ASoC: Decouple DAPM from CODECs
[linux-2.6.git] / sound / soc / soc-core.c
1 /*
2  * soc-core.c  --  ALSA SoC Audio Layer
3  *
4  * Copyright 2005 Wolfson Microelectronics PLC.
5  * Copyright 2005 Openedhand Ltd.
6  * Copyright (C) 2010 Slimlogic Ltd.
7  * Copyright (C) 2010 Texas Instruments Inc.
8  *
9  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10  *         with code, comments and ideas from :-
11  *         Richard Purdie <richard@openedhand.com>
12  *
13  *  This program is free software; you can redistribute  it and/or modify it
14  *  under  the terms of  the GNU General  Public License as published by the
15  *  Free Software Foundation;  either version 2 of the  License, or (at your
16  *  option) any later version.
17  *
18  *  TODO:
19  *   o Add hw rules to enforce rates, etc.
20  *   o More testing with other codecs/machines.
21  *   o Add more codecs and platforms to ensure good API coverage.
22  *   o Support TDM on PCM and I2S
23  */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h>
35 #include <sound/core.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/soc.h>
39 #include <sound/soc-dapm.h>
40 #include <sound/initval.h>
41
42 #define NAME_SIZE       32
43
44 static DEFINE_MUTEX(pcm_mutex);
45 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
46
47 #ifdef CONFIG_DEBUG_FS
48 static struct dentry *debugfs_root;
49 #endif
50
51 static DEFINE_MUTEX(client_mutex);
52 static LIST_HEAD(card_list);
53 static LIST_HEAD(dai_list);
54 static LIST_HEAD(platform_list);
55 static LIST_HEAD(codec_list);
56
57 static int snd_soc_register_card(struct snd_soc_card *card);
58 static int snd_soc_unregister_card(struct snd_soc_card *card);
59 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
60
61 /*
62  * This is a timeout to do a DAPM powerdown after a stream is closed().
63  * It can be used to eliminate pops between different playback streams, e.g.
64  * between two audio tracks.
65  */
66 static int pmdown_time = 5000;
67 module_param(pmdown_time, int, 0);
68 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
69
70 /*
71  * This function forces any delayed work to be queued and run.
72  */
73 static int run_delayed_work(struct delayed_work *dwork)
74 {
75         int ret;
76
77         /* cancel any work waiting to be queued. */
78         ret = cancel_delayed_work(dwork);
79
80         /* if there was any work waiting then we run it now and
81          * wait for it's completion */
82         if (ret) {
83                 schedule_delayed_work(dwork, 0);
84                 flush_scheduled_work();
85         }
86         return ret;
87 }
88
89 /* codec register dump */
90 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
91 {
92         int ret, i, step = 1, count = 0;
93
94         if (!codec->driver->reg_cache_size)
95                 return 0;
96
97         if (codec->driver->reg_cache_step)
98                 step = codec->driver->reg_cache_step;
99
100         count += sprintf(buf, "%s registers\n", codec->name);
101         for (i = 0; i < codec->driver->reg_cache_size; i += step) {
102                 if (codec->driver->readable_register && !codec->driver->readable_register(i))
103                         continue;
104
105                 count += sprintf(buf + count, "%2x: ", i);
106                 if (count >= PAGE_SIZE - 1)
107                         break;
108
109                 if (codec->driver->display_register) {
110                         count += codec->driver->display_register(codec, buf + count,
111                                                          PAGE_SIZE - count, i);
112                 } else {
113                         /* If the read fails it's almost certainly due to
114                          * the register being volatile and the device being
115                          * powered off.
116                          */
117                         ret = codec->driver->read(codec, i);
118                         if (ret >= 0)
119                                 count += snprintf(buf + count,
120                                                   PAGE_SIZE - count,
121                                                   "%4x", ret);
122                         else
123                                 count += snprintf(buf + count,
124                                                   PAGE_SIZE - count,
125                                                   "<no data: %d>", ret);
126                 }
127
128                 if (count >= PAGE_SIZE - 1)
129                         break;
130
131                 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
132                 if (count >= PAGE_SIZE - 1)
133                         break;
134         }
135
136         /* Truncate count; min() would cause a warning */
137         if (count >= PAGE_SIZE)
138                 count = PAGE_SIZE - 1;
139
140         return count;
141 }
142 static ssize_t codec_reg_show(struct device *dev,
143         struct device_attribute *attr, char *buf)
144 {
145         struct snd_soc_pcm_runtime *rtd =
146                         container_of(dev, struct snd_soc_pcm_runtime, dev);
147
148         return soc_codec_reg_show(rtd->codec, buf);
149 }
150
151 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
152
153 static ssize_t pmdown_time_show(struct device *dev,
154                                 struct device_attribute *attr, char *buf)
155 {
156         struct snd_soc_pcm_runtime *rtd =
157                         container_of(dev, struct snd_soc_pcm_runtime, dev);
158
159         return sprintf(buf, "%ld\n", rtd->pmdown_time);
160 }
161
162 static ssize_t pmdown_time_set(struct device *dev,
163                                struct device_attribute *attr,
164                                const char *buf, size_t count)
165 {
166         struct snd_soc_pcm_runtime *rtd =
167                         container_of(dev, struct snd_soc_pcm_runtime, dev);
168         int ret;
169
170         ret = strict_strtol(buf, 10, &rtd->pmdown_time);
171         if (ret)
172                 return ret;
173
174         return count;
175 }
176
177 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
178
179 #ifdef CONFIG_DEBUG_FS
180 static int codec_reg_open_file(struct inode *inode, struct file *file)
181 {
182         file->private_data = inode->i_private;
183         return 0;
184 }
185
186 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
187                                size_t count, loff_t *ppos)
188 {
189         ssize_t ret;
190         struct snd_soc_codec *codec = file->private_data;
191         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
192         if (!buf)
193                 return -ENOMEM;
194         ret = soc_codec_reg_show(codec, buf);
195         if (ret >= 0)
196                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
197         kfree(buf);
198         return ret;
199 }
200
201 static ssize_t codec_reg_write_file(struct file *file,
202                 const char __user *user_buf, size_t count, loff_t *ppos)
203 {
204         char buf[32];
205         int buf_size;
206         char *start = buf;
207         unsigned long reg, value;
208         int step = 1;
209         struct snd_soc_codec *codec = file->private_data;
210
211         buf_size = min(count, (sizeof(buf)-1));
212         if (copy_from_user(buf, user_buf, buf_size))
213                 return -EFAULT;
214         buf[buf_size] = 0;
215
216         if (codec->driver->reg_cache_step)
217                 step = codec->driver->reg_cache_step;
218
219         while (*start == ' ')
220                 start++;
221         reg = simple_strtoul(start, &start, 16);
222         if ((reg >= codec->driver->reg_cache_size) || (reg % step))
223                 return -EINVAL;
224         while (*start == ' ')
225                 start++;
226         if (strict_strtoul(start, 16, &value))
227                 return -EINVAL;
228         codec->driver->write(codec, reg, value);
229         return buf_size;
230 }
231
232 static const struct file_operations codec_reg_fops = {
233         .open = codec_reg_open_file,
234         .read = codec_reg_read_file,
235         .write = codec_reg_write_file,
236         .llseek = default_llseek,
237 };
238
239 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
240 {
241         codec->debugfs_codec_root = debugfs_create_dir(codec->name ,
242                                                        debugfs_root);
243         if (!codec->debugfs_codec_root) {
244                 printk(KERN_WARNING
245                        "ASoC: Failed to create codec debugfs directory\n");
246                 return;
247         }
248
249         codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
250                                                  codec->debugfs_codec_root,
251                                                  codec, &codec_reg_fops);
252         if (!codec->debugfs_reg)
253                 printk(KERN_WARNING
254                        "ASoC: Failed to create codec register debugfs file\n");
255
256         codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
257                                                      codec->debugfs_codec_root,
258                                                      &codec->dapm.pop_time);
259         if (!codec->debugfs_pop_time)
260                 printk(KERN_WARNING
261                        "Failed to create pop time debugfs file\n");
262
263         codec->dapm.debugfs_dapm = debugfs_create_dir("dapm",
264                                                  codec->debugfs_codec_root);
265         if (!codec->dapm.debugfs_dapm)
266                 printk(KERN_WARNING
267                        "Failed to create DAPM debugfs directory\n");
268
269         snd_soc_dapm_debugfs_init(&codec->dapm);
270 }
271
272 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
273 {
274         debugfs_remove_recursive(codec->debugfs_codec_root);
275 }
276
277 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
278                                     size_t count, loff_t *ppos)
279 {
280         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
281         ssize_t len, ret = 0;
282         struct snd_soc_codec *codec;
283
284         if (!buf)
285                 return -ENOMEM;
286
287         list_for_each_entry(codec, &codec_list, list) {
288                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
289                                codec->name);
290                 if (len >= 0)
291                         ret += len;
292                 if (ret > PAGE_SIZE) {
293                         ret = PAGE_SIZE;
294                         break;
295                 }
296         }
297
298         if (ret >= 0)
299                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
300
301         kfree(buf);
302
303         return ret;
304 }
305
306 static const struct file_operations codec_list_fops = {
307         .read = codec_list_read_file,
308         .llseek = default_llseek,/* read accesses f_pos */
309 };
310
311 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
312                                   size_t count, loff_t *ppos)
313 {
314         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
315         ssize_t len, ret = 0;
316         struct snd_soc_dai *dai;
317
318         if (!buf)
319                 return -ENOMEM;
320
321         list_for_each_entry(dai, &dai_list, list) {
322                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
323                 if (len >= 0)
324                         ret += len;
325                 if (ret > PAGE_SIZE) {
326                         ret = PAGE_SIZE;
327                         break;
328                 }
329         }
330
331         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
332
333         kfree(buf);
334
335         return ret;
336 }
337
338 static const struct file_operations dai_list_fops = {
339         .read = dai_list_read_file,
340         .llseek = default_llseek,/* read accesses f_pos */
341 };
342
343 static ssize_t platform_list_read_file(struct file *file,
344                                        char __user *user_buf,
345                                        size_t count, loff_t *ppos)
346 {
347         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
348         ssize_t len, ret = 0;
349         struct snd_soc_platform *platform;
350
351         if (!buf)
352                 return -ENOMEM;
353
354         list_for_each_entry(platform, &platform_list, list) {
355                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
356                                platform->name);
357                 if (len >= 0)
358                         ret += len;
359                 if (ret > PAGE_SIZE) {
360                         ret = PAGE_SIZE;
361                         break;
362                 }
363         }
364
365         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
366
367         kfree(buf);
368
369         return ret;
370 }
371
372 static const struct file_operations platform_list_fops = {
373         .read = platform_list_read_file,
374         .llseek = default_llseek,/* read accesses f_pos */
375 };
376
377 #else
378
379 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
380 {
381 }
382
383 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
384 {
385 }
386 #endif
387
388 #ifdef CONFIG_SND_SOC_AC97_BUS
389 /* unregister ac97 codec */
390 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
391 {
392         if (codec->ac97->dev.bus)
393                 device_unregister(&codec->ac97->dev);
394         return 0;
395 }
396
397 /* stop no dev release warning */
398 static void soc_ac97_device_release(struct device *dev){}
399
400 /* register ac97 codec to bus */
401 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
402 {
403         int err;
404
405         codec->ac97->dev.bus = &ac97_bus_type;
406         codec->ac97->dev.parent = codec->card->dev;
407         codec->ac97->dev.release = soc_ac97_device_release;
408
409         dev_set_name(&codec->ac97->dev, "%d-%d:%s",
410                      codec->card->snd_card->number, 0, codec->name);
411         err = device_register(&codec->ac97->dev);
412         if (err < 0) {
413                 snd_printk(KERN_ERR "Can't register ac97 bus\n");
414                 codec->ac97->dev.bus = NULL;
415                 return err;
416         }
417         return 0;
418 }
419 #endif
420
421 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
422 {
423         struct snd_soc_pcm_runtime *rtd = substream->private_data;
424         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
425         struct snd_soc_dai *codec_dai = rtd->codec_dai;
426         int ret;
427
428         if (codec_dai->driver->symmetric_rates || cpu_dai->driver->symmetric_rates ||
429                         rtd->dai_link->symmetric_rates) {
430                 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n",
431                                 rtd->rate);
432
433                 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
434                                                    SNDRV_PCM_HW_PARAM_RATE,
435                                                    rtd->rate,
436                                                    rtd->rate);
437                 if (ret < 0) {
438                         dev_err(&rtd->dev,
439                                 "Unable to apply rate symmetry constraint: %d\n", ret);
440                         return ret;
441                 }
442         }
443
444         return 0;
445 }
446
447 /*
448  * Called by ALSA when a PCM substream is opened, the runtime->hw record is
449  * then initialized and any private data can be allocated. This also calls
450  * startup for the cpu DAI, platform, machine and codec DAI.
451  */
452 static int soc_pcm_open(struct snd_pcm_substream *substream)
453 {
454         struct snd_soc_pcm_runtime *rtd = substream->private_data;
455         struct snd_pcm_runtime *runtime = substream->runtime;
456         struct snd_soc_platform *platform = rtd->platform;
457         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
458         struct snd_soc_dai *codec_dai = rtd->codec_dai;
459         struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
460         struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
461         int ret = 0;
462
463         mutex_lock(&pcm_mutex);
464
465         /* startup the audio subsystem */
466         if (cpu_dai->driver->ops->startup) {
467                 ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
468                 if (ret < 0) {
469                         printk(KERN_ERR "asoc: can't open interface %s\n",
470                                 cpu_dai->name);
471                         goto out;
472                 }
473         }
474
475         if (platform->driver->ops->open) {
476                 ret = platform->driver->ops->open(substream);
477                 if (ret < 0) {
478                         printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
479                         goto platform_err;
480                 }
481         }
482
483         if (codec_dai->driver->ops->startup) {
484                 ret = codec_dai->driver->ops->startup(substream, codec_dai);
485                 if (ret < 0) {
486                         printk(KERN_ERR "asoc: can't open codec %s\n",
487                                 codec_dai->name);
488                         goto codec_dai_err;
489                 }
490         }
491
492         if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
493                 ret = rtd->dai_link->ops->startup(substream);
494                 if (ret < 0) {
495                         printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
496                         goto machine_err;
497                 }
498         }
499
500         /* Check that the codec and cpu DAI's are compatible */
501         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
502                 runtime->hw.rate_min =
503                         max(codec_dai_drv->playback.rate_min,
504                             cpu_dai_drv->playback.rate_min);
505                 runtime->hw.rate_max =
506                         min(codec_dai_drv->playback.rate_max,
507                             cpu_dai_drv->playback.rate_max);
508                 runtime->hw.channels_min =
509                         max(codec_dai_drv->playback.channels_min,
510                                 cpu_dai_drv->playback.channels_min);
511                 runtime->hw.channels_max =
512                         min(codec_dai_drv->playback.channels_max,
513                                 cpu_dai_drv->playback.channels_max);
514                 runtime->hw.formats =
515                         codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
516                 runtime->hw.rates =
517                         codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
518                 if (codec_dai_drv->playback.rates
519                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
520                         runtime->hw.rates |= cpu_dai_drv->playback.rates;
521                 if (cpu_dai_drv->playback.rates
522                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
523                         runtime->hw.rates |= codec_dai_drv->playback.rates;
524         } else {
525                 runtime->hw.rate_min =
526                         max(codec_dai_drv->capture.rate_min,
527                             cpu_dai_drv->capture.rate_min);
528                 runtime->hw.rate_max =
529                         min(codec_dai_drv->capture.rate_max,
530                             cpu_dai_drv->capture.rate_max);
531                 runtime->hw.channels_min =
532                         max(codec_dai_drv->capture.channels_min,
533                                 cpu_dai_drv->capture.channels_min);
534                 runtime->hw.channels_max =
535                         min(codec_dai_drv->capture.channels_max,
536                                 cpu_dai_drv->capture.channels_max);
537                 runtime->hw.formats =
538                         codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
539                 runtime->hw.rates =
540                         codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
541                 if (codec_dai_drv->capture.rates
542                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
543                         runtime->hw.rates |= cpu_dai_drv->capture.rates;
544                 if (cpu_dai_drv->capture.rates
545                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
546                         runtime->hw.rates |= codec_dai_drv->capture.rates;
547         }
548
549         snd_pcm_limit_hw_rates(runtime);
550         if (!runtime->hw.rates) {
551                 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
552                         codec_dai->name, cpu_dai->name);
553                 goto config_err;
554         }
555         if (!runtime->hw.formats) {
556                 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
557                         codec_dai->name, cpu_dai->name);
558                 goto config_err;
559         }
560         if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
561                 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
562                                 codec_dai->name, cpu_dai->name);
563                 goto config_err;
564         }
565
566         /* Symmetry only applies if we've already got an active stream. */
567         if (cpu_dai->active || codec_dai->active) {
568                 ret = soc_pcm_apply_symmetry(substream);
569                 if (ret != 0)
570                         goto config_err;
571         }
572
573         pr_debug("asoc: %s <-> %s info:\n",
574                         codec_dai->name, cpu_dai->name);
575         pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
576         pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
577                  runtime->hw.channels_max);
578         pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
579                  runtime->hw.rate_max);
580
581         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
582                 cpu_dai->playback_active++;
583                 codec_dai->playback_active++;
584         } else {
585                 cpu_dai->capture_active++;
586                 codec_dai->capture_active++;
587         }
588         cpu_dai->active++;
589         codec_dai->active++;
590         rtd->codec->active++;
591         mutex_unlock(&pcm_mutex);
592         return 0;
593
594 config_err:
595         if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
596                 rtd->dai_link->ops->shutdown(substream);
597
598 machine_err:
599         if (codec_dai->driver->ops->shutdown)
600                 codec_dai->driver->ops->shutdown(substream, codec_dai);
601
602 codec_dai_err:
603         if (platform->driver->ops->close)
604                 platform->driver->ops->close(substream);
605
606 platform_err:
607         if (cpu_dai->driver->ops->shutdown)
608                 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
609 out:
610         mutex_unlock(&pcm_mutex);
611         return ret;
612 }
613
614 /*
615  * Power down the audio subsystem pmdown_time msecs after close is called.
616  * This is to ensure there are no pops or clicks in between any music tracks
617  * due to DAPM power cycling.
618  */
619 static void close_delayed_work(struct work_struct *work)
620 {
621         struct snd_soc_pcm_runtime *rtd =
622                         container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
623         struct snd_soc_dai *codec_dai = rtd->codec_dai;
624
625         mutex_lock(&pcm_mutex);
626
627         pr_debug("pop wq checking: %s status: %s waiting: %s\n",
628                  codec_dai->driver->playback.stream_name,
629                  codec_dai->playback_active ? "active" : "inactive",
630                  codec_dai->pop_wait ? "yes" : "no");
631
632         /* are we waiting on this codec DAI stream */
633         if (codec_dai->pop_wait == 1) {
634                 codec_dai->pop_wait = 0;
635                 snd_soc_dapm_stream_event(rtd,
636                         codec_dai->driver->playback.stream_name,
637                         SND_SOC_DAPM_STREAM_STOP);
638         }
639
640         mutex_unlock(&pcm_mutex);
641 }
642
643 /*
644  * Called by ALSA when a PCM substream is closed. Private data can be
645  * freed here. The cpu DAI, codec DAI, machine and platform are also
646  * shutdown.
647  */
648 static int soc_codec_close(struct snd_pcm_substream *substream)
649 {
650         struct snd_soc_pcm_runtime *rtd = substream->private_data;
651         struct snd_soc_platform *platform = rtd->platform;
652         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
653         struct snd_soc_dai *codec_dai = rtd->codec_dai;
654         struct snd_soc_codec *codec = rtd->codec;
655
656         mutex_lock(&pcm_mutex);
657
658         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
659                 cpu_dai->playback_active--;
660                 codec_dai->playback_active--;
661         } else {
662                 cpu_dai->capture_active--;
663                 codec_dai->capture_active--;
664         }
665
666         cpu_dai->active--;
667         codec_dai->active--;
668         codec->active--;
669
670         /* Muting the DAC suppresses artifacts caused during digital
671          * shutdown, for example from stopping clocks.
672          */
673         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
674                 snd_soc_dai_digital_mute(codec_dai, 1);
675
676         if (cpu_dai->driver->ops->shutdown)
677                 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
678
679         if (codec_dai->driver->ops->shutdown)
680                 codec_dai->driver->ops->shutdown(substream, codec_dai);
681
682         if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
683                 rtd->dai_link->ops->shutdown(substream);
684
685         if (platform->driver->ops->close)
686                 platform->driver->ops->close(substream);
687         cpu_dai->runtime = NULL;
688
689         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
690                 /* start delayed pop wq here for playback streams */
691                 codec_dai->pop_wait = 1;
692                 schedule_delayed_work(&rtd->delayed_work,
693                         msecs_to_jiffies(rtd->pmdown_time));
694         } else {
695                 /* capture streams can be powered down now */
696                 snd_soc_dapm_stream_event(rtd,
697                         codec_dai->driver->capture.stream_name,
698                         SND_SOC_DAPM_STREAM_STOP);
699         }
700
701         mutex_unlock(&pcm_mutex);
702         return 0;
703 }
704
705 /*
706  * Called by ALSA when the PCM substream is prepared, can set format, sample
707  * rate, etc.  This function is non atomic and can be called multiple times,
708  * it can refer to the runtime info.
709  */
710 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
711 {
712         struct snd_soc_pcm_runtime *rtd = substream->private_data;
713         struct snd_soc_platform *platform = rtd->platform;
714         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
715         struct snd_soc_dai *codec_dai = rtd->codec_dai;
716         int ret = 0;
717
718         mutex_lock(&pcm_mutex);
719
720         if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
721                 ret = rtd->dai_link->ops->prepare(substream);
722                 if (ret < 0) {
723                         printk(KERN_ERR "asoc: machine prepare error\n");
724                         goto out;
725                 }
726         }
727
728         if (platform->driver->ops->prepare) {
729                 ret = platform->driver->ops->prepare(substream);
730                 if (ret < 0) {
731                         printk(KERN_ERR "asoc: platform prepare error\n");
732                         goto out;
733                 }
734         }
735
736         if (codec_dai->driver->ops->prepare) {
737                 ret = codec_dai->driver->ops->prepare(substream, codec_dai);
738                 if (ret < 0) {
739                         printk(KERN_ERR "asoc: codec DAI prepare error\n");
740                         goto out;
741                 }
742         }
743
744         if (cpu_dai->driver->ops->prepare) {
745                 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
746                 if (ret < 0) {
747                         printk(KERN_ERR "asoc: cpu DAI prepare error\n");
748                         goto out;
749                 }
750         }
751
752         /* cancel any delayed stream shutdown that is pending */
753         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
754             codec_dai->pop_wait) {
755                 codec_dai->pop_wait = 0;
756                 cancel_delayed_work(&rtd->delayed_work);
757         }
758
759         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
760                 snd_soc_dapm_stream_event(rtd,
761                                           codec_dai->driver->playback.stream_name,
762                                           SND_SOC_DAPM_STREAM_START);
763         else
764                 snd_soc_dapm_stream_event(rtd,
765                                           codec_dai->driver->capture.stream_name,
766                                           SND_SOC_DAPM_STREAM_START);
767
768         snd_soc_dai_digital_mute(codec_dai, 0);
769
770 out:
771         mutex_unlock(&pcm_mutex);
772         return ret;
773 }
774
775 /*
776  * Called by ALSA when the hardware params are set by application. This
777  * function can also be called multiple times and can allocate buffers
778  * (using snd_pcm_lib_* ). It's non-atomic.
779  */
780 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
781                                 struct snd_pcm_hw_params *params)
782 {
783         struct snd_soc_pcm_runtime *rtd = substream->private_data;
784         struct snd_soc_platform *platform = rtd->platform;
785         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
786         struct snd_soc_dai *codec_dai = rtd->codec_dai;
787         int ret = 0;
788
789         mutex_lock(&pcm_mutex);
790
791         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
792                 ret = rtd->dai_link->ops->hw_params(substream, params);
793                 if (ret < 0) {
794                         printk(KERN_ERR "asoc: machine hw_params failed\n");
795                         goto out;
796                 }
797         }
798
799         if (codec_dai->driver->ops->hw_params) {
800                 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
801                 if (ret < 0) {
802                         printk(KERN_ERR "asoc: can't set codec %s hw params\n",
803                                 codec_dai->name);
804                         goto codec_err;
805                 }
806         }
807
808         if (cpu_dai->driver->ops->hw_params) {
809                 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
810                 if (ret < 0) {
811                         printk(KERN_ERR "asoc: interface %s hw params failed\n",
812                                 cpu_dai->name);
813                         goto interface_err;
814                 }
815         }
816
817         if (platform->driver->ops->hw_params) {
818                 ret = platform->driver->ops->hw_params(substream, params);
819                 if (ret < 0) {
820                         printk(KERN_ERR "asoc: platform %s hw params failed\n",
821                                 platform->name);
822                         goto platform_err;
823                 }
824         }
825
826         rtd->rate = params_rate(params);
827
828 out:
829         mutex_unlock(&pcm_mutex);
830         return ret;
831
832 platform_err:
833         if (cpu_dai->driver->ops->hw_free)
834                 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
835
836 interface_err:
837         if (codec_dai->driver->ops->hw_free)
838                 codec_dai->driver->ops->hw_free(substream, codec_dai);
839
840 codec_err:
841         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
842                 rtd->dai_link->ops->hw_free(substream);
843
844         mutex_unlock(&pcm_mutex);
845         return ret;
846 }
847
848 /*
849  * Free's resources allocated by hw_params, can be called multiple times
850  */
851 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
852 {
853         struct snd_soc_pcm_runtime *rtd = substream->private_data;
854         struct snd_soc_platform *platform = rtd->platform;
855         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
856         struct snd_soc_dai *codec_dai = rtd->codec_dai;
857         struct snd_soc_codec *codec = rtd->codec;
858
859         mutex_lock(&pcm_mutex);
860
861         /* apply codec digital mute */
862         if (!codec->active)
863                 snd_soc_dai_digital_mute(codec_dai, 1);
864
865         /* free any machine hw params */
866         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
867                 rtd->dai_link->ops->hw_free(substream);
868
869         /* free any DMA resources */
870         if (platform->driver->ops->hw_free)
871                 platform->driver->ops->hw_free(substream);
872
873         /* now free hw params for the DAI's  */
874         if (codec_dai->driver->ops->hw_free)
875                 codec_dai->driver->ops->hw_free(substream, codec_dai);
876
877         if (cpu_dai->driver->ops->hw_free)
878                 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
879
880         mutex_unlock(&pcm_mutex);
881         return 0;
882 }
883
884 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
885 {
886         struct snd_soc_pcm_runtime *rtd = substream->private_data;
887         struct snd_soc_platform *platform = rtd->platform;
888         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
889         struct snd_soc_dai *codec_dai = rtd->codec_dai;
890         int ret;
891
892         if (codec_dai->driver->ops->trigger) {
893                 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
894                 if (ret < 0)
895                         return ret;
896         }
897
898         if (platform->driver->ops->trigger) {
899                 ret = platform->driver->ops->trigger(substream, cmd);
900                 if (ret < 0)
901                         return ret;
902         }
903
904         if (cpu_dai->driver->ops->trigger) {
905                 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
906                 if (ret < 0)
907                         return ret;
908         }
909         return 0;
910 }
911
912 /*
913  * soc level wrapper for pointer callback
914  * If cpu_dai, codec_dai, platform driver has the delay callback, than
915  * the runtime->delay will be updated accordingly.
916  */
917 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
918 {
919         struct snd_soc_pcm_runtime *rtd = substream->private_data;
920         struct snd_soc_platform *platform = rtd->platform;
921         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
922         struct snd_soc_dai *codec_dai = rtd->codec_dai;
923         struct snd_pcm_runtime *runtime = substream->runtime;
924         snd_pcm_uframes_t offset = 0;
925         snd_pcm_sframes_t delay = 0;
926
927         if (platform->driver->ops->pointer)
928                 offset = platform->driver->ops->pointer(substream);
929
930         if (cpu_dai->driver->ops->delay)
931                 delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
932
933         if (codec_dai->driver->ops->delay)
934                 delay += codec_dai->driver->ops->delay(substream, codec_dai);
935
936         if (platform->driver->delay)
937                 delay += platform->driver->delay(substream, codec_dai);
938
939         runtime->delay = delay;
940
941         return offset;
942 }
943
944 /* ASoC PCM operations */
945 static struct snd_pcm_ops soc_pcm_ops = {
946         .open           = soc_pcm_open,
947         .close          = soc_codec_close,
948         .hw_params      = soc_pcm_hw_params,
949         .hw_free        = soc_pcm_hw_free,
950         .prepare        = soc_pcm_prepare,
951         .trigger        = soc_pcm_trigger,
952         .pointer        = soc_pcm_pointer,
953 };
954
955 #ifdef CONFIG_PM
956 /* powers down audio subsystem for suspend */
957 static int soc_suspend(struct device *dev)
958 {
959         struct platform_device *pdev = to_platform_device(dev);
960         struct snd_soc_card *card = platform_get_drvdata(pdev);
961         int i;
962
963         /* If the initialization of this soc device failed, there is no codec
964          * associated with it. Just bail out in this case.
965          */
966         if (list_empty(&card->codec_dev_list))
967                 return 0;
968
969         /* Due to the resume being scheduled into a workqueue we could
970         * suspend before that's finished - wait for it to complete.
971          */
972         snd_power_lock(card->snd_card);
973         snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
974         snd_power_unlock(card->snd_card);
975
976         /* we're going to block userspace touching us until resume completes */
977         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
978
979         /* mute any active DAC's */
980         for (i = 0; i < card->num_rtd; i++) {
981                 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
982                 struct snd_soc_dai_driver *drv = dai->driver;
983
984                 if (card->rtd[i].dai_link->ignore_suspend)
985                         continue;
986
987                 if (drv->ops->digital_mute && dai->playback_active)
988                         drv->ops->digital_mute(dai, 1);
989         }
990
991         /* suspend all pcms */
992         for (i = 0; i < card->num_rtd; i++) {
993                 if (card->rtd[i].dai_link->ignore_suspend)
994                         continue;
995
996                 snd_pcm_suspend_all(card->rtd[i].pcm);
997         }
998
999         if (card->suspend_pre)
1000                 card->suspend_pre(pdev, PMSG_SUSPEND);
1001
1002         for (i = 0; i < card->num_rtd; i++) {
1003                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1004                 struct snd_soc_platform *platform = card->rtd[i].platform;
1005
1006                 if (card->rtd[i].dai_link->ignore_suspend)
1007                         continue;
1008
1009                 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
1010                         cpu_dai->driver->suspend(cpu_dai);
1011                 if (platform->driver->suspend && !platform->suspended) {
1012                         platform->driver->suspend(cpu_dai);
1013                         platform->suspended = 1;
1014                 }
1015         }
1016
1017         /* close any waiting streams and save state */
1018         for (i = 0; i < card->num_rtd; i++) {
1019                 run_delayed_work(&card->rtd[i].delayed_work);
1020                 card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level;
1021         }
1022
1023         for (i = 0; i < card->num_rtd; i++) {
1024                 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1025
1026                 if (card->rtd[i].dai_link->ignore_suspend)
1027                         continue;
1028
1029                 if (driver->playback.stream_name != NULL)
1030                         snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1031                                 SND_SOC_DAPM_STREAM_SUSPEND);
1032
1033                 if (driver->capture.stream_name != NULL)
1034                         snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1035                                 SND_SOC_DAPM_STREAM_SUSPEND);
1036         }
1037
1038         /* suspend all CODECs */
1039         for (i = 0; i < card->num_rtd; i++) {
1040                 struct snd_soc_codec *codec = card->rtd[i].codec;
1041                 /* If there are paths active then the CODEC will be held with
1042                  * bias _ON and should not be suspended. */
1043                 if (!codec->suspended && codec->driver->suspend) {
1044                         switch (codec->dapm.bias_level) {
1045                         case SND_SOC_BIAS_STANDBY:
1046                         case SND_SOC_BIAS_OFF:
1047                                 codec->driver->suspend(codec, PMSG_SUSPEND);
1048                                 codec->suspended = 1;
1049                                 break;
1050                         default:
1051                                 dev_dbg(codec->dev, "CODEC is on over suspend\n");
1052                                 break;
1053                         }
1054                 }
1055         }
1056
1057         for (i = 0; i < card->num_rtd; i++) {
1058                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1059
1060                 if (card->rtd[i].dai_link->ignore_suspend)
1061                         continue;
1062
1063                 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
1064                         cpu_dai->driver->suspend(cpu_dai);
1065         }
1066
1067         if (card->suspend_post)
1068                 card->suspend_post(pdev, PMSG_SUSPEND);
1069
1070         return 0;
1071 }
1072
1073 /* deferred resume work, so resume can complete before we finished
1074  * setting our codec back up, which can be very slow on I2C
1075  */
1076 static void soc_resume_deferred(struct work_struct *work)
1077 {
1078         struct snd_soc_card *card =
1079                         container_of(work, struct snd_soc_card, deferred_resume_work);
1080         struct platform_device *pdev = to_platform_device(card->dev);
1081         int i;
1082
1083         /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
1084          * so userspace apps are blocked from touching us
1085          */
1086
1087         dev_dbg(card->dev, "starting resume work\n");
1088
1089         /* Bring us up into D2 so that DAPM starts enabling things */
1090         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
1091
1092         if (card->resume_pre)
1093                 card->resume_pre(pdev);
1094
1095         /* resume AC97 DAIs */
1096         for (i = 0; i < card->num_rtd; i++) {
1097                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1098
1099                 if (card->rtd[i].dai_link->ignore_suspend)
1100                         continue;
1101
1102                 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
1103                         cpu_dai->driver->resume(cpu_dai);
1104         }
1105
1106         for (i = 0; i < card->num_rtd; i++) {
1107                 struct snd_soc_codec *codec = card->rtd[i].codec;
1108                 /* If the CODEC was idle over suspend then it will have been
1109                  * left with bias OFF or STANDBY and suspended so we must now
1110                  * resume.  Otherwise the suspend was suppressed.
1111                  */
1112                 if (codec->driver->resume && codec->suspended) {
1113                         switch (codec->dapm.bias_level) {
1114                         case SND_SOC_BIAS_STANDBY:
1115                         case SND_SOC_BIAS_OFF:
1116                                 codec->driver->resume(codec);
1117                                 codec->suspended = 0;
1118                                 break;
1119                         default:
1120                                 dev_dbg(codec->dev, "CODEC was on over suspend\n");
1121                                 break;
1122                         }
1123                 }
1124         }
1125
1126         for (i = 0; i < card->num_rtd; i++) {
1127                 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1128
1129                 if (card->rtd[i].dai_link->ignore_suspend)
1130                         continue;
1131
1132                 if (driver->playback.stream_name != NULL)
1133                         snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1134                                 SND_SOC_DAPM_STREAM_RESUME);
1135
1136                 if (driver->capture.stream_name != NULL)
1137                         snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1138                                 SND_SOC_DAPM_STREAM_RESUME);
1139         }
1140
1141         /* unmute any active DACs */
1142         for (i = 0; i < card->num_rtd; i++) {
1143                 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1144                 struct snd_soc_dai_driver *drv = dai->driver;
1145
1146                 if (card->rtd[i].dai_link->ignore_suspend)
1147                         continue;
1148
1149                 if (drv->ops->digital_mute && dai->playback_active)
1150                         drv->ops->digital_mute(dai, 0);
1151         }
1152
1153         for (i = 0; i < card->num_rtd; i++) {
1154                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1155                 struct snd_soc_platform *platform = card->rtd[i].platform;
1156
1157                 if (card->rtd[i].dai_link->ignore_suspend)
1158                         continue;
1159
1160                 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1161                         cpu_dai->driver->resume(cpu_dai);
1162                 if (platform->driver->resume && platform->suspended) {
1163                         platform->driver->resume(cpu_dai);
1164                         platform->suspended = 0;
1165                 }
1166         }
1167
1168         if (card->resume_post)
1169                 card->resume_post(pdev);
1170
1171         dev_dbg(card->dev, "resume work completed\n");
1172
1173         /* userspace can access us now we are back as we were before */
1174         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1175 }
1176
1177 /* powers up audio subsystem after a suspend */
1178 static int soc_resume(struct device *dev)
1179 {
1180         struct platform_device *pdev = to_platform_device(dev);
1181         struct snd_soc_card *card = platform_get_drvdata(pdev);
1182         int i;
1183
1184         /* AC97 devices might have other drivers hanging off them so
1185          * need to resume immediately.  Other drivers don't have that
1186          * problem and may take a substantial amount of time to resume
1187          * due to I/O costs and anti-pop so handle them out of line.
1188          */
1189         for (i = 0; i < card->num_rtd; i++) {
1190                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1191                 if (cpu_dai->driver->ac97_control) {
1192                         dev_dbg(dev, "Resuming AC97 immediately\n");
1193                         soc_resume_deferred(&card->deferred_resume_work);
1194                 } else {
1195                         dev_dbg(dev, "Scheduling resume work\n");
1196                         if (!schedule_work(&card->deferred_resume_work))
1197                                 dev_err(dev, "resume work item may be lost\n");
1198                 }
1199         }
1200
1201         return 0;
1202 }
1203 #else
1204 #define soc_suspend     NULL
1205 #define soc_resume      NULL
1206 #endif
1207
1208 static struct snd_soc_dai_ops null_dai_ops = {
1209 };
1210
1211 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1212 {
1213         struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1214         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1215         struct snd_soc_codec *codec;
1216         struct snd_soc_platform *platform;
1217         struct snd_soc_dai *codec_dai, *cpu_dai;
1218
1219         if (rtd->complete)
1220                 return 1;
1221         dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1222
1223         /* do we already have the CPU DAI for this link ? */
1224         if (rtd->cpu_dai) {
1225                 goto find_codec;
1226         }
1227         /* no, then find CPU DAI from registered DAIs*/
1228         list_for_each_entry(cpu_dai, &dai_list, list) {
1229                 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1230
1231                         if (!try_module_get(cpu_dai->dev->driver->owner))
1232                                 return -ENODEV;
1233
1234                         rtd->cpu_dai = cpu_dai;
1235                         goto find_codec;
1236                 }
1237         }
1238         dev_dbg(card->dev, "CPU DAI %s not registered\n",
1239                         dai_link->cpu_dai_name);
1240
1241 find_codec:
1242         /* do we already have the CODEC for this link ? */
1243         if (rtd->codec) {
1244                 goto find_platform;
1245         }
1246
1247         /* no, then find CODEC from registered CODECs*/
1248         list_for_each_entry(codec, &codec_list, list) {
1249                 if (!strcmp(codec->name, dai_link->codec_name)) {
1250                         rtd->codec = codec;
1251
1252                         if (!try_module_get(codec->dev->driver->owner))
1253                                 return -ENODEV;
1254
1255                         /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1256                         list_for_each_entry(codec_dai, &dai_list, list) {
1257                                 if (codec->dev == codec_dai->dev &&
1258                                                 !strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1259                                         rtd->codec_dai = codec_dai;
1260                                         goto find_platform;
1261                                 }
1262                         }
1263                         dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1264                                         dai_link->codec_dai_name);
1265
1266                         goto find_platform;
1267                 }
1268         }
1269         dev_dbg(card->dev, "CODEC %s not registered\n",
1270                         dai_link->codec_name);
1271
1272 find_platform:
1273         /* do we already have the CODEC DAI for this link ? */
1274         if (rtd->platform) {
1275                 goto out;
1276         }
1277         /* no, then find CPU DAI from registered DAIs*/
1278         list_for_each_entry(platform, &platform_list, list) {
1279                 if (!strcmp(platform->name, dai_link->platform_name)) {
1280
1281                         if (!try_module_get(platform->dev->driver->owner))
1282                                 return -ENODEV;
1283
1284                         rtd->platform = platform;
1285                         goto out;
1286                 }
1287         }
1288
1289         dev_dbg(card->dev, "platform %s not registered\n",
1290                         dai_link->platform_name);
1291         return 0;
1292
1293 out:
1294         /* mark rtd as complete if we found all 4 of our client devices */
1295         if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1296                 rtd->complete = 1;
1297                 card->num_rtd++;
1298         }
1299         return 1;
1300 }
1301
1302 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1303 {
1304         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1305         struct snd_soc_codec *codec = rtd->codec;
1306         struct snd_soc_platform *platform = rtd->platform;
1307         struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1308         int err;
1309
1310         /* unregister the rtd device */
1311         if (rtd->dev_registered) {
1312                 device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1313                 device_unregister(&rtd->dev);
1314                 rtd->dev_registered = 0;
1315         }
1316
1317         /* remove the CODEC DAI */
1318         if (codec_dai && codec_dai->probed) {
1319                 if (codec_dai->driver->remove) {
1320                         err = codec_dai->driver->remove(codec_dai);
1321                         if (err < 0)
1322                                 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1323                 }
1324                 codec_dai->probed = 0;
1325                 list_del(&codec_dai->card_list);
1326         }
1327
1328         /* remove the platform */
1329         if (platform && platform->probed) {
1330                 if (platform->driver->remove) {
1331                         err = platform->driver->remove(platform);
1332                         if (err < 0)
1333                                 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1334                 }
1335                 platform->probed = 0;
1336                 list_del(&platform->card_list);
1337                 module_put(platform->dev->driver->owner);
1338         }
1339
1340         /* remove the CODEC */
1341         if (codec && codec->probed) {
1342                 if (codec->driver->remove) {
1343                         err = codec->driver->remove(codec);
1344                         if (err < 0)
1345                                 printk(KERN_ERR "asoc: failed to remove %s\n", codec->name);
1346                 }
1347
1348                 /* Make sure all DAPM widgets are freed */
1349                 snd_soc_dapm_free(&codec->dapm);
1350
1351                 soc_cleanup_codec_debugfs(codec);
1352                 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1353                 codec->probed = 0;
1354                 list_del(&codec->card_list);
1355                 module_put(codec->dev->driver->owner);
1356         }
1357
1358         /* remove the cpu_dai */
1359         if (cpu_dai && cpu_dai->probed) {
1360                 if (cpu_dai->driver->remove) {
1361                         err = cpu_dai->driver->remove(cpu_dai);
1362                         if (err < 0)
1363                                 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1364                 }
1365                 cpu_dai->probed = 0;
1366                 list_del(&cpu_dai->card_list);
1367                 module_put(cpu_dai->dev->driver->owner);
1368         }
1369 }
1370
1371 static void rtd_release(struct device *dev) {}
1372
1373 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1374 {
1375         struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1376         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1377         struct snd_soc_codec *codec = rtd->codec;
1378         struct snd_soc_platform *platform = rtd->platform;
1379         struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1380         int ret;
1381
1382         dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1383
1384         /* config components */
1385         codec_dai->codec = codec;
1386         codec->card = card;
1387         cpu_dai->platform = platform;
1388         rtd->card = card;
1389         rtd->dev.parent = card->dev;
1390         codec_dai->card = card;
1391         cpu_dai->card = card;
1392
1393         /* set default power off timeout */
1394         rtd->pmdown_time = pmdown_time;
1395
1396         /* probe the cpu_dai */
1397         if (!cpu_dai->probed) {
1398                 if (cpu_dai->driver->probe) {
1399                         ret = cpu_dai->driver->probe(cpu_dai);
1400                         if (ret < 0) {
1401                                 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1402                                                 cpu_dai->name);
1403                                 return ret;
1404                         }
1405                 }
1406                 cpu_dai->probed = 1;
1407                 /* mark cpu_dai as probed and add to card cpu_dai list */
1408                 list_add(&cpu_dai->card_list, &card->dai_dev_list);
1409         }
1410
1411         /* probe the CODEC */
1412         if (!codec->probed) {
1413                 if (codec->driver->probe) {
1414                         ret = codec->driver->probe(codec);
1415                         if (ret < 0) {
1416                                 printk(KERN_ERR "asoc: failed to probe CODEC %s\n",
1417                                                 codec->name);
1418                                 return ret;
1419                         }
1420                 }
1421
1422                 soc_init_codec_debugfs(codec);
1423
1424                 /* mark codec as probed and add to card codec list */
1425                 codec->probed = 1;
1426                 list_add(&codec->card_list, &card->codec_dev_list);
1427         }
1428
1429         /* probe the platform */
1430         if (!platform->probed) {
1431                 if (platform->driver->probe) {
1432                         ret = platform->driver->probe(platform);
1433                         if (ret < 0) {
1434                                 printk(KERN_ERR "asoc: failed to probe platform %s\n",
1435                                                 platform->name);
1436                                 return ret;
1437                         }
1438                 }
1439                 /* mark platform as probed and add to card platform list */
1440                 platform->probed = 1;
1441                 list_add(&platform->card_list, &card->platform_dev_list);
1442         }
1443
1444         /* probe the CODEC DAI */
1445         if (!codec_dai->probed) {
1446                 if (codec_dai->driver->probe) {
1447                         ret = codec_dai->driver->probe(codec_dai);
1448                         if (ret < 0) {
1449                                 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1450                                                 codec_dai->name);
1451                                 return ret;
1452                         }
1453                 }
1454
1455                 /* mark cpu_dai as probed and add to card cpu_dai list */
1456                 codec_dai->probed = 1;
1457                 list_add(&codec_dai->card_list, &card->dai_dev_list);
1458         }
1459
1460         /* DAPM dai link stream work */
1461         INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1462
1463         /* now that all clients have probed, initialise the DAI link */
1464         if (dai_link->init) {
1465                 ret = dai_link->init(rtd);
1466                 if (ret < 0) {
1467                         printk(KERN_ERR "asoc: failed to init %s\n", dai_link->stream_name);
1468                         return ret;
1469                 }
1470         }
1471
1472         /* Make sure all DAPM widgets are instantiated */
1473         snd_soc_dapm_new_widgets(&codec->dapm);
1474         snd_soc_dapm_sync(&codec->dapm);
1475
1476         /* register the rtd device */
1477         rtd->dev.release = rtd_release;
1478         rtd->dev.init_name = dai_link->name;
1479         ret = device_register(&rtd->dev);
1480         if (ret < 0) {
1481                 printk(KERN_ERR "asoc: failed to register DAI runtime device %d\n", ret);
1482                 return ret;
1483         }
1484
1485         rtd->dev_registered = 1;
1486         ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1487         if (ret < 0)
1488                 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1489
1490         /* add DAPM sysfs entries for this codec */
1491         ret = snd_soc_dapm_sys_add(&rtd->dev);
1492         if (ret < 0)
1493                 printk(KERN_WARNING "asoc: failed to add codec dapm sysfs entries\n");
1494
1495         /* add codec sysfs entries */
1496         ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1497         if (ret < 0)
1498                 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1499
1500         /* create the pcm */
1501         ret = soc_new_pcm(rtd, num);
1502         if (ret < 0) {
1503                 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1504                 return ret;
1505         }
1506
1507         /* add platform data for AC97 devices */
1508         if (rtd->codec_dai->driver->ac97_control)
1509                 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1510
1511         return 0;
1512 }
1513
1514 #ifdef CONFIG_SND_SOC_AC97_BUS
1515 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1516 {
1517         int ret;
1518
1519         /* Only instantiate AC97 if not already done by the adaptor
1520          * for the generic AC97 subsystem.
1521          */
1522         if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1523                 /*
1524                  * It is possible that the AC97 device is already registered to
1525                  * the device subsystem. This happens when the device is created
1526                  * via snd_ac97_mixer(). Currently only SoC codec that does so
1527                  * is the generic AC97 glue but others migh emerge.
1528                  *
1529                  * In those cases we don't try to register the device again.
1530                  */
1531                 if (!rtd->codec->ac97_created)
1532                         return 0;
1533
1534                 ret = soc_ac97_dev_register(rtd->codec);
1535                 if (ret < 0) {
1536                         printk(KERN_ERR "asoc: AC97 device register failed\n");
1537                         return ret;
1538                 }
1539
1540                 rtd->codec->ac97_registered = 1;
1541         }
1542         return 0;
1543 }
1544
1545 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1546 {
1547         if (codec->ac97_registered) {
1548                 soc_ac97_dev_unregister(codec);
1549                 codec->ac97_registered = 0;
1550         }
1551 }
1552 #endif
1553
1554 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1555 {
1556         struct platform_device *pdev = to_platform_device(card->dev);
1557         int ret, i;
1558
1559         mutex_lock(&card->mutex);
1560
1561         if (card->instantiated) {
1562                 mutex_unlock(&card->mutex);
1563                 return;
1564         }
1565
1566         /* bind DAIs */
1567         for (i = 0; i < card->num_links; i++)
1568                 soc_bind_dai_link(card, i);
1569
1570         /* bind completed ? */
1571         if (card->num_rtd != card->num_links) {
1572                 mutex_unlock(&card->mutex);
1573                 return;
1574         }
1575
1576         /* card bind complete so register a sound card */
1577         ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1578                         card->owner, 0, &card->snd_card);
1579         if (ret < 0) {
1580                 printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1581                         card->name);
1582                 mutex_unlock(&card->mutex);
1583                 return;
1584         }
1585         card->snd_card->dev = card->dev;
1586
1587 #ifdef CONFIG_PM
1588         /* deferred resume work */
1589         INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1590 #endif
1591
1592         /* initialise the sound card only once */
1593         if (card->probe) {
1594                 ret = card->probe(pdev);
1595                 if (ret < 0)
1596                         goto card_probe_error;
1597         }
1598
1599         for (i = 0; i < card->num_links; i++) {
1600                 ret = soc_probe_dai_link(card, i);
1601                 if (ret < 0) {
1602                         pr_err("asoc: failed to instantiate card %s: %d\n",
1603                                card->name, ret);
1604                         goto probe_dai_err;
1605                 }
1606         }
1607
1608         snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1609                  "%s",  card->name);
1610         snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1611                  "%s", card->name);
1612
1613         ret = snd_card_register(card->snd_card);
1614         if (ret < 0) {
1615                 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1616                 goto probe_dai_err;
1617         }
1618
1619 #ifdef CONFIG_SND_SOC_AC97_BUS
1620         /* register any AC97 codecs */
1621         for (i = 0; i < card->num_rtd; i++) {
1622                         ret = soc_register_ac97_dai_link(&card->rtd[i]);
1623                         if (ret < 0) {
1624                                 printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1625                                 goto probe_dai_err;
1626                         }
1627                 }
1628 #endif
1629
1630         card->instantiated = 1;
1631         mutex_unlock(&card->mutex);
1632         return;
1633
1634 probe_dai_err:
1635         for (i = 0; i < card->num_links; i++)
1636                 soc_remove_dai_link(card, i);
1637
1638 card_probe_error:
1639         if (card->remove)
1640                 card->remove(pdev);
1641
1642         snd_card_free(card->snd_card);
1643
1644         mutex_unlock(&card->mutex);
1645 }
1646
1647 /*
1648  * Attempt to initialise any uninitialised cards.  Must be called with
1649  * client_mutex.
1650  */
1651 static void snd_soc_instantiate_cards(void)
1652 {
1653         struct snd_soc_card *card;
1654         list_for_each_entry(card, &card_list, list)
1655                 snd_soc_instantiate_card(card);
1656 }
1657
1658 /* probes a new socdev */
1659 static int soc_probe(struct platform_device *pdev)
1660 {
1661         struct snd_soc_card *card = platform_get_drvdata(pdev);
1662         int ret = 0;
1663
1664         /* Bodge while we unpick instantiation */
1665         card->dev = &pdev->dev;
1666         INIT_LIST_HEAD(&card->dai_dev_list);
1667         INIT_LIST_HEAD(&card->codec_dev_list);
1668         INIT_LIST_HEAD(&card->platform_dev_list);
1669
1670         ret = snd_soc_register_card(card);
1671         if (ret != 0) {
1672                 dev_err(&pdev->dev, "Failed to register card\n");
1673                 return ret;
1674         }
1675
1676         return 0;
1677 }
1678
1679 /* removes a socdev */
1680 static int soc_remove(struct platform_device *pdev)
1681 {
1682         struct snd_soc_card *card = platform_get_drvdata(pdev);
1683         int i;
1684
1685                 if (card->instantiated) {
1686
1687                 /* make sure any delayed work runs */
1688                 for (i = 0; i < card->num_rtd; i++) {
1689                         struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1690                         run_delayed_work(&rtd->delayed_work);
1691                 }
1692
1693                 /* remove and free each DAI */
1694                 for (i = 0; i < card->num_rtd; i++)
1695                         soc_remove_dai_link(card, i);
1696
1697                 /* remove the card */
1698                 if (card->remove)
1699                         card->remove(pdev);
1700
1701                 kfree(card->rtd);
1702                 snd_card_free(card->snd_card);
1703         }
1704         snd_soc_unregister_card(card);
1705         return 0;
1706 }
1707
1708 static int soc_poweroff(struct device *dev)
1709 {
1710         struct platform_device *pdev = to_platform_device(dev);
1711         struct snd_soc_card *card = platform_get_drvdata(pdev);
1712         int i;
1713
1714         if (!card->instantiated)
1715                 return 0;
1716
1717         /* Flush out pmdown_time work - we actually do want to run it
1718          * now, we're shutting down so no imminent restart. */
1719         for (i = 0; i < card->num_rtd; i++) {
1720                 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1721                 run_delayed_work(&rtd->delayed_work);
1722         }
1723
1724         snd_soc_dapm_shutdown(card);
1725
1726         return 0;
1727 }
1728
1729 static const struct dev_pm_ops soc_pm_ops = {
1730         .suspend = soc_suspend,
1731         .resume = soc_resume,
1732         .poweroff = soc_poweroff,
1733 };
1734
1735 /* ASoC platform driver */
1736 static struct platform_driver soc_driver = {
1737         .driver         = {
1738                 .name           = "soc-audio",
1739                 .owner          = THIS_MODULE,
1740                 .pm             = &soc_pm_ops,
1741         },
1742         .probe          = soc_probe,
1743         .remove         = soc_remove,
1744 };
1745
1746 /* create a new pcm */
1747 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
1748 {
1749         struct snd_soc_codec *codec = rtd->codec;
1750         struct snd_soc_platform *platform = rtd->platform;
1751         struct snd_soc_dai *codec_dai = rtd->codec_dai;
1752         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1753         struct snd_pcm *pcm;
1754         char new_name[64];
1755         int ret = 0, playback = 0, capture = 0;
1756
1757         /* check client and interface hw capabilities */
1758         snprintf(new_name, sizeof(new_name), "%s %s-%d",
1759                         rtd->dai_link->stream_name, codec_dai->name, num);
1760
1761         if (codec_dai->driver->playback.channels_min)
1762                 playback = 1;
1763         if (codec_dai->driver->capture.channels_min)
1764                 capture = 1;
1765
1766         dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
1767         ret = snd_pcm_new(rtd->card->snd_card, new_name,
1768                         num, playback, capture, &pcm);
1769         if (ret < 0) {
1770                 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
1771                 return ret;
1772         }
1773
1774         rtd->pcm = pcm;
1775         pcm->private_data = rtd;
1776         soc_pcm_ops.mmap = platform->driver->ops->mmap;
1777         soc_pcm_ops.pointer = platform->driver->ops->pointer;
1778         soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
1779         soc_pcm_ops.copy = platform->driver->ops->copy;
1780         soc_pcm_ops.silence = platform->driver->ops->silence;
1781         soc_pcm_ops.ack = platform->driver->ops->ack;
1782         soc_pcm_ops.page = platform->driver->ops->page;
1783
1784         if (playback)
1785                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1786
1787         if (capture)
1788                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1789
1790         ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm);
1791         if (ret < 0) {
1792                 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1793                 return ret;
1794         }
1795
1796         pcm->private_free = platform->driver->pcm_free;
1797         printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1798                 cpu_dai->name);
1799         return ret;
1800 }
1801
1802 /**
1803  * snd_soc_codec_volatile_register: Report if a register is volatile.
1804  *
1805  * @codec: CODEC to query.
1806  * @reg: Register to query.
1807  *
1808  * Boolean function indiciating if a CODEC register is volatile.
1809  */
1810 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
1811 {
1812         if (codec->driver->volatile_register)
1813                 return codec->driver->volatile_register(reg);
1814         else
1815                 return 0;
1816 }
1817 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
1818
1819 /**
1820  * snd_soc_new_ac97_codec - initailise AC97 device
1821  * @codec: audio codec
1822  * @ops: AC97 bus operations
1823  * @num: AC97 codec number
1824  *
1825  * Initialises AC97 codec resources for use by ad-hoc devices only.
1826  */
1827 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1828         struct snd_ac97_bus_ops *ops, int num)
1829 {
1830         mutex_lock(&codec->mutex);
1831
1832         codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1833         if (codec->ac97 == NULL) {
1834                 mutex_unlock(&codec->mutex);
1835                 return -ENOMEM;
1836         }
1837
1838         codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1839         if (codec->ac97->bus == NULL) {
1840                 kfree(codec->ac97);
1841                 codec->ac97 = NULL;
1842                 mutex_unlock(&codec->mutex);
1843                 return -ENOMEM;
1844         }
1845
1846         codec->ac97->bus->ops = ops;
1847         codec->ac97->num = num;
1848
1849         /*
1850          * Mark the AC97 device to be created by us. This way we ensure that the
1851          * device will be registered with the device subsystem later on.
1852          */
1853         codec->ac97_created = 1;
1854
1855         mutex_unlock(&codec->mutex);
1856         return 0;
1857 }
1858 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1859
1860 /**
1861  * snd_soc_free_ac97_codec - free AC97 codec device
1862  * @codec: audio codec
1863  *
1864  * Frees AC97 codec device resources.
1865  */
1866 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1867 {
1868         mutex_lock(&codec->mutex);
1869 #ifdef CONFIG_SND_SOC_AC97_BUS
1870         soc_unregister_ac97_dai_link(codec);
1871 #endif
1872         kfree(codec->ac97->bus);
1873         kfree(codec->ac97);
1874         codec->ac97 = NULL;
1875         codec->ac97_created = 0;
1876         mutex_unlock(&codec->mutex);
1877 }
1878 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1879
1880 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg)
1881 {
1882         unsigned int ret;
1883
1884         ret = codec->driver->read(codec, reg);
1885         dev_dbg(codec->dev, "read %x => %x\n", reg, ret);
1886
1887         return ret;
1888 }
1889 EXPORT_SYMBOL_GPL(snd_soc_read);
1890
1891 unsigned int snd_soc_write(struct snd_soc_codec *codec,
1892                            unsigned int reg, unsigned int val)
1893 {
1894         dev_dbg(codec->dev, "write %x = %x\n", reg, val);
1895         return codec->driver->write(codec, reg, val);
1896 }
1897 EXPORT_SYMBOL_GPL(snd_soc_write);
1898
1899 /**
1900  * snd_soc_update_bits - update codec register bits
1901  * @codec: audio codec
1902  * @reg: codec register
1903  * @mask: register mask
1904  * @value: new value
1905  *
1906  * Writes new register value.
1907  *
1908  * Returns 1 for change else 0.
1909  */
1910 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1911                                 unsigned int mask, unsigned int value)
1912 {
1913         int change;
1914         unsigned int old, new;
1915
1916         old = snd_soc_read(codec, reg);
1917         new = (old & ~mask) | value;
1918         change = old != new;
1919         if (change)
1920                 snd_soc_write(codec, reg, new);
1921
1922         return change;
1923 }
1924 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1925
1926 /**
1927  * snd_soc_update_bits_locked - update codec register bits
1928  * @codec: audio codec
1929  * @reg: codec register
1930  * @mask: register mask
1931  * @value: new value
1932  *
1933  * Writes new register value, and takes the codec mutex.
1934  *
1935  * Returns 1 for change else 0.
1936  */
1937 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
1938                                unsigned short reg, unsigned int mask,
1939                                unsigned int value)
1940 {
1941         int change;
1942
1943         mutex_lock(&codec->mutex);
1944         change = snd_soc_update_bits(codec, reg, mask, value);
1945         mutex_unlock(&codec->mutex);
1946
1947         return change;
1948 }
1949 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
1950
1951 /**
1952  * snd_soc_test_bits - test register for change
1953  * @codec: audio codec
1954  * @reg: codec register
1955  * @mask: register mask
1956  * @value: new value
1957  *
1958  * Tests a register with a new value and checks if the new value is
1959  * different from the old value.
1960  *
1961  * Returns 1 for change else 0.
1962  */
1963 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1964                                 unsigned int mask, unsigned int value)
1965 {
1966         int change;
1967         unsigned int old, new;
1968
1969         old = snd_soc_read(codec, reg);
1970         new = (old & ~mask) | value;
1971         change = old != new;
1972
1973         return change;
1974 }
1975 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1976
1977 /**
1978  * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1979  * @substream: the pcm substream
1980  * @hw: the hardware parameters
1981  *
1982  * Sets the substream runtime hardware parameters.
1983  */
1984 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1985         const struct snd_pcm_hardware *hw)
1986 {
1987         struct snd_pcm_runtime *runtime = substream->runtime;
1988         runtime->hw.info = hw->info;
1989         runtime->hw.formats = hw->formats;
1990         runtime->hw.period_bytes_min = hw->period_bytes_min;
1991         runtime->hw.period_bytes_max = hw->period_bytes_max;
1992         runtime->hw.periods_min = hw->periods_min;
1993         runtime->hw.periods_max = hw->periods_max;
1994         runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1995         runtime->hw.fifo_size = hw->fifo_size;
1996         return 0;
1997 }
1998 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1999
2000 /**
2001  * snd_soc_cnew - create new control
2002  * @_template: control template
2003  * @data: control private data
2004  * @long_name: control long name
2005  *
2006  * Create a new mixer control from a template control.
2007  *
2008  * Returns 0 for success, else error.
2009  */
2010 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2011         void *data, char *long_name)
2012 {
2013         struct snd_kcontrol_new template;
2014
2015         memcpy(&template, _template, sizeof(template));
2016         if (long_name)
2017                 template.name = long_name;
2018         template.index = 0;
2019
2020         return snd_ctl_new1(&template, data);
2021 }
2022 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2023
2024 /**
2025  * snd_soc_add_controls - add an array of controls to a codec.
2026  * Convienience function to add a list of controls. Many codecs were
2027  * duplicating this code.
2028  *
2029  * @codec: codec to add controls to
2030  * @controls: array of controls to add
2031  * @num_controls: number of elements in the array
2032  *
2033  * Return 0 for success, else error.
2034  */
2035 int snd_soc_add_controls(struct snd_soc_codec *codec,
2036         const struct snd_kcontrol_new *controls, int num_controls)
2037 {
2038         struct snd_card *card = codec->card->snd_card;
2039         int err, i;
2040
2041         for (i = 0; i < num_controls; i++) {
2042                 const struct snd_kcontrol_new *control = &controls[i];
2043                 err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
2044                 if (err < 0) {
2045                         dev_err(codec->dev, "%s: Failed to add %s: %d\n",
2046                                 codec->name, control->name, err);
2047                         return err;
2048                 }
2049         }
2050
2051         return 0;
2052 }
2053 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
2054
2055 /**
2056  * snd_soc_info_enum_double - enumerated double mixer info callback
2057  * @kcontrol: mixer control
2058  * @uinfo: control element information
2059  *
2060  * Callback to provide information about a double enumerated
2061  * mixer control.
2062  *
2063  * Returns 0 for success.
2064  */
2065 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2066         struct snd_ctl_elem_info *uinfo)
2067 {
2068         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2069
2070         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2071         uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2072         uinfo->value.enumerated.items = e->max;
2073
2074         if (uinfo->value.enumerated.item > e->max - 1)
2075                 uinfo->value.enumerated.item = e->max - 1;
2076         strcpy(uinfo->value.enumerated.name,
2077                 e->texts[uinfo->value.enumerated.item]);
2078         return 0;
2079 }
2080 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2081
2082 /**
2083  * snd_soc_get_enum_double - enumerated double mixer get callback
2084  * @kcontrol: mixer control
2085  * @ucontrol: control element information
2086  *
2087  * Callback to get the value of a double enumerated mixer.
2088  *
2089  * Returns 0 for success.
2090  */
2091 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2092         struct snd_ctl_elem_value *ucontrol)
2093 {
2094         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2095         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2096         unsigned int val, bitmask;
2097
2098         for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2099                 ;
2100         val = snd_soc_read(codec, e->reg);
2101         ucontrol->value.enumerated.item[0]
2102                 = (val >> e->shift_l) & (bitmask - 1);
2103         if (e->shift_l != e->shift_r)
2104                 ucontrol->value.enumerated.item[1] =
2105                         (val >> e->shift_r) & (bitmask - 1);
2106
2107         return 0;
2108 }
2109 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2110
2111 /**
2112  * snd_soc_put_enum_double - enumerated double mixer put callback
2113  * @kcontrol: mixer control
2114  * @ucontrol: control element information
2115  *
2116  * Callback to set the value of a double enumerated mixer.
2117  *
2118  * Returns 0 for success.
2119  */
2120 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2121         struct snd_ctl_elem_value *ucontrol)
2122 {
2123         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2124         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2125         unsigned int val;
2126         unsigned int mask, bitmask;
2127
2128         for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2129                 ;
2130         if (ucontrol->value.enumerated.item[0] > e->max - 1)
2131                 return -EINVAL;
2132         val = ucontrol->value.enumerated.item[0] << e->shift_l;
2133         mask = (bitmask - 1) << e->shift_l;
2134         if (e->shift_l != e->shift_r) {
2135                 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2136                         return -EINVAL;
2137                 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2138                 mask |= (bitmask - 1) << e->shift_r;
2139         }
2140
2141         return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2142 }
2143 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2144
2145 /**
2146  * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2147  * @kcontrol: mixer control
2148  * @ucontrol: control element information
2149  *
2150  * Callback to get the value of a double semi enumerated mixer.
2151  *
2152  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2153  * used for handling bitfield coded enumeration for example.
2154  *
2155  * Returns 0 for success.
2156  */
2157 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2158         struct snd_ctl_elem_value *ucontrol)
2159 {
2160         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2161         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2162         unsigned int reg_val, val, mux;
2163
2164         reg_val = snd_soc_read(codec, e->reg);
2165         val = (reg_val >> e->shift_l) & e->mask;
2166         for (mux = 0; mux < e->max; mux++) {
2167                 if (val == e->values[mux])
2168                         break;
2169         }
2170         ucontrol->value.enumerated.item[0] = mux;
2171         if (e->shift_l != e->shift_r) {
2172                 val = (reg_val >> e->shift_r) & e->mask;
2173                 for (mux = 0; mux < e->max; mux++) {
2174                         if (val == e->values[mux])
2175                                 break;
2176                 }
2177                 ucontrol->value.enumerated.item[1] = mux;
2178         }
2179
2180         return 0;
2181 }
2182 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2183
2184 /**
2185  * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2186  * @kcontrol: mixer control
2187  * @ucontrol: control element information
2188  *
2189  * Callback to set the value of a double semi enumerated mixer.
2190  *
2191  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2192  * used for handling bitfield coded enumeration for example.
2193  *
2194  * Returns 0 for success.
2195  */
2196 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2197         struct snd_ctl_elem_value *ucontrol)
2198 {
2199         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2200         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2201         unsigned int val;
2202         unsigned int mask;
2203
2204         if (ucontrol->value.enumerated.item[0] > e->max - 1)
2205                 return -EINVAL;
2206         val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2207         mask = e->mask << e->shift_l;
2208         if (e->shift_l != e->shift_r) {
2209                 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2210                         return -EINVAL;
2211                 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2212                 mask |= e->mask << e->shift_r;
2213         }
2214
2215         return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2216 }
2217 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2218
2219 /**
2220  * snd_soc_info_enum_ext - external enumerated single mixer info callback
2221  * @kcontrol: mixer control
2222  * @uinfo: control element information
2223  *
2224  * Callback to provide information about an external enumerated
2225  * single mixer.
2226  *
2227  * Returns 0 for success.
2228  */
2229 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2230         struct snd_ctl_elem_info *uinfo)
2231 {
2232         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2233
2234         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2235         uinfo->count = 1;
2236         uinfo->value.enumerated.items = e->max;
2237
2238         if (uinfo->value.enumerated.item > e->max - 1)
2239                 uinfo->value.enumerated.item = e->max - 1;
2240         strcpy(uinfo->value.enumerated.name,
2241                 e->texts[uinfo->value.enumerated.item]);
2242         return 0;
2243 }
2244 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2245
2246 /**
2247  * snd_soc_info_volsw_ext - external single mixer info callback
2248  * @kcontrol: mixer control
2249  * @uinfo: control element information
2250  *
2251  * Callback to provide information about a single external mixer control.
2252  *
2253  * Returns 0 for success.
2254  */
2255 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2256         struct snd_ctl_elem_info *uinfo)
2257 {
2258         int max = kcontrol->private_value;
2259
2260         if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2261                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2262         else
2263                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2264
2265         uinfo->count = 1;
2266         uinfo->value.integer.min = 0;
2267         uinfo->value.integer.max = max;
2268         return 0;
2269 }
2270 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2271
2272 /**
2273  * snd_soc_info_volsw - single mixer info callback
2274  * @kcontrol: mixer control
2275  * @uinfo: control element information
2276  *
2277  * Callback to provide information about a single mixer control.
2278  *
2279  * Returns 0 for success.
2280  */
2281 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2282         struct snd_ctl_elem_info *uinfo)
2283 {
2284         struct soc_mixer_control *mc =
2285                 (struct soc_mixer_control *)kcontrol->private_value;
2286         int platform_max;
2287         unsigned int shift = mc->shift;
2288         unsigned int rshift = mc->rshift;
2289
2290         if (!mc->platform_max)
2291                 mc->platform_max = mc->max;
2292         platform_max = mc->platform_max;
2293
2294         if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2295                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2296         else
2297                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2298
2299         uinfo->count = shift == rshift ? 1 : 2;
2300         uinfo->value.integer.min = 0;
2301         uinfo->value.integer.max = platform_max;
2302         return 0;
2303 }
2304 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2305
2306 /**
2307  * snd_soc_get_volsw - single mixer get callback
2308  * @kcontrol: mixer control
2309  * @ucontrol: control element information
2310  *
2311  * Callback to get the value of a single mixer control.
2312  *
2313  * Returns 0 for success.
2314  */
2315 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2316         struct snd_ctl_elem_value *ucontrol)
2317 {
2318         struct soc_mixer_control *mc =
2319                 (struct soc_mixer_control *)kcontrol->private_value;
2320         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2321         unsigned int reg = mc->reg;
2322         unsigned int shift = mc->shift;
2323         unsigned int rshift = mc->rshift;
2324         int max = mc->max;
2325         unsigned int mask = (1 << fls(max)) - 1;
2326         unsigned int invert = mc->invert;
2327
2328         ucontrol->value.integer.value[0] =
2329                 (snd_soc_read(codec, reg) >> shift) & mask;
2330         if (shift != rshift)
2331                 ucontrol->value.integer.value[1] =
2332                         (snd_soc_read(codec, reg) >> rshift) & mask;
2333         if (invert) {
2334                 ucontrol->value.integer.value[0] =
2335                         max - ucontrol->value.integer.value[0];
2336                 if (shift != rshift)
2337                         ucontrol->value.integer.value[1] =
2338                                 max - ucontrol->value.integer.value[1];
2339         }
2340
2341         return 0;
2342 }
2343 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2344
2345 /**
2346  * snd_soc_put_volsw - single mixer put callback
2347  * @kcontrol: mixer control
2348  * @ucontrol: control element information
2349  *
2350  * Callback to set the value of a single mixer control.
2351  *
2352  * Returns 0 for success.
2353  */
2354 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2355         struct snd_ctl_elem_value *ucontrol)
2356 {
2357         struct soc_mixer_control *mc =
2358                 (struct soc_mixer_control *)kcontrol->private_value;
2359         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2360         unsigned int reg = mc->reg;
2361         unsigned int shift = mc->shift;
2362         unsigned int rshift = mc->rshift;
2363         int max = mc->max;
2364         unsigned int mask = (1 << fls(max)) - 1;
2365         unsigned int invert = mc->invert;
2366         unsigned int val, val2, val_mask;
2367
2368         val = (ucontrol->value.integer.value[0] & mask);
2369         if (invert)
2370                 val = max - val;
2371         val_mask = mask << shift;
2372         val = val << shift;
2373         if (shift != rshift) {
2374                 val2 = (ucontrol->value.integer.value[1] & mask);
2375                 if (invert)
2376                         val2 = max - val2;
2377                 val_mask |= mask << rshift;
2378                 val |= val2 << rshift;
2379         }
2380         return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2381 }
2382 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2383
2384 /**
2385  * snd_soc_info_volsw_2r - double mixer info callback
2386  * @kcontrol: mixer control
2387  * @uinfo: control element information
2388  *
2389  * Callback to provide information about a double mixer control that
2390  * spans 2 codec registers.
2391  *
2392  * Returns 0 for success.
2393  */
2394 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2395         struct snd_ctl_elem_info *uinfo)
2396 {
2397         struct soc_mixer_control *mc =
2398                 (struct soc_mixer_control *)kcontrol->private_value;
2399         int platform_max;
2400
2401         if (!mc->platform_max)
2402                 mc->platform_max = mc->max;
2403         platform_max = mc->platform_max;
2404
2405         if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2406                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2407         else
2408                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2409
2410         uinfo->count = 2;
2411         uinfo->value.integer.min = 0;
2412         uinfo->value.integer.max = platform_max;
2413         return 0;
2414 }
2415 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2416
2417 /**
2418  * snd_soc_get_volsw_2r - double mixer get callback
2419  * @kcontrol: mixer control
2420  * @ucontrol: control element information
2421  *
2422  * Callback to get the value of a double mixer control that spans 2 registers.
2423  *
2424  * Returns 0 for success.
2425  */
2426 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2427         struct snd_ctl_elem_value *ucontrol)
2428 {
2429         struct soc_mixer_control *mc =
2430                 (struct soc_mixer_control *)kcontrol->private_value;
2431         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2432         unsigned int reg = mc->reg;
2433         unsigned int reg2 = mc->rreg;
2434         unsigned int shift = mc->shift;
2435         int max = mc->max;
2436         unsigned int mask = (1 << fls(max)) - 1;
2437         unsigned int invert = mc->invert;
2438
2439         ucontrol->value.integer.value[0] =
2440                 (snd_soc_read(codec, reg) >> shift) & mask;
2441         ucontrol->value.integer.value[1] =
2442                 (snd_soc_read(codec, reg2) >> shift) & mask;
2443         if (invert) {
2444                 ucontrol->value.integer.value[0] =
2445                         max - ucontrol->value.integer.value[0];
2446                 ucontrol->value.integer.value[1] =
2447                         max - ucontrol->value.integer.value[1];
2448         }
2449
2450         return 0;
2451 }
2452 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2453
2454 /**
2455  * snd_soc_put_volsw_2r - double mixer set callback
2456  * @kcontrol: mixer control
2457  * @ucontrol: control element information
2458  *
2459  * Callback to set the value of a double mixer control that spans 2 registers.
2460  *
2461  * Returns 0 for success.
2462  */
2463 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2464         struct snd_ctl_elem_value *ucontrol)
2465 {
2466         struct soc_mixer_control *mc =
2467                 (struct soc_mixer_control *)kcontrol->private_value;
2468         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2469         unsigned int reg = mc->reg;
2470         unsigned int reg2 = mc->rreg;
2471         unsigned int shift = mc->shift;
2472         int max = mc->max;
2473         unsigned int mask = (1 << fls(max)) - 1;
2474         unsigned int invert = mc->invert;
2475         int err;
2476         unsigned int val, val2, val_mask;
2477
2478         val_mask = mask << shift;
2479         val = (ucontrol->value.integer.value[0] & mask);
2480         val2 = (ucontrol->value.integer.value[1] & mask);
2481
2482         if (invert) {
2483                 val = max - val;
2484                 val2 = max - val2;
2485         }
2486
2487         val = val << shift;
2488         val2 = val2 << shift;
2489
2490         err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2491         if (err < 0)
2492                 return err;
2493
2494         err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2495         return err;
2496 }
2497 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2498
2499 /**
2500  * snd_soc_info_volsw_s8 - signed mixer info callback
2501  * @kcontrol: mixer control
2502  * @uinfo: control element information
2503  *
2504  * Callback to provide information about a signed mixer control.
2505  *
2506  * Returns 0 for success.
2507  */
2508 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2509         struct snd_ctl_elem_info *uinfo)
2510 {
2511         struct soc_mixer_control *mc =
2512                 (struct soc_mixer_control *)kcontrol->private_value;
2513         int platform_max;
2514         int min = mc->min;
2515
2516         if (!mc->platform_max)
2517                 mc->platform_max = mc->max;
2518         platform_max = mc->platform_max;
2519
2520         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2521         uinfo->count = 2;
2522         uinfo->value.integer.min = 0;
2523         uinfo->value.integer.max = platform_max - min;
2524         return 0;
2525 }
2526 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2527
2528 /**
2529  * snd_soc_get_volsw_s8 - signed mixer get callback
2530  * @kcontrol: mixer control
2531  * @ucontrol: control element information
2532  *
2533  * Callback to get the value of a signed mixer control.
2534  *
2535  * Returns 0 for success.
2536  */
2537 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2538         struct snd_ctl_elem_value *ucontrol)
2539 {
2540         struct soc_mixer_control *mc =
2541                 (struct soc_mixer_control *)kcontrol->private_value;
2542         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2543         unsigned int reg = mc->reg;
2544         int min = mc->min;
2545         int val = snd_soc_read(codec, reg);
2546
2547         ucontrol->value.integer.value[0] =
2548                 ((signed char)(val & 0xff))-min;
2549         ucontrol->value.integer.value[1] =
2550                 ((signed char)((val >> 8) & 0xff))-min;
2551         return 0;
2552 }
2553 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2554
2555 /**
2556  * snd_soc_put_volsw_sgn - signed mixer put callback
2557  * @kcontrol: mixer control
2558  * @ucontrol: control element information
2559  *
2560  * Callback to set the value of a signed mixer control.
2561  *
2562  * Returns 0 for success.
2563  */
2564 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2565         struct snd_ctl_elem_value *ucontrol)
2566 {
2567         struct soc_mixer_control *mc =
2568                 (struct soc_mixer_control *)kcontrol->private_value;
2569         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2570         unsigned int reg = mc->reg;
2571         int min = mc->min;
2572         unsigned int val;
2573
2574         val = (ucontrol->value.integer.value[0]+min) & 0xff;
2575         val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2576
2577         return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2578 }
2579 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2580
2581 /**
2582  * snd_soc_limit_volume - Set new limit to an existing volume control.
2583  *
2584  * @codec: where to look for the control
2585  * @name: Name of the control
2586  * @max: new maximum limit
2587  *
2588  * Return 0 for success, else error.
2589  */
2590 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2591         const char *name, int max)
2592 {
2593         struct snd_card *card = codec->card->snd_card;
2594         struct snd_kcontrol *kctl;
2595         struct soc_mixer_control *mc;
2596         int found = 0;
2597         int ret = -EINVAL;
2598
2599         /* Sanity check for name and max */
2600         if (unlikely(!name || max <= 0))
2601                 return -EINVAL;
2602
2603         list_for_each_entry(kctl, &card->controls, list) {
2604                 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2605                         found = 1;
2606                         break;
2607                 }
2608         }
2609         if (found) {
2610                 mc = (struct soc_mixer_control *)kctl->private_value;
2611                 if (max <= mc->max) {
2612                         mc->platform_max = max;
2613                         ret = 0;
2614                 }
2615         }
2616         return ret;
2617 }
2618 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2619
2620 /**
2621  * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
2622  *  mixer info callback
2623  * @kcontrol: mixer control
2624  * @uinfo: control element information
2625  *
2626  * Returns 0 for success.
2627  */
2628 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2629                         struct snd_ctl_elem_info *uinfo)
2630 {
2631         struct soc_mixer_control *mc =
2632                 (struct soc_mixer_control *)kcontrol->private_value;
2633         int max = mc->max;
2634         int min = mc->min;
2635
2636         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2637         uinfo->count = 2;
2638         uinfo->value.integer.min = 0;
2639         uinfo->value.integer.max = max-min;
2640
2641         return 0;
2642 }
2643 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
2644
2645 /**
2646  * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
2647  *  mixer get callback
2648  * @kcontrol: mixer control
2649  * @uinfo: control element information
2650  *
2651  * Returns 0 for success.
2652  */
2653 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2654                         struct snd_ctl_elem_value *ucontrol)
2655 {
2656         struct soc_mixer_control *mc =
2657                 (struct soc_mixer_control *)kcontrol->private_value;
2658         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2659         unsigned int mask = (1<<mc->shift)-1;
2660         int min = mc->min;
2661         int val = snd_soc_read(codec, mc->reg) & mask;
2662         int valr = snd_soc_read(codec, mc->rreg) & mask;
2663
2664         ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
2665         ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
2666         return 0;
2667 }
2668 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
2669
2670 /**
2671  * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
2672  *  mixer put callback
2673  * @kcontrol: mixer control
2674  * @uinfo: control element information
2675  *
2676  * Returns 0 for success.
2677  */
2678 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2679                         struct snd_ctl_elem_value *ucontrol)
2680 {
2681         struct soc_mixer_control *mc =
2682                 (struct soc_mixer_control *)kcontrol->private_value;
2683         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2684         unsigned int mask = (1<<mc->shift)-1;
2685         int min = mc->min;
2686         int ret;
2687         unsigned int val, valr, oval, ovalr;
2688
2689         val = ((ucontrol->value.integer.value[0]+min) & 0xff);
2690         val &= mask;
2691         valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
2692         valr &= mask;
2693
2694         oval = snd_soc_read(codec, mc->reg) & mask;
2695         ovalr = snd_soc_read(codec, mc->rreg) & mask;
2696
2697         ret = 0;
2698         if (oval != val) {
2699                 ret = snd_soc_write(codec, mc->reg, val);
2700                 if (ret < 0)
2701                         return ret;
2702         }
2703         if (ovalr != valr) {
2704                 ret = snd_soc_write(codec, mc->rreg, valr);
2705                 if (ret < 0)
2706                         return ret;
2707         }
2708
2709         return 0;
2710 }
2711 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
2712
2713 /**
2714  * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2715  * @dai: DAI
2716  * @clk_id: DAI specific clock ID
2717  * @freq: new clock frequency in Hz
2718  * @dir: new clock direction - input/output.
2719  *
2720  * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2721  */
2722 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2723         unsigned int freq, int dir)
2724 {
2725         if (dai->driver && dai->driver->ops->set_sysclk)
2726                 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
2727         else
2728                 return -EINVAL;
2729 }
2730 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2731
2732 /**
2733  * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2734  * @dai: DAI
2735  * @div_id: DAI specific clock divider ID
2736  * @div: new clock divisor.
2737  *
2738  * Configures the clock dividers. This is used to derive the best DAI bit and
2739  * frame clocks from the system or master clock. It's best to set the DAI bit
2740  * and frame clocks as low as possible to save system power.
2741  */
2742 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2743         int div_id, int div)
2744 {
2745         if (dai->driver && dai->driver->ops->set_clkdiv)
2746                 return dai->driver->ops->set_clkdiv(dai, div_id, div);
2747         else
2748                 return -EINVAL;
2749 }
2750 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2751
2752 /**
2753  * snd_soc_dai_set_pll - configure DAI PLL.
2754  * @dai: DAI
2755  * @pll_id: DAI specific PLL ID
2756  * @source: DAI specific source for the PLL
2757  * @freq_in: PLL input clock frequency in Hz
2758  * @freq_out: requested PLL output clock frequency in Hz
2759  *
2760  * Configures and enables PLL to generate output clock based on input clock.
2761  */
2762 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
2763         unsigned int freq_in, unsigned int freq_out)
2764 {
2765         if (dai->driver && dai->driver->ops->set_pll)
2766                 return dai->driver->ops->set_pll(dai, pll_id, source,
2767                                          freq_in, freq_out);
2768         else
2769                 return -EINVAL;
2770 }
2771 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2772
2773 /**
2774  * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2775  * @dai: DAI
2776  * @fmt: SND_SOC_DAIFMT_ format value.
2777  *
2778  * Configures the DAI hardware format and clocking.
2779  */
2780 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2781 {
2782         if (dai->driver && dai->driver->ops->set_fmt)
2783                 return dai->driver->ops->set_fmt(dai, fmt);
2784         else
2785                 return -EINVAL;
2786 }
2787 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2788
2789 /**
2790  * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2791  * @dai: DAI
2792  * @tx_mask: bitmask representing active TX slots.
2793  * @rx_mask: bitmask representing active RX slots.
2794  * @slots: Number of slots in use.
2795  * @slot_width: Width in bits for each slot.
2796  *
2797  * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2798  * specific.
2799  */
2800 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2801         unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
2802 {
2803         if (dai->driver && dai->driver->ops->set_tdm_slot)
2804                 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
2805                                 slots, slot_width);
2806         else
2807                 return -EINVAL;
2808 }
2809 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2810
2811 /**
2812  * snd_soc_dai_set_channel_map - configure DAI audio channel map
2813  * @dai: DAI
2814  * @tx_num: how many TX channels
2815  * @tx_slot: pointer to an array which imply the TX slot number channel
2816  *           0~num-1 uses
2817  * @rx_num: how many RX channels
2818  * @rx_slot: pointer to an array which imply the RX slot number channel
2819  *           0~num-1 uses
2820  *
2821  * configure the relationship between channel number and TDM slot number.
2822  */
2823 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
2824         unsigned int tx_num, unsigned int *tx_slot,
2825         unsigned int rx_num, unsigned int *rx_slot)
2826 {
2827         if (dai->driver && dai->driver->ops->set_channel_map)
2828                 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
2829                         rx_num, rx_slot);
2830         else
2831                 return -EINVAL;
2832 }
2833 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
2834
2835 /**
2836  * snd_soc_dai_set_tristate - configure DAI system or master clock.
2837  * @dai: DAI
2838  * @tristate: tristate enable
2839  *
2840  * Tristates the DAI so that others can use it.
2841  */
2842 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2843 {
2844         if (dai->driver && dai->driver->ops->set_tristate)
2845                 return dai->driver->ops->set_tristate(dai, tristate);
2846         else
2847                 return -EINVAL;
2848 }
2849 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2850
2851 /**
2852  * snd_soc_dai_digital_mute - configure DAI system or master clock.
2853  * @dai: DAI
2854  * @mute: mute enable
2855  *
2856  * Mutes the DAI DAC.
2857  */
2858 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2859 {
2860         if (dai->driver && dai->driver->ops->digital_mute)
2861                 return dai->driver->ops->digital_mute(dai, mute);
2862         else
2863                 return -EINVAL;
2864 }
2865 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2866
2867 /**
2868  * snd_soc_register_card - Register a card with the ASoC core
2869  *
2870  * @card: Card to register
2871  *
2872  * Note that currently this is an internal only function: it will be
2873  * exposed to machine drivers after further backporting of ASoC v2
2874  * registration APIs.
2875  */
2876 static int snd_soc_register_card(struct snd_soc_card *card)
2877 {
2878         int i;
2879
2880         if (!card->name || !card->dev)
2881                 return -EINVAL;
2882
2883         card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) * card->num_links,
2884                         GFP_KERNEL);
2885         if (card->rtd == NULL)
2886                 return -ENOMEM;
2887
2888         for (i = 0; i < card->num_links; i++)
2889                 card->rtd[i].dai_link = &card->dai_link[i];
2890
2891         INIT_LIST_HEAD(&card->list);
2892         card->instantiated = 0;
2893         mutex_init(&card->mutex);
2894
2895         mutex_lock(&client_mutex);
2896         list_add(&card->list, &card_list);
2897         snd_soc_instantiate_cards();
2898         mutex_unlock(&client_mutex);
2899
2900         dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2901
2902         return 0;
2903 }
2904
2905 /**
2906  * snd_soc_unregister_card - Unregister a card with the ASoC core
2907  *
2908  * @card: Card to unregister
2909  *
2910  * Note that currently this is an internal only function: it will be
2911  * exposed to machine drivers after further backporting of ASoC v2
2912  * registration APIs.
2913  */
2914 static int snd_soc_unregister_card(struct snd_soc_card *card)
2915 {
2916         mutex_lock(&client_mutex);
2917         list_del(&card->list);
2918         mutex_unlock(&client_mutex);
2919         dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2920
2921         return 0;
2922 }
2923
2924 /*
2925  * Simplify DAI link configuration by removing ".-1" from device names
2926  * and sanitizing names.
2927  */
2928 static inline char *fmt_single_name(struct device *dev, int *id)
2929 {
2930         char *found, name[NAME_SIZE];
2931         int id1, id2;
2932
2933         if (dev_name(dev) == NULL)
2934                 return NULL;
2935
2936         strncpy(name, dev_name(dev), NAME_SIZE);
2937
2938         /* are we a "%s.%d" name (platform and SPI components) */
2939         found = strstr(name, dev->driver->name);
2940         if (found) {
2941                 /* get ID */
2942                 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
2943
2944                         /* discard ID from name if ID == -1 */
2945                         if (*id == -1)
2946                                 found[strlen(dev->driver->name)] = '\0';
2947                 }
2948
2949         } else {
2950                 /* I2C component devices are named "bus-addr"  */
2951                 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
2952                         char tmp[NAME_SIZE];
2953
2954                         /* create unique ID number from I2C addr and bus */
2955                         *id = ((id1 & 0xffff) << 16) + id2;
2956
2957                         /* sanitize component name for DAI link creation */
2958                         snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
2959                         strncpy(name, tmp, NAME_SIZE);
2960                 } else
2961                         *id = 0;
2962         }
2963
2964         return kstrdup(name, GFP_KERNEL);
2965 }
2966
2967 /*
2968  * Simplify DAI link naming for single devices with multiple DAIs by removing
2969  * any ".-1" and using the DAI name (instead of device name).
2970  */
2971 static inline char *fmt_multiple_name(struct device *dev,
2972                 struct snd_soc_dai_driver *dai_drv)
2973 {
2974         if (dai_drv->name == NULL) {
2975                 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
2976                                 dev_name(dev));
2977                 return NULL;
2978         }
2979
2980         return kstrdup(dai_drv->name, GFP_KERNEL);
2981 }
2982
2983 /**
2984  * snd_soc_register_dai - Register a DAI with the ASoC core
2985  *
2986  * @dai: DAI to register
2987  */
2988 int snd_soc_register_dai(struct device *dev,
2989                 struct snd_soc_dai_driver *dai_drv)
2990 {
2991         struct snd_soc_dai *dai;
2992
2993         dev_dbg(dev, "dai register %s\n", dev_name(dev));
2994
2995         dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
2996         if (dai == NULL)
2997                         return -ENOMEM;
2998
2999         /* create DAI component name */
3000         dai->name = fmt_single_name(dev, &dai->id);
3001         if (dai->name == NULL) {
3002                 kfree(dai);
3003                 return -ENOMEM;
3004         }
3005
3006         dai->dev = dev;
3007         dai->driver = dai_drv;
3008         if (!dai->driver->ops)
3009                 dai->driver->ops = &null_dai_ops;
3010
3011         mutex_lock(&client_mutex);
3012         list_add(&dai->list, &dai_list);
3013         snd_soc_instantiate_cards();
3014         mutex_unlock(&client_mutex);
3015
3016         pr_debug("Registered DAI '%s'\n", dai->name);
3017
3018         return 0;
3019 }
3020 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
3021
3022 /**
3023  * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
3024  *
3025  * @dai: DAI to unregister
3026  */
3027 void snd_soc_unregister_dai(struct device *dev)
3028 {
3029         struct snd_soc_dai *dai;
3030
3031         list_for_each_entry(dai, &dai_list, list) {
3032                 if (dev == dai->dev)
3033                         goto found;
3034         }
3035         return;
3036
3037 found:
3038         mutex_lock(&client_mutex);
3039         list_del(&dai->list);
3040         mutex_unlock(&client_mutex);
3041
3042         pr_debug("Unregistered DAI '%s'\n", dai->name);
3043         kfree(dai->name);
3044         kfree(dai);
3045 }
3046 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
3047
3048 /**
3049  * snd_soc_register_dais - Register multiple DAIs with the ASoC core
3050  *
3051  * @dai: Array of DAIs to register
3052  * @count: Number of DAIs
3053  */
3054 int snd_soc_register_dais(struct device *dev,
3055                 struct snd_soc_dai_driver *dai_drv, size_t count)
3056 {
3057         struct snd_soc_dai *dai;
3058         int i, ret = 0;
3059
3060         dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count);
3061
3062         for (i = 0; i < count; i++) {
3063
3064                 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3065                 if (dai == NULL) {
3066                         ret = -ENOMEM;
3067                         goto err;
3068                 }
3069
3070                 /* create DAI component name */
3071                 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3072                 if (dai->name == NULL) {
3073                         kfree(dai);
3074                         ret = -EINVAL;
3075                         goto err;
3076                 }
3077
3078                 dai->dev = dev;
3079                 dai->driver = &dai_drv[i];
3080                 if (dai->driver->id)
3081                         dai->id = dai->driver->id;
3082                 else
3083                         dai->id = i;
3084                 if (!dai->driver->ops)
3085                         dai->driver->ops = &null_dai_ops;
3086
3087                 mutex_lock(&client_mutex);
3088                 list_add(&dai->list, &dai_list);
3089                 mutex_unlock(&client_mutex);
3090
3091                 pr_debug("Registered DAI '%s'\n", dai->name);
3092         }
3093
3094         snd_soc_instantiate_cards();
3095         return 0;
3096
3097 err:
3098         for (i--; i >= 0; i--)
3099                 snd_soc_unregister_dai(dev);
3100
3101         return ret;
3102 }
3103 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
3104
3105 /**
3106  * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
3107  *
3108  * @dai: Array of DAIs to unregister
3109  * @count: Number of DAIs
3110  */
3111 void snd_soc_unregister_dais(struct device *dev, size_t count)
3112 {
3113         int i;
3114
3115         for (i = 0; i < count; i++)
3116                 snd_soc_unregister_dai(dev);
3117 }
3118 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
3119
3120 /**
3121  * snd_soc_register_platform - Register a platform with the ASoC core
3122  *
3123  * @platform: platform to register
3124  */
3125 int snd_soc_register_platform(struct device *dev,
3126                 struct snd_soc_platform_driver *platform_drv)
3127 {
3128         struct snd_soc_platform *platform;
3129
3130         dev_dbg(dev, "platform register %s\n", dev_name(dev));
3131
3132         platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
3133         if (platform == NULL)
3134                         return -ENOMEM;
3135
3136         /* create platform component name */
3137         platform->name = fmt_single_name(dev, &platform->id);
3138         if (platform->name == NULL) {
3139                 kfree(platform);
3140                 return -ENOMEM;
3141         }
3142
3143         platform->dev = dev;
3144         platform->driver = platform_drv;
3145
3146         mutex_lock(&client_mutex);
3147         list_add(&platform->list, &platform_list);
3148         snd_soc_instantiate_cards();
3149         mutex_unlock(&client_mutex);
3150
3151         pr_debug("Registered platform '%s'\n", platform->name);
3152
3153         return 0;
3154 }
3155 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
3156
3157 /**
3158  * snd_soc_unregister_platform - Unregister a platform from the ASoC core
3159  *
3160  * @platform: platform to unregister
3161  */
3162 void snd_soc_unregister_platform(struct device *dev)
3163 {
3164         struct snd_soc_platform *platform;
3165
3166         list_for_each_entry(platform, &platform_list, list) {
3167                 if (dev == platform->dev)
3168                         goto found;
3169         }
3170         return;
3171
3172 found:
3173         mutex_lock(&client_mutex);
3174         list_del(&platform->list);
3175         mutex_unlock(&client_mutex);
3176
3177         pr_debug("Unregistered platform '%s'\n", platform->name);
3178         kfree(platform->name);
3179         kfree(platform);
3180 }
3181 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
3182
3183 static u64 codec_format_map[] = {
3184         SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
3185         SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
3186         SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
3187         SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
3188         SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
3189         SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
3190         SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3191         SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3192         SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
3193         SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
3194         SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
3195         SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
3196         SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
3197         SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
3198         SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
3199         | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
3200 };
3201
3202 /* Fix up the DAI formats for endianness: codecs don't actually see
3203  * the endianness of the data but we're using the CPU format
3204  * definitions which do need to include endianness so we ensure that
3205  * codec DAIs always have both big and little endian variants set.
3206  */
3207 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
3208 {
3209         int i;
3210
3211         for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
3212                 if (stream->formats & codec_format_map[i])
3213                         stream->formats |= codec_format_map[i];
3214 }
3215
3216 /**
3217  * snd_soc_register_codec - Register a codec with the ASoC core
3218  *
3219  * @codec: codec to register
3220  */
3221 int snd_soc_register_codec(struct device *dev,
3222                 struct snd_soc_codec_driver *codec_drv,
3223                 struct snd_soc_dai_driver *dai_drv, int num_dai)
3224 {
3225         struct snd_soc_codec *codec;
3226         int ret, i;
3227
3228         dev_dbg(dev, "codec register %s\n", dev_name(dev));
3229
3230         codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
3231         if (codec == NULL)
3232                 return -ENOMEM;
3233
3234         /* create CODEC component name */
3235         codec->name = fmt_single_name(dev, &codec->id);
3236         if (codec->name == NULL) {
3237                 kfree(codec);
3238                 return -ENOMEM;
3239         }
3240
3241         INIT_LIST_HEAD(&codec->dapm.widgets);
3242         INIT_LIST_HEAD(&codec->dapm.paths);
3243         codec->dapm.bias_level = SND_SOC_BIAS_OFF;
3244         codec->dapm.dev = dev;
3245         codec->dapm.codec = codec;
3246
3247         /* allocate CODEC register cache */
3248         if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
3249
3250                 if (codec_drv->reg_cache_default)
3251                         codec->reg_cache = kmemdup(codec_drv->reg_cache_default,
3252                                 codec_drv->reg_cache_size * codec_drv->reg_word_size, GFP_KERNEL);
3253                 else
3254                         codec->reg_cache = kzalloc(codec_drv->reg_cache_size *
3255                                 codec_drv->reg_word_size, GFP_KERNEL);
3256
3257                 if (codec->reg_cache == NULL) {
3258                         kfree(codec->name);
3259                         kfree(codec);
3260                         return -ENOMEM;
3261                 }
3262         }
3263
3264         codec->dev = dev;
3265         codec->driver = codec_drv;
3266         codec->num_dai = num_dai;
3267         mutex_init(&codec->mutex);
3268
3269         for (i = 0; i < num_dai; i++) {
3270                 fixup_codec_formats(&dai_drv[i].playback);
3271                 fixup_codec_formats(&dai_drv[i].capture);
3272         }
3273
3274         /* register any DAIs */
3275         if (num_dai) {
3276                 ret = snd_soc_register_dais(dev, dai_drv, num_dai);
3277                 if (ret < 0)
3278                         goto error;
3279         }
3280
3281         mutex_lock(&client_mutex);
3282         list_add(&codec->list, &codec_list);
3283         snd_soc_instantiate_cards();
3284         mutex_unlock(&client_mutex);
3285
3286         pr_debug("Registered codec '%s'\n", codec->name);
3287         return 0;
3288
3289 error:
3290         if (codec->reg_cache)
3291                 kfree(codec->reg_cache);
3292         kfree(codec->name);
3293         kfree(codec);
3294         return ret;
3295 }
3296 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
3297
3298 /**
3299  * snd_soc_unregister_codec - Unregister a codec from the ASoC core
3300  *
3301  * @codec: codec to unregister
3302  */
3303 void snd_soc_unregister_codec(struct device *dev)
3304 {
3305         struct snd_soc_codec *codec;
3306         int i;
3307
3308         list_for_each_entry(codec, &codec_list, list) {
3309                 if (dev == codec->dev)
3310                         goto found;
3311         }
3312         return;
3313
3314 found:
3315         if (codec->num_dai)
3316                 for (i = 0; i < codec->num_dai; i++)
3317                         snd_soc_unregister_dai(dev);
3318
3319         mutex_lock(&client_mutex);
3320         list_del(&codec->list);
3321         mutex_unlock(&client_mutex);
3322
3323         pr_debug("Unregistered codec '%s'\n", codec->name);
3324
3325         if (codec->reg_cache)
3326                 kfree(codec->reg_cache);
3327         kfree(codec->name);
3328         kfree(codec);
3329 }
3330 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
3331
3332 static int __init snd_soc_init(void)
3333 {
3334 #ifdef CONFIG_DEBUG_FS
3335         debugfs_root = debugfs_create_dir("asoc", NULL);
3336         if (IS_ERR(debugfs_root) || !debugfs_root) {
3337                 printk(KERN_WARNING
3338                        "ASoC: Failed to create debugfs directory\n");
3339                 debugfs_root = NULL;
3340         }
3341
3342         if (!debugfs_create_file("codecs", 0444, debugfs_root, NULL,
3343                                  &codec_list_fops))
3344                 pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
3345
3346         if (!debugfs_create_file("dais", 0444, debugfs_root, NULL,
3347                                  &dai_list_fops))
3348                 pr_warn("ASoC: Failed to create DAI list debugfs file\n");
3349
3350         if (!debugfs_create_file("platforms", 0444, debugfs_root, NULL,
3351                                  &platform_list_fops))
3352                 pr_warn("ASoC: Failed to create platform list debugfs file\n");
3353 #endif
3354
3355         return platform_driver_register(&soc_driver);
3356 }
3357 module_init(snd_soc_init);
3358
3359 static void __exit snd_soc_exit(void)
3360 {
3361 #ifdef CONFIG_DEBUG_FS
3362         debugfs_remove_recursive(debugfs_root);
3363 #endif
3364         platform_driver_unregister(&soc_driver);
3365 }
3366 module_exit(snd_soc_exit);
3367
3368 /* Module information */
3369 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
3370 MODULE_DESCRIPTION("ALSA SoC Core");
3371 MODULE_LICENSE("GPL");
3372 MODULE_ALIAS("platform:soc-audio");