350                                 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1351                 }
1352                 codec_dai->probed = 0;
1353                 list_del(&codec_dai->card_list);
1354         }
1355
1356         /* remove the platform */
1357         if (platform && platform->probed) {
1358                 if (platform->driver->remove) {
1359                         err = platform->driver->remove(platform);
1360                         if (err < 0)
1361                                 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1362                 }
1363                 platform->probed = 0;
1364                 list_del(&platform->card_list);
1365                 module_put(platform->dev->driver->owner);
1366         }
1367
1368         /* remove the CODEC */
1369         if (codec && codec->probed)
1370                 soc_remove_codec(codec);
1371
1372         /* remove the cpu_dai */
1373         if (cpu_dai && cpu_dai->probed) {
1374                 if (cpu_dai->driver->remove) {
1375                         err = cpu_dai->driver->remove(cpu_dai);
1376                         if (err < 0)
1377                                 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1378                 }
1379                 cpu_dai->probed = 0;
1380                 list_del(&cpu_dai->card_list);
1381                 module_put(cpu_dai->dev->driver->owner);
1382         }
1383 }
1384
1385 static void soc_set_name_prefix(struct snd_soc_card *card,
1386                                 struct snd_soc_codec *codec)
1387 {
1388         int i;
1389
1390         if (card->codec_conf == NULL)
1391                 return;
1392
1393         for (i = 0; i < card->num_configs; i++) {
1394                 struct snd_soc_codec_conf *map = &card->codec_conf[i];
1395                 if (map->dev_name && !strcmp(codec->name, map->dev_name)) {
1396                         codec->name_prefix = map->name_prefix;
1397                         break;
1398                 }
1399         }
1400 }
1401
1402 static int soc_probe_codec(struct snd_soc_card *card,
1403                            struct snd_soc_codec *codec)
1404 {
1405         int ret = 0;
1406
1407         codec->card = card;
1408         codec->dapm.card = card;
1409         soc_set_name_prefix(card, codec);
1410
1411         if (codec->driver->probe) {
1412                 ret = codec->driver->probe(codec);
1413                 if (ret < 0) {
1414                         dev_err(codec->dev,
1415                                 "asoc: failed to probe CODEC %s: %d\n",
1416                                 codec->name, ret);
1417                         return ret;
1418                 }
1419         }
1420
1421         soc_init_codec_debugfs(codec);
1422
1423         /* mark codec as probed and add to card codec list */
1424         if (!try_module_get(codec->dev->driver->owner))
1425                 return -ENODEV;
1426
1427         codec->probed = 1;
1428         list_add(&codec->card_list, &card->codec_dev_list);
1429         list_add(&codec->dapm.list, &card->dapm_list);
1430
1431         return ret;
1432 }
1433
1434 static void rtd_release(struct device *dev) {}
1435
1436 static int soc_post_component_init(struct snd_soc_card *card,
1437                                    struct snd_soc_codec *codec,
1438                                    int num, int dailess)
1439 {
1440         struct snd_soc_dai_link *dai_link = NULL;
1441         struct snd_soc_aux_dev *aux_dev = NULL;
1442         struct snd_soc_pcm_runtime *rtd;
1443         const char *temp, *name;
1444         int ret = 0;
1445
1446         if (!dailess) {
1447                 dai_link = &card->dai_link[num];
1448                 rtd = &card->rtd[num];
1449                 name = dai_link->name;
1450         } else {
1451                 aux_dev = &card->aux_dev[num];
1452                 rtd = &card->rtd_aux[num];
1453                 name = aux_dev->name;
1454         }
1455
1456         /* machine controls, routes and widgets are not prefixed */
1457         temp = codec->name_prefix;
1458         codec->name_prefix = NULL;
1459
1460         /* do machine specific initialization */
1461         if (!dailess && dai_link->init)
1462                 ret = dai_link->init(rtd);
1463         else if (dailess && aux_dev->init)
1464                 ret = aux_dev->init(&codec->dapm);
1465         if (ret < 0) {
1466                 dev_err(card->dev, "asoc: failed to init %s: %d\n", name, ret);
1467                 return ret;
1468         }
1469         codec->name_prefix = temp;
1470
1471         /* Make sure all DAPM widgets are instantiated */
1472         snd_soc_dapm_new_widgets(&codec->dapm);
1473         snd_soc_dapm_sync(&codec->dapm);
1474
1475         /* register the rtd device */
1476         rtd->codec = codec;
1477         rtd->card = card;
1478         rtd->dev.parent = card->dev;
1479         rtd->dev.release = rtd_release;
1480         rtd->dev.init_name = name;
1481         ret = device_register(&rtd->dev);
1482         if (ret < 0) {
1483                 dev_err(card->dev,
1484                         "asoc: failed to register runtime device: %d\n", ret);
1485                 return ret;
1486         }
1487         rtd->dev_registered = 1;
1488
1489         /* add DAPM sysfs entries for this codec */
1490         ret = snd_soc_dapm_sys_add(&rtd->dev);
1491         if (ret < 0)
1492                 dev_err(codec->dev,
1493                         "asoc: failed to add codec dapm sysfs entries: %d\n",
1494                         ret);
1495
1496         /* add codec sysfs entries */
1497         ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1498         if (ret < 0)
1499                 dev_err(codec->dev,
1500                         "asoc: failed to add codec sysfs files: %d\n", ret);
1501
1502         return 0;
1503 }
1504
1505 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1506 {
1507         struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1508         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1509         struct snd_soc_codec *codec = rtd->codec;
1510         struct snd_soc_platform *platform = rtd->platform;
1511         struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1512         int ret;
1513
1514         dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1515
1516         /* config components */
1517         codec_dai->codec = codec;
1518         cpu_dai->platform = platform;
1519         codec_dai->card = card;
1520         cpu_dai->card = card;
1521
1522         /* set default power off timeout */
1523         rtd->pmdown_time = pmdown_time;
1524
1525         /* probe the cpu_dai */
1526         if (!cpu_dai->probed) {
1527                 if (cpu_dai->driver->probe) {
1528                         ret = cpu_dai->driver->probe(cpu_dai);
1529                         if (ret < 0) {
1530                                 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1531                                                 cpu_dai->name);
1532                                 return ret;
1533                         }
1534                 }
1535                 cpu_dai->probed = 1;
1536                 /* mark cpu_dai as probed and add to card cpu_dai list */
1537                 list_add(&cpu_dai->card_list, &card->dai_dev_list);
1538         }
1539
1540         /* probe the CODEC */
1541         if (!codec->probed) {
1542                 ret = soc_probe_codec(card, codec);
1543                 if (ret < 0)
1544                         return ret;
1545         }
1546
1547         /* probe the platform */
1548         if (!platform->probed) {
1549                 if (platform->driver->probe) {
1550                         ret = platform->driver->probe(platform);
1551                         if (ret < 0) {
1552                                 printk(KERN_ERR "asoc: failed to probe platform %s\n",
1553                                                 platform->name);
1554                                 return ret;
1555                         }
1556                 }
1557                 /* mark platform as probed and add to card platform list */
1558
1559                 if (!try_module_get(platform->dev->driver->owner))
1560                         return -ENODEV;
1561
1562                 platform->probed = 1;
1563                 list_add(&platform->card_list, &card->platform_dev_list);
1564         }
1565
1566         /* probe the CODEC DAI */
1567         if (!codec_dai->probed) {
1568                 if (codec_dai->driver->probe) {
1569                         ret = codec_dai->driver->probe(codec_dai);
1570                         if (ret < 0) {
1571                                 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1572                                                 codec_dai->name);
1573                                 return ret;
1574                         }
1575                 }
1576
1577                 /* mark cpu_dai as probed and add to card cpu_dai list */
1578                 codec_dai->probed = 1;
1579                 list_add(&codec_dai->card_list, &card->dai_dev_list);
1580         }
1581
1582         /* DAPM dai link stream work */
1583         INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1584
1585         ret = soc_post_component_init(card, codec, num, 0);
1586         if (ret)
1587                 return ret;
1588
1589         ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1590         if (ret < 0)
1591                 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1592
1593         /* create the pcm */
1594         ret = soc_new_pcm(rtd, num);
1595         if (ret < 0) {
1596                 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1597                 return ret;
1598         }
1599
1600         /* add platform data for AC97 devices */
1601         if (rtd->codec_dai->driver->ac97_control)
1602                 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1603
1604         return 0;
1605 }
1606
1607 #ifdef CONFIG_SND_SOC_AC97_BUS
1608 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1609 {
1610         int ret;
1611
1612         /* Only instantiate AC97 if not already done by the adaptor
1613          * for the generic AC97 subsystem.
1614          */
1615         if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1616                 /*
1617                  * It is possible that the AC97 device is already registered to
1618                  * the device subsystem. This happens when the device is created
1619                  * via snd_ac97_mixer(). Currently only SoC codec that does so
1620                  * is the generic AC97 glue but others migh emerge.
1621                  *
1622                  * In those cases we don't try to register the device again.
1623                  */
1624                 if (!rtd->codec->ac97_created)
1625                         return 0;
1626
1627                 ret = soc_ac97_dev_register(rtd->codec);
1628                 if (ret < 0) {
1629                         printk(KERN_ERR "asoc: AC97 device register failed\n");
1630                         return ret;
1631                 }
1632
1633                 rtd->codec->ac97_registered = 1;
1634         }
1635         return 0;
1636 }
1637
1638 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1639 {
1640         if (codec->ac97_registered) {
1641                 soc_ac97_dev_unregister(codec);
1642                 codec->ac97_registered = 0;
1643         }
1644 }
1645 #endif
1646
1647 static int soc_probe_aux_dev(struct snd_soc_card *card, int num)
1648 {
1649         struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1650         struct snd_soc_codec *codec;
1651         int ret = -ENODEV;
1652
1653         /* find CODEC from registered CODECs*/
1654         list_for_each_entry(codec, &codec_list, list) {
1655                 if (!strcmp(codec->name, aux_dev->codec_name)) {
1656                         if (codec->probed) {
1657                                 dev_err(codec->dev,
1658                                         "asoc: codec already probed");
1659                                 ret = -EBUSY;
1660                                 goto out;
1661                         }
1662                         goto found;
1663                 }
1664         }
1665         /* codec not found */
1666         dev_err(card->dev, "asoc: codec %s not found", aux_dev->codec_name);
1667         goto out;
1668
1669 found:
1670         if (!try_module_get(codec->dev->driver->owner))
1671                 return -ENODEV;
1672
1673         ret = soc_probe_codec(card, codec);
1674         if (ret < 0)
1675                 return ret;
1676
1677         ret = soc_post_component_init(card, codec, num, 1);
1678
1679 out:
1680         return ret;
1681 }
1682
1683 static void soc_remove_aux_dev(struct snd_soc_card *card, int num)
1684 {
1685         struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1686         struct snd_soc_codec *codec = rtd->codec;
1687
1688         /* unregister the rtd device */
1689         if (rtd->dev_registered) {
1690                 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1691                 device_unregister(&rtd->dev);
1692                 rtd->dev_registered = 0;
1693         }
1694
1695         if (codec && codec->probed)
1696                 soc_remove_codec(codec);
1697 }
1698
1699 static int snd_soc_init_codec_cache(struct snd_soc_codec *codec,
1700                                     enum snd_soc_compress_type compress_type)
1701 {
1702         int ret;
1703
1704         if (codec->cache_init)
1705                 return 0;
1706
1707         /* override the compress_type if necessary */
1708         if (compress_type && codec->compress_type != compress_type)
1709                 codec->compress_type = compress_type;
1710         ret = snd_soc_cache_init(codec);
1711         if (ret < 0) {
1712                 dev_err(codec->dev, "Failed to set cache compression type: %d\n",
1713                         ret);
1714                 return ret;
1715         }
1716         codec->cache_init = 1;
1717         return 0;
1718 }
1719
1720 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1721 {
1722         struct platform_device *pdev = to_platform_device(card->dev);
1723         struct snd_soc_codec *codec;
1724         struct snd_soc_codec_conf *codec_conf;
1725         enum snd_soc_compress_type compress_type;
1726         int ret, i;
1727
1728         mutex_lock(&card->mutex);
1729
1730         if (card->instantiated) {
1731                 mutex_unlock(&card->mutex);
1732                 return;
1733         }
1734
1735         /* bind DAIs */
1736         for (i = 0; i < card->num_links; i++)
1737                 soc_bind_dai_link(card, i);
1738
1739         /* bind completed ? */
1740         if (card->num_rtd != card->num_links) {
1741                 mutex_unlock(&card->mutex);
1742                 return;
1743         }
1744
1745         /* initialize the register cache for each available codec */
1746         list_for_each_entry(codec, &codec_list, list) {
1747                 if (codec->cache_init)
1748                         continue;
1749                 /* by default we don't override the compress_type */
1750                 compress_type = 0;
1751                 /* check to see if we need to override the compress_type */
1752                 for (i = 0; i < card->num_configs; ++i) {
1753                         codec_conf = &card->codec_conf[i];
1754                         if (!strcmp(codec->name, codec_conf->dev_name)) {
1755                                 compress_type = codec_conf->compress_type;
1756                                 if (compress_type && compress_type
1757                                     != codec->compress_type)
1758                                         break;
1759                         }
1760                 }
1761                 ret = snd_soc_init_codec_cache(codec, compress_type);
1762                 if (ret < 0) {
1763                         mutex_unlock(&card->mutex);
1764                         return;
1765                 }
1766         }
1767
1768         /* card bind complete so register a sound card */
1769         ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1770                         card->owner, 0, &card->snd_card);
1771         if (ret < 0) {
1772                 printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1773                         card->name);
1774                 mutex_unlock(&card->mutex);
1775                 return;
1776         }
1777         card->snd_card->dev = card->dev;
1778
1779 #ifdef CONFIG_PM
1780         /* deferred resume work */
1781         INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1782 #endif
1783
1784         /* initialise the sound card only once */
1785         if (card->probe) {
1786                 ret = card->probe(pdev);
1787                 if (ret < 0)
1788                         goto card_probe_error;
1789         }
1790
1791         for (i = 0; i < card->num_links; i++) {
1792                 ret = soc_probe_dai_link(card, i);
1793                 if (ret < 0) {
1794                         pr_err("asoc: failed to instantiate card %s: %d\n",
1795                                card->name, ret);
1796                         goto probe_dai_err;
1797                 }
1798         }
1799
1800         for (i = 0; i < card->num_aux_devs; i++) {
1801                 ret = soc_probe_aux_dev(card, i);
1802                 if (ret < 0) {
1803                         pr_err("asoc: failed to add auxiliary devices %s: %d\n",
1804                                card->name, ret);
1805                         goto probe_aux_dev_err;
1806                 }
1807         }
1808
1809         snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1810                  "%s",  card->name);
1811         snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1812                  "%s", card->name);
1813
1814         ret = snd_card_register(card->snd_card);
1815         if (ret < 0) {
1816                 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1817                 goto probe_aux_dev_err;
1818         }
1819
1820 #ifdef CONFIG_SND_SOC_AC97_BUS
1821         /* register any AC97 codecs */
1822         for (i = 0; i < card->num_rtd; i++) {
1823                 ret = soc_register_ac97_dai_link(&card->rtd[i]);
1824                 if (ret < 0) {
1825                         printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1826                         while (--i >= 0)
1827                                 soc_unregister_ac97_dai_link(card->rtd[i].codec);
1828                         goto probe_aux_dev_err;
1829                 }
1830         }
1831 #endif
1832
1833         card->instantiated = 1;
1834         mutex_unlock(&card->mutex);
1835         return;
1836
1837 probe_aux_dev_err:
1838         for (i = 0; i < card->num_aux_devs; i++)
1839                 soc_remove_aux_dev(card, i);
1840
1841 probe_dai_err:
1842         for (i = 0; i < card->num_links; i++)
1843                 soc_remove_dai_link(card, i);
1844
1845 card_probe_error:
1846         if (card->remove)
1847                 card->remove(pdev);
1848
1849         snd_card_free(card->snd_card);
1850
1851         mutex_unlock(&card->mutex);
1852 }
1853
1854 /*
1855  * Attempt to initialise any uninitialised cards.  Must be called with
1856  * client_mutex.
1857  */
1858 static void snd_soc_instantiate_cards(void)
1859 {
1860         struct snd_soc_card *card;
1861         list_for_each_entry(card, &card_list, list)
1862                 snd_soc_instantiate_card(card);
1863 }
1864
1865 /* probes a new socdev */
1866 static int soc_probe(struct platform_device *pdev)
1867 {
1868         struct snd_soc_card *card = platform_get_drvdata(pdev);
1869         int ret = 0;
1870
1871         /*
1872          * no card, so machine driver should be registering card
1873          * we should not be here in that case so ret error
1874          */
1875         if (!card)
1876                 return -EINVAL;
1877
1878         /* Bodge while we unpick instantiation */
1879         card->dev = &pdev->dev;
1880         snd_soc_initialize_card_lists(card);
1881
1882         ret = snd_soc_register_card(card);
1883         if (ret != 0) {
1884                 dev_err(&pdev->dev, "Failed to register card\n");
1885                 return ret;
1886         }
1887
1888         return 0;
1889 }
1890
1891 static int soc_cleanup_card_resources(struct snd_soc_card *card)
1892 {
1893         struct platform_device *pdev = to_platform_device(card->dev);
1894         int i;
1895
1896         /* make sure any delayed work runs */
1897         for (i = 0; i < card->num_rtd; i++) {
1898                 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1899                 flush_delayed_work_sync(&rtd->delayed_work);
1900         }
1901
1902         /* remove auxiliary devices */
1903         for (i = 0; i < card->num_aux_devs; i++)
1904                 soc_remove_aux_dev(card, i);
1905
1906         /* remove and free each DAI */
1907         for (i = 0; i < card->num_rtd; i++)
1908                 soc_remove_dai_link(card, i);
1909
1910         soc_cleanup_card_debugfs(card);
1911
1912         /* remove the card */
1913         if (card->remove)
1914                 card->remove(pdev);
1915
1916         kfree(card->rtd);
1917         snd_card_free(card->snd_card);
1918         return 0;
1919
1920 }
1921
1922 /* removes a socdev */
1923 static int soc_remove(struct platform_device *pdev)
1924 {
1925         struct snd_soc_card *card = platform_get_drvdata(pdev);
1926
1927         snd_soc_unregister_card(card);
1928         return 0;
1929 }
1930
1931 static int soc_poweroff(struct device *dev)
1932 {
1933         struct platform_device *pdev = to_platform_device(dev);
1934         struct snd_soc_card *card = platform_get_drvdata(pdev);
1935         int i;
1936
1937         if (!card->instantiated)
1938                 return 0;
1939
1940         /* Flush out pmdown_time work - we actually do want to run it
1941          * now, we're shutting down so no imminent restart. */
1942         for (i = 0; i < card->num_rtd; i++) {
1943                 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1944                 flush_delayed_work_sync(&rtd->delayed_work);
1945         }
1946
1947         snd_soc_dapm_shutdown(card);
1948
1949         return 0;
1950 }
1951
1952 static const struct dev_pm_ops soc_pm_ops = {
1953         .suspend = soc_suspend,
1954         .resume = soc_resume,
1955         .poweroff = soc_poweroff,
1956 };
1957
1958 /* ASoC platform driver */
1959 static struct platform_driver soc_driver = {
1960         .driver         = {
1961                 .name           = "soc-audio",
1962                 .owner          = THIS_MODULE,
1963                 .pm             = &soc_pm_ops,
1964         },
1965         .probe          = soc_probe,
1966         .remove         = soc_remove,
1967 };
1968
1969 /* create a new pcm */
1970 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
1971 {
1972         struct snd_soc_codec *codec = rtd->codec;
1973         struct snd_soc_platform *platform = rtd->platform;
1974         struct snd_soc_dai *codec_dai = rtd->codec_dai;
1975         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1976         struct snd_pcm *pcm;
1977         char new_name[64];
1978         int ret = 0, playback = 0, capture = 0;
1979
1980         /* check client and interface hw capabilities */
1981         snprintf(new_name, sizeof(new_name), "%s %s-%d",
1982                         rtd->dai_link->stream_name, codec_dai->name, num);
1983
1984         if (codec_dai->driver->playback.channels_min)
1985                 playback = 1;
1986         if (codec_dai->driver->capture.channels_min)
1987                 capture = 1;
1988
1989         dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
1990         ret = snd_pcm_new(rtd->card->snd_card, new_name,
1991                         num, playback, capture, &pcm);
1992         if (ret < 0) {
1993                 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
1994                 return ret;
1995         }
1996
1997         rtd->pcm = pcm;
1998         pcm->private_data = rtd;
1999         soc_pcm_ops.mmap = platform->driver->ops->mmap;
2000         soc_pcm_ops.pointer = platform->driver->ops->pointer;
2001         soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
2002         soc_pcm_ops.copy = platform->driver->ops->copy;
2003         soc_pcm_ops.silence = platform->driver->ops->silence;
2004         soc_pcm_ops.ack = platform->driver->ops->ack;
2005         soc_pcm_ops.page = platform->driver->ops->page;
2006
2007         if (playback)
2008                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
2009
2010         if (capture)
2011                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
2012
2013         ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm);
2014         if (ret < 0) {
2015                 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
2016                 return ret;
2017         }
2018
2019         pcm->private_free = platform->driver->pcm_free;
2020         printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
2021                 cpu_dai->name);
2022         return ret;
2023 }
2024
2025 /**
2026  * snd_soc_codec_volatile_register: Report if a register is volatile.
2027  *
2028  * @codec: CODEC to query.
2029  * @reg: Register to query.
2030  *
2031  * Boolean function indiciating if a CODEC register is volatile.
2032  */
2033 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
2034 {
2035         if (codec->volatile_register)
2036                 return codec->volatile_register(codec, reg);
2037         else
2038                 return 0;
2039 }
2040 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
2041
2042 /**
2043  * snd_soc_new_ac97_codec - initailise AC97 device
2044  * @codec: audio codec
2045  * @ops: AC97 bus operations
2046  * @num: AC97 codec number
2047  *
2048  * Initialises AC97 codec resources for use by ad-hoc devices only.
2049  */
2050 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
2051         struct snd_ac97_bus_ops *ops, int num)
2052 {
2053         mutex_lock(&codec->mutex);
2054
2055         codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
2056         if (codec->ac97 == NULL) {
2057                 mutex_unlock(&codec->mutex);
2058                 return -ENOMEM;
2059         }
2060
2061         codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
2062         if (codec->ac97->bus == NULL) {
2063                 kfree(codec->ac97);
2064                 codec->ac97 = NULL;
2065                 mutex_unlock(&codec->mutex);
2066                 return -ENOMEM;
2067         }
2068
2069         codec->ac97->bus->ops = ops;
2070         codec->ac97->num = num;
2071
2072         /*
2073          * Mark the AC97 device to be created by us. This way we ensure that the
2074          * device will be registered with the device subsystem later on.
2075          */
2076         codec->ac97_created = 1;
2077
2078         mutex_unlock(&codec->mutex);
2079         return 0;
2080 }
2081 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
2082
2083 /**
2084  * snd_soc_free_ac97_codec - free AC97 codec device
2085  * @codec: audio codec
2086  *
2087  * Frees AC97 codec device resources.
2088  */
2089 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
2090 {
2091         mutex_lock(&codec->mutex);
2092 #ifdef CONFIG_SND_SOC_AC97_BUS
2093         soc_unregister_ac97_dai_link(codec);
2094 #endif
2095         kfree(codec->ac97->bus);
2096         kfree(codec->ac97);
2097         codec->ac97 = NULL;
2098         codec->ac97_created = 0;
2099         mutex_unlock(&codec->mutex);
2100 }
2101 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
2102
2103 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg)
2104 {
2105         unsigned int ret;
2106
2107         ret = codec->read(codec, reg);
2108         dev_dbg(codec->dev, "read %x => %x\n", reg, ret);
2109         trace_snd_soc_reg_read(codec, reg, ret);
2110
2111         return ret;
2112 }
2113 EXPORT_SYMBOL_GPL(snd_soc_read);
2114
2115 unsigned int snd_soc_write(struct snd_soc_codec *codec,
2116                            unsigned int reg, unsigned int val)
2117 {
2118         dev_dbg(codec->dev, "write %x = %x\n", reg, val);
2119         trace_snd_soc_reg_write(codec, reg, val);
2120         return codec->write(codec, reg, val);
2121 }
2122 EXPORT_SYMBOL_GPL(snd_soc_write);
2123
2124 /**
2125  * snd_soc_update_bits - update codec register bits
2126  * @codec: audio codec
2127  * @reg: codec register
2128  * @mask: register mask
2129  * @value: new value
2130  *
2131  * Writes new register value.
2132  *
2133  * Returns 1 for change, 0 for no change, or negative error code.
2134  */
2135 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
2136                                 unsigned int mask, unsigned int value)
2137 {
2138         int change;
2139         unsigned int old, new;
2140         int ret;
2141
2142         ret = snd_soc_read(codec, reg);
2143         if (ret < 0)
2144                 return ret;
2145
2146         old = ret;
2147         new = (old & ~mask) | value;
2148         change = old != new;
2149         if (change) {
2150                 ret = snd_soc_write(codec, reg, new);
2151                 if (ret < 0)
2152                         return ret;
2153         }
2154
2155         return change;
2156 }
2157 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
2158
2159 /**
2160  * snd_soc_update_bits_locked - update codec register bits
2161  * @codec: audio codec
2162  * @reg: codec register
2163  * @mask: register mask
2164  * @value: new value
2165  *
2166  * Writes new register value, and takes the codec mutex.
2167  *
2168  * Returns 1 for change else 0.
2169  */
2170 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
2171                                unsigned short reg, unsigned int mask,
2172                                unsigned int value)
2173 {
2174         int change;
2175
2176         mutex_lock(&codec->mutex);
2177         change = snd_soc_update_bits(codec, reg, mask, value);
2178         mutex_unlock(&codec->mutex);
2179
2180         return change;
2181 }
2182 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
2183
2184 /**
2185  * snd_soc_test_bits - test register for change
2186  * @codec: audio codec
2187  * @reg: codec register
2188  * @mask: register mask
2189  * @value: new value
2190  *
2191  * Tests a register with a new value and checks if the new value is
2192  * different from the old value.
2193  *
2194  * Returns 1 for change else 0.
2195  */
2196 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
2197                                 unsigned int mask, unsigned int value)
2198 {
2199         int change;
2200         unsigned int old, new;
2201
2202         old = snd_soc_read(codec, reg);
2203         new = (old & ~mask) | value;
2204         change = old != new;
2205
2206         return change;
2207 }
2208 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
2209
2210 /**
2211  * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
2212  * @substream: the pcm substream
2213  * @hw: the hardware parameters
2214  *
2215  * Sets the substream runtime hardware parameters.
2216  */
2217 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
2218         const struct snd_pcm_hardware *hw)
2219 {
2220         struct snd_pcm_runtime *runtime = substream->runtime;
2221         runtime->hw.info = hw->info;
2222         runtime->hw.formats = hw->formats;
2223         runtime->hw.period_bytes_min = hw->period_bytes_min;
2224         runtime->hw.period_bytes_max = hw->period_bytes_max;
2225         runtime->hw.periods_min = hw->periods_min;
2226         runtime->hw.periods_max = hw->periods_max;
2227         runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
2228         runtime->hw.fifo_size = hw->fifo_size;
2229         return 0;
2230 }
2231 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
2232
2233 /**
2234  * snd_soc_cnew - create new control
2235  * @_template: control template
2236  * @data: control private data
2237  * @long_name: control long name
2238  *
2239  * Create a new mixer control from a template control.
2240  *
2241  * Returns 0 for success, else error.
2242  */
2243 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2244         void *data, char *long_name)
2245 {
2246         struct snd_kcontrol_new template;
2247
2248         memcpy(&template, _template, sizeof(template));
2249         if (long_name)
2250                 template.name = long_name;
2251         template.index = 0;
2252
2253         return snd_ctl_new1(&template, data);
2254 }
2255 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2256
2257 /**
2258  * snd_soc_add_controls - add an array of controls to a codec.
2259  * Convienience function to add a list of controls. Many codecs were
2260  * duplicating this code.
2261  *
2262  * @codec: codec to add controls to
2263  * @controls: array of controls to add
2264  * @num_controls: number of elements in the array
2265  *
2266  * Return 0 for success, else error.
2267  */
2268 int snd_soc_add_controls(struct snd_soc_codec *codec,
2269         const struct snd_kcontrol_new *controls, int num_controls)
2270 {
2271         struct snd_card *card = codec->card->snd_card;
2272         char prefixed_name[44], *name;
2273         int err, i;
2274
2275         for (i = 0; i < num_controls; i++) {
2276                 const struct snd_kcontrol_new *control = &controls[i];
2277                 if (codec->name_prefix) {
2278                         snprintf(prefixed_name, sizeof(prefixed_name), "%s %s",
2279                                  codec->name_prefix, control->name);
2280                         name = prefixed_name;
2281                 } else {
2282                         name = control->name;
2283                 }
2284                 err = snd_ctl_add(card, snd_soc_cnew(control, codec, name));
2285                 if (err < 0) {
2286                         dev_err(codec->dev, "%s: Failed to add %s: %d\n",
2287                                 codec->name, name, err);
2288                         return err;
2289                 }
2290         }
2291
2292         return 0;
2293 }
2294 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
2295
2296 /**
2297  * snd_soc_info_enum_double - enumerated double mixer info callback
2298  * @kcontrol: mixer control
2299  * @uinfo: control element information
2300  *
2301  * Callback to provide information about a double enumerated
2302  * mixer control.
2303  *
2304  * Returns 0 for success.
2305  */
2306 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2307         struct snd_ctl_elem_info *uinfo)
2308 {
2309         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2310
2311         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2312         uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2313         uinfo->value.enumerated.items = e->max;
2314
2315         if (uinfo->value.enumerated.item > e->max - 1)
2316                 uinfo->value.enumerated.item = e->max - 1;
2317         strcpy(uinfo->value.enumerated.name,
2318                 e->texts[uinfo->value.enumerated.item]);
2319         return 0;
2320 }
2321 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2322
2323 /**
2324  * snd_soc_get_enum_double - enumerated double mixer get callback
2325  * @kcontrol: mixer control
2326  * @ucontrol: control element information
2327  *
2328  * Callback to get the value of a double enumerated mixer.
2329  *
2330  * Returns 0 for success.
2331  */
2332 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2333         struct snd_ctl_elem_value *ucontrol)
2334 {
2335         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2336         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2337         unsigned int val, bitmask;
2338
2339         for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2340                 ;
2341         val = snd_soc_read(codec, e->reg);
2342         ucontrol->value.enumerated.item[0]
2343                 = (val >> e->shift_l) & (bitmask - 1);
2344         if (e->shift_l != e->shift_r)
2345                 ucontrol->value.enumerated.item[1] =
2346                         (val >> e->shift_r) & (bitmask - 1);
2347
2348         return 0;
2349 }
2350 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2351
2352 /**
2353  * snd_soc_put_enum_double - enumerated double mixer put callback
2354  * @kcontrol: mixer control
2355  * @ucontrol: control element information
2356  *
2357  * Callback to set the value of a double enumerated mixer.
2358  *
2359  * Returns 0 for success.
2360  */
2361 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2362         struct snd_ctl_elem_value *ucontrol)
2363 {
2364         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2365         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2366         unsigned int val;
2367         unsigned int mask, bitmask;
2368
2369         for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2370                 ;
2371         if (ucontrol->value.enumerated.item[0] > e->max - 1)
2372                 return -EINVAL;
2373         val = ucontrol->value.enumerated.item[0] << e->shift_l;
2374         mask = (bitmask - 1) << e->shift_l;
2375         if (e->shift_l != e->shift_r) {
2376                 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2377                         return -EINVAL;
2378                 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2379                 mask |= (bitmask - 1) << e->shift_r;
2380         }
2381
2382         return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2383 }
2384 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2385
2386 /**
2387  * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2388  * @kcontrol: mixer control
2389  * @ucontrol: control element information
2390  *
2391  * Callback to get the value of a double semi enumerated mixer.
2392  *
2393  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2394  * used for handling bitfield coded enumeration for example.
2395  *
2396  * Returns 0 for success.
2397  */
2398 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2399         struct snd_ctl_elem_value *ucontrol)
2400 {
2401         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2402         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2403         unsigned int reg_val, val, mux;
2404
2405         reg_val = snd_soc_read(codec, e->reg);
2406         val = (reg_val >> e->shift_l) & e->mask;
2407         for (mux = 0; mux < e->max; mux++) {
2408                 if (val == e->values[mux])
2409                         break;
2410         }
2411         ucontrol->value.enumerated.item[0] = mux;
2412         if (e->shift_l != e->shift_r) {
2413                 val = (reg_val >> e->shift_r) & e->mask;
2414                 for (mux = 0; mux < e->max; mux++) {
2415                         if (val == e->values[mux])
2416                                 break;
2417                 }
2418                 ucontrol->value.enumerated.item[1] = mux;
2419         }
2420
2421         return 0;
2422 }
2423 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2424
2425 /**
2426  * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2427  * @kcontrol: mixer control
2428  * @ucontrol: control element information
2429  *
2430  * Callback to set the value of a double semi enumerated mixer.
2431  *
2432  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2433  * used for handling bitfield coded enumeration for example.
2434  *
2435  * Returns 0 for success.
2436  */
2437 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2438         struct snd_ctl_elem_value *ucontrol)
2439 {
2440         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2441         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2442         unsigned int val;
2443         unsigned int mask;
2444
2445         if (ucontrol->value.enumerated.item[0] > e->max - 1)
2446                 return -EINVAL;
2447         val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2448         mask = e->mask << e->shift_l;
2449         if (e->shift_l != e->shift_r) {
2450                 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2451                         return -EINVAL;
2452                 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2453                 mask |= e->mask << e->shift_r;
2454         }
2455
2456         return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2457 }
2458 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2459
2460 /**
2461  * snd_soc_info_enum_ext - external enumerated single mixer info callback
2462  * @kcontrol: mixer control
2463  * @uinfo: control element information
2464  *
2465  * Callback to provide information about an external enumerated
2466  * single mixer.
2467  *
2468  * Returns 0 for success.
2469  */
2470 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2471         struct snd_ctl_elem_info *uinfo)
2472 {
2473         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2474
2475         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2476         uinfo->count = 1;
2477         uinfo->value.enumerated.items = e->max;
2478
2479         if (uinfo->value.enumerated.item > e->max - 1)
2480                 uinfo->value.enumerated.item = e->max - 1;
2481         strcpy(uinfo->value.enumerated.name,
2482                 e->texts[uinfo->value.enumerated.item]);
2483         return 0;
2484 }
2485 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2486
2487 /**
2488  * snd_soc_info_volsw_ext - external single mixer info callback
2489  * @kcontrol: mixer control
2490  * @uinfo: control element information
2491  *
2492  * Callback to provide information about a single external mixer control.
2493  *
2494  * Returns 0 for success.
2495  */
2496 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2497         struct snd_ctl_elem_info *uinfo)
2498 {
2499         int max = kcontrol->private_value;
2500
2501         if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2502                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2503         else
2504                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2505
2506         uinfo->count = 1;
2507         uinfo->value.integer.min = 0;
2508         uinfo->value.integer.max = max;
2509         return 0;
2510 }
2511 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2512
2513 /**
2514  * snd_soc_info_volsw - single mixer info callback
2515  * @kcontrol: mixer control
2516  * @uinfo: control element information
2517  *
2518  * Callback to provide information about a single mixer control.
2519  *
2520  * Returns 0 for success.
2521  */
2522 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2523         struct snd_ctl_elem_info *uinfo)
2524 {
2525         struct soc_mixer_control *mc =
2526                 (struct soc_mixer_control *)kcontrol->private_value;
2527         int platform_max;
2528         unsigned int shift = mc->shift;
2529         unsigned int rshift = mc->rshift;
2530
2531         if (!mc->platform_max)
2532                 mc->platform_max = mc->max;
2533         platform_max = mc->platform_max;
2534
2535         if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2536                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2537         else
2538                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2539
2540         uinfo->count = shift == rshift ? 1 : 2;
2541         uinfo->value.integer.min = 0;
2542         uinfo->value.integer.max = platform_max;
2543         return 0;
2544 }
2545 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2546
2547 /**
2548  * snd_soc_get_volsw - single mixer get callback
2549  * @kcontrol: mixer control
2550  * @ucontrol: control element information
2551  *
2552  * Callback to get the value of a single mixer control.
2553  *
2554  * Returns 0 for success.
2555  */
2556 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2557         struct snd_ctl_elem_value *ucontrol)
2558 {
2559         struct soc_mixer_control *mc =
2560                 (struct soc_mixer_control *)kcontrol->private_value;
2561         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2562         unsigned int reg = mc->reg;
2563         unsigned int shift = mc->shift;
2564         unsigned int rshift = mc->rshift;
2565         int max = mc->max;
2566         unsigned int mask = (1 << fls(max)) - 1;
2567         unsigned int invert = mc->invert;
2568
2569         ucontrol->value.integer.value[0] =
2570                 (snd_soc_read(codec, reg) >> shift) & mask;
2571         if (shift != rshift)
2572                 ucontrol->value.integer.value[1] =
2573                         (snd_soc_read(codec, reg) >> rshift) & mask;
2574         if (invert) {
2575                 ucontrol->value.integer.value[0] =
2576                         max - ucontrol->value.integer.value[0];
2577                 if (shift != rshift)
2578                         ucontrol->value.integer.value[1] =
2579                                 max - ucontrol->value.integer.value[1];
2580         }
2581
2582         return 0;
2583 }
2584 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2585
2586 /**
2587  * snd_soc_put_volsw - single mixer put callback
2588  * @kcontrol: mixer control
2589  * @ucontrol: control element information
2590  *
2591  * Callback to set the value of a single mixer control.
2592  *
2593  * Returns 0 for success.
2594  */
2595 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2596         struct snd_ctl_elem_value *ucontrol)
2597 {
2598         struct soc_mixer_control *mc =
2599                 (struct soc_mixer_control *)kcontrol->private_value;
2600         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2601         unsigned int reg = mc->reg;
2602         unsigned int shift = mc->shift;
2603         unsigned int rshift = mc->rshift;
2604         int max = mc->max;
2605         unsigned int mask = (1 << fls(max)) - 1;
2606         unsigned int invert = mc->invert;
2607         unsigned int val, val2, val_mask;
2608
2609         val = (ucontrol->value.integer.value[0] & mask);
2610         if (invert)
2611                 val = max - val;
2612         val_mask = mask << shift;
2613         val = val << shift;
2614         if (shift != rshift) {
2615                 val2 = (ucontrol->value.integer.value[1] & mask);
2616                 if (invert)
2617                         val2 = max - val2;
2618                 val_mask |= mask << rshift;
2619                 val |= val2 << rshift;
2620         }
2621         return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2622 }
2623 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2624
2625 /**
2626  * snd_soc_info_volsw_2r - double mixer info callback
2627  * @kcontrol: mixer control
2628  * @uinfo: control element information
2629  *
2630  * Callback to provide information about a double mixer control that
2631  * spans 2 codec registers.
2632  *
2633  * Returns 0 for success.
2634  */
2635 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2636         struct snd_ctl_elem_info *uinfo)
2637 {
2638         struct soc_mixer_control *mc =
2639                 (struct soc_mixer_control *)kcontrol->private_value;
2640         int platform_max;
2641
2642         if (!mc->platform_max)
2643                 mc->platform_max = mc->max;
2644         platform_max = mc->platform_max;
2645
2646         if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2647                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2648         else
2649                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2650
2651         uinfo->count = 2;
2652         uinfo->value.integer.min = 0;
2653         uinfo->value.integer.max = platform_max;
2654         return 0;
2655 }
2656 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2657
2658 /**
2659  * snd_soc_get_volsw_2r - double mixer get callback
2660  * @kcontrol: mixer control
2661  * @ucontrol: control element information
2662  *
2663  * Callback to get the value of a double mixer control that spans 2 registers.
2664  *
2665  * Returns 0 for success.
2666  */
2667 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2668         struct snd_ctl_elem_value *ucontrol)
2669 {
2670         struct soc_mixer_control *mc =
2671                 (struct soc_mixer_control *)kcontrol->private_value;
2672         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2673         unsigned int reg = mc->reg;
2674         unsigned int reg2 = mc->rreg;
2675         unsigned int shift = mc->shift;
2676         int max = mc->max;
2677         unsigned int mask = (1 << fls(max)) - 1;
2678         unsigned int invert = mc->invert;
2679
2680         ucontrol->value.integer.value[0] =
2681                 (snd_soc_read(codec, reg) >> shift) & mask;
2682         ucontrol->value.integer.value[1] =
2683                 (snd_soc_read(codec, reg2) >> shift) & mask;
2684         if (invert) {
2685                 ucontrol->value.integer.value[0] =
2686                         max - ucontrol->value.integer.value[0];
2687                 ucontrol->value.integer.value[1] =
2688                         max - ucontrol->value.integer.value[1];
2689         }
2690
2691         return 0;
2692 }
2693 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2694
2695 /**
2696  * snd_soc_put_volsw_2r - double mixer set callback
2697  * @kcontrol: mixer control
2698  * @ucontrol: control element information
2699  *
2700  * Callback to set the value of a double mixer control that spans 2 registers.
2701  *
2702  * Returns 0 for success.
2703  */
2704 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2705         struct snd_ctl_elem_value *ucontrol)
2706 {
2707         struct soc_mixer_control *mc =
2708                 (struct soc_mixer_control *)kcontrol->private_value;
2709         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2710         unsigned int reg = mc->reg;
2711         unsigned int reg2 = mc->rreg;
2712         unsigned int shift = mc->shift;
2713         int max = mc->max;
2714         unsigned int mask = (1 << fls(max)) - 1;
2715         unsigned int invert = mc->invert;
2716         int err;
2717         unsigned int val, val2, val_mask;
2718
2719         val_mask = mask << shift;
2720         val = (ucontrol->value.integer.value[0] & mask);
2721         val2 = (ucontrol->value.integer.value[1] & mask);
2722
2723         if (invert) {
2724                 val = max - val;
2725                 val2 = max - val2;
2726         }
2727
2728         val = val << shift;
2729         val2 = val2 << shift;
2730
2731         err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2732         if (err < 0)
2733                 return err;
2734
2735         err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2736         return err;
2737 }
2738 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2739
2740 /**
2741  * snd_soc_info_volsw_s8 - signed mixer info callback
2742  * @kcontrol: mixer control
2743  * @uinfo: control element information
2744  *
2745  * Callback to provide information about a signed mixer control.
2746  *
2747  * Returns 0 for success.
2748  */
2749 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2750         struct snd_ctl_elem_info *uinfo)
2751 {
2752         struct soc_mixer_control *mc =
2753                 (struct soc_mixer_control *)kcontrol->private_value;
2754         int platform_max;
2755         int min = mc->min;
2756
2757         if (!mc->platform_max)
2758                 mc->platform_max = mc->max;
2759         platform_max = mc->platform_max;
2760
2761         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2762         uinfo->count = 2;
2763         uinfo->value.integer.min = 0;
2764         uinfo->value.integer.max = platform_max - min;
2765         return 0;
2766 }
2767 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2768
2769 /**
2770  * snd_soc_get_volsw_s8 - signed mixer get callback
2771  * @kcontrol: mixer control
2772  * @ucontrol: control element information
2773  *
2774  * Callback to get the value of a signed mixer control.
2775  *
2776  * Returns 0 for success.
2777  */
2778 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2779         struct snd_ctl_elem_value *ucontrol)
2780 {
2781         struct soc_mixer_control *mc =
2782                 (struct soc_mixer_control *)kcontrol->private_value;
2783         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2784         unsigned int reg = mc->reg;
2785         int min = mc->min;
2786         int val = snd_soc_read(codec, reg);
2787
2788         ucontrol->value.integer.value[0] =
2789                 ((signed char)(val & 0xff))-min;
2790         ucontrol->value.integer.value[1] =
2791                 ((signed char)((val >> 8) & 0xff))-min;
2792         return 0;
2793 }
2794 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2795
2796 /**
2797  * snd_soc_put_volsw_sgn - signed mixer put callback
2798  * @kcontrol: mixer control
2799  * @ucontrol: control element information
2800  *
2801  * Callback to set the value of a signed mixer control.
2802  *
2803  * Returns 0 for success.
2804  */
2805 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2806         struct snd_ctl_elem_value *ucontrol)
2807 {
2808         struct soc_mixer_control *mc =
2809                 (struct soc_mixer_control *)kcontrol->private_value;
2810         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2811         unsigned int reg = mc->reg;
2812         int min = mc->min;
2813         unsigned int val;
2814
2815         val = (ucontrol->value.integer.value[0]+min) & 0xff;
2816         val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2817
2818         return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2819 }
2820 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2821
2822 /**
2823  * snd_soc_limit_volume - Set new limit to an existing volume control.
2824  *
2825  * @codec: where to look for the control
2826  * @name: Name of the control
2827  * @max: new maximum limit
2828  *
2829  * Return 0 for success, else error.
2830  */
2831 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2832         const char *name, int max)
2833 {
2834         struct snd_card *card = codec->card->snd_card;
2835         struct snd_kcontrol *kctl;
2836         struct soc_mixer_control *mc;
2837         int found = 0;
2838         int ret = -EINVAL;
2839
2840         /* Sanity check for name and max */
2841         if (unlikely(!name || max <= 0))
2842                 return -EINVAL;
2843
2844         list_for_each_entry(kctl, &card->controls, list) {
2845                 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2846                         found = 1;
2847                         break;
2848                 }
2849         }
2850         if (found) {
2851                 mc = (struct soc_mixer_control *)kctl->private_value;
2852                 if (max <= mc->max) {
2853                         mc->platform_max = max;
2854                         ret = 0;
2855                 }
2856         }
2857         return ret;
2858 }
2859 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2860
2861 /**
2862  * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
2863  *  mixer info callback
2864  * @kcontrol: mixer control
2865  * @uinfo: control element information
2866  *
2867  * Returns 0 for success.
2868  */
2869 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2870                         struct snd_ctl_elem_info *uinfo)
2871 {
2872         struct soc_mixer_control *mc =
2873                 (struct soc_mixer_control *)kcontrol->private_value;
2874         int max = mc->max;
2875         int min = mc->min;
2876
2877         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2878         uinfo->count = 2;
2879         uinfo->value.integer.min = 0;
2880         uinfo->value.integer.max = max-min;
2881
2882         return 0;
2883 }
2884 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
2885
2886 /**
2887  * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
2888  *  mixer get callback
2889  * @kcontrol: mixer control
2890  * @uinfo: control element information
2891  *
2892  * Returns 0 for success.
2893  */
2894 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2895                         struct snd_ctl_elem_value *ucontrol)
2896 {
2897         struct soc_mixer_control *mc =
2898                 (struct soc_mixer_control *)kcontrol->private_value;
2899         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2900         unsigned int mask = (1<<mc->shift)-1;
2901         int min = mc->min;
2902         int val = snd_soc_read(codec, mc->reg) & mask;
2903         int valr = snd_soc_read(codec, mc->rreg) & mask;
2904
2905         ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
2906         ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
2907         return 0;
2908 }
2909 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
2910
2911 /**
2912  * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
2913  *  mixer put callback
2914  * @kcontrol: mixer control
2915  * @uinfo: control element information
2916  *
2917  * Returns 0 for success.
2918  */
2919 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2920                         struct snd_ctl_elem_value *ucontrol)
2921 {
2922         struct soc_mixer_control *mc =
2923                 (struct soc_mixer_control *)kcontrol->private_value;
2924         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2925         unsigned int mask = (1<<mc->shift)-1;
2926         int min = mc->min;
2927         int ret;
2928         unsigned int val, valr, oval, ovalr;
2929
2930         val = ((ucontrol->value.integer.value[0]+min) & 0xff);
2931         val &= mask;
2932         valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
2933         valr &= mask;
2934
2935         oval = snd_soc_read(codec, mc->reg) & mask;
2936         ovalr = snd_soc_read(codec, mc->rreg) & mask;
2937
2938         ret = 0;
2939         if (oval != val) {
2940                 ret = snd_soc_write(codec, mc->reg, val);
2941                 if (ret < 0)
2942                         return ret;
2943         }
2944         if (ovalr != valr) {
2945                 ret = snd_soc_write(codec, mc->rreg, valr);
2946                 if (ret < 0)
2947                         return ret;
2948         }
2949
2950         return 0;
2951 }
2952 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
2953
2954 /**
2955  * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2956  * @dai: DAI
2957  * @clk_id: DAI specific clock ID
2958  * @freq: new clock frequency in Hz
2959  * @dir: new clock direction - input/output.
2960  *
2961  * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2962  */
2963 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2964         unsigned int freq, int dir)
2965 {
2966         if (dai->driver && dai->driver->ops->set_sysclk)
2967                 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
2968         else
2969                 return -EINVAL;
2970 }
2971 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2972
2973 /**
2974  * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2975  * @dai: DAI
2976  * @div_id: DAI specific clock divider ID
2977  * @div: new clock divisor.
2978  *
2979  * Configures the clock dividers. This is used to derive the best DAI bit and
2980  * frame clocks from the system or master clock. It's best to set the DAI bit
2981  * and frame clocks as low as possible to save system power.
2982  */
2983 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2984         int div_id, int div)
2985 {
2986         if (dai->driver && dai->driver->ops->set_clkdiv)
2987                 return dai->driver->ops->set_clkdiv(dai, div_id, div);
2988         else
2989                 return -EINVAL;
2990 }
2991 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2992
2993 /**
2994  * snd_soc_dai_set_pll - configure DAI PLL.
2995  * @dai: DAI
2996  * @pll_id: DAI specific PLL ID
2997  * @source: DAI specific source for the PLL
2998  * @freq_in: PLL input clock frequency in Hz
2999  * @freq_out: requested PLL output clock frequency in Hz
3000  *
3001  * Configures and enables PLL to generate output clock based on input clock.
3002  */
3003 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
3004         unsigned int freq_in, unsigned int freq_out)
3005 {
3006         if (dai->driver && dai->driver->ops->set_pll)
3007                 return dai->driver->ops->set_pll(dai, pll_id, source,
3008                                          freq_in, freq_out);
3009         else
3010                 return -EINVAL;
3011 }
3012 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
3013
3014 /**
3015  * snd_soc_dai_set_fmt - configure DAI hardware audio format.
3016  * @dai: DAI
3017  * @fmt: SND_SOC_DAIFMT_ format value.
3018  *
3019  * Configures the DAI hardware format and clocking.
3020  */
3021 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
3022 {
3023         if (dai->driver && dai->driver->ops->set_fmt)
3024                 return dai->driver->ops->set_fmt(dai, fmt);
3025         else
3026                 return -EINVAL;
3027 }
3028 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
3029
3030 /**
3031  * snd_soc_dai_set_tdm_slot - configure DAI TDM.
3032  * @dai: DAI
3033  * @tx_mask: bitmask representing active TX slots.
3034  * @rx_mask: bitmask representing active RX slots.
3035  * @slots: Number of slots in use.
3036  * @slot_width: Width in bits for each slot.
3037  *
3038  * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
3039  * specific.
3040  */
3041 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
3042         unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
3043 {
3044         if (dai->driver && dai->driver->ops->set_tdm_slot)
3045                 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
3046                                 slots, slot_width);
3047         else
3048                 return -EINVAL;
3049 }
3050 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
3051
3052 /**
3053  * snd_soc_dai_set_channel_map - configure DAI audio channel map
3054  * @dai: DAI
3055  * @tx_num: how many TX channels
3056  * @tx_slot: pointer to an array which imply the TX slot number channel
3057  *           0~num-1 uses
3058  * @rx_num: how many RX channels
3059  * @rx_slot: pointer to an array which imply the RX slot number channel
3060  *           0~num-1 uses
3061  *
3062  * configure the relationship between channel number and TDM slot number.
3063  */
3064 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
3065         unsigned int tx_num, unsigned int *tx_slot,
3066         unsigned int rx_num, unsigned int *rx_slot)
3067 {
3068         if (dai->driver && dai->driver->ops->set_channel_map)
3069                 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
3070                         rx_num, rx_slot);
3071         else
3072                 return -EINVAL;
3073 }
3074 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
3075
3076 /**
3077  * snd_soc_dai_set_tristate - configure DAI system or master clock.
3078  * @dai: DAI
3079  * @tristate: tristate enable
3080  *
3081  * Tristates the DAI so that others can use it.
3082  */
3083 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
3084 {
3085         if (dai->driver && dai->driver->ops->set_tristate)
3086                 return dai->driver->ops->set_tristate(dai, tristate);
3087         else
3088                 return -EINVAL;
3089 }
3090 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
3091
3092 /**
3093  * snd_soc_dai_digital_mute - configure DAI system or master clock.
3094  * @dai: DAI
3095  * @mute: mute enable
3096  *
3097  * Mutes the DAI DAC.
3098  */
3099 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
3100 {
3101         if (dai->driver && dai->driver->ops->digital_mute)
3102                 return dai->driver->ops->digital_mute(dai, mute);
3103         else
3104                 return -EINVAL;
3105 }
3106 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
3107
3108 /**
3109  * snd_soc_register_card - Register a card with the ASoC core
3110  *
3111  * @card: Card to register
3112  *
3113  */
3114 int snd_soc_register_card(struct snd_soc_card *card)
3115 {
3116         int i;
3117
3118         if (!card->name || !card->dev)
3119                 return -EINVAL;
3120
3121         soc_init_card_debugfs(card);
3122
3123         card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) *
3124                             (card->num_links + card->num_aux_devs),
3125                             GFP_KERNEL);
3126         if (card->rtd == NULL)
3127                 return -ENOMEM;
3128         card->rtd_aux = &card->rtd[card->num_links];
3129
3130         for (i = 0; i < card->num_links; i++)
3131                 card->rtd[i].dai_link = &card->dai_link[i];
3132
3133         INIT_LIST_HEAD(&card->list);
3134         card->instantiated = 0;
3135         mutex_init(&card->mutex);
3136
3137         mutex_lock(&client_mutex);
3138         list_add(&card->list, &card_list);
3139         snd_soc_instantiate_cards();
3140         mutex_unlock(&client_mutex);
3141
3142         dev_dbg(card->dev, "Registered card '%s'\n", card->name);
3143
3144         return 0;
3145 }
3146 EXPORT_SYMBOL_GPL(snd_soc_register_card);
3147
3148 /**
3149  * snd_soc_unregister_card - Unregister a card with the ASoC core
3150  *
3151  * @card: Card to unregister
3152  *
3153  */
3154 int snd_soc_unregister_card(struct snd_soc_card *card)
3155 {
3156         if (card->instantiated)
3157                 soc_cleanup_card_resources(card);
3158         mutex_lock(&client_mutex);
3159         list_del(&card->list);
3160         mutex_unlock(&client_mutex);
3161         dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
3162
3163         return 0;
3164 }
3165 EXPORT_SYMBOL_GPL(snd_soc_unregister_card);
3166
3167 /*
3168  * Simplify DAI link configuration by removing ".-1" from device names
3169  * and sanitizing names.
3170  */
3171 static char *fmt_single_name(struct device *dev, int *id)
3172 {
3173         char *found, name[NAME_SIZE];
3174         int id1, id2;
3175
3176         if (dev_name(dev) == NULL)
3177                 return NULL;
3178
3179         strlcpy(name, dev_name(dev), NAME_SIZE);
3180
3181         /* are we a "%s.%d" name (platform and SPI components) */
3182         found = strstr(name, dev->driver->name);
3183         if (found) {
3184                 /* get ID */
3185                 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
3186
3187                         /* discard ID from name if ID == -1 */
3188                         if (*id == -1)
3189                                 found[strlen(dev->driver->name)] = '\0';
3190                 }
3191
3192         } else {
3193                 /* I2C component devices are named "bus-addr"  */
3194                 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
3195                         char tmp[NAME_SIZE];
3196
3197                         /* create unique ID number from I2C addr and bus */
3198                         *id = ((id1 & 0xffff) << 16) + id2;
3199
3200                         /* sanitize component name for DAI link creation */
3201                         snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
3202                         strlcpy(name, tmp, NAME_SIZE);
3203                 } else
3204                         *id = 0;
3205         }
3206
3207         return kstrdup(name, GFP_KERNEL);
3208 }
3209
3210 /*
3211  * Simplify DAI link naming for single devices with multiple DAIs by removing
3212  * any ".-1" and using the DAI name (instead of device name).
3213  */
3214 static inline char *fmt_multiple_name(struct device *dev,
3215                 struct snd_soc_dai_driver *dai_drv)
3216 {
3217         if (dai_drv->name == NULL) {
3218                 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
3219                                 dev_name(dev));
3220                 return NULL;
3221         }
3222
3223         return kstrdup(dai_drv->name, GFP_KERNEL);
3224 }
3225
3226 /**
3227  * snd_soc_register_dai - Register a DAI with the ASoC core
3228  *
3229  * @dai: DAI to register
3230  */
3231 int snd_soc_register_dai(struct device *dev,
3232                 struct snd_soc_dai_driver *dai_drv)
3233 {
3234         struct snd_soc_dai *dai;
3235
3236         dev_dbg(dev, "dai register %s\n", dev_name(dev));
3237
3238         dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3239         if (dai == NULL)
3240                         return -ENOMEM;
3241
3242         /* create DAI component name */
3243         dai->name = fmt_single_name(dev, &dai->id);
3244         if (dai->name == NULL) {
3245                 kfree(dai);
3246                 return -ENOMEM;
3247         }
3248
3249         dai->dev = dev;
3250         dai->driver = dai_drv;
3251         if (!dai->driver->ops)
3252                 dai->driver->ops = &null_dai_ops;
3253
3254         mutex_lock(&client_mutex);
3255         list_add(&dai->list, &dai_list);
3256         snd_soc_instantiate_cards();
3257         mutex_unlock(&client_mutex);
3258
3259         pr_debug("Registered DAI '%s'\n", dai->name);
3260
3261         return 0;
3262 }
3263 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
3264
3265 /**
3266  * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
3267  *
3268  * @dai: DAI to unregister
3269  */
3270 void snd_soc_unregister_dai(struct device *dev)
3271 {
3272         struct snd_soc_dai *dai;
3273
3274         list_for_each_entry(dai, &dai_list, list) {
3275                 if (dev == dai->dev)
3276                         goto found;
3277         }
3278         return;
3279
3280 found:
3281         mutex_lock(&client_mutex);
3282         list_del(&dai->list);
3283         mutex_unlock(&client_mutex);
3284
3285         pr_debug("Unregistered DAI '%s'\n", dai->name);
3286         kfree(dai->name);
3287         kfree(dai);
3288 }
3289 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
3290
3291 /**
3292  * snd_soc_register_dais - Register multiple DAIs with the ASoC core
3293  *
3294  * @dai: Array of DAIs to register
3295  * @count: Number of DAIs
3296  */
3297 int snd_soc_register_dais(struct device *dev,
3298                 struct snd_soc_dai_driver *dai_drv, size_t count)
3299 {
3300         struct snd_soc_dai *dai;
3301         int i, ret = 0;
3302
3303         dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count);
3304
3305         for (i = 0; i < count; i++) {
3306
3307                 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3308                 if (dai == NULL) {
3309                         ret = -ENOMEM;
3310                         goto err;
3311                 }
3312
3313                 /* create DAI component name */
3314                 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3315                 if (dai->name == NULL) {
3316                         kfree(dai);
3317                         ret = -EINVAL;
3318                         goto err;
3319                 }
3320
3321                 dai->dev = dev;
3322                 dai->driver = &dai_drv[i];
3323                 if (dai->driver->id)
3324                         dai->id = dai->driver->id;
3325                 else
3326                         dai->id = i;
3327                 if (!dai->driver->ops)
3328                         dai->driver->ops = &null_dai_ops;
3329
3330                 mutex_lock(&client_mutex);
3331                 list_add(&dai->list, &dai_list);
3332                 mutex_unlock(&client_mutex);
3333
3334                 pr_debug("Registered DAI '%s'\n", dai->name);
3335         }
3336
3337         mutex_lock(&client_mutex);
3338         snd_soc_instantiate_cards();
3339         mutex_unlock(&client_mutex);
3340         return 0;
3341
3342 err:
3343         for (i--; i >= 0; i--)
3344                 snd_soc_unregister_dai(dev);
3345
3346         return ret;
3347 }
3348 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
3349
3350 /**
3351  * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
3352  *
3353  * @dai: Array of DAIs to unregister
3354  * @count: Number of DAIs
3355  */
3356 void snd_soc_unregister_dais(struct device *dev, size_t count)
3357 {
3358         int i;
3359
3360         for (i = 0; i < count; i++)
3361                 snd_soc_unregister_dai(dev);
3362 }
3363 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
3364
3365 /**
3366  * snd_soc_register_platform - Register a platform with the ASoC core
3367  *
3368  * @platform: platform to register
3369  */
3370 int snd_soc_register_platform(struct device *dev,
3371                 struct snd_soc_platform_driver *platform_drv)
3372 {
3373         struct snd_soc_platform *platform;
3374
3375         dev_dbg(dev, "platform register %s\n", dev_name(dev));
3376
3377         platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
3378         if (platform == NULL)
3379                         return -ENOMEM;
3380
3381         /* create platform component name */
3382         platform->name = fmt_single_name(dev, &platform->id);
3383         if (platform->name == NULL) {
3384                 kfree(platform);
3385                 return -ENOMEM;
3386         }
3387
3388         platform->dev = dev;
3389         platform->driver = platform_drv;
3390
3391         mutex_lock(&client_mutex);
3392         list_add(&platform->list, &platform_list);
3393         snd_soc_instantiate_cards();
3394         mutex_unlock(&client_mutex);
3395
3396         pr_debug("Registered platform '%s'\n", platform->name);
3397
3398         return 0;
3399 }
3400 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
3401
3402 /**
3403  * snd_soc_unregister_platform - Unregister a platform from the ASoC core
3404  *
3405  * @platform: platform to unregister
3406  */
3407 void snd_soc_unregister_platform(struct device *dev)
3408 {
3409         struct snd_soc_platform *platform;
3410
3411         list_for_each_entry(platform, &platform_list, list) {
3412                 if (dev == platform->dev)
3413                         goto found;
3414         }
3415         return;
3416
3417 found:
3418         mutex_lock(&client_mutex);
3419         list_del(&platform->list);
3420         mutex_unlock(&client_mutex);
3421
3422         pr_debug("Unregistered platform '%s'\n", platform->name);
3423         kfree(platform->name);
3424         kfree(platform);
3425 }
3426 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
3427
3428 static u64 codec_format_map[] = {
3429         SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
3430         SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
3431         SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
3432         SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
3433         SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
3434         SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
3435         SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3436         SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3437         SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
3438         SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
3439         SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
3440         SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
3441         SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
3442         SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
3443         SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
3444         | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
3445 };
3446
3447 /* Fix up the DAI formats for endianness: codecs don't actually see
3448  * the endianness of the data but we're using the CPU format
3449  * definitions which do need to include endianness so we ensure that
3450  * codec DAIs always have both big and little endian variants set.
3451  */
3452 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
3453 {
3454         int i;
3455
3456         for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
3457                 if (stream->formats & codec_format_map[i])
3458                         stream->formats |= codec_format_map[i];
3459 }
3460
3461 /**
3462  * snd_soc_register_codec - Register a codec with the ASoC core
3463  *
3464  * @codec: codec to register
3465  */
3466 int snd_soc_register_codec(struct device *dev,
3467                            const struct snd_soc_codec_driver *codec_drv,
3468                            struct snd_soc_dai_driver *dai_drv,
3469                            int num_dai)
3470 {
3471         size_t reg_size;
3472         struct snd_soc_codec *codec;
3473         int ret, i;
3474
3475         dev_dbg(dev, "codec register %s\n", dev_name(dev));
3476
3477         codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
3478         if (codec == NULL)
3479                 return -ENOMEM;
3480
3481         /* create CODEC component name */
3482         codec->name = fmt_single_name(dev, &codec->id);
3483         if (codec->name == NULL) {
3484                 kfree(codec);
3485                 return -ENOMEM;
3486         }
3487
3488         if (codec_drv->compress_type)
3489                 codec->compress_type = codec_drv->compress_type;
3490         else
3491                 codec->compress_type = SND_SOC_FLAT_COMPRESSION;
3492
3493         codec->write = codec_drv->write;
3494         codec->read = codec_drv->read;
3495         codec->volatile_register = codec_drv->volatile_register;
3496         codec->readable_register = codec_drv->readable_register;
3497         codec->dapm.bias_level = SND_SOC_BIAS_OFF;
3498         codec->dapm.dev = dev;
3499         codec->dapm.codec = codec;
3500         codec->dev = dev;
3501         codec->driver = codec_drv;
3502         codec->num_dai = num_dai;
3503         mutex_init(&codec->mutex);
3504
3505         /* allocate CODEC register cache */
3506         if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
3507                 reg_size = codec_drv->reg_cache_size * codec_drv->reg_word_size;
3508                 codec->reg_size = reg_size;
3509                 /* it is necessary to make a copy of the default register cache
3510                  * because in the case of using a compression type that requires
3511                  * the default register cache to be marked as __devinitconst the
3512                  * kernel might have freed the array by the time we initialize
3513                  * the cache.
3514                  */
3515                 if (codec_drv->reg_cache_default) {
3516                         codec->reg_def_copy = kmemdup(codec_drv->reg_cache_default,
3517                                                       reg_size, GFP_KERNEL);
3518                         if (!codec->reg_def_copy) {
3519                                 ret = -ENOMEM;
3520                                 goto fail;
3521                         }
3522                 }
3523         }
3524
3525         if (codec_drv->reg_access_size && codec_drv->reg_access_default) {
3526                 if (!codec->volatile_register)
3527                         codec->volatile_register = snd_soc_default_volatile_register;
3528                 if (!codec->readable_register)
3529                         codec->readable_register = snd_soc_default_readable_register;
3530         }
3531
3532         for (i = 0; i < num_dai; i++) {
3533                 fixup_codec_formats(&dai_drv[i].playback);
3534                 fixup_codec_formats(&dai_drv[i].capture);
3535         }
3536
3537         /* register any DAIs */
3538         if (num_dai) {
3539                 ret = snd_soc_register_dais(dev, dai_drv, num_dai);
3540                 if (ret < 0)
3541                         goto fail;
3542         }
3543
3544         mutex_lock(&client_mutex);
3545         list_add(&codec->list, &codec_list);
3546         snd_soc_instantiate_cards();
3547         mutex_unlock(&client_mutex);
3548
3549         pr_debug("Registered codec '%s'\n", codec->name);
3550         return 0;
3551
3552 fail:
3553         kfree(codec->reg_def_copy);
3554         codec->reg_def_copy = NULL;
3555         kfree(codec->name);
3556         kfree(codec);
3557         return ret;
3558 }
3559 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
3560
3561 /**
3562  * snd_soc_unregister_codec - Unregister a codec from the ASoC core
3563  *
3564  * @codec: codec to unregister
3565  */
3566 void snd_soc_unregister_codec(struct device *dev)
3567 {
3568         struct snd_soc_codec *codec;
3569         int i;
3570
3571         list_for_each_entry(codec, &codec_list, list) {
3572                 if (dev == codec->dev)
3573                         goto found;
3574         }
3575         return;
3576
3577 found:
3578         if (codec->num_dai)
3579                 for (i = 0; i < codec->num_dai; i++)
3580                         snd_soc_unregister_dai(dev);
3581
3582         mutex_lock(&client_mutex);
3583         list_del(&codec->list);
3584         mutex_unlock(&client_mutex);
3585
3586         pr_debug("Unregistered codec '%s'\n", codec->name);
3587
3588         snd_soc_cache_exit(codec);
3589         kfree(codec->reg_def_copy);
3590         kfree(codec->name);
3591         kfree(codec);
3592 }
3593 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
3594
3595 static int __init snd_soc_init(void)
3596 {
3597 #ifdef CONFIG_DEBUG_FS
3598         snd_soc_debugfs_root = debugfs_create_dir("asoc", NULL);
3599         if (IS_ERR(snd_soc_debugfs_root) || !snd_soc_debugfs_root) {
3600                 printk(KERN_WARNING
3601                        "ASoC: Failed to create debugfs directory\n");
3602                 snd_soc_debugfs_root = NULL;
3603         }
3604
3605         if (!debugfs_create_file("codecs", 0444, snd_soc_debugfs_root, NULL,
3606                                  &codec_list_fops))
3607                 pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
3608
3609         if (!debugfs_create_file("dais", 0444, snd_soc_debugfs_root, NULL,
3610                                  &dai_list_fops))
3611                 pr_warn("ASoC: Failed to create DAI list debugfs file\n");
3612
3613         if (!debugfs_create_file("platforms", 0444, snd_soc_debugfs_root, NULL,
3614                                  &platform_list_fops))
3615                 pr_warn("ASoC: Failed to create platform list debugfs file\n");
3616 #endif
3617
3618         return platform_driver_register(&soc_driver);
3619 }
3620 module_init(snd_soc_init);
3621
3622 static void __exit snd_soc_exit(void)
3623 {
3624 #ifdef CONFIG_DEBUG_FS
3625         debugfs_remove_recursive(snd_soc_debugfs_root);
3626 #endif
3627         platform_driver_unregister(&soc_driver);
3628 }
3629 module_exit(snd_soc_exit);
3630
3631 /* Module information */
3632 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
3633 MODULE_DESCRIPTION("ALSA SoC Core");
3634 MODULE_LICENSE("GPL");
3635 MODULE_ALIAS("platform:soc-audio");