ASoC: omap: rx51: Enable McBSP2 sidetone
[linux-2.6.git] / sound / soc / soc-core.c
1 /*
2  * soc-core.c  --  ALSA SoC Audio Layer
3  *
4  * Copyright 2005 Wolfson Microelectronics PLC.
5  * Copyright 2005 Openedhand Ltd.
6  * Copyright (C) 2010 Slimlogic Ltd.
7  * Copyright (C) 2010 Texas Instruments Inc.
8  *
9  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
10  *         with code, comments and ideas from :-
11  *         Richard Purdie <richard@openedhand.com>
12  *
13  *  This program is free software; you can redistribute  it and/or modify it
14  *  under  the terms of  the GNU General  Public License as published by the
15  *  Free Software Foundation;  either version 2 of the  License, or (at your
16  *  option) any later version.
17  *
18  *  TODO:
19  *   o Add hw rules to enforce rates, etc.
20  *   o More testing with other codecs/machines.
21  *   o Add more codecs and platforms to ensure good API coverage.
22  *   o Support TDM on PCM and I2S
23  */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/pm.h>
30 #include <linux/bitops.h>
31 #include <linux/debugfs.h>
32 #include <linux/platform_device.h>
33 #include <linux/slab.h>
34 #include <sound/ac97_codec.h>
35 #include <sound/core.h>
36 #include <sound/jack.h>
37 #include <sound/pcm.h>
38 #include <sound/pcm_params.h>
39 #include <sound/soc.h>
40 #include <sound/initval.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/asoc.h>
44
45 #define NAME_SIZE       32
46
47 static DEFINE_MUTEX(pcm_mutex);
48 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
49
50 #ifdef CONFIG_DEBUG_FS
51 struct dentry *snd_soc_debugfs_root;
52 EXPORT_SYMBOL_GPL(snd_soc_debugfs_root);
53 #endif
54
55 static DEFINE_MUTEX(client_mutex);
56 static LIST_HEAD(card_list);
57 static LIST_HEAD(dai_list);
58 static LIST_HEAD(platform_list);
59 static LIST_HEAD(codec_list);
60
61 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num);
62
63 /*
64  * This is a timeout to do a DAPM powerdown after a stream is closed().
65  * It can be used to eliminate pops between different playback streams, e.g.
66  * between two audio tracks.
67  */
68 static int pmdown_time = 5000;
69 module_param(pmdown_time, int, 0);
70 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
71
72 /* returns the minimum number of bytes needed to represent
73  * a particular given value */
74 static int min_bytes_needed(unsigned long val)
75 {
76         int c = 0;
77         int i;
78
79         for (i = (sizeof val * 8) - 1; i >= 0; --i, ++c)
80                 if (val & (1UL << i))
81                         break;
82         c = (sizeof val * 8) - c;
83         if (!c || (c % 8))
84                 c = (c + 8) / 8;
85         else
86                 c /= 8;
87         return c;
88 }
89
90 /* codec register dump */
91 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
92 {
93         int ret, i, step = 1, count = 0;
94         int wordsize, regsize;
95
96         wordsize = codec->driver->reg_word_size * 2;
97         regsize = min_bytes_needed(codec->driver->reg_cache_size) * 2;
98
99         if (!codec->driver->reg_cache_size)
100                 return 0;
101
102         if (codec->driver->reg_cache_step)
103                 step = codec->driver->reg_cache_step;
104
105         for (i = 0; i < codec->driver->reg_cache_size; i += step) {
106                 if (codec->readable_register && !codec->readable_register(codec, i))
107                         continue;
108
109                 count += sprintf(buf + count, "%.*x: ", regsize, i);
110                 if (count >= PAGE_SIZE - 1)
111                         break;
112
113                 if (codec->driver->display_register) {
114                         count += codec->driver->display_register(codec, buf + count,
115                                                          PAGE_SIZE - count, i);
116                 } else {
117                         /* If the read fails it's almost certainly due to
118                          * the register being volatile and the device being
119                          * powered off.
120                          */
121                         ret = snd_soc_read(codec, i);
122                         if (ret >= 0)
123                                 count += snprintf(buf + count,
124                                                   PAGE_SIZE - count,
125                                                   "%.*x", wordsize, ret);
126                         else
127                                 count += snprintf(buf + count,
128                                                   PAGE_SIZE - count,
129                                                   "<no data: %d>", ret);
130                 }
131
132                 if (count >= PAGE_SIZE - 1)
133                         break;
134
135                 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
136                 if (count >= PAGE_SIZE - 1)
137                         break;
138         }
139
140         /* Truncate count; min() would cause a warning */
141         if (count >= PAGE_SIZE)
142                 count = PAGE_SIZE - 1;
143
144         return count;
145 }
146 static ssize_t codec_reg_show(struct device *dev,
147         struct device_attribute *attr, char *buf)
148 {
149         struct snd_soc_pcm_runtime *rtd =
150                         container_of(dev, struct snd_soc_pcm_runtime, dev);
151
152         return soc_codec_reg_show(rtd->codec, buf);
153 }
154
155 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
156
157 static ssize_t pmdown_time_show(struct device *dev,
158                                 struct device_attribute *attr, char *buf)
159 {
160         struct snd_soc_pcm_runtime *rtd =
161                         container_of(dev, struct snd_soc_pcm_runtime, dev);
162
163         return sprintf(buf, "%ld\n", rtd->pmdown_time);
164 }
165
166 static ssize_t pmdown_time_set(struct device *dev,
167                                struct device_attribute *attr,
168                                const char *buf, size_t count)
169 {
170         struct snd_soc_pcm_runtime *rtd =
171                         container_of(dev, struct snd_soc_pcm_runtime, dev);
172         int ret;
173
174         ret = strict_strtol(buf, 10, &rtd->pmdown_time);
175         if (ret)
176                 return ret;
177
178         return count;
179 }
180
181 static DEVICE_ATTR(pmdown_time, 0644, pmdown_time_show, pmdown_time_set);
182
183 #ifdef CONFIG_DEBUG_FS
184 static int codec_reg_open_file(struct inode *inode, struct file *file)
185 {
186         file->private_data = inode->i_private;
187         return 0;
188 }
189
190 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
191                                size_t count, loff_t *ppos)
192 {
193         ssize_t ret;
194         struct snd_soc_codec *codec = file->private_data;
195         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
196         if (!buf)
197                 return -ENOMEM;
198         ret = soc_codec_reg_show(codec, buf);
199         if (ret >= 0)
200                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
201         kfree(buf);
202         return ret;
203 }
204
205 static ssize_t codec_reg_write_file(struct file *file,
206                 const char __user *user_buf, size_t count, loff_t *ppos)
207 {
208         char buf[32];
209         int buf_size;
210         char *start = buf;
211         unsigned long reg, value;
212         int step = 1;
213         struct snd_soc_codec *codec = file->private_data;
214
215         buf_size = min(count, (sizeof(buf)-1));
216         if (copy_from_user(buf, user_buf, buf_size))
217                 return -EFAULT;
218         buf[buf_size] = 0;
219
220         if (codec->driver->reg_cache_step)
221                 step = codec->driver->reg_cache_step;
222
223         while (*start == ' ')
224                 start++;
225         reg = simple_strtoul(start, &start, 16);
226         if ((reg >= codec->driver->reg_cache_size) || (reg % step))
227                 return -EINVAL;
228         while (*start == ' ')
229                 start++;
230         if (strict_strtoul(start, 16, &value))
231                 return -EINVAL;
232
233         /* Userspace has been fiddling around behind the kernel's back */
234         add_taint(TAINT_USER);
235
236         snd_soc_write(codec, reg, value);
237         return buf_size;
238 }
239
240 static const struct file_operations codec_reg_fops = {
241         .open = codec_reg_open_file,
242         .read = codec_reg_read_file,
243         .write = codec_reg_write_file,
244         .llseek = default_llseek,
245 };
246
247 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
248 {
249         struct dentry *debugfs_card_root = codec->card->debugfs_card_root;
250
251         codec->debugfs_codec_root = debugfs_create_dir(codec->name,
252                                                        debugfs_card_root);
253         if (!codec->debugfs_codec_root) {
254                 printk(KERN_WARNING
255                        "ASoC: Failed to create codec debugfs directory\n");
256                 return;
257         }
258
259         debugfs_create_bool("cache_sync", 0444, codec->debugfs_codec_root,
260                             &codec->cache_sync);
261         debugfs_create_bool("cache_only", 0444, codec->debugfs_codec_root,
262                             &codec->cache_only);
263
264         codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
265                                                  codec->debugfs_codec_root,
266                                                  codec, &codec_reg_fops);
267         if (!codec->debugfs_reg)
268                 printk(KERN_WARNING
269                        "ASoC: Failed to create codec register debugfs file\n");
270
271         codec->dapm.debugfs_dapm = debugfs_create_dir("dapm",
272                                                  codec->debugfs_codec_root);
273         if (!codec->dapm.debugfs_dapm)
274                 printk(KERN_WARNING
275                        "Failed to create DAPM debugfs directory\n");
276
277         snd_soc_dapm_debugfs_init(&codec->dapm);
278 }
279
280 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
281 {
282         debugfs_remove_recursive(codec->debugfs_codec_root);
283 }
284
285 static ssize_t codec_list_read_file(struct file *file, char __user *user_buf,
286                                     size_t count, loff_t *ppos)
287 {
288         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
289         ssize_t len, ret = 0;
290         struct snd_soc_codec *codec;
291
292         if (!buf)
293                 return -ENOMEM;
294
295         list_for_each_entry(codec, &codec_list, list) {
296                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
297                                codec->name);
298                 if (len >= 0)
299                         ret += len;
300                 if (ret > PAGE_SIZE) {
301                         ret = PAGE_SIZE;
302                         break;
303                 }
304         }
305
306         if (ret >= 0)
307                 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
308
309         kfree(buf);
310
311         return ret;
312 }
313
314 static const struct file_operations codec_list_fops = {
315         .read = codec_list_read_file,
316         .llseek = default_llseek,/* read accesses f_pos */
317 };
318
319 static ssize_t dai_list_read_file(struct file *file, char __user *user_buf,
320                                   size_t count, loff_t *ppos)
321 {
322         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
323         ssize_t len, ret = 0;
324         struct snd_soc_dai *dai;
325
326         if (!buf)
327                 return -ENOMEM;
328
329         list_for_each_entry(dai, &dai_list, list) {
330                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n", dai->name);
331                 if (len >= 0)
332                         ret += len;
333                 if (ret > PAGE_SIZE) {
334                         ret = PAGE_SIZE;
335                         break;
336                 }
337         }
338
339         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
340
341         kfree(buf);
342
343         return ret;
344 }
345
346 static const struct file_operations dai_list_fops = {
347         .read = dai_list_read_file,
348         .llseek = default_llseek,/* read accesses f_pos */
349 };
350
351 static ssize_t platform_list_read_file(struct file *file,
352                                        char __user *user_buf,
353                                        size_t count, loff_t *ppos)
354 {
355         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
356         ssize_t len, ret = 0;
357         struct snd_soc_platform *platform;
358
359         if (!buf)
360                 return -ENOMEM;
361
362         list_for_each_entry(platform, &platform_list, list) {
363                 len = snprintf(buf + ret, PAGE_SIZE - ret, "%s\n",
364                                platform->name);
365                 if (len >= 0)
366                         ret += len;
367                 if (ret > PAGE_SIZE) {
368                         ret = PAGE_SIZE;
369                         break;
370                 }
371         }
372
373         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
374
375         kfree(buf);
376
377         return ret;
378 }
379
380 static const struct file_operations platform_list_fops = {
381         .read = platform_list_read_file,
382         .llseek = default_llseek,/* read accesses f_pos */
383 };
384
385 static void soc_init_card_debugfs(struct snd_soc_card *card)
386 {
387         card->debugfs_card_root = debugfs_create_dir(card->name,
388                                                      snd_soc_debugfs_root);
389         if (!card->debugfs_card_root) {
390                 dev_warn(card->dev,
391                          "ASoC: Failed to create codec debugfs directory\n");
392                 return;
393         }
394
395         card->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0644,
396                                                     card->debugfs_card_root,
397                                                     &card->pop_time);
398         if (!card->debugfs_pop_time)
399                 dev_warn(card->dev,
400                        "Failed to create pop time debugfs file\n");
401 }
402
403 static void soc_cleanup_card_debugfs(struct snd_soc_card *card)
404 {
405         debugfs_remove_recursive(card->debugfs_card_root);
406 }
407
408 #else
409
410 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
411 {
412 }
413
414 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
415 {
416 }
417
418 static inline void soc_init_card_debugfs(struct snd_soc_card *card)
419 {
420 }
421
422 static inline void soc_cleanup_card_debugfs(struct snd_soc_card *card)
423 {
424 }
425 #endif
426
427 #ifdef CONFIG_SND_SOC_AC97_BUS
428 /* unregister ac97 codec */
429 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
430 {
431         if (codec->ac97->dev.bus)
432                 device_unregister(&codec->ac97->dev);
433         return 0;
434 }
435
436 /* stop no dev release warning */
437 static void soc_ac97_device_release(struct device *dev){}
438
439 /* register ac97 codec to bus */
440 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
441 {
442         int err;
443
444         codec->ac97->dev.bus = &ac97_bus_type;
445         codec->ac97->dev.parent = codec->card->dev;
446         codec->ac97->dev.release = soc_ac97_device_release;
447
448         dev_set_name(&codec->ac97->dev, "%d-%d:%s",
449                      codec->card->snd_card->number, 0, codec->name);
450         err = device_register(&codec->ac97->dev);
451         if (err < 0) {
452                 snd_printk(KERN_ERR "Can't register ac97 bus\n");
453                 codec->ac97->dev.bus = NULL;
454                 return err;
455         }
456         return 0;
457 }
458 #endif
459
460 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
461 {
462         struct snd_soc_pcm_runtime *rtd = substream->private_data;
463         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
464         struct snd_soc_dai *codec_dai = rtd->codec_dai;
465         int ret;
466
467         if (codec_dai->driver->symmetric_rates || cpu_dai->driver->symmetric_rates ||
468                         rtd->dai_link->symmetric_rates) {
469                 dev_dbg(&rtd->dev, "Symmetry forces %dHz rate\n",
470                                 rtd->rate);
471
472                 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
473                                                    SNDRV_PCM_HW_PARAM_RATE,
474                                                    rtd->rate,
475                                                    rtd->rate);
476                 if (ret < 0) {
477                         dev_err(&rtd->dev,
478                                 "Unable to apply rate symmetry constraint: %d\n", ret);
479                         return ret;
480                 }
481         }
482
483         return 0;
484 }
485
486 /*
487  * Called by ALSA when a PCM substream is opened, the runtime->hw record is
488  * then initialized and any private data can be allocated. This also calls
489  * startup for the cpu DAI, platform, machine and codec DAI.
490  */
491 static int soc_pcm_open(struct snd_pcm_substream *substream)
492 {
493         struct snd_soc_pcm_runtime *rtd = substream->private_data;
494         struct snd_pcm_runtime *runtime = substream->runtime;
495         struct snd_soc_platform *platform = rtd->platform;
496         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
497         struct snd_soc_dai *codec_dai = rtd->codec_dai;
498         struct snd_soc_dai_driver *cpu_dai_drv = cpu_dai->driver;
499         struct snd_soc_dai_driver *codec_dai_drv = codec_dai->driver;
500         int ret = 0;
501
502         mutex_lock(&pcm_mutex);
503
504         /* startup the audio subsystem */
505         if (cpu_dai->driver->ops->startup) {
506                 ret = cpu_dai->driver->ops->startup(substream, cpu_dai);
507                 if (ret < 0) {
508                         printk(KERN_ERR "asoc: can't open interface %s\n",
509                                 cpu_dai->name);
510                         goto out;
511                 }
512         }
513
514         if (platform->driver->ops->open) {
515                 ret = platform->driver->ops->open(substream);
516                 if (ret < 0) {
517                         printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
518                         goto platform_err;
519                 }
520         }
521
522         if (codec_dai->driver->ops->startup) {
523                 ret = codec_dai->driver->ops->startup(substream, codec_dai);
524                 if (ret < 0) {
525                         printk(KERN_ERR "asoc: can't open codec %s\n",
526                                 codec_dai->name);
527                         goto codec_dai_err;
528                 }
529         }
530
531         if (rtd->dai_link->ops && rtd->dai_link->ops->startup) {
532                 ret = rtd->dai_link->ops->startup(substream);
533                 if (ret < 0) {
534                         printk(KERN_ERR "asoc: %s startup failed\n", rtd->dai_link->name);
535                         goto machine_err;
536                 }
537         }
538
539         /* Check that the codec and cpu DAIs are compatible */
540         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
541                 runtime->hw.rate_min =
542                         max(codec_dai_drv->playback.rate_min,
543                             cpu_dai_drv->playback.rate_min);
544                 runtime->hw.rate_max =
545                         min(codec_dai_drv->playback.rate_max,
546                             cpu_dai_drv->playback.rate_max);
547                 runtime->hw.channels_min =
548                         max(codec_dai_drv->playback.channels_min,
549                                 cpu_dai_drv->playback.channels_min);
550                 runtime->hw.channels_max =
551                         min(codec_dai_drv->playback.channels_max,
552                                 cpu_dai_drv->playback.channels_max);
553                 runtime->hw.formats =
554                         codec_dai_drv->playback.formats & cpu_dai_drv->playback.formats;
555                 runtime->hw.rates =
556                         codec_dai_drv->playback.rates & cpu_dai_drv->playback.rates;
557                 if (codec_dai_drv->playback.rates
558                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
559                         runtime->hw.rates |= cpu_dai_drv->playback.rates;
560                 if (cpu_dai_drv->playback.rates
561                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
562                         runtime->hw.rates |= codec_dai_drv->playback.rates;
563         } else {
564                 runtime->hw.rate_min =
565                         max(codec_dai_drv->capture.rate_min,
566                             cpu_dai_drv->capture.rate_min);
567                 runtime->hw.rate_max =
568                         min(codec_dai_drv->capture.rate_max,
569                             cpu_dai_drv->capture.rate_max);
570                 runtime->hw.channels_min =
571                         max(codec_dai_drv->capture.channels_min,
572                                 cpu_dai_drv->capture.channels_min);
573                 runtime->hw.channels_max =
574                         min(codec_dai_drv->capture.channels_max,
575                                 cpu_dai_drv->capture.channels_max);
576                 runtime->hw.formats =
577                         codec_dai_drv->capture.formats & cpu_dai_drv->capture.formats;
578                 runtime->hw.rates =
579                         codec_dai_drv->capture.rates & cpu_dai_drv->capture.rates;
580                 if (codec_dai_drv->capture.rates
581                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
582                         runtime->hw.rates |= cpu_dai_drv->capture.rates;
583                 if (cpu_dai_drv->capture.rates
584                            & (SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_CONTINUOUS))
585                         runtime->hw.rates |= codec_dai_drv->capture.rates;
586         }
587
588         snd_pcm_limit_hw_rates(runtime);
589         if (!runtime->hw.rates) {
590                 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
591                         codec_dai->name, cpu_dai->name);
592                 goto config_err;
593         }
594         if (!runtime->hw.formats) {
595                 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
596                         codec_dai->name, cpu_dai->name);
597                 goto config_err;
598         }
599         if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
600                 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
601                                 codec_dai->name, cpu_dai->name);
602                 goto config_err;
603         }
604
605         /* Symmetry only applies if we've already got an active stream. */
606         if (cpu_dai->active || codec_dai->active) {
607                 ret = soc_pcm_apply_symmetry(substream);
608                 if (ret != 0)
609                         goto config_err;
610         }
611
612         pr_debug("asoc: %s <-> %s info:\n",
613                         codec_dai->name, cpu_dai->name);
614         pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
615         pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
616                  runtime->hw.channels_max);
617         pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
618                  runtime->hw.rate_max);
619
620         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
621                 cpu_dai->playback_active++;
622                 codec_dai->playback_active++;
623         } else {
624                 cpu_dai->capture_active++;
625                 codec_dai->capture_active++;
626         }
627         cpu_dai->active++;
628         codec_dai->active++;
629         rtd->codec->active++;
630         mutex_unlock(&pcm_mutex);
631         return 0;
632
633 config_err:
634         if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
635                 rtd->dai_link->ops->shutdown(substream);
636
637 machine_err:
638         if (codec_dai->driver->ops->shutdown)
639                 codec_dai->driver->ops->shutdown(substream, codec_dai);
640
641 codec_dai_err:
642         if (platform->driver->ops->close)
643                 platform->driver->ops->close(substream);
644
645 platform_err:
646         if (cpu_dai->driver->ops->shutdown)
647                 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
648 out:
649         mutex_unlock(&pcm_mutex);
650         return ret;
651 }
652
653 /*
654  * Power down the audio subsystem pmdown_time msecs after close is called.
655  * This is to ensure there are no pops or clicks in between any music tracks
656  * due to DAPM power cycling.
657  */
658 static void close_delayed_work(struct work_struct *work)
659 {
660         struct snd_soc_pcm_runtime *rtd =
661                         container_of(work, struct snd_soc_pcm_runtime, delayed_work.work);
662         struct snd_soc_dai *codec_dai = rtd->codec_dai;
663
664         mutex_lock(&pcm_mutex);
665
666         pr_debug("pop wq checking: %s status: %s waiting: %s\n",
667                  codec_dai->driver->playback.stream_name,
668                  codec_dai->playback_active ? "active" : "inactive",
669                  codec_dai->pop_wait ? "yes" : "no");
670
671         /* are we waiting on this codec DAI stream */
672         if (codec_dai->pop_wait == 1) {
673                 codec_dai->pop_wait = 0;
674                 snd_soc_dapm_stream_event(rtd,
675                         codec_dai->driver->playback.stream_name,
676                         SND_SOC_DAPM_STREAM_STOP);
677         }
678
679         mutex_unlock(&pcm_mutex);
680 }
681
682 /*
683  * Called by ALSA when a PCM substream is closed. Private data can be
684  * freed here. The cpu DAI, codec DAI, machine and platform are also
685  * shutdown.
686  */
687 static int soc_codec_close(struct snd_pcm_substream *substream)
688 {
689         struct snd_soc_pcm_runtime *rtd = substream->private_data;
690         struct snd_soc_platform *platform = rtd->platform;
691         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
692         struct snd_soc_dai *codec_dai = rtd->codec_dai;
693         struct snd_soc_codec *codec = rtd->codec;
694
695         mutex_lock(&pcm_mutex);
696
697         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
698                 cpu_dai->playback_active--;
699                 codec_dai->playback_active--;
700         } else {
701                 cpu_dai->capture_active--;
702                 codec_dai->capture_active--;
703         }
704
705         cpu_dai->active--;
706         codec_dai->active--;
707         codec->active--;
708
709         /* Muting the DAC suppresses artifacts caused during digital
710          * shutdown, for example from stopping clocks.
711          */
712         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
713                 snd_soc_dai_digital_mute(codec_dai, 1);
714
715         if (cpu_dai->driver->ops->shutdown)
716                 cpu_dai->driver->ops->shutdown(substream, cpu_dai);
717
718         if (codec_dai->driver->ops->shutdown)
719                 codec_dai->driver->ops->shutdown(substream, codec_dai);
720
721         if (rtd->dai_link->ops && rtd->dai_link->ops->shutdown)
722                 rtd->dai_link->ops->shutdown(substream);
723
724         if (platform->driver->ops->close)
725                 platform->driver->ops->close(substream);
726         cpu_dai->runtime = NULL;
727
728         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
729                 /* start delayed pop wq here for playback streams */
730                 codec_dai->pop_wait = 1;
731                 schedule_delayed_work(&rtd->delayed_work,
732                         msecs_to_jiffies(rtd->pmdown_time));
733         } else {
734                 /* capture streams can be powered down now */
735                 snd_soc_dapm_stream_event(rtd,
736                         codec_dai->driver->capture.stream_name,
737                         SND_SOC_DAPM_STREAM_STOP);
738         }
739
740         mutex_unlock(&pcm_mutex);
741         return 0;
742 }
743
744 /*
745  * Called by ALSA when the PCM substream is prepared, can set format, sample
746  * rate, etc.  This function is non atomic and can be called multiple times,
747  * it can refer to the runtime info.
748  */
749 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
750 {
751         struct snd_soc_pcm_runtime *rtd = substream->private_data;
752         struct snd_soc_platform *platform = rtd->platform;
753         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
754         struct snd_soc_dai *codec_dai = rtd->codec_dai;
755         int ret = 0;
756
757         mutex_lock(&pcm_mutex);
758
759         if (rtd->dai_link->ops && rtd->dai_link->ops->prepare) {
760                 ret = rtd->dai_link->ops->prepare(substream);
761                 if (ret < 0) {
762                         printk(KERN_ERR "asoc: machine prepare error\n");
763                         goto out;
764                 }
765         }
766
767         if (platform->driver->ops->prepare) {
768                 ret = platform->driver->ops->prepare(substream);
769                 if (ret < 0) {
770                         printk(KERN_ERR "asoc: platform prepare error\n");
771                         goto out;
772                 }
773         }
774
775         if (codec_dai->driver->ops->prepare) {
776                 ret = codec_dai->driver->ops->prepare(substream, codec_dai);
777                 if (ret < 0) {
778                         printk(KERN_ERR "asoc: codec DAI prepare error\n");
779                         goto out;
780                 }
781         }
782
783         if (cpu_dai->driver->ops->prepare) {
784                 ret = cpu_dai->driver->ops->prepare(substream, cpu_dai);
785                 if (ret < 0) {
786                         printk(KERN_ERR "asoc: cpu DAI prepare error\n");
787                         goto out;
788                 }
789         }
790
791         /* cancel any delayed stream shutdown that is pending */
792         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
793             codec_dai->pop_wait) {
794                 codec_dai->pop_wait = 0;
795                 cancel_delayed_work(&rtd->delayed_work);
796         }
797
798         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
799                 snd_soc_dapm_stream_event(rtd,
800                                           codec_dai->driver->playback.stream_name,
801                                           SND_SOC_DAPM_STREAM_START);
802         else
803                 snd_soc_dapm_stream_event(rtd,
804                                           codec_dai->driver->capture.stream_name,
805                                           SND_SOC_DAPM_STREAM_START);
806
807         snd_soc_dai_digital_mute(codec_dai, 0);
808
809 out:
810         mutex_unlock(&pcm_mutex);
811         return ret;
812 }
813
814 /*
815  * Called by ALSA when the hardware params are set by application. This
816  * function can also be called multiple times and can allocate buffers
817  * (using snd_pcm_lib_* ). It's non-atomic.
818  */
819 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
820                                 struct snd_pcm_hw_params *params)
821 {
822         struct snd_soc_pcm_runtime *rtd = substream->private_data;
823         struct snd_soc_platform *platform = rtd->platform;
824         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
825         struct snd_soc_dai *codec_dai = rtd->codec_dai;
826         int ret = 0;
827
828         mutex_lock(&pcm_mutex);
829
830         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_params) {
831                 ret = rtd->dai_link->ops->hw_params(substream, params);
832                 if (ret < 0) {
833                         printk(KERN_ERR "asoc: machine hw_params failed\n");
834                         goto out;
835                 }
836         }
837
838         if (codec_dai->driver->ops->hw_params) {
839                 ret = codec_dai->driver->ops->hw_params(substream, params, codec_dai);
840                 if (ret < 0) {
841                         printk(KERN_ERR "asoc: can't set codec %s hw params\n",
842                                 codec_dai->name);
843                         goto codec_err;
844                 }
845         }
846
847         if (cpu_dai->driver->ops->hw_params) {
848                 ret = cpu_dai->driver->ops->hw_params(substream, params, cpu_dai);
849                 if (ret < 0) {
850                         printk(KERN_ERR "asoc: interface %s hw params failed\n",
851                                 cpu_dai->name);
852                         goto interface_err;
853                 }
854         }
855
856         if (platform->driver->ops->hw_params) {
857                 ret = platform->driver->ops->hw_params(substream, params);
858                 if (ret < 0) {
859                         printk(KERN_ERR "asoc: platform %s hw params failed\n",
860                                 platform->name);
861                         goto platform_err;
862                 }
863         }
864
865         rtd->rate = params_rate(params);
866
867 out:
868         mutex_unlock(&pcm_mutex);
869         return ret;
870
871 platform_err:
872         if (cpu_dai->driver->ops->hw_free)
873                 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
874
875 interface_err:
876         if (codec_dai->driver->ops->hw_free)
877                 codec_dai->driver->ops->hw_free(substream, codec_dai);
878
879 codec_err:
880         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
881                 rtd->dai_link->ops->hw_free(substream);
882
883         mutex_unlock(&pcm_mutex);
884         return ret;
885 }
886
887 /*
888  * Frees resources allocated by hw_params, can be called multiple times
889  */
890 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
891 {
892         struct snd_soc_pcm_runtime *rtd = substream->private_data;
893         struct snd_soc_platform *platform = rtd->platform;
894         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
895         struct snd_soc_dai *codec_dai = rtd->codec_dai;
896         struct snd_soc_codec *codec = rtd->codec;
897
898         mutex_lock(&pcm_mutex);
899
900         /* apply codec digital mute */
901         if (!codec->active)
902                 snd_soc_dai_digital_mute(codec_dai, 1);
903
904         /* free any machine hw params */
905         if (rtd->dai_link->ops && rtd->dai_link->ops->hw_free)
906                 rtd->dai_link->ops->hw_free(substream);
907
908         /* free any DMA resources */
909         if (platform->driver->ops->hw_free)
910                 platform->driver->ops->hw_free(substream);
911
912         /* now free hw params for the DAIs  */
913         if (codec_dai->driver->ops->hw_free)
914                 codec_dai->driver->ops->hw_free(substream, codec_dai);
915
916         if (cpu_dai->driver->ops->hw_free)
917                 cpu_dai->driver->ops->hw_free(substream, cpu_dai);
918
919         mutex_unlock(&pcm_mutex);
920         return 0;
921 }
922
923 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
924 {
925         struct snd_soc_pcm_runtime *rtd = substream->private_data;
926         struct snd_soc_platform *platform = rtd->platform;
927         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
928         struct snd_soc_dai *codec_dai = rtd->codec_dai;
929         int ret;
930
931         if (codec_dai->driver->ops->trigger) {
932                 ret = codec_dai->driver->ops->trigger(substream, cmd, codec_dai);
933                 if (ret < 0)
934                         return ret;
935         }
936
937         if (platform->driver->ops->trigger) {
938                 ret = platform->driver->ops->trigger(substream, cmd);
939                 if (ret < 0)
940                         return ret;
941         }
942
943         if (cpu_dai->driver->ops->trigger) {
944                 ret = cpu_dai->driver->ops->trigger(substream, cmd, cpu_dai);
945                 if (ret < 0)
946                         return ret;
947         }
948         return 0;
949 }
950
951 /*
952  * soc level wrapper for pointer callback
953  * If cpu_dai, codec_dai, platform driver has the delay callback, than
954  * the runtime->delay will be updated accordingly.
955  */
956 static snd_pcm_uframes_t soc_pcm_pointer(struct snd_pcm_substream *substream)
957 {
958         struct snd_soc_pcm_runtime *rtd = substream->private_data;
959         struct snd_soc_platform *platform = rtd->platform;
960         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
961         struct snd_soc_dai *codec_dai = rtd->codec_dai;
962         struct snd_pcm_runtime *runtime = substream->runtime;
963         snd_pcm_uframes_t offset = 0;
964         snd_pcm_sframes_t delay = 0;
965
966         if (platform->driver->ops->pointer)
967                 offset = platform->driver->ops->pointer(substream);
968
969         if (cpu_dai->driver->ops->delay)
970                 delay += cpu_dai->driver->ops->delay(substream, cpu_dai);
971
972         if (codec_dai->driver->ops->delay)
973                 delay += codec_dai->driver->ops->delay(substream, codec_dai);
974
975         if (platform->driver->delay)
976                 delay += platform->driver->delay(substream, codec_dai);
977
978         runtime->delay = delay;
979
980         return offset;
981 }
982
983 /* ASoC PCM operations */
984 static struct snd_pcm_ops soc_pcm_ops = {
985         .open           = soc_pcm_open,
986         .close          = soc_codec_close,
987         .hw_params      = soc_pcm_hw_params,
988         .hw_free        = soc_pcm_hw_free,
989         .prepare        = soc_pcm_prepare,
990         .trigger        = soc_pcm_trigger,
991         .pointer        = soc_pcm_pointer,
992 };
993
994 #ifdef CONFIG_PM_SLEEP
995 /* powers down audio subsystem for suspend */
996 int snd_soc_suspend(struct device *dev)
997 {
998         struct snd_soc_card *card = dev_get_drvdata(dev);
999         struct snd_soc_codec *codec;
1000         int i;
1001
1002         /* If the initialization of this soc device failed, there is no codec
1003          * associated with it. Just bail out in this case.
1004          */
1005         if (list_empty(&card->codec_dev_list))
1006                 return 0;
1007
1008         /* Due to the resume being scheduled into a workqueue we could
1009         * suspend before that's finished - wait for it to complete.
1010          */
1011         snd_power_lock(card->snd_card);
1012         snd_power_wait(card->snd_card, SNDRV_CTL_POWER_D0);
1013         snd_power_unlock(card->snd_card);
1014
1015         /* we're going to block userspace touching us until resume completes */
1016         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D3hot);
1017
1018         /* mute any active DACs */
1019         for (i = 0; i < card->num_rtd; i++) {
1020                 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1021                 struct snd_soc_dai_driver *drv = dai->driver;
1022
1023                 if (card->rtd[i].dai_link->ignore_suspend)
1024                         continue;
1025
1026                 if (drv->ops->digital_mute && dai->playback_active)
1027                         drv->ops->digital_mute(dai, 1);
1028         }
1029
1030         /* suspend all pcms */
1031         for (i = 0; i < card->num_rtd; i++) {
1032                 if (card->rtd[i].dai_link->ignore_suspend)
1033                         continue;
1034
1035                 snd_pcm_suspend_all(card->rtd[i].pcm);
1036         }
1037
1038         if (card->suspend_pre)
1039                 card->suspend_pre(card);
1040
1041         for (i = 0; i < card->num_rtd; i++) {
1042                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1043                 struct snd_soc_platform *platform = card->rtd[i].platform;
1044
1045                 if (card->rtd[i].dai_link->ignore_suspend)
1046                         continue;
1047
1048                 if (cpu_dai->driver->suspend && !cpu_dai->driver->ac97_control)
1049                         cpu_dai->driver->suspend(cpu_dai);
1050                 if (platform->driver->suspend && !platform->suspended) {
1051                         platform->driver->suspend(cpu_dai);
1052                         platform->suspended = 1;
1053                 }
1054         }
1055
1056         /* close any waiting streams and save state */
1057         for (i = 0; i < card->num_rtd; i++) {
1058                 flush_delayed_work_sync(&card->rtd[i].delayed_work);
1059                 card->rtd[i].codec->dapm.suspend_bias_level = card->rtd[i].codec->dapm.bias_level;
1060         }
1061
1062         for (i = 0; i < card->num_rtd; i++) {
1063                 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1064
1065                 if (card->rtd[i].dai_link->ignore_suspend)
1066                         continue;
1067
1068                 if (driver->playback.stream_name != NULL)
1069                         snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1070                                 SND_SOC_DAPM_STREAM_SUSPEND);
1071
1072                 if (driver->capture.stream_name != NULL)
1073                         snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1074                                 SND_SOC_DAPM_STREAM_SUSPEND);
1075         }
1076
1077         /* suspend all CODECs */
1078         list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1079                 /* If there are paths active then the CODEC will be held with
1080                  * bias _ON and should not be suspended. */
1081                 if (!codec->suspended && codec->driver->suspend) {
1082                         switch (codec->dapm.bias_level) {
1083                         case SND_SOC_BIAS_STANDBY:
1084                         case SND_SOC_BIAS_OFF:
1085                                 codec->driver->suspend(codec, PMSG_SUSPEND);
1086                                 codec->suspended = 1;
1087                                 break;
1088                         default:
1089                                 dev_dbg(codec->dev, "CODEC is on over suspend\n");
1090                                 break;
1091                         }
1092                 }
1093         }
1094
1095         for (i = 0; i < card->num_rtd; i++) {
1096                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1097
1098                 if (card->rtd[i].dai_link->ignore_suspend)
1099                         continue;
1100
1101                 if (cpu_dai->driver->suspend && cpu_dai->driver->ac97_control)
1102                         cpu_dai->driver->suspend(cpu_dai);
1103         }
1104
1105         if (card->suspend_post)
1106                 card->suspend_post(card);
1107
1108         return 0;
1109 }
1110 EXPORT_SYMBOL_GPL(snd_soc_suspend);
1111
1112 /* deferred resume work, so resume can complete before we finished
1113  * setting our codec back up, which can be very slow on I2C
1114  */
1115 static void soc_resume_deferred(struct work_struct *work)
1116 {
1117         struct snd_soc_card *card =
1118                         container_of(work, struct snd_soc_card, deferred_resume_work);
1119         struct snd_soc_codec *codec;
1120         int i;
1121
1122         /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
1123          * so userspace apps are blocked from touching us
1124          */
1125
1126         dev_dbg(card->dev, "starting resume work\n");
1127
1128         /* Bring us up into D2 so that DAPM starts enabling things */
1129         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D2);
1130
1131         if (card->resume_pre)
1132                 card->resume_pre(card);
1133
1134         /* resume AC97 DAIs */
1135         for (i = 0; i < card->num_rtd; i++) {
1136                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1137
1138                 if (card->rtd[i].dai_link->ignore_suspend)
1139                         continue;
1140
1141                 if (cpu_dai->driver->resume && cpu_dai->driver->ac97_control)
1142                         cpu_dai->driver->resume(cpu_dai);
1143         }
1144
1145         list_for_each_entry(codec, &card->codec_dev_list, card_list) {
1146                 /* If the CODEC was idle over suspend then it will have been
1147                  * left with bias OFF or STANDBY and suspended so we must now
1148                  * resume.  Otherwise the suspend was suppressed.
1149                  */
1150                 if (codec->driver->resume && codec->suspended) {
1151                         switch (codec->dapm.bias_level) {
1152                         case SND_SOC_BIAS_STANDBY:
1153                         case SND_SOC_BIAS_OFF:
1154                                 codec->driver->resume(codec);
1155                                 codec->suspended = 0;
1156                                 break;
1157                         default:
1158                                 dev_dbg(codec->dev, "CODEC was on over suspend\n");
1159                                 break;
1160                         }
1161                 }
1162         }
1163
1164         for (i = 0; i < card->num_rtd; i++) {
1165                 struct snd_soc_dai_driver *driver = card->rtd[i].codec_dai->driver;
1166
1167                 if (card->rtd[i].dai_link->ignore_suspend)
1168                         continue;
1169
1170                 if (driver->playback.stream_name != NULL)
1171                         snd_soc_dapm_stream_event(&card->rtd[i], driver->playback.stream_name,
1172                                 SND_SOC_DAPM_STREAM_RESUME);
1173
1174                 if (driver->capture.stream_name != NULL)
1175                         snd_soc_dapm_stream_event(&card->rtd[i], driver->capture.stream_name,
1176                                 SND_SOC_DAPM_STREAM_RESUME);
1177         }
1178
1179         /* unmute any active DACs */
1180         for (i = 0; i < card->num_rtd; i++) {
1181                 struct snd_soc_dai *dai = card->rtd[i].codec_dai;
1182                 struct snd_soc_dai_driver *drv = dai->driver;
1183
1184                 if (card->rtd[i].dai_link->ignore_suspend)
1185                         continue;
1186
1187                 if (drv->ops->digital_mute && dai->playback_active)
1188                         drv->ops->digital_mute(dai, 0);
1189         }
1190
1191         for (i = 0; i < card->num_rtd; i++) {
1192                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1193                 struct snd_soc_platform *platform = card->rtd[i].platform;
1194
1195                 if (card->rtd[i].dai_link->ignore_suspend)
1196                         continue;
1197
1198                 if (cpu_dai->driver->resume && !cpu_dai->driver->ac97_control)
1199                         cpu_dai->driver->resume(cpu_dai);
1200                 if (platform->driver->resume && platform->suspended) {
1201                         platform->driver->resume(cpu_dai);
1202                         platform->suspended = 0;
1203                 }
1204         }
1205
1206         if (card->resume_post)
1207                 card->resume_post(card);
1208
1209         dev_dbg(card->dev, "resume work completed\n");
1210
1211         /* userspace can access us now we are back as we were before */
1212         snd_power_change_state(card->snd_card, SNDRV_CTL_POWER_D0);
1213 }
1214
1215 /* powers up audio subsystem after a suspend */
1216 int snd_soc_resume(struct device *dev)
1217 {
1218         struct snd_soc_card *card = dev_get_drvdata(dev);
1219         int i;
1220
1221         /* AC97 devices might have other drivers hanging off them so
1222          * need to resume immediately.  Other drivers don't have that
1223          * problem and may take a substantial amount of time to resume
1224          * due to I/O costs and anti-pop so handle them out of line.
1225          */
1226         for (i = 0; i < card->num_rtd; i++) {
1227                 struct snd_soc_dai *cpu_dai = card->rtd[i].cpu_dai;
1228                 if (cpu_dai->driver->ac97_control) {
1229                         dev_dbg(dev, "Resuming AC97 immediately\n");
1230                         soc_resume_deferred(&card->deferred_resume_work);
1231                 } else {
1232                         dev_dbg(dev, "Scheduling resume work\n");
1233                         if (!schedule_work(&card->deferred_resume_work))
1234                                 dev_err(dev, "resume work item may be lost\n");
1235                 }
1236         }
1237
1238         return 0;
1239 }
1240 EXPORT_SYMBOL_GPL(snd_soc_resume);
1241 #else
1242 #define snd_soc_suspend NULL
1243 #define snd_soc_resume NULL
1244 #endif
1245
1246 static struct snd_soc_dai_ops null_dai_ops = {
1247 };
1248
1249 static int soc_bind_dai_link(struct snd_soc_card *card, int num)
1250 {
1251         struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1252         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1253         struct snd_soc_codec *codec;
1254         struct snd_soc_platform *platform;
1255         struct snd_soc_dai *codec_dai, *cpu_dai;
1256
1257         if (rtd->complete)
1258                 return 1;
1259         dev_dbg(card->dev, "binding %s at idx %d\n", dai_link->name, num);
1260
1261         /* do we already have the CPU DAI for this link ? */
1262         if (rtd->cpu_dai) {
1263                 goto find_codec;
1264         }
1265         /* no, then find CPU DAI from registered DAIs*/
1266         list_for_each_entry(cpu_dai, &dai_list, list) {
1267                 if (!strcmp(cpu_dai->name, dai_link->cpu_dai_name)) {
1268
1269                         if (!try_module_get(cpu_dai->dev->driver->owner))
1270                                 return -ENODEV;
1271
1272                         rtd->cpu_dai = cpu_dai;
1273                         goto find_codec;
1274                 }
1275         }
1276         dev_dbg(card->dev, "CPU DAI %s not registered\n",
1277                         dai_link->cpu_dai_name);
1278
1279 find_codec:
1280         /* do we already have the CODEC for this link ? */
1281         if (rtd->codec) {
1282                 goto find_platform;
1283         }
1284
1285         /* no, then find CODEC from registered CODECs*/
1286         list_for_each_entry(codec, &codec_list, list) {
1287                 if (!strcmp(codec->name, dai_link->codec_name)) {
1288                         rtd->codec = codec;
1289
1290                         /* CODEC found, so find CODEC DAI from registered DAIs from this CODEC*/
1291                         list_for_each_entry(codec_dai, &dai_list, list) {
1292                                 if (codec->dev == codec_dai->dev &&
1293                                                 !strcmp(codec_dai->name, dai_link->codec_dai_name)) {
1294                                         rtd->codec_dai = codec_dai;
1295                                         goto find_platform;
1296                                 }
1297                         }
1298                         dev_dbg(card->dev, "CODEC DAI %s not registered\n",
1299                                         dai_link->codec_dai_name);
1300
1301                         goto find_platform;
1302                 }
1303         }
1304         dev_dbg(card->dev, "CODEC %s not registered\n",
1305                         dai_link->codec_name);
1306
1307 find_platform:
1308         /* do we already have the CODEC DAI for this link ? */
1309         if (rtd->platform) {
1310                 goto out;
1311         }
1312         /* no, then find CPU DAI from registered DAIs*/
1313         list_for_each_entry(platform, &platform_list, list) {
1314                 if (!strcmp(platform->name, dai_link->platform_name)) {
1315                         rtd->platform = platform;
1316                         goto out;
1317                 }
1318         }
1319
1320         dev_dbg(card->dev, "platform %s not registered\n",
1321                         dai_link->platform_name);
1322         return 0;
1323
1324 out:
1325         /* mark rtd as complete if we found all 4 of our client devices */
1326         if (rtd->codec && rtd->codec_dai && rtd->platform && rtd->cpu_dai) {
1327                 rtd->complete = 1;
1328                 card->num_rtd++;
1329         }
1330         return 1;
1331 }
1332
1333 static void soc_remove_codec(struct snd_soc_codec *codec)
1334 {
1335         int err;
1336
1337         if (codec->driver->remove) {
1338                 err = codec->driver->remove(codec);
1339                 if (err < 0)
1340                         dev_err(codec->dev,
1341                                 "asoc: failed to remove %s: %d\n",
1342                                 codec->name, err);
1343         }
1344
1345         /* Make sure all DAPM widgets are freed */
1346         snd_soc_dapm_free(&codec->dapm);
1347
1348         soc_cleanup_codec_debugfs(codec);
1349         codec->probed = 0;
1350         list_del(&codec->card_list);
1351         module_put(codec->dev->driver->owner);
1352 }
1353
1354 static void soc_remove_dai_link(struct snd_soc_card *card, int num)
1355 {
1356         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1357         struct snd_soc_codec *codec = rtd->codec;
1358         struct snd_soc_platform *platform = rtd->platform;
1359         struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1360         int err;
1361
1362         /* unregister the rtd device */
1363         if (rtd->dev_registered) {
1364                 device_remove_file(&rtd->dev, &dev_attr_pmdown_time);
1365                 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1366                 device_unregister(&rtd->dev);
1367                 rtd->dev_registered = 0;
1368         }
1369
1370         /* remove the CODEC DAI */
1371         if (codec_dai && codec_dai->probed) {
1372                 if (codec_dai->driver->remove) {
1373                         err = codec_dai->driver->remove(codec_dai);
1374                         if (err < 0)
1375                                 printk(KERN_ERR "asoc: failed to remove %s\n", codec_dai->name);
1376                 }
1377                 codec_dai->probed = 0;
1378                 list_del(&codec_dai->card_list);
1379         }
1380
1381         /* remove the platform */
1382         if (platform && platform->probed) {
1383                 if (platform->driver->remove) {
1384                         err = platform->driver->remove(platform);
1385                         if (err < 0)
1386                                 printk(KERN_ERR "asoc: failed to remove %s\n", platform->name);
1387                 }
1388                 platform->probed = 0;
1389                 list_del(&platform->card_list);
1390                 module_put(platform->dev->driver->owner);
1391         }
1392
1393         /* remove the CODEC */
1394         if (codec && codec->probed)
1395                 soc_remove_codec(codec);
1396
1397         /* remove the cpu_dai */
1398         if (cpu_dai && cpu_dai->probed) {
1399                 if (cpu_dai->driver->remove) {
1400                         err = cpu_dai->driver->remove(cpu_dai);
1401                         if (err < 0)
1402                                 printk(KERN_ERR "asoc: failed to remove %s\n", cpu_dai->name);
1403                 }
1404                 cpu_dai->probed = 0;
1405                 list_del(&cpu_dai->card_list);
1406                 module_put(cpu_dai->dev->driver->owner);
1407         }
1408 }
1409
1410 static void soc_set_name_prefix(struct snd_soc_card *card,
1411                                 struct snd_soc_codec *codec)
1412 {
1413         int i;
1414
1415         if (card->codec_conf == NULL)
1416                 return;
1417
1418         for (i = 0; i < card->num_configs; i++) {
1419                 struct snd_soc_codec_conf *map = &card->codec_conf[i];
1420                 if (map->dev_name && !strcmp(codec->name, map->dev_name)) {
1421                         codec->name_prefix = map->name_prefix;
1422                         break;
1423                 }
1424         }
1425 }
1426
1427 static int soc_probe_codec(struct snd_soc_card *card,
1428                            struct snd_soc_codec *codec)
1429 {
1430         int ret = 0;
1431
1432         codec->card = card;
1433         codec->dapm.card = card;
1434         soc_set_name_prefix(card, codec);
1435
1436         if (!try_module_get(codec->dev->driver->owner))
1437                 return -ENODEV;
1438
1439         if (codec->driver->probe) {
1440                 ret = codec->driver->probe(codec);
1441                 if (ret < 0) {
1442                         dev_err(codec->dev,
1443                                 "asoc: failed to probe CODEC %s: %d\n",
1444                                 codec->name, ret);
1445                         goto err_probe;
1446                 }
1447         }
1448
1449         soc_init_codec_debugfs(codec);
1450
1451         /* mark codec as probed and add to card codec list */
1452         codec->probed = 1;
1453         list_add(&codec->card_list, &card->codec_dev_list);
1454         list_add(&codec->dapm.list, &card->dapm_list);
1455
1456         return 0;
1457
1458 err_probe:
1459         module_put(codec->dev->driver->owner);
1460
1461         return ret;
1462 }
1463
1464 static void rtd_release(struct device *dev) {}
1465
1466 static int soc_post_component_init(struct snd_soc_card *card,
1467                                    struct snd_soc_codec *codec,
1468                                    int num, int dailess)
1469 {
1470         struct snd_soc_dai_link *dai_link = NULL;
1471         struct snd_soc_aux_dev *aux_dev = NULL;
1472         struct snd_soc_pcm_runtime *rtd;
1473         const char *temp, *name;
1474         int ret = 0;
1475
1476         if (!dailess) {
1477                 dai_link = &card->dai_link[num];
1478                 rtd = &card->rtd[num];
1479                 name = dai_link->name;
1480         } else {
1481                 aux_dev = &card->aux_dev[num];
1482                 rtd = &card->rtd_aux[num];
1483                 name = aux_dev->name;
1484         }
1485
1486         /* machine controls, routes and widgets are not prefixed */
1487         temp = codec->name_prefix;
1488         codec->name_prefix = NULL;
1489
1490         /* do machine specific initialization */
1491         if (!dailess && dai_link->init)
1492                 ret = dai_link->init(rtd);
1493         else if (dailess && aux_dev->init)
1494                 ret = aux_dev->init(&codec->dapm);
1495         if (ret < 0) {
1496                 dev_err(card->dev, "asoc: failed to init %s: %d\n", name, ret);
1497                 return ret;
1498         }
1499         codec->name_prefix = temp;
1500
1501         /* Make sure all DAPM widgets are instantiated */
1502         snd_soc_dapm_new_widgets(&codec->dapm);
1503
1504         /* register the rtd device */
1505         rtd->codec = codec;
1506         rtd->card = card;
1507         rtd->dev.parent = card->dev;
1508         rtd->dev.release = rtd_release;
1509         rtd->dev.init_name = name;
1510         ret = device_register(&rtd->dev);
1511         if (ret < 0) {
1512                 dev_err(card->dev,
1513                         "asoc: failed to register runtime device: %d\n", ret);
1514                 return ret;
1515         }
1516         rtd->dev_registered = 1;
1517
1518         /* add DAPM sysfs entries for this codec */
1519         ret = snd_soc_dapm_sys_add(&rtd->dev);
1520         if (ret < 0)
1521                 dev_err(codec->dev,
1522                         "asoc: failed to add codec dapm sysfs entries: %d\n",
1523                         ret);
1524
1525         /* add codec sysfs entries */
1526         ret = device_create_file(&rtd->dev, &dev_attr_codec_reg);
1527         if (ret < 0)
1528                 dev_err(codec->dev,
1529                         "asoc: failed to add codec sysfs files: %d\n", ret);
1530
1531         return 0;
1532 }
1533
1534 static int soc_probe_dai_link(struct snd_soc_card *card, int num)
1535 {
1536         struct snd_soc_dai_link *dai_link = &card->dai_link[num];
1537         struct snd_soc_pcm_runtime *rtd = &card->rtd[num];
1538         struct snd_soc_codec *codec = rtd->codec;
1539         struct snd_soc_platform *platform = rtd->platform;
1540         struct snd_soc_dai *codec_dai = rtd->codec_dai, *cpu_dai = rtd->cpu_dai;
1541         int ret;
1542
1543         dev_dbg(card->dev, "probe %s dai link %d\n", card->name, num);
1544
1545         /* config components */
1546         codec_dai->codec = codec;
1547         cpu_dai->platform = platform;
1548         codec_dai->card = card;
1549         cpu_dai->card = card;
1550
1551         /* set default power off timeout */
1552         rtd->pmdown_time = pmdown_time;
1553
1554         /* probe the cpu_dai */
1555         if (!cpu_dai->probed) {
1556                 if (cpu_dai->driver->probe) {
1557                         ret = cpu_dai->driver->probe(cpu_dai);
1558                         if (ret < 0) {
1559                                 printk(KERN_ERR "asoc: failed to probe CPU DAI %s\n",
1560                                                 cpu_dai->name);
1561                                 return ret;
1562                         }
1563                 }
1564                 cpu_dai->probed = 1;
1565                 /* mark cpu_dai as probed and add to card cpu_dai list */
1566                 list_add(&cpu_dai->card_list, &card->dai_dev_list);
1567         }
1568
1569         /* probe the CODEC */
1570         if (!codec->probed) {
1571                 ret = soc_probe_codec(card, codec);
1572                 if (ret < 0)
1573                         return ret;
1574         }
1575
1576         /* probe the platform */
1577         if (!platform->probed) {
1578                 if (!try_module_get(platform->dev->driver->owner))
1579                         return -ENODEV;
1580
1581                 if (platform->driver->probe) {
1582                         ret = platform->driver->probe(platform);
1583                         if (ret < 0) {
1584                                 printk(KERN_ERR "asoc: failed to probe platform %s\n",
1585                                                 platform->name);
1586                                 module_put(platform->dev->driver->owner);
1587                                 return ret;
1588                         }
1589                 }
1590                 /* mark platform as probed and add to card platform list */
1591                 platform->probed = 1;
1592                 list_add(&platform->card_list, &card->platform_dev_list);
1593         }
1594
1595         /* probe the CODEC DAI */
1596         if (!codec_dai->probed) {
1597                 if (codec_dai->driver->probe) {
1598                         ret = codec_dai->driver->probe(codec_dai);
1599                         if (ret < 0) {
1600                                 printk(KERN_ERR "asoc: failed to probe CODEC DAI %s\n",
1601                                                 codec_dai->name);
1602                                 return ret;
1603                         }
1604                 }
1605
1606                 /* mark cpu_dai as probed and add to card cpu_dai list */
1607                 codec_dai->probed = 1;
1608                 list_add(&codec_dai->card_list, &card->dai_dev_list);
1609         }
1610
1611         /* DAPM dai link stream work */
1612         INIT_DELAYED_WORK(&rtd->delayed_work, close_delayed_work);
1613
1614         ret = soc_post_component_init(card, codec, num, 0);
1615         if (ret)
1616                 return ret;
1617
1618         ret = device_create_file(&rtd->dev, &dev_attr_pmdown_time);
1619         if (ret < 0)
1620                 printk(KERN_WARNING "asoc: failed to add pmdown_time sysfs\n");
1621
1622         /* create the pcm */
1623         ret = soc_new_pcm(rtd, num);
1624         if (ret < 0) {
1625                 printk(KERN_ERR "asoc: can't create pcm %s\n", dai_link->stream_name);
1626                 return ret;
1627         }
1628
1629         /* add platform data for AC97 devices */
1630         if (rtd->codec_dai->driver->ac97_control)
1631                 snd_ac97_dev_add_pdata(codec->ac97, rtd->cpu_dai->ac97_pdata);
1632
1633         return 0;
1634 }
1635
1636 #ifdef CONFIG_SND_SOC_AC97_BUS
1637 static int soc_register_ac97_dai_link(struct snd_soc_pcm_runtime *rtd)
1638 {
1639         int ret;
1640
1641         /* Only instantiate AC97 if not already done by the adaptor
1642          * for the generic AC97 subsystem.
1643          */
1644         if (rtd->codec_dai->driver->ac97_control && !rtd->codec->ac97_registered) {
1645                 /*
1646                  * It is possible that the AC97 device is already registered to
1647                  * the device subsystem. This happens when the device is created
1648                  * via snd_ac97_mixer(). Currently only SoC codec that does so
1649                  * is the generic AC97 glue but others migh emerge.
1650                  *
1651                  * In those cases we don't try to register the device again.
1652                  */
1653                 if (!rtd->codec->ac97_created)
1654                         return 0;
1655
1656                 ret = soc_ac97_dev_register(rtd->codec);
1657                 if (ret < 0) {
1658                         printk(KERN_ERR "asoc: AC97 device register failed\n");
1659                         return ret;
1660                 }
1661
1662                 rtd->codec->ac97_registered = 1;
1663         }
1664         return 0;
1665 }
1666
1667 static void soc_unregister_ac97_dai_link(struct snd_soc_codec *codec)
1668 {
1669         if (codec->ac97_registered) {
1670                 soc_ac97_dev_unregister(codec);
1671                 codec->ac97_registered = 0;
1672         }
1673 }
1674 #endif
1675
1676 static int soc_probe_aux_dev(struct snd_soc_card *card, int num)
1677 {
1678         struct snd_soc_aux_dev *aux_dev = &card->aux_dev[num];
1679         struct snd_soc_codec *codec;
1680         int ret = -ENODEV;
1681
1682         /* find CODEC from registered CODECs*/
1683         list_for_each_entry(codec, &codec_list, list) {
1684                 if (!strcmp(codec->name, aux_dev->codec_name)) {
1685                         if (codec->probed) {
1686                                 dev_err(codec->dev,
1687                                         "asoc: codec already probed");
1688                                 ret = -EBUSY;
1689                                 goto out;
1690                         }
1691                         goto found;
1692                 }
1693         }
1694         /* codec not found */
1695         dev_err(card->dev, "asoc: codec %s not found", aux_dev->codec_name);
1696         goto out;
1697
1698 found:
1699         ret = soc_probe_codec(card, codec);
1700         if (ret < 0)
1701                 return ret;
1702
1703         ret = soc_post_component_init(card, codec, num, 1);
1704
1705 out:
1706         return ret;
1707 }
1708
1709 static void soc_remove_aux_dev(struct snd_soc_card *card, int num)
1710 {
1711         struct snd_soc_pcm_runtime *rtd = &card->rtd_aux[num];
1712         struct snd_soc_codec *codec = rtd->codec;
1713
1714         /* unregister the rtd device */
1715         if (rtd->dev_registered) {
1716                 device_remove_file(&rtd->dev, &dev_attr_codec_reg);
1717                 device_unregister(&rtd->dev);
1718                 rtd->dev_registered = 0;
1719         }
1720
1721         if (codec && codec->probed)
1722                 soc_remove_codec(codec);
1723 }
1724
1725 static int snd_soc_init_codec_cache(struct snd_soc_codec *codec,
1726                                     enum snd_soc_compress_type compress_type)
1727 {
1728         int ret;
1729
1730         if (codec->cache_init)
1731                 return 0;
1732
1733         /* override the compress_type if necessary */
1734         if (compress_type && codec->compress_type != compress_type)
1735                 codec->compress_type = compress_type;
1736         ret = snd_soc_cache_init(codec);
1737         if (ret < 0) {
1738                 dev_err(codec->dev, "Failed to set cache compression type: %d\n",
1739                         ret);
1740                 return ret;
1741         }
1742         codec->cache_init = 1;
1743         return 0;
1744 }
1745
1746 static void snd_soc_instantiate_card(struct snd_soc_card *card)
1747 {
1748         struct snd_soc_codec *codec;
1749         struct snd_soc_codec_conf *codec_conf;
1750         enum snd_soc_compress_type compress_type;
1751         int ret, i;
1752
1753         mutex_lock(&card->mutex);
1754
1755         if (card->instantiated) {
1756                 mutex_unlock(&card->mutex);
1757                 return;
1758         }
1759
1760         /* bind DAIs */
1761         for (i = 0; i < card->num_links; i++)
1762                 soc_bind_dai_link(card, i);
1763
1764         /* bind completed ? */
1765         if (card->num_rtd != card->num_links) {
1766                 mutex_unlock(&card->mutex);
1767                 return;
1768         }
1769
1770         /* initialize the register cache for each available codec */
1771         list_for_each_entry(codec, &codec_list, list) {
1772                 if (codec->cache_init)
1773                         continue;
1774                 /* by default we don't override the compress_type */
1775                 compress_type = 0;
1776                 /* check to see if we need to override the compress_type */
1777                 for (i = 0; i < card->num_configs; ++i) {
1778                         codec_conf = &card->codec_conf[i];
1779                         if (!strcmp(codec->name, codec_conf->dev_name)) {
1780                                 compress_type = codec_conf->compress_type;
1781                                 if (compress_type && compress_type
1782                                     != codec->compress_type)
1783                                         break;
1784                         }
1785                 }
1786                 ret = snd_soc_init_codec_cache(codec, compress_type);
1787                 if (ret < 0) {
1788                         mutex_unlock(&card->mutex);
1789                         return;
1790                 }
1791         }
1792
1793         /* card bind complete so register a sound card */
1794         ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
1795                         card->owner, 0, &card->snd_card);
1796         if (ret < 0) {
1797                 printk(KERN_ERR "asoc: can't create sound card for card %s\n",
1798                         card->name);
1799                 mutex_unlock(&card->mutex);
1800                 return;
1801         }
1802         card->snd_card->dev = card->dev;
1803
1804 #ifdef CONFIG_PM
1805         /* deferred resume work */
1806         INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1807 #endif
1808
1809         /* initialise the sound card only once */
1810         if (card->probe) {
1811                 ret = card->probe(card);
1812                 if (ret < 0)
1813                         goto card_probe_error;
1814         }
1815
1816         for (i = 0; i < card->num_links; i++) {
1817                 ret = soc_probe_dai_link(card, i);
1818                 if (ret < 0) {
1819                         pr_err("asoc: failed to instantiate card %s: %d\n",
1820                                card->name, ret);
1821                         goto probe_dai_err;
1822                 }
1823         }
1824
1825         for (i = 0; i < card->num_aux_devs; i++) {
1826                 ret = soc_probe_aux_dev(card, i);
1827                 if (ret < 0) {
1828                         pr_err("asoc: failed to add auxiliary devices %s: %d\n",
1829                                card->name, ret);
1830                         goto probe_aux_dev_err;
1831                 }
1832         }
1833
1834         snprintf(card->snd_card->shortname, sizeof(card->snd_card->shortname),
1835                  "%s",  card->name);
1836         snprintf(card->snd_card->longname, sizeof(card->snd_card->longname),
1837                  "%s", card->name);
1838
1839         ret = snd_card_register(card->snd_card);
1840         if (ret < 0) {
1841                 printk(KERN_ERR "asoc: failed to register soundcard for %s\n", card->name);
1842                 goto probe_aux_dev_err;
1843         }
1844
1845 #ifdef CONFIG_SND_SOC_AC97_BUS
1846         /* register any AC97 codecs */
1847         for (i = 0; i < card->num_rtd; i++) {
1848                 ret = soc_register_ac97_dai_link(&card->rtd[i]);
1849                 if (ret < 0) {
1850                         printk(KERN_ERR "asoc: failed to register AC97 %s\n", card->name);
1851                         while (--i >= 0)
1852                                 soc_unregister_ac97_dai_link(card->rtd[i].codec);
1853                         goto probe_aux_dev_err;
1854                 }
1855         }
1856 #endif
1857
1858         card->instantiated = 1;
1859         mutex_unlock(&card->mutex);
1860         return;
1861
1862 probe_aux_dev_err:
1863         for (i = 0; i < card->num_aux_devs; i++)
1864                 soc_remove_aux_dev(card, i);
1865
1866 probe_dai_err:
1867         for (i = 0; i < card->num_links; i++)
1868                 soc_remove_dai_link(card, i);
1869
1870 card_probe_error:
1871         if (card->remove)
1872                 card->remove(card);
1873
1874         snd_card_free(card->snd_card);
1875
1876         mutex_unlock(&card->mutex);
1877 }
1878
1879 /*
1880  * Attempt to initialise any uninitialised cards.  Must be called with
1881  * client_mutex.
1882  */
1883 static void snd_soc_instantiate_cards(void)
1884 {
1885         struct snd_soc_card *card;
1886         list_for_each_entry(card, &card_list, list)
1887                 snd_soc_instantiate_card(card);
1888 }
1889
1890 /* probes a new socdev */
1891 static int soc_probe(struct platform_device *pdev)
1892 {
1893         struct snd_soc_card *card = platform_get_drvdata(pdev);
1894         int ret = 0;
1895
1896         /*
1897          * no card, so machine driver should be registering card
1898          * we should not be here in that case so ret error
1899          */
1900         if (!card)
1901                 return -EINVAL;
1902
1903         /* Bodge while we unpick instantiation */
1904         card->dev = &pdev->dev;
1905
1906         ret = snd_soc_register_card(card);
1907         if (ret != 0) {
1908                 dev_err(&pdev->dev, "Failed to register card\n");
1909                 return ret;
1910         }
1911
1912         return 0;
1913 }
1914
1915 static int soc_cleanup_card_resources(struct snd_soc_card *card)
1916 {
1917         int i;
1918
1919         /* make sure any delayed work runs */
1920         for (i = 0; i < card->num_rtd; i++) {
1921                 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1922                 flush_delayed_work_sync(&rtd->delayed_work);
1923         }
1924
1925         /* remove auxiliary devices */
1926         for (i = 0; i < card->num_aux_devs; i++)
1927                 soc_remove_aux_dev(card, i);
1928
1929         /* remove and free each DAI */
1930         for (i = 0; i < card->num_rtd; i++)
1931                 soc_remove_dai_link(card, i);
1932
1933         soc_cleanup_card_debugfs(card);
1934
1935         /* remove the card */
1936         if (card->remove)
1937                 card->remove(card);
1938
1939         kfree(card->rtd);
1940         snd_card_free(card->snd_card);
1941         return 0;
1942
1943 }
1944
1945 /* removes a socdev */
1946 static int soc_remove(struct platform_device *pdev)
1947 {
1948         struct snd_soc_card *card = platform_get_drvdata(pdev);
1949
1950         snd_soc_unregister_card(card);
1951         return 0;
1952 }
1953
1954 int snd_soc_poweroff(struct device *dev)
1955 {
1956         struct snd_soc_card *card = dev_get_drvdata(dev);
1957         int i;
1958
1959         if (!card->instantiated)
1960                 return 0;
1961
1962         /* Flush out pmdown_time work - we actually do want to run it
1963          * now, we're shutting down so no imminent restart. */
1964         for (i = 0; i < card->num_rtd; i++) {
1965                 struct snd_soc_pcm_runtime *rtd = &card->rtd[i];
1966                 flush_delayed_work_sync(&rtd->delayed_work);
1967         }
1968
1969         snd_soc_dapm_shutdown(card);
1970
1971         return 0;
1972 }
1973 EXPORT_SYMBOL_GPL(snd_soc_poweroff);
1974
1975 const struct dev_pm_ops snd_soc_pm_ops = {
1976         .suspend = snd_soc_suspend,
1977         .resume = snd_soc_resume,
1978         .poweroff = snd_soc_poweroff,
1979 };
1980
1981 /* ASoC platform driver */
1982 static struct platform_driver soc_driver = {
1983         .driver         = {
1984                 .name           = "soc-audio",
1985                 .owner          = THIS_MODULE,
1986                 .pm             = &snd_soc_pm_ops,
1987         },
1988         .probe          = soc_probe,
1989         .remove         = soc_remove,
1990 };
1991
1992 /* create a new pcm */
1993 static int soc_new_pcm(struct snd_soc_pcm_runtime *rtd, int num)
1994 {
1995         struct snd_soc_codec *codec = rtd->codec;
1996         struct snd_soc_platform *platform = rtd->platform;
1997         struct snd_soc_dai *codec_dai = rtd->codec_dai;
1998         struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1999         struct snd_pcm *pcm;
2000         char new_name[64];
2001         int ret = 0, playback = 0, capture = 0;
2002
2003         /* check client and interface hw capabilities */
2004         snprintf(new_name, sizeof(new_name), "%s %s-%d",
2005                         rtd->dai_link->stream_name, codec_dai->name, num);
2006
2007         if (codec_dai->driver->playback.channels_min)
2008                 playback = 1;
2009         if (codec_dai->driver->capture.channels_min)
2010                 capture = 1;
2011
2012         dev_dbg(rtd->card->dev, "registered pcm #%d %s\n",num,new_name);
2013         ret = snd_pcm_new(rtd->card->snd_card, new_name,
2014                         num, playback, capture, &pcm);
2015         if (ret < 0) {
2016                 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
2017                 return ret;
2018         }
2019
2020         rtd->pcm = pcm;
2021         pcm->private_data = rtd;
2022         soc_pcm_ops.mmap = platform->driver->ops->mmap;
2023         soc_pcm_ops.pointer = platform->driver->ops->pointer;
2024         soc_pcm_ops.ioctl = platform->driver->ops->ioctl;
2025         soc_pcm_ops.copy = platform->driver->ops->copy;
2026         soc_pcm_ops.silence = platform->driver->ops->silence;
2027         soc_pcm_ops.ack = platform->driver->ops->ack;
2028         soc_pcm_ops.page = platform->driver->ops->page;
2029
2030         if (playback)
2031                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
2032
2033         if (capture)
2034                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
2035
2036         ret = platform->driver->pcm_new(rtd->card->snd_card, codec_dai, pcm);
2037         if (ret < 0) {
2038                 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
2039                 return ret;
2040         }
2041
2042         pcm->private_free = platform->driver->pcm_free;
2043         printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
2044                 cpu_dai->name);
2045         return ret;
2046 }
2047
2048 /**
2049  * snd_soc_codec_volatile_register: Report if a register is volatile.
2050  *
2051  * @codec: CODEC to query.
2052  * @reg: Register to query.
2053  *
2054  * Boolean function indiciating if a CODEC register is volatile.
2055  */
2056 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec,
2057                                     unsigned int reg)
2058 {
2059         if (codec->volatile_register)
2060                 return codec->volatile_register(codec, reg);
2061         else
2062                 return 0;
2063 }
2064 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
2065
2066 /**
2067  * snd_soc_new_ac97_codec - initailise AC97 device
2068  * @codec: audio codec
2069  * @ops: AC97 bus operations
2070  * @num: AC97 codec number
2071  *
2072  * Initialises AC97 codec resources for use by ad-hoc devices only.
2073  */
2074 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
2075         struct snd_ac97_bus_ops *ops, int num)
2076 {
2077         mutex_lock(&codec->mutex);
2078
2079         codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
2080         if (codec->ac97 == NULL) {
2081                 mutex_unlock(&codec->mutex);
2082                 return -ENOMEM;
2083         }
2084
2085         codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
2086         if (codec->ac97->bus == NULL) {
2087                 kfree(codec->ac97);
2088                 codec->ac97 = NULL;
2089                 mutex_unlock(&codec->mutex);
2090                 return -ENOMEM;
2091         }
2092
2093         codec->ac97->bus->ops = ops;
2094         codec->ac97->num = num;
2095
2096         /*
2097          * Mark the AC97 device to be created by us. This way we ensure that the
2098          * device will be registered with the device subsystem later on.
2099          */
2100         codec->ac97_created = 1;
2101
2102         mutex_unlock(&codec->mutex);
2103         return 0;
2104 }
2105 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
2106
2107 /**
2108  * snd_soc_free_ac97_codec - free AC97 codec device
2109  * @codec: audio codec
2110  *
2111  * Frees AC97 codec device resources.
2112  */
2113 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
2114 {
2115         mutex_lock(&codec->mutex);
2116 #ifdef CONFIG_SND_SOC_AC97_BUS
2117         soc_unregister_ac97_dai_link(codec);
2118 #endif
2119         kfree(codec->ac97->bus);
2120         kfree(codec->ac97);
2121         codec->ac97 = NULL;
2122         codec->ac97_created = 0;
2123         mutex_unlock(&codec->mutex);
2124 }
2125 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
2126
2127 unsigned int snd_soc_read(struct snd_soc_codec *codec, unsigned int reg)
2128 {
2129         unsigned int ret;
2130
2131         ret = codec->read(codec, reg);
2132         dev_dbg(codec->dev, "read %x => %x\n", reg, ret);
2133         trace_snd_soc_reg_read(codec, reg, ret);
2134
2135         return ret;
2136 }
2137 EXPORT_SYMBOL_GPL(snd_soc_read);
2138
2139 unsigned int snd_soc_write(struct snd_soc_codec *codec,
2140                            unsigned int reg, unsigned int val)
2141 {
2142         dev_dbg(codec->dev, "write %x = %x\n", reg, val);
2143         trace_snd_soc_reg_write(codec, reg, val);
2144         return codec->write(codec, reg, val);
2145 }
2146 EXPORT_SYMBOL_GPL(snd_soc_write);
2147
2148 /**
2149  * snd_soc_update_bits - update codec register bits
2150  * @codec: audio codec
2151  * @reg: codec register
2152  * @mask: register mask
2153  * @value: new value
2154  *
2155  * Writes new register value.
2156  *
2157  * Returns 1 for change, 0 for no change, or negative error code.
2158  */
2159 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
2160                                 unsigned int mask, unsigned int value)
2161 {
2162         int change;
2163         unsigned int old, new;
2164         int ret;
2165
2166         ret = snd_soc_read(codec, reg);
2167         if (ret < 0)
2168                 return ret;
2169
2170         old = ret;
2171         new = (old & ~mask) | value;
2172         change = old != new;
2173         if (change) {
2174                 ret = snd_soc_write(codec, reg, new);
2175                 if (ret < 0)
2176                         return ret;
2177         }
2178
2179         return change;
2180 }
2181 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
2182
2183 /**
2184  * snd_soc_update_bits_locked - update codec register bits
2185  * @codec: audio codec
2186  * @reg: codec register
2187  * @mask: register mask
2188  * @value: new value
2189  *
2190  * Writes new register value, and takes the codec mutex.
2191  *
2192  * Returns 1 for change else 0.
2193  */
2194 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
2195                                unsigned short reg, unsigned int mask,
2196                                unsigned int value)
2197 {
2198         int change;
2199
2200         mutex_lock(&codec->mutex);
2201         change = snd_soc_update_bits(codec, reg, mask, value);
2202         mutex_unlock(&codec->mutex);
2203
2204         return change;
2205 }
2206 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
2207
2208 /**
2209  * snd_soc_test_bits - test register for change
2210  * @codec: audio codec
2211  * @reg: codec register
2212  * @mask: register mask
2213  * @value: new value
2214  *
2215  * Tests a register with a new value and checks if the new value is
2216  * different from the old value.
2217  *
2218  * Returns 1 for change else 0.
2219  */
2220 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
2221                                 unsigned int mask, unsigned int value)
2222 {
2223         int change;
2224         unsigned int old, new;
2225
2226         old = snd_soc_read(codec, reg);
2227         new = (old & ~mask) | value;
2228         change = old != new;
2229
2230         return change;
2231 }
2232 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
2233
2234 /**
2235  * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
2236  * @substream: the pcm substream
2237  * @hw: the hardware parameters
2238  *
2239  * Sets the substream runtime hardware parameters.
2240  */
2241 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
2242         const struct snd_pcm_hardware *hw)
2243 {
2244         struct snd_pcm_runtime *runtime = substream->runtime;
2245         runtime->hw.info = hw->info;
2246         runtime->hw.formats = hw->formats;
2247         runtime->hw.period_bytes_min = hw->period_bytes_min;
2248         runtime->hw.period_bytes_max = hw->period_bytes_max;
2249         runtime->hw.periods_min = hw->periods_min;
2250         runtime->hw.periods_max = hw->periods_max;
2251         runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
2252         runtime->hw.fifo_size = hw->fifo_size;
2253         return 0;
2254 }
2255 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
2256
2257 /**
2258  * snd_soc_cnew - create new control
2259  * @_template: control template
2260  * @data: control private data
2261  * @long_name: control long name
2262  *
2263  * Create a new mixer control from a template control.
2264  *
2265  * Returns 0 for success, else error.
2266  */
2267 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
2268         void *data, char *long_name)
2269 {
2270         struct snd_kcontrol_new template;
2271
2272         memcpy(&template, _template, sizeof(template));
2273         if (long_name)
2274                 template.name = long_name;
2275         template.index = 0;
2276
2277         return snd_ctl_new1(&template, data);
2278 }
2279 EXPORT_SYMBOL_GPL(snd_soc_cnew);
2280
2281 /**
2282  * snd_soc_add_controls - add an array of controls to a codec.
2283  * Convienience function to add a list of controls. Many codecs were
2284  * duplicating this code.
2285  *
2286  * @codec: codec to add controls to
2287  * @controls: array of controls to add
2288  * @num_controls: number of elements in the array
2289  *
2290  * Return 0 for success, else error.
2291  */
2292 int snd_soc_add_controls(struct snd_soc_codec *codec,
2293         const struct snd_kcontrol_new *controls, int num_controls)
2294 {
2295         struct snd_card *card = codec->card->snd_card;
2296         char prefixed_name[44], *name;
2297         int err, i;
2298
2299         for (i = 0; i < num_controls; i++) {
2300                 const struct snd_kcontrol_new *control = &controls[i];
2301                 if (codec->name_prefix) {
2302                         snprintf(prefixed_name, sizeof(prefixed_name), "%s %s",
2303                                  codec->name_prefix, control->name);
2304                         name = prefixed_name;
2305                 } else {
2306                         name = control->name;
2307                 }
2308                 err = snd_ctl_add(card, snd_soc_cnew(control, codec, name));
2309                 if (err < 0) {
2310                         dev_err(codec->dev, "%s: Failed to add %s: %d\n",
2311                                 codec->name, name, err);
2312                         return err;
2313                 }
2314         }
2315
2316         return 0;
2317 }
2318 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
2319
2320 /**
2321  * snd_soc_info_enum_double - enumerated double mixer info callback
2322  * @kcontrol: mixer control
2323  * @uinfo: control element information
2324  *
2325  * Callback to provide information about a double enumerated
2326  * mixer control.
2327  *
2328  * Returns 0 for success.
2329  */
2330 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
2331         struct snd_ctl_elem_info *uinfo)
2332 {
2333         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2334
2335         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2336         uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
2337         uinfo->value.enumerated.items = e->max;
2338
2339         if (uinfo->value.enumerated.item > e->max - 1)
2340                 uinfo->value.enumerated.item = e->max - 1;
2341         strcpy(uinfo->value.enumerated.name,
2342                 e->texts[uinfo->value.enumerated.item]);
2343         return 0;
2344 }
2345 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
2346
2347 /**
2348  * snd_soc_get_enum_double - enumerated double mixer get callback
2349  * @kcontrol: mixer control
2350  * @ucontrol: control element information
2351  *
2352  * Callback to get the value of a double enumerated mixer.
2353  *
2354  * Returns 0 for success.
2355  */
2356 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
2357         struct snd_ctl_elem_value *ucontrol)
2358 {
2359         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2360         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2361         unsigned int val, bitmask;
2362
2363         for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2364                 ;
2365         val = snd_soc_read(codec, e->reg);
2366         ucontrol->value.enumerated.item[0]
2367                 = (val >> e->shift_l) & (bitmask - 1);
2368         if (e->shift_l != e->shift_r)
2369                 ucontrol->value.enumerated.item[1] =
2370                         (val >> e->shift_r) & (bitmask - 1);
2371
2372         return 0;
2373 }
2374 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
2375
2376 /**
2377  * snd_soc_put_enum_double - enumerated double mixer put callback
2378  * @kcontrol: mixer control
2379  * @ucontrol: control element information
2380  *
2381  * Callback to set the value of a double enumerated mixer.
2382  *
2383  * Returns 0 for success.
2384  */
2385 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
2386         struct snd_ctl_elem_value *ucontrol)
2387 {
2388         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2389         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2390         unsigned int val;
2391         unsigned int mask, bitmask;
2392
2393         for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
2394                 ;
2395         if (ucontrol->value.enumerated.item[0] > e->max - 1)
2396                 return -EINVAL;
2397         val = ucontrol->value.enumerated.item[0] << e->shift_l;
2398         mask = (bitmask - 1) << e->shift_l;
2399         if (e->shift_l != e->shift_r) {
2400                 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2401                         return -EINVAL;
2402                 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
2403                 mask |= (bitmask - 1) << e->shift_r;
2404         }
2405
2406         return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2407 }
2408 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
2409
2410 /**
2411  * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
2412  * @kcontrol: mixer control
2413  * @ucontrol: control element information
2414  *
2415  * Callback to get the value of a double semi enumerated mixer.
2416  *
2417  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2418  * used for handling bitfield coded enumeration for example.
2419  *
2420  * Returns 0 for success.
2421  */
2422 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
2423         struct snd_ctl_elem_value *ucontrol)
2424 {
2425         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2426         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2427         unsigned int reg_val, val, mux;
2428
2429         reg_val = snd_soc_read(codec, e->reg);
2430         val = (reg_val >> e->shift_l) & e->mask;
2431         for (mux = 0; mux < e->max; mux++) {
2432                 if (val == e->values[mux])
2433                         break;
2434         }
2435         ucontrol->value.enumerated.item[0] = mux;
2436         if (e->shift_l != e->shift_r) {
2437                 val = (reg_val >> e->shift_r) & e->mask;
2438                 for (mux = 0; mux < e->max; mux++) {
2439                         if (val == e->values[mux])
2440                                 break;
2441                 }
2442                 ucontrol->value.enumerated.item[1] = mux;
2443         }
2444
2445         return 0;
2446 }
2447 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
2448
2449 /**
2450  * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
2451  * @kcontrol: mixer control
2452  * @ucontrol: control element information
2453  *
2454  * Callback to set the value of a double semi enumerated mixer.
2455  *
2456  * Semi enumerated mixer: the enumerated items are referred as values. Can be
2457  * used for handling bitfield coded enumeration for example.
2458  *
2459  * Returns 0 for success.
2460  */
2461 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
2462         struct snd_ctl_elem_value *ucontrol)
2463 {
2464         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2465         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2466         unsigned int val;
2467         unsigned int mask;
2468
2469         if (ucontrol->value.enumerated.item[0] > e->max - 1)
2470                 return -EINVAL;
2471         val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
2472         mask = e->mask << e->shift_l;
2473         if (e->shift_l != e->shift_r) {
2474                 if (ucontrol->value.enumerated.item[1] > e->max - 1)
2475                         return -EINVAL;
2476                 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
2477                 mask |= e->mask << e->shift_r;
2478         }
2479
2480         return snd_soc_update_bits_locked(codec, e->reg, mask, val);
2481 }
2482 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
2483
2484 /**
2485  * snd_soc_info_enum_ext - external enumerated single mixer info callback
2486  * @kcontrol: mixer control
2487  * @uinfo: control element information
2488  *
2489  * Callback to provide information about an external enumerated
2490  * single mixer.
2491  *
2492  * Returns 0 for success.
2493  */
2494 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
2495         struct snd_ctl_elem_info *uinfo)
2496 {
2497         struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
2498
2499         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2500         uinfo->count = 1;
2501         uinfo->value.enumerated.items = e->max;
2502
2503         if (uinfo->value.enumerated.item > e->max - 1)
2504                 uinfo->value.enumerated.item = e->max - 1;
2505         strcpy(uinfo->value.enumerated.name,
2506                 e->texts[uinfo->value.enumerated.item]);
2507         return 0;
2508 }
2509 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
2510
2511 /**
2512  * snd_soc_info_volsw_ext - external single mixer info callback
2513  * @kcontrol: mixer control
2514  * @uinfo: control element information
2515  *
2516  * Callback to provide information about a single external mixer control.
2517  *
2518  * Returns 0 for success.
2519  */
2520 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
2521         struct snd_ctl_elem_info *uinfo)
2522 {
2523         int max = kcontrol->private_value;
2524
2525         if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
2526                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2527         else
2528                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2529
2530         uinfo->count = 1;
2531         uinfo->value.integer.min = 0;
2532         uinfo->value.integer.max = max;
2533         return 0;
2534 }
2535 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
2536
2537 /**
2538  * snd_soc_info_volsw - single mixer info callback
2539  * @kcontrol: mixer control
2540  * @uinfo: control element information
2541  *
2542  * Callback to provide information about a single mixer control.
2543  *
2544  * Returns 0 for success.
2545  */
2546 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
2547         struct snd_ctl_elem_info *uinfo)
2548 {
2549         struct soc_mixer_control *mc =
2550                 (struct soc_mixer_control *)kcontrol->private_value;
2551         int platform_max;
2552         unsigned int shift = mc->shift;
2553         unsigned int rshift = mc->rshift;
2554
2555         if (!mc->platform_max)
2556                 mc->platform_max = mc->max;
2557         platform_max = mc->platform_max;
2558
2559         if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2560                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2561         else
2562                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2563
2564         uinfo->count = shift == rshift ? 1 : 2;
2565         uinfo->value.integer.min = 0;
2566         uinfo->value.integer.max = platform_max;
2567         return 0;
2568 }
2569 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
2570
2571 /**
2572  * snd_soc_get_volsw - single mixer get callback
2573  * @kcontrol: mixer control
2574  * @ucontrol: control element information
2575  *
2576  * Callback to get the value of a single mixer control.
2577  *
2578  * Returns 0 for success.
2579  */
2580 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
2581         struct snd_ctl_elem_value *ucontrol)
2582 {
2583         struct soc_mixer_control *mc =
2584                 (struct soc_mixer_control *)kcontrol->private_value;
2585         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2586         unsigned int reg = mc->reg;
2587         unsigned int shift = mc->shift;
2588         unsigned int rshift = mc->rshift;
2589         int max = mc->max;
2590         unsigned int mask = (1 << fls(max)) - 1;
2591         unsigned int invert = mc->invert;
2592
2593         ucontrol->value.integer.value[0] =
2594                 (snd_soc_read(codec, reg) >> shift) & mask;
2595         if (shift != rshift)
2596                 ucontrol->value.integer.value[1] =
2597                         (snd_soc_read(codec, reg) >> rshift) & mask;
2598         if (invert) {
2599                 ucontrol->value.integer.value[0] =
2600                         max - ucontrol->value.integer.value[0];
2601                 if (shift != rshift)
2602                         ucontrol->value.integer.value[1] =
2603                                 max - ucontrol->value.integer.value[1];
2604         }
2605
2606         return 0;
2607 }
2608 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
2609
2610 /**
2611  * snd_soc_put_volsw - single mixer put callback
2612  * @kcontrol: mixer control
2613  * @ucontrol: control element information
2614  *
2615  * Callback to set the value of a single mixer control.
2616  *
2617  * Returns 0 for success.
2618  */
2619 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
2620         struct snd_ctl_elem_value *ucontrol)
2621 {
2622         struct soc_mixer_control *mc =
2623                 (struct soc_mixer_control *)kcontrol->private_value;
2624         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2625         unsigned int reg = mc->reg;
2626         unsigned int shift = mc->shift;
2627         unsigned int rshift = mc->rshift;
2628         int max = mc->max;
2629         unsigned int mask = (1 << fls(max)) - 1;
2630         unsigned int invert = mc->invert;
2631         unsigned int val, val2, val_mask;
2632
2633         val = (ucontrol->value.integer.value[0] & mask);
2634         if (invert)
2635                 val = max - val;
2636         val_mask = mask << shift;
2637         val = val << shift;
2638         if (shift != rshift) {
2639                 val2 = (ucontrol->value.integer.value[1] & mask);
2640                 if (invert)
2641                         val2 = max - val2;
2642                 val_mask |= mask << rshift;
2643                 val |= val2 << rshift;
2644         }
2645         return snd_soc_update_bits_locked(codec, reg, val_mask, val);
2646 }
2647 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
2648
2649 /**
2650  * snd_soc_info_volsw_2r - double mixer info callback
2651  * @kcontrol: mixer control
2652  * @uinfo: control element information
2653  *
2654  * Callback to provide information about a double mixer control that
2655  * spans 2 codec registers.
2656  *
2657  * Returns 0 for success.
2658  */
2659 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
2660         struct snd_ctl_elem_info *uinfo)
2661 {
2662         struct soc_mixer_control *mc =
2663                 (struct soc_mixer_control *)kcontrol->private_value;
2664         int platform_max;
2665
2666         if (!mc->platform_max)
2667                 mc->platform_max = mc->max;
2668         platform_max = mc->platform_max;
2669
2670         if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
2671                 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2672         else
2673                 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2674
2675         uinfo->count = 2;
2676         uinfo->value.integer.min = 0;
2677         uinfo->value.integer.max = platform_max;
2678         return 0;
2679 }
2680 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
2681
2682 /**
2683  * snd_soc_get_volsw_2r - double mixer get callback
2684  * @kcontrol: mixer control
2685  * @ucontrol: control element information
2686  *
2687  * Callback to get the value of a double mixer control that spans 2 registers.
2688  *
2689  * Returns 0 for success.
2690  */
2691 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2692         struct snd_ctl_elem_value *ucontrol)
2693 {
2694         struct soc_mixer_control *mc =
2695                 (struct soc_mixer_control *)kcontrol->private_value;
2696         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2697         unsigned int reg = mc->reg;
2698         unsigned int reg2 = mc->rreg;
2699         unsigned int shift = mc->shift;
2700         int max = mc->max;
2701         unsigned int mask = (1 << fls(max)) - 1;
2702         unsigned int invert = mc->invert;
2703
2704         ucontrol->value.integer.value[0] =
2705                 (snd_soc_read(codec, reg) >> shift) & mask;
2706         ucontrol->value.integer.value[1] =
2707                 (snd_soc_read(codec, reg2) >> shift) & mask;
2708         if (invert) {
2709                 ucontrol->value.integer.value[0] =
2710                         max - ucontrol->value.integer.value[0];
2711                 ucontrol->value.integer.value[1] =
2712                         max - ucontrol->value.integer.value[1];
2713         }
2714
2715         return 0;
2716 }
2717 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2718
2719 /**
2720  * snd_soc_put_volsw_2r - double mixer set callback
2721  * @kcontrol: mixer control
2722  * @ucontrol: control element information
2723  *
2724  * Callback to set the value of a double mixer control that spans 2 registers.
2725  *
2726  * Returns 0 for success.
2727  */
2728 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2729         struct snd_ctl_elem_value *ucontrol)
2730 {
2731         struct soc_mixer_control *mc =
2732                 (struct soc_mixer_control *)kcontrol->private_value;
2733         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2734         unsigned int reg = mc->reg;
2735         unsigned int reg2 = mc->rreg;
2736         unsigned int shift = mc->shift;
2737         int max = mc->max;
2738         unsigned int mask = (1 << fls(max)) - 1;
2739         unsigned int invert = mc->invert;
2740         int err;
2741         unsigned int val, val2, val_mask;
2742
2743         val_mask = mask << shift;
2744         val = (ucontrol->value.integer.value[0] & mask);
2745         val2 = (ucontrol->value.integer.value[1] & mask);
2746
2747         if (invert) {
2748                 val = max - val;
2749                 val2 = max - val2;
2750         }
2751
2752         val = val << shift;
2753         val2 = val2 << shift;
2754
2755         err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2756         if (err < 0)
2757                 return err;
2758
2759         err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2760         return err;
2761 }
2762 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2763
2764 /**
2765  * snd_soc_info_volsw_s8 - signed mixer info callback
2766  * @kcontrol: mixer control
2767  * @uinfo: control element information
2768  *
2769  * Callback to provide information about a signed mixer control.
2770  *
2771  * Returns 0 for success.
2772  */
2773 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2774         struct snd_ctl_elem_info *uinfo)
2775 {
2776         struct soc_mixer_control *mc =
2777                 (struct soc_mixer_control *)kcontrol->private_value;
2778         int platform_max;
2779         int min = mc->min;
2780
2781         if (!mc->platform_max)
2782                 mc->platform_max = mc->max;
2783         platform_max = mc->platform_max;
2784
2785         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2786         uinfo->count = 2;
2787         uinfo->value.integer.min = 0;
2788         uinfo->value.integer.max = platform_max - min;
2789         return 0;
2790 }
2791 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2792
2793 /**
2794  * snd_soc_get_volsw_s8 - signed mixer get callback
2795  * @kcontrol: mixer control
2796  * @ucontrol: control element information
2797  *
2798  * Callback to get the value of a signed mixer control.
2799  *
2800  * Returns 0 for success.
2801  */
2802 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2803         struct snd_ctl_elem_value *ucontrol)
2804 {
2805         struct soc_mixer_control *mc =
2806                 (struct soc_mixer_control *)kcontrol->private_value;
2807         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2808         unsigned int reg = mc->reg;
2809         int min = mc->min;
2810         int val = snd_soc_read(codec, reg);
2811
2812         ucontrol->value.integer.value[0] =
2813                 ((signed char)(val & 0xff))-min;
2814         ucontrol->value.integer.value[1] =
2815                 ((signed char)((val >> 8) & 0xff))-min;
2816         return 0;
2817 }
2818 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2819
2820 /**
2821  * snd_soc_put_volsw_sgn - signed mixer put callback
2822  * @kcontrol: mixer control
2823  * @ucontrol: control element information
2824  *
2825  * Callback to set the value of a signed mixer control.
2826  *
2827  * Returns 0 for success.
2828  */
2829 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2830         struct snd_ctl_elem_value *ucontrol)
2831 {
2832         struct soc_mixer_control *mc =
2833                 (struct soc_mixer_control *)kcontrol->private_value;
2834         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2835         unsigned int reg = mc->reg;
2836         int min = mc->min;
2837         unsigned int val;
2838
2839         val = (ucontrol->value.integer.value[0]+min) & 0xff;
2840         val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2841
2842         return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2843 }
2844 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2845
2846 /**
2847  * snd_soc_limit_volume - Set new limit to an existing volume control.
2848  *
2849  * @codec: where to look for the control
2850  * @name: Name of the control
2851  * @max: new maximum limit
2852  *
2853  * Return 0 for success, else error.
2854  */
2855 int snd_soc_limit_volume(struct snd_soc_codec *codec,
2856         const char *name, int max)
2857 {
2858         struct snd_card *card = codec->card->snd_card;
2859         struct snd_kcontrol *kctl;
2860         struct soc_mixer_control *mc;
2861         int found = 0;
2862         int ret = -EINVAL;
2863
2864         /* Sanity check for name and max */
2865         if (unlikely(!name || max <= 0))
2866                 return -EINVAL;
2867
2868         list_for_each_entry(kctl, &card->controls, list) {
2869                 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
2870                         found = 1;
2871                         break;
2872                 }
2873         }
2874         if (found) {
2875                 mc = (struct soc_mixer_control *)kctl->private_value;
2876                 if (max <= mc->max) {
2877                         mc->platform_max = max;
2878                         ret = 0;
2879                 }
2880         }
2881         return ret;
2882 }
2883 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
2884
2885 /**
2886  * snd_soc_info_volsw_2r_sx - double with tlv and variable data size
2887  *  mixer info callback
2888  * @kcontrol: mixer control
2889  * @uinfo: control element information
2890  *
2891  * Returns 0 for success.
2892  */
2893 int snd_soc_info_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2894                         struct snd_ctl_elem_info *uinfo)
2895 {
2896         struct soc_mixer_control *mc =
2897                 (struct soc_mixer_control *)kcontrol->private_value;
2898         int max = mc->max;
2899         int min = mc->min;
2900
2901         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2902         uinfo->count = 2;
2903         uinfo->value.integer.min = 0;
2904         uinfo->value.integer.max = max-min;
2905
2906         return 0;
2907 }
2908 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r_sx);
2909
2910 /**
2911  * snd_soc_get_volsw_2r_sx - double with tlv and variable data size
2912  *  mixer get callback
2913  * @kcontrol: mixer control
2914  * @uinfo: control element information
2915  *
2916  * Returns 0 for success.
2917  */
2918 int snd_soc_get_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2919                         struct snd_ctl_elem_value *ucontrol)
2920 {
2921         struct soc_mixer_control *mc =
2922                 (struct soc_mixer_control *)kcontrol->private_value;
2923         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2924         unsigned int mask = (1<<mc->shift)-1;
2925         int min = mc->min;
2926         int val = snd_soc_read(codec, mc->reg) & mask;
2927         int valr = snd_soc_read(codec, mc->rreg) & mask;
2928
2929         ucontrol->value.integer.value[0] = ((val & 0xff)-min) & mask;
2930         ucontrol->value.integer.value[1] = ((valr & 0xff)-min) & mask;
2931         return 0;
2932 }
2933 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r_sx);
2934
2935 /**
2936  * snd_soc_put_volsw_2r_sx - double with tlv and variable data size
2937  *  mixer put callback
2938  * @kcontrol: mixer control
2939  * @uinfo: control element information
2940  *
2941  * Returns 0 for success.
2942  */
2943 int snd_soc_put_volsw_2r_sx(struct snd_kcontrol *kcontrol,
2944                         struct snd_ctl_elem_value *ucontrol)
2945 {
2946         struct soc_mixer_control *mc =
2947                 (struct soc_mixer_control *)kcontrol->private_value;
2948         struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2949         unsigned int mask = (1<<mc->shift)-1;
2950         int min = mc->min;
2951         int ret;
2952         unsigned int val, valr, oval, ovalr;
2953
2954         val = ((ucontrol->value.integer.value[0]+min) & 0xff);
2955         val &= mask;
2956         valr = ((ucontrol->value.integer.value[1]+min) & 0xff);
2957         valr &= mask;
2958
2959         oval = snd_soc_read(codec, mc->reg) & mask;
2960         ovalr = snd_soc_read(codec, mc->rreg) & mask;
2961
2962         ret = 0;
2963         if (oval != val) {
2964                 ret = snd_soc_write(codec, mc->reg, val);
2965                 if (ret < 0)
2966                         return ret;
2967         }
2968         if (ovalr != valr) {
2969                 ret = snd_soc_write(codec, mc->rreg, valr);
2970                 if (ret < 0)
2971                         return ret;
2972         }
2973
2974         return 0;
2975 }
2976 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r_sx);
2977
2978 /**
2979  * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2980  * @dai: DAI
2981  * @clk_id: DAI specific clock ID
2982  * @freq: new clock frequency in Hz
2983  * @dir: new clock direction - input/output.
2984  *
2985  * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2986  */
2987 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2988         unsigned int freq, int dir)
2989 {
2990         if (dai->driver && dai->driver->ops->set_sysclk)
2991                 return dai->driver->ops->set_sysclk(dai, clk_id, freq, dir);
2992         else
2993                 return -EINVAL;
2994 }
2995 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2996
2997 /**
2998  * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2999  * @dai: DAI
3000  * @div_id: DAI specific clock divider ID
3001  * @div: new clock divisor.
3002  *
3003  * Configures the clock dividers. This is used to derive the best DAI bit and
3004  * frame clocks from the system or master clock. It's best to set the DAI bit
3005  * and frame clocks as low as possible to save system power.
3006  */
3007 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
3008         int div_id, int div)
3009 {
3010         if (dai->driver && dai->driver->ops->set_clkdiv)
3011                 return dai->driver->ops->set_clkdiv(dai, div_id, div);
3012         else
3013                 return -EINVAL;
3014 }
3015 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
3016
3017 /**
3018  * snd_soc_dai_set_pll - configure DAI PLL.
3019  * @dai: DAI
3020  * @pll_id: DAI specific PLL ID
3021  * @source: DAI specific source for the PLL
3022  * @freq_in: PLL input clock frequency in Hz
3023  * @freq_out: requested PLL output clock frequency in Hz
3024  *
3025  * Configures and enables PLL to generate output clock based on input clock.
3026  */
3027 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
3028         unsigned int freq_in, unsigned int freq_out)
3029 {
3030         if (dai->driver && dai->driver->ops->set_pll)
3031                 return dai->driver->ops->set_pll(dai, pll_id, source,
3032                                          freq_in, freq_out);
3033         else
3034                 return -EINVAL;
3035 }
3036 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
3037
3038 /**
3039  * snd_soc_dai_set_fmt - configure DAI hardware audio format.
3040  * @dai: DAI
3041  * @fmt: SND_SOC_DAIFMT_ format value.
3042  *
3043  * Configures the DAI hardware format and clocking.
3044  */
3045 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
3046 {
3047         if (dai->driver && dai->driver->ops->set_fmt)
3048                 return dai->driver->ops->set_fmt(dai, fmt);
3049         else
3050                 return -EINVAL;
3051 }
3052 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
3053
3054 /**
3055  * snd_soc_dai_set_tdm_slot - configure DAI TDM.
3056  * @dai: DAI
3057  * @tx_mask: bitmask representing active TX slots.
3058  * @rx_mask: bitmask representing active RX slots.
3059  * @slots: Number of slots in use.
3060  * @slot_width: Width in bits for each slot.
3061  *
3062  * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
3063  * specific.
3064  */
3065 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
3066         unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
3067 {
3068         if (dai->driver && dai->driver->ops->set_tdm_slot)
3069                 return dai->driver->ops->set_tdm_slot(dai, tx_mask, rx_mask,
3070                                 slots, slot_width);
3071         else
3072                 return -EINVAL;
3073 }
3074 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
3075
3076 /**
3077  * snd_soc_dai_set_channel_map - configure DAI audio channel map
3078  * @dai: DAI
3079  * @tx_num: how many TX channels
3080  * @tx_slot: pointer to an array which imply the TX slot number channel
3081  *           0~num-1 uses
3082  * @rx_num: how many RX channels
3083  * @rx_slot: pointer to an array which imply the RX slot number channel
3084  *           0~num-1 uses
3085  *
3086  * configure the relationship between channel number and TDM slot number.
3087  */
3088 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
3089         unsigned int tx_num, unsigned int *tx_slot,
3090         unsigned int rx_num, unsigned int *rx_slot)
3091 {
3092         if (dai->driver && dai->driver->ops->set_channel_map)
3093                 return dai->driver->ops->set_channel_map(dai, tx_num, tx_slot,
3094                         rx_num, rx_slot);
3095         else
3096                 return -EINVAL;
3097 }
3098 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
3099
3100 /**
3101  * snd_soc_dai_set_tristate - configure DAI system or master clock.
3102  * @dai: DAI
3103  * @tristate: tristate enable
3104  *
3105  * Tristates the DAI so that others can use it.
3106  */
3107 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
3108 {
3109         if (dai->driver && dai->driver->ops->set_tristate)
3110                 return dai->driver->ops->set_tristate(dai, tristate);
3111         else
3112                 return -EINVAL;
3113 }
3114 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
3115
3116 /**
3117  * snd_soc_dai_digital_mute - configure DAI system or master clock.
3118  * @dai: DAI
3119  * @mute: mute enable
3120  *
3121  * Mutes the DAI DAC.
3122  */
3123 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
3124 {
3125         if (dai->driver && dai->driver->ops->digital_mute)
3126                 return dai->driver->ops->digital_mute(dai, mute);
3127         else
3128                 return -EINVAL;
3129 }
3130 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
3131
3132 /**
3133  * snd_soc_register_card - Register a card with the ASoC core
3134  *
3135  * @card: Card to register
3136  *
3137  */
3138 int snd_soc_register_card(struct snd_soc_card *card)
3139 {
3140         int i;
3141
3142         if (!card->name || !card->dev)
3143                 return -EINVAL;
3144
3145         snd_soc_initialize_card_lists(card);
3146
3147         soc_init_card_debugfs(card);
3148
3149         card->rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime) *
3150                             (card->num_links + card->num_aux_devs),
3151                             GFP_KERNEL);
3152         if (card->rtd == NULL)
3153                 return -ENOMEM;
3154         card->rtd_aux = &card->rtd[card->num_links];
3155
3156         for (i = 0; i < card->num_links; i++)
3157                 card->rtd[i].dai_link = &card->dai_link[i];
3158
3159         INIT_LIST_HEAD(&card->list);
3160         card->instantiated = 0;
3161         mutex_init(&card->mutex);
3162
3163         mutex_lock(&client_mutex);
3164         list_add(&card->list, &card_list);
3165         snd_soc_instantiate_cards();
3166         mutex_unlock(&client_mutex);
3167
3168         dev_dbg(card->dev, "Registered card '%s'\n", card->name);
3169
3170         return 0;
3171 }
3172 EXPORT_SYMBOL_GPL(snd_soc_register_card);
3173
3174 /**
3175  * snd_soc_unregister_card - Unregister a card with the ASoC core
3176  *
3177  * @card: Card to unregister
3178  *
3179  */
3180 int snd_soc_unregister_card(struct snd_soc_card *card)
3181 {
3182         if (card->instantiated)
3183                 soc_cleanup_card_resources(card);
3184         mutex_lock(&client_mutex);
3185         list_del(&card->list);
3186         mutex_unlock(&client_mutex);
3187         dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
3188
3189         return 0;
3190 }
3191 EXPORT_SYMBOL_GPL(snd_soc_unregister_card);
3192
3193 /*
3194  * Simplify DAI link configuration by removing ".-1" from device names
3195  * and sanitizing names.
3196  */
3197 static char *fmt_single_name(struct device *dev, int *id)
3198 {
3199         char *found, name[NAME_SIZE];
3200         int id1, id2;
3201
3202         if (dev_name(dev) == NULL)
3203                 return NULL;
3204
3205         strlcpy(name, dev_name(dev), NAME_SIZE);
3206
3207         /* are we a "%s.%d" name (platform and SPI components) */
3208         found = strstr(name, dev->driver->name);
3209         if (found) {
3210                 /* get ID */
3211                 if (sscanf(&found[strlen(dev->driver->name)], ".%d", id) == 1) {
3212
3213                         /* discard ID from name if ID == -1 */
3214                         if (*id == -1)
3215                                 found[strlen(dev->driver->name)] = '\0';
3216                 }
3217
3218         } else {
3219                 /* I2C component devices are named "bus-addr"  */
3220                 if (sscanf(name, "%x-%x", &id1, &id2) == 2) {
3221                         char tmp[NAME_SIZE];
3222
3223                         /* create unique ID number from I2C addr and bus */
3224                         *id = ((id1 & 0xffff) << 16) + id2;
3225
3226                         /* sanitize component name for DAI link creation */
3227                         snprintf(tmp, NAME_SIZE, "%s.%s", dev->driver->name, name);
3228                         strlcpy(name, tmp, NAME_SIZE);
3229                 } else
3230                         *id = 0;
3231         }
3232
3233         return kstrdup(name, GFP_KERNEL);
3234 }
3235
3236 /*
3237  * Simplify DAI link naming for single devices with multiple DAIs by removing
3238  * any ".-1" and using the DAI name (instead of device name).
3239  */
3240 static inline char *fmt_multiple_name(struct device *dev,
3241                 struct snd_soc_dai_driver *dai_drv)
3242 {
3243         if (dai_drv->name == NULL) {
3244                 printk(KERN_ERR "asoc: error - multiple DAI %s registered with no name\n",
3245                                 dev_name(dev));
3246                 return NULL;
3247         }
3248
3249         return kstrdup(dai_drv->name, GFP_KERNEL);
3250 }
3251
3252 /**
3253  * snd_soc_register_dai - Register a DAI with the ASoC core
3254  *
3255  * @dai: DAI to register
3256  */
3257 int snd_soc_register_dai(struct device *dev,
3258                 struct snd_soc_dai_driver *dai_drv)
3259 {
3260         struct snd_soc_dai *dai;
3261
3262         dev_dbg(dev, "dai register %s\n", dev_name(dev));
3263
3264         dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3265         if (dai == NULL)
3266                         return -ENOMEM;
3267
3268         /* create DAI component name */
3269         dai->name = fmt_single_name(dev, &dai->id);
3270         if (dai->name == NULL) {
3271                 kfree(dai);
3272                 return -ENOMEM;
3273         }
3274
3275         dai->dev = dev;
3276         dai->driver = dai_drv;
3277         if (!dai->driver->ops)
3278                 dai->driver->ops = &null_dai_ops;
3279
3280         mutex_lock(&client_mutex);
3281         list_add(&dai->list, &dai_list);
3282         snd_soc_instantiate_cards();
3283         mutex_unlock(&client_mutex);
3284
3285         pr_debug("Registered DAI '%s'\n", dai->name);
3286
3287         return 0;
3288 }
3289 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
3290
3291 /**
3292  * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
3293  *
3294  * @dai: DAI to unregister
3295  */
3296 void snd_soc_unregister_dai(struct device *dev)
3297 {
3298         struct snd_soc_dai *dai;
3299
3300         list_for_each_entry(dai, &dai_list, list) {
3301                 if (dev == dai->dev)
3302                         goto found;
3303         }
3304         return;
3305
3306 found:
3307         mutex_lock(&client_mutex);
3308         list_del(&dai->list);
3309         mutex_unlock(&client_mutex);
3310
3311         pr_debug("Unregistered DAI '%s'\n", dai->name);
3312         kfree(dai->name);
3313         kfree(dai);
3314 }
3315 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
3316
3317 /**
3318  * snd_soc_register_dais - Register multiple DAIs with the ASoC core
3319  *
3320  * @dai: Array of DAIs to register
3321  * @count: Number of DAIs
3322  */
3323 int snd_soc_register_dais(struct device *dev,
3324                 struct snd_soc_dai_driver *dai_drv, size_t count)
3325 {
3326         struct snd_soc_dai *dai;
3327         int i, ret = 0;
3328
3329         dev_dbg(dev, "dai register %s #%Zu\n", dev_name(dev), count);
3330
3331         for (i = 0; i < count; i++) {
3332
3333                 dai = kzalloc(sizeof(struct snd_soc_dai), GFP_KERNEL);
3334                 if (dai == NULL) {
3335                         ret = -ENOMEM;
3336                         goto err;
3337                 }
3338
3339                 /* create DAI component name */
3340                 dai->name = fmt_multiple_name(dev, &dai_drv[i]);
3341                 if (dai->name == NULL) {
3342                         kfree(dai);
3343                         ret = -EINVAL;
3344                         goto err;
3345                 }
3346
3347                 dai->dev = dev;
3348                 dai->driver = &dai_drv[i];
3349                 if (dai->driver->id)
3350                         dai->id = dai->driver->id;
3351                 else
3352                         dai->id = i;
3353                 if (!dai->driver->ops)
3354                         dai->driver->ops = &null_dai_ops;
3355
3356                 mutex_lock(&client_mutex);
3357                 list_add(&dai->list, &dai_list);
3358                 mutex_unlock(&client_mutex);
3359
3360                 pr_debug("Registered DAI '%s'\n", dai->name);
3361         }
3362
3363         mutex_lock(&client_mutex);
3364         snd_soc_instantiate_cards();
3365         mutex_unlock(&client_mutex);
3366         return 0;
3367
3368 err:
3369         for (i--; i >= 0; i--)
3370                 snd_soc_unregister_dai(dev);
3371
3372         return ret;
3373 }
3374 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
3375
3376 /**
3377  * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
3378  *
3379  * @dai: Array of DAIs to unregister
3380  * @count: Number of DAIs
3381  */
3382 void snd_soc_unregister_dais(struct device *dev, size_t count)
3383 {
3384         int i;
3385
3386         for (i = 0; i < count; i++)
3387                 snd_soc_unregister_dai(dev);
3388 }
3389 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
3390
3391 /**
3392  * snd_soc_register_platform - Register a platform with the ASoC core
3393  *
3394  * @platform: platform to register
3395  */
3396 int snd_soc_register_platform(struct device *dev,
3397                 struct snd_soc_platform_driver *platform_drv)
3398 {
3399         struct snd_soc_platform *platform;
3400
3401         dev_dbg(dev, "platform register %s\n", dev_name(dev));
3402
3403         platform = kzalloc(sizeof(struct snd_soc_platform), GFP_KERNEL);
3404         if (platform == NULL)
3405                         return -ENOMEM;
3406
3407         /* create platform component name */
3408         platform->name = fmt_single_name(dev, &platform->id);
3409         if (platform->name == NULL) {
3410                 kfree(platform);
3411                 return -ENOMEM;
3412         }
3413
3414         platform->dev = dev;
3415         platform->driver = platform_drv;
3416
3417         mutex_lock(&client_mutex);
3418         list_add(&platform->list, &platform_list);
3419         snd_soc_instantiate_cards();
3420         mutex_unlock(&client_mutex);
3421
3422         pr_debug("Registered platform '%s'\n", platform->name);
3423
3424         return 0;
3425 }
3426 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
3427
3428 /**
3429  * snd_soc_unregister_platform - Unregister a platform from the ASoC core
3430  *
3431  * @platform: platform to unregister
3432  */
3433 void snd_soc_unregister_platform(struct device *dev)
3434 {
3435         struct snd_soc_platform *platform;
3436
3437         list_for_each_entry(platform, &platform_list, list) {
3438                 if (dev == platform->dev)
3439                         goto found;
3440         }
3441         return;
3442
3443 found:
3444         mutex_lock(&client_mutex);
3445         list_del(&platform->list);
3446         mutex_unlock(&client_mutex);
3447
3448         pr_debug("Unregistered platform '%s'\n", platform->name);
3449         kfree(platform->name);
3450         kfree(platform);
3451 }
3452 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
3453
3454 static u64 codec_format_map[] = {
3455         SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
3456         SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
3457         SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
3458         SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
3459         SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
3460         SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
3461         SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3462         SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
3463         SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
3464         SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
3465         SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
3466         SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
3467         SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
3468         SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
3469         SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
3470         | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
3471 };
3472
3473 /* Fix up the DAI formats for endianness: codecs don't actually see
3474  * the endianness of the data but we're using the CPU format
3475  * definitions which do need to include endianness so we ensure that
3476  * codec DAIs always have both big and little endian variants set.
3477  */
3478 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
3479 {
3480         int i;
3481
3482         for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
3483                 if (stream->formats & codec_format_map[i])
3484                         stream->formats |= codec_format_map[i];
3485 }
3486
3487 /**
3488  * snd_soc_register_codec - Register a codec with the ASoC core
3489  *
3490  * @codec: codec to register
3491  */
3492 int snd_soc_register_codec(struct device *dev,
3493                            const struct snd_soc_codec_driver *codec_drv,
3494                            struct snd_soc_dai_driver *dai_drv,
3495                            int num_dai)
3496 {
3497         size_t reg_size;
3498         struct snd_soc_codec *codec;
3499         int ret, i;
3500
3501         dev_dbg(dev, "codec register %s\n", dev_name(dev));
3502
3503         codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
3504         if (codec == NULL)
3505                 return -ENOMEM;
3506
3507         /* create CODEC component name */
3508         codec->name = fmt_single_name(dev, &codec->id);
3509         if (codec->name == NULL) {
3510                 kfree(codec);
3511                 return -ENOMEM;
3512         }
3513
3514         if (codec_drv->compress_type)
3515                 codec->compress_type = codec_drv->compress_type;
3516         else
3517                 codec->compress_type = SND_SOC_FLAT_COMPRESSION;
3518
3519         codec->write = codec_drv->write;
3520         codec->read = codec_drv->read;
3521         codec->volatile_register = codec_drv->volatile_register;
3522         codec->readable_register = codec_drv->readable_register;
3523         codec->dapm.bias_level = SND_SOC_BIAS_OFF;
3524         codec->dapm.dev = dev;
3525         codec->dapm.codec = codec;
3526         codec->dapm.seq_notifier = codec_drv->seq_notifier;
3527         codec->dev = dev;
3528         codec->driver = codec_drv;
3529         codec->num_dai = num_dai;
3530         mutex_init(&codec->mutex);
3531
3532         /* allocate CODEC register cache */
3533         if (codec_drv->reg_cache_size && codec_drv->reg_word_size) {
3534                 reg_size = codec_drv->reg_cache_size * codec_drv->reg_word_size;
3535                 codec->reg_size = reg_size;
3536                 /* it is necessary to make a copy of the default register cache
3537                  * because in the case of using a compression type that requires
3538                  * the default register cache to be marked as __devinitconst the
3539                  * kernel might have freed the array by the time we initialize
3540                  * the cache.
3541                  */
3542                 if (codec_drv->reg_cache_default) {
3543                         codec->reg_def_copy = kmemdup(codec_drv->reg_cache_default,
3544                                                       reg_size, GFP_KERNEL);
3545                         if (!codec->reg_def_copy) {
3546                                 ret = -ENOMEM;
3547                                 goto fail;
3548                         }
3549                 }
3550         }
3551
3552         if (codec_drv->reg_access_size && codec_drv->reg_access_default) {
3553                 if (!codec->volatile_register)
3554                         codec->volatile_register = snd_soc_default_volatile_register;
3555                 if (!codec->readable_register)
3556                         codec->readable_register = snd_soc_default_readable_register;
3557         }
3558
3559         for (i = 0; i < num_dai; i++) {
3560                 fixup_codec_formats(&dai_drv[i].playback);
3561                 fixup_codec_formats(&dai_drv[i].capture);
3562         }
3563
3564         /* register any DAIs */
3565         if (num_dai) {
3566                 ret = snd_soc_register_dais(dev, dai_drv, num_dai);
3567                 if (ret < 0)
3568                         goto fail;
3569         }
3570
3571         mutex_lock(&client_mutex);
3572         list_add(&codec->list, &codec_list);
3573         snd_soc_instantiate_cards();
3574         mutex_unlock(&client_mutex);
3575
3576         pr_debug("Registered codec '%s'\n", codec->name);
3577         return 0;
3578
3579 fail:
3580         kfree(codec->reg_def_copy);
3581         codec->reg_def_copy = NULL;
3582         kfree(codec->name);
3583         kfree(codec);
3584         return ret;
3585 }
3586 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
3587
3588 /**
3589  * snd_soc_unregister_codec - Unregister a codec from the ASoC core
3590  *
3591  * @codec: codec to unregister
3592  */
3593 void snd_soc_unregister_codec(struct device *dev)
3594 {
3595         struct snd_soc_codec *codec;
3596         int i;
3597
3598         list_for_each_entry(codec, &codec_list, list) {
3599                 if (dev == codec->dev)
3600                         goto found;
3601         }
3602         return;
3603
3604 found:
3605         if (codec->num_dai)
3606                 for (i = 0; i < codec->num_dai; i++)
3607                         snd_soc_unregister_dai(dev);
3608
3609         mutex_lock(&client_mutex);
3610         list_del(&codec->list);
3611         mutex_unlock(&client_mutex);
3612
3613         pr_debug("Unregistered codec '%s'\n", codec->name);
3614
3615         snd_soc_cache_exit(codec);
3616         kfree(codec->reg_def_copy);
3617         kfree(codec->name);
3618         kfree(codec);
3619 }
3620 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
3621
3622 static int __init snd_soc_init(void)
3623 {
3624 #ifdef CONFIG_DEBUG_FS
3625         snd_soc_debugfs_root = debugfs_create_dir("asoc", NULL);
3626         if (IS_ERR(snd_soc_debugfs_root) || !snd_soc_debugfs_root) {
3627                 printk(KERN_WARNING
3628                        "ASoC: Failed to create debugfs directory\n");
3629                 snd_soc_debugfs_root = NULL;
3630         }
3631
3632         if (!debugfs_create_file("codecs", 0444, snd_soc_debugfs_root, NULL,
3633                                  &codec_list_fops))
3634                 pr_warn("ASoC: Failed to create CODEC list debugfs file\n");
3635
3636         if (!debugfs_create_file("dais", 0444, snd_soc_debugfs_root, NULL,
3637                                  &dai_list_fops))
3638                 pr_warn("ASoC: Failed to create DAI list debugfs file\n");
3639
3640         if (!debugfs_create_file("platforms", 0444, snd_soc_debugfs_root, NULL,
3641                                  &platform_list_fops))
3642                 pr_warn("ASoC: Failed to create platform list debugfs file\n");
3643 #endif
3644
3645         return platform_driver_register(&soc_driver);
3646 }
3647 module_init(snd_soc_init);
3648
3649 static void __exit snd_soc_exit(void)
3650 {
3651 #ifdef CONFIG_DEBUG_FS
3652         debugfs_remove_recursive(snd_soc_debugfs_root);
3653 #endif
3654         platform_driver_unregister(&soc_driver);
3655 }
3656 module_exit(snd_soc_exit);
3657
3658 /* Module information */
3659 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
3660 MODULE_DESCRIPTION("ALSA SoC Core");
3661 MODULE_LICENSE("GPL");
3662 MODULE_ALIAS("platform:soc-audio");