[ALSA] Add even more 'const' to everything related to TLV
[linux-2.6.git] / sound / pci / ymfpci / ymfpci_main.c
1 /*
2  *  Copyright (c) by Jaroslav Kysela <perex@suse.cz>
3  *  Routines for control of YMF724/740/744/754 chips
4  *
5  *   This program is free software; you can redistribute it and/or modify
6  *   it under the terms of the GNU General Public License as published by
7  *   the Free Software Foundation; either version 2 of the License, or
8  *   (at your option) any later version.
9  *
10  *   This program is distributed in the hope that it will be useful,
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *   GNU General Public License for more details.
14  *
15  *   You should have received a copy of the GNU General Public License
16  *   along with this program; if not, write to the Free Software
17  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  *
19  */
20
21 #include <sound/driver.h>
22 #include <linux/delay.h>
23 #include <linux/firmware.h>
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/pci.h>
27 #include <linux/sched.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30
31 #include <sound/core.h>
32 #include <sound/control.h>
33 #include <sound/info.h>
34 #include <sound/tlv.h>
35 #include <sound/ymfpci.h>
36 #include <sound/asoundef.h>
37 #include <sound/mpu401.h>
38
39 #include <asm/io.h>
40 #include <asm/byteorder.h>
41
42 /*
43  *  common I/O routines
44  */
45
46 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip);
47
48 static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset)
49 {
50         return readb(chip->reg_area_virt + offset);
51 }
52
53 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val)
54 {
55         writeb(val, chip->reg_area_virt + offset);
56 }
57
58 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset)
59 {
60         return readw(chip->reg_area_virt + offset);
61 }
62
63 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val)
64 {
65         writew(val, chip->reg_area_virt + offset);
66 }
67
68 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset)
69 {
70         return readl(chip->reg_area_virt + offset);
71 }
72
73 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val)
74 {
75         writel(val, chip->reg_area_virt + offset);
76 }
77
78 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary)
79 {
80         unsigned long end_time;
81         u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR;
82         
83         end_time = jiffies + msecs_to_jiffies(750);
84         do {
85                 if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0)
86                         return 0;
87                 set_current_state(TASK_UNINTERRUPTIBLE);
88                 schedule_timeout_uninterruptible(1);
89         } while (time_before(jiffies, end_time));
90         snd_printk(KERN_ERR "codec_ready: codec %i is not ready [0x%x]\n", secondary, snd_ymfpci_readw(chip, reg));
91         return -EBUSY;
92 }
93
94 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val)
95 {
96         struct snd_ymfpci *chip = ac97->private_data;
97         u32 cmd;
98         
99         snd_ymfpci_codec_ready(chip, 0);
100         cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val;
101         snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd);
102 }
103
104 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg)
105 {
106         struct snd_ymfpci *chip = ac97->private_data;
107
108         if (snd_ymfpci_codec_ready(chip, 0))
109                 return ~0;
110         snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg);
111         if (snd_ymfpci_codec_ready(chip, 0))
112                 return ~0;
113         if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) {
114                 int i;
115                 for (i = 0; i < 600; i++)
116                         snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
117         }
118         return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
119 }
120
121 /*
122  *  Misc routines
123  */
124
125 static u32 snd_ymfpci_calc_delta(u32 rate)
126 {
127         switch (rate) {
128         case 8000:      return 0x02aaab00;
129         case 11025:     return 0x03accd00;
130         case 16000:     return 0x05555500;
131         case 22050:     return 0x07599a00;
132         case 32000:     return 0x0aaaab00;
133         case 44100:     return 0x0eb33300;
134         default:        return ((rate << 16) / 375) << 5;
135         }
136 }
137
138 static u32 def_rate[8] = {
139         100, 2000, 8000, 11025, 16000, 22050, 32000, 48000
140 };
141
142 static u32 snd_ymfpci_calc_lpfK(u32 rate)
143 {
144         u32 i;
145         static u32 val[8] = {
146                 0x00570000, 0x06AA0000, 0x18B20000, 0x20930000,
147                 0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000
148         };
149         
150         if (rate == 44100)
151                 return 0x40000000;      /* FIXME: What's the right value? */
152         for (i = 0; i < 8; i++)
153                 if (rate <= def_rate[i])
154                         return val[i];
155         return val[0];
156 }
157
158 static u32 snd_ymfpci_calc_lpfQ(u32 rate)
159 {
160         u32 i;
161         static u32 val[8] = {
162                 0x35280000, 0x34A70000, 0x32020000, 0x31770000,
163                 0x31390000, 0x31C90000, 0x33D00000, 0x40000000
164         };
165         
166         if (rate == 44100)
167                 return 0x370A0000;
168         for (i = 0; i < 8; i++)
169                 if (rate <= def_rate[i])
170                         return val[i];
171         return val[0];
172 }
173
174 static void snd_ymfpci_pcm_441_volume_set(struct snd_ymfpci_pcm *ypcm)
175 {
176         unsigned int value;
177         struct snd_ymfpci_pcm_mixer *mixer;
178         
179         mixer = &ypcm->chip->pcm_mixer[ypcm->substream->number];
180         value = min_t(unsigned int, mixer->left, 0x7fff) >> 1;
181         value |= (min_t(unsigned int, mixer->right, 0x7fff) >> 1) << 16;
182         snd_ymfpci_writel(ypcm->chip, YDSXGR_BUF441OUTVOL, value);
183 }
184
185 /*
186  *  Hardware start management
187  */
188
189 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip)
190 {
191         unsigned long flags;
192
193         spin_lock_irqsave(&chip->reg_lock, flags);
194         if (chip->start_count++ > 0)
195                 goto __end;
196         snd_ymfpci_writel(chip, YDSXGR_MODE,
197                           snd_ymfpci_readl(chip, YDSXGR_MODE) | 3);
198         chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
199       __end:
200         spin_unlock_irqrestore(&chip->reg_lock, flags);
201 }
202
203 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip)
204 {
205         unsigned long flags;
206         long timeout = 1000;
207
208         spin_lock_irqsave(&chip->reg_lock, flags);
209         if (--chip->start_count > 0)
210                 goto __end;
211         snd_ymfpci_writel(chip, YDSXGR_MODE,
212                           snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3);
213         while (timeout-- > 0) {
214                 if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0)
215                         break;
216         }
217         if (atomic_read(&chip->interrupt_sleep_count)) {
218                 atomic_set(&chip->interrupt_sleep_count, 0);
219                 wake_up(&chip->interrupt_sleep);
220         }
221       __end:
222         spin_unlock_irqrestore(&chip->reg_lock, flags);
223 }
224
225 /*
226  *  Playback voice management
227  */
228
229 static int voice_alloc(struct snd_ymfpci *chip,
230                        enum snd_ymfpci_voice_type type, int pair,
231                        struct snd_ymfpci_voice **rvoice)
232 {
233         struct snd_ymfpci_voice *voice, *voice2;
234         int idx;
235         
236         *rvoice = NULL;
237         for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) {
238                 voice = &chip->voices[idx];
239                 voice2 = pair ? &chip->voices[idx+1] : NULL;
240                 if (voice->use || (voice2 && voice2->use))
241                         continue;
242                 voice->use = 1;
243                 if (voice2)
244                         voice2->use = 1;
245                 switch (type) {
246                 case YMFPCI_PCM:
247                         voice->pcm = 1;
248                         if (voice2)
249                                 voice2->pcm = 1;
250                         break;
251                 case YMFPCI_SYNTH:
252                         voice->synth = 1;
253                         break;
254                 case YMFPCI_MIDI:
255                         voice->midi = 1;
256                         break;
257                 }
258                 snd_ymfpci_hw_start(chip);
259                 if (voice2)
260                         snd_ymfpci_hw_start(chip);
261                 *rvoice = voice;
262                 return 0;
263         }
264         return -ENOMEM;
265 }
266
267 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip,
268                                   enum snd_ymfpci_voice_type type, int pair,
269                                   struct snd_ymfpci_voice **rvoice)
270 {
271         unsigned long flags;
272         int result;
273         
274         snd_assert(rvoice != NULL, return -EINVAL);
275         snd_assert(!pair || type == YMFPCI_PCM, return -EINVAL);
276         
277         spin_lock_irqsave(&chip->voice_lock, flags);
278         for (;;) {
279                 result = voice_alloc(chip, type, pair, rvoice);
280                 if (result == 0 || type != YMFPCI_PCM)
281                         break;
282                 /* TODO: synth/midi voice deallocation */
283                 break;
284         }
285         spin_unlock_irqrestore(&chip->voice_lock, flags);       
286         return result;          
287 }
288
289 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice)
290 {
291         unsigned long flags;
292         
293         snd_assert(pvoice != NULL, return -EINVAL);
294         snd_ymfpci_hw_stop(chip);
295         spin_lock_irqsave(&chip->voice_lock, flags);
296         if (pvoice->number == chip->src441_used) {
297                 chip->src441_used = -1;
298                 pvoice->ypcm->use_441_slot = 0;
299         }
300         pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0;
301         pvoice->ypcm = NULL;
302         pvoice->interrupt = NULL;
303         spin_unlock_irqrestore(&chip->voice_lock, flags);
304         return 0;
305 }
306
307 /*
308  *  PCM part
309  */
310
311 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice)
312 {
313         struct snd_ymfpci_pcm *ypcm;
314         u32 pos, delta;
315         
316         if ((ypcm = voice->ypcm) == NULL)
317                 return;
318         if (ypcm->substream == NULL)
319                 return;
320         spin_lock(&chip->reg_lock);
321         if (ypcm->running) {
322                 pos = le32_to_cpu(voice->bank[chip->active_bank].start);
323                 if (pos < ypcm->last_pos)
324                         delta = pos + (ypcm->buffer_size - ypcm->last_pos);
325                 else
326                         delta = pos - ypcm->last_pos;
327                 ypcm->period_pos += delta;
328                 ypcm->last_pos = pos;
329                 if (ypcm->period_pos >= ypcm->period_size) {
330                         // printk("done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start);
331                         ypcm->period_pos %= ypcm->period_size;
332                         spin_unlock(&chip->reg_lock);
333                         snd_pcm_period_elapsed(ypcm->substream);
334                         spin_lock(&chip->reg_lock);
335                 }
336
337                 if (unlikely(ypcm->update_pcm_vol)) {
338                         unsigned int subs = ypcm->substream->number;
339                         unsigned int next_bank = 1 - chip->active_bank;
340                         struct snd_ymfpci_playback_bank *bank;
341                         u32 volume;
342                         
343                         bank = &voice->bank[next_bank];
344                         volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15);
345                         bank->left_gain_end = volume;
346                         if (ypcm->output_rear)
347                                 bank->eff2_gain_end = volume;
348                         if (ypcm->voices[1])
349                                 bank = &ypcm->voices[1]->bank[next_bank];
350                         volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15);
351                         bank->right_gain_end = volume;
352                         if (ypcm->output_rear)
353                                 bank->eff3_gain_end = volume;
354                         ypcm->update_pcm_vol--;
355                 }
356         }
357         spin_unlock(&chip->reg_lock);
358 }
359
360 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream)
361 {
362         struct snd_pcm_runtime *runtime = substream->runtime;
363         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
364         struct snd_ymfpci *chip = ypcm->chip;
365         u32 pos, delta;
366         
367         spin_lock(&chip->reg_lock);
368         if (ypcm->running) {
369                 pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
370                 if (pos < ypcm->last_pos)
371                         delta = pos + (ypcm->buffer_size - ypcm->last_pos);
372                 else
373                         delta = pos - ypcm->last_pos;
374                 ypcm->period_pos += delta;
375                 ypcm->last_pos = pos;
376                 if (ypcm->period_pos >= ypcm->period_size) {
377                         ypcm->period_pos %= ypcm->period_size;
378                         // printk("done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start);
379                         spin_unlock(&chip->reg_lock);
380                         snd_pcm_period_elapsed(substream);
381                         spin_lock(&chip->reg_lock);
382                 }
383         }
384         spin_unlock(&chip->reg_lock);
385 }
386
387 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream,
388                                        int cmd)
389 {
390         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
391         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
392         int result = 0;
393
394         spin_lock(&chip->reg_lock);
395         if (ypcm->voices[0] == NULL) {
396                 result = -EINVAL;
397                 goto __unlock;
398         }
399         switch (cmd) {
400         case SNDRV_PCM_TRIGGER_START:
401         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
402         case SNDRV_PCM_TRIGGER_RESUME:
403                 chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr);
404                 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
405                         chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr);
406                 ypcm->running = 1;
407                 break;
408         case SNDRV_PCM_TRIGGER_STOP:
409         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
410         case SNDRV_PCM_TRIGGER_SUSPEND:
411                 chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0;
412                 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
413                         chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0;
414                 ypcm->running = 0;
415                 break;
416         default:
417                 result = -EINVAL;
418                 break;
419         }
420       __unlock:
421         spin_unlock(&chip->reg_lock);
422         return result;
423 }
424 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream,
425                                       int cmd)
426 {
427         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
428         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
429         int result = 0;
430         u32 tmp;
431
432         spin_lock(&chip->reg_lock);
433         switch (cmd) {
434         case SNDRV_PCM_TRIGGER_START:
435         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
436         case SNDRV_PCM_TRIGGER_RESUME:
437                 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number);
438                 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
439                 ypcm->running = 1;
440                 break;
441         case SNDRV_PCM_TRIGGER_STOP:
442         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
443         case SNDRV_PCM_TRIGGER_SUSPEND:
444                 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number);
445                 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
446                 ypcm->running = 0;
447                 break;
448         default:
449                 result = -EINVAL;
450                 break;
451         }
452         spin_unlock(&chip->reg_lock);
453         return result;
454 }
455
456 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices)
457 {
458         int err;
459
460         if (ypcm->voices[1] != NULL && voices < 2) {
461                 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]);
462                 ypcm->voices[1] = NULL;
463         }
464         if (voices == 1 && ypcm->voices[0] != NULL)
465                 return 0;               /* already allocated */
466         if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL)
467                 return 0;               /* already allocated */
468         if (voices > 1) {
469                 if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) {
470                         snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]);
471                         ypcm->voices[0] = NULL;
472                 }               
473         }
474         err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]);
475         if (err < 0)
476                 return err;
477         ypcm->voices[0]->ypcm = ypcm;
478         ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt;
479         if (voices > 1) {
480                 ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1];
481                 ypcm->voices[1]->ypcm = ypcm;
482         }
483         return 0;
484 }
485
486 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx,
487                                       struct snd_pcm_runtime *runtime,
488                                       int has_pcm_volume)
489 {
490         struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx];
491         u32 format;
492         u32 delta = snd_ymfpci_calc_delta(runtime->rate);
493         u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate);
494         u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate);
495         struct snd_ymfpci_playback_bank *bank;
496         unsigned int nbank;
497         u32 vol_left, vol_right;
498         u8 use_left, use_right;
499         unsigned long flags;
500
501         snd_assert(voice != NULL, return);
502         if (runtime->channels == 1) {
503                 use_left = 1;
504                 use_right = 1;
505         } else {
506                 use_left = (voiceidx & 1) == 0;
507                 use_right = !use_left;
508         }
509         if (has_pcm_volume) {
510                 vol_left = cpu_to_le32(ypcm->chip->pcm_mixer
511                                        [ypcm->substream->number].left << 15);
512                 vol_right = cpu_to_le32(ypcm->chip->pcm_mixer
513                                         [ypcm->substream->number].right << 15);
514         } else {
515                 vol_left = cpu_to_le32(0x40000000);
516                 vol_right = cpu_to_le32(0x40000000);
517         }
518         spin_lock_irqsave(&ypcm->chip->voice_lock, flags);
519         format = runtime->channels == 2 ? 0x00010000 : 0;
520         if (snd_pcm_format_width(runtime->format) == 8)
521                 format |= 0x80000000;
522         else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
523                  runtime->rate == 44100 && runtime->channels == 2 &&
524                  voiceidx == 0 && (ypcm->chip->src441_used == -1 ||
525                                    ypcm->chip->src441_used == voice->number)) {
526                 ypcm->chip->src441_used = voice->number;
527                 ypcm->use_441_slot = 1;
528                 format |= 0x10000000;
529                 snd_ymfpci_pcm_441_volume_set(ypcm);
530         }
531         if (ypcm->chip->src441_used == voice->number &&
532             (format & 0x10000000) == 0) {
533                 ypcm->chip->src441_used = -1;
534                 ypcm->use_441_slot = 0;
535         }
536         if (runtime->channels == 2 && (voiceidx & 1) != 0)
537                 format |= 1;
538         spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags);
539         for (nbank = 0; nbank < 2; nbank++) {
540                 bank = &voice->bank[nbank];
541                 memset(bank, 0, sizeof(*bank));
542                 bank->format = cpu_to_le32(format);
543                 bank->base = cpu_to_le32(runtime->dma_addr);
544                 bank->loop_end = cpu_to_le32(ypcm->buffer_size);
545                 bank->lpfQ = cpu_to_le32(lpfQ);
546                 bank->delta =
547                 bank->delta_end = cpu_to_le32(delta);
548                 bank->lpfK =
549                 bank->lpfK_end = cpu_to_le32(lpfK);
550                 bank->eg_gain =
551                 bank->eg_gain_end = cpu_to_le32(0x40000000);
552
553                 if (ypcm->output_front) {
554                         if (use_left) {
555                                 bank->left_gain =
556                                 bank->left_gain_end = vol_left;
557                         }
558                         if (use_right) {
559                                 bank->right_gain =
560                                 bank->right_gain_end = vol_right;
561                         }
562                 }
563                 if (ypcm->output_rear) {
564                         if (!ypcm->swap_rear) {
565                                 if (use_left) {
566                                         bank->eff2_gain =
567                                         bank->eff2_gain_end = vol_left;
568                                 }
569                                 if (use_right) {
570                                         bank->eff3_gain =
571                                         bank->eff3_gain_end = vol_right;
572                                 }
573                         } else {
574                                 /* The SPDIF out channels seem to be swapped, so we have
575                                  * to swap them here, too.  The rear analog out channels
576                                  * will be wrong, but otherwise AC3 would not work.
577                                  */
578                                 if (use_left) {
579                                         bank->eff3_gain =
580                                         bank->eff3_gain_end = vol_left;
581                                 }
582                                 if (use_right) {
583                                         bank->eff2_gain =
584                                         bank->eff2_gain_end = vol_right;
585                                 }
586                         }
587                 }
588         }
589 }
590
591 static int __devinit snd_ymfpci_ac3_init(struct snd_ymfpci *chip)
592 {
593         if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
594                                 4096, &chip->ac3_tmp_base) < 0)
595                 return -ENOMEM;
596
597         chip->bank_effect[3][0]->base =
598         chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr);
599         chip->bank_effect[3][0]->loop_end =
600         chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024);
601         chip->bank_effect[4][0]->base =
602         chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048);
603         chip->bank_effect[4][0]->loop_end =
604         chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024);
605
606         spin_lock_irq(&chip->reg_lock);
607         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
608                           snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3);
609         spin_unlock_irq(&chip->reg_lock);
610         return 0;
611 }
612
613 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip)
614 {
615         spin_lock_irq(&chip->reg_lock);
616         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
617                           snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3));
618         spin_unlock_irq(&chip->reg_lock);
619         // snd_ymfpci_irq_wait(chip);
620         if (chip->ac3_tmp_base.area) {
621                 snd_dma_free_pages(&chip->ac3_tmp_base);
622                 chip->ac3_tmp_base.area = NULL;
623         }
624         return 0;
625 }
626
627 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream,
628                                          struct snd_pcm_hw_params *hw_params)
629 {
630         struct snd_pcm_runtime *runtime = substream->runtime;
631         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
632         int err;
633
634         if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0)
635                 return err;
636         if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0)
637                 return err;
638         return 0;
639 }
640
641 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream)
642 {
643         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
644         struct snd_pcm_runtime *runtime = substream->runtime;
645         struct snd_ymfpci_pcm *ypcm;
646         
647         if (runtime->private_data == NULL)
648                 return 0;
649         ypcm = runtime->private_data;
650
651         /* wait, until the PCI operations are not finished */
652         snd_ymfpci_irq_wait(chip);
653         snd_pcm_lib_free_pages(substream);
654         if (ypcm->voices[1]) {
655                 snd_ymfpci_voice_free(chip, ypcm->voices[1]);
656                 ypcm->voices[1] = NULL;
657         }
658         if (ypcm->voices[0]) {
659                 snd_ymfpci_voice_free(chip, ypcm->voices[0]);
660                 ypcm->voices[0] = NULL;
661         }
662         return 0;
663 }
664
665 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream)
666 {
667         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
668         struct snd_pcm_runtime *runtime = substream->runtime;
669         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
670         unsigned int nvoice;
671
672         ypcm->period_size = runtime->period_size;
673         ypcm->buffer_size = runtime->buffer_size;
674         ypcm->period_pos = 0;
675         ypcm->last_pos = 0;
676         for (nvoice = 0; nvoice < runtime->channels; nvoice++)
677                 snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime,
678                                           substream->pcm == chip->pcm);
679         return 0;
680 }
681
682 static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream,
683                                         struct snd_pcm_hw_params *hw_params)
684 {
685         return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
686 }
687
688 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream)
689 {
690         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
691
692         /* wait, until the PCI operations are not finished */
693         snd_ymfpci_irq_wait(chip);
694         return snd_pcm_lib_free_pages(substream);
695 }
696
697 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream)
698 {
699         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
700         struct snd_pcm_runtime *runtime = substream->runtime;
701         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
702         struct snd_ymfpci_capture_bank * bank;
703         int nbank;
704         u32 rate, format;
705
706         ypcm->period_size = runtime->period_size;
707         ypcm->buffer_size = runtime->buffer_size;
708         ypcm->period_pos = 0;
709         ypcm->last_pos = 0;
710         ypcm->shift = 0;
711         rate = ((48000 * 4096) / runtime->rate) - 1;
712         format = 0;
713         if (runtime->channels == 2) {
714                 format |= 2;
715                 ypcm->shift++;
716         }
717         if (snd_pcm_format_width(runtime->format) == 8)
718                 format |= 1;
719         else
720                 ypcm->shift++;
721         switch (ypcm->capture_bank_number) {
722         case 0:
723                 snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format);
724                 snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate);
725                 break;
726         case 1:
727                 snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format);
728                 snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate);
729                 break;
730         }
731         for (nbank = 0; nbank < 2; nbank++) {
732                 bank = chip->bank_capture[ypcm->capture_bank_number][nbank];
733                 bank->base = cpu_to_le32(runtime->dma_addr);
734                 bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift);
735                 bank->start = 0;
736                 bank->num_of_loops = 0;
737         }
738         return 0;
739 }
740
741 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream)
742 {
743         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
744         struct snd_pcm_runtime *runtime = substream->runtime;
745         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
746         struct snd_ymfpci_voice *voice = ypcm->voices[0];
747
748         if (!(ypcm->running && voice))
749                 return 0;
750         return le32_to_cpu(voice->bank[chip->active_bank].start);
751 }
752
753 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream)
754 {
755         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
756         struct snd_pcm_runtime *runtime = substream->runtime;
757         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
758
759         if (!ypcm->running)
760                 return 0;
761         return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
762 }
763
764 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip)
765 {
766         wait_queue_t wait;
767         int loops = 4;
768
769         while (loops-- > 0) {
770                 if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0)
771                         continue;
772                 init_waitqueue_entry(&wait, current);
773                 add_wait_queue(&chip->interrupt_sleep, &wait);
774                 atomic_inc(&chip->interrupt_sleep_count);
775                 schedule_timeout_uninterruptible(msecs_to_jiffies(50));
776                 remove_wait_queue(&chip->interrupt_sleep, &wait);
777         }
778 }
779
780 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id)
781 {
782         struct snd_ymfpci *chip = dev_id;
783         u32 status, nvoice, mode;
784         struct snd_ymfpci_voice *voice;
785
786         status = snd_ymfpci_readl(chip, YDSXGR_STATUS);
787         if (status & 0x80000000) {
788                 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
789                 spin_lock(&chip->voice_lock);
790                 for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) {
791                         voice = &chip->voices[nvoice];
792                         if (voice->interrupt)
793                                 voice->interrupt(chip, voice);
794                 }
795                 for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) {
796                         if (chip->capture_substream[nvoice])
797                                 snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]);
798                 }
799 #if 0
800                 for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) {
801                         if (chip->effect_substream[nvoice])
802                                 snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]);
803                 }
804 #endif
805                 spin_unlock(&chip->voice_lock);
806                 spin_lock(&chip->reg_lock);
807                 snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000);
808                 mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2;
809                 snd_ymfpci_writel(chip, YDSXGR_MODE, mode);
810                 spin_unlock(&chip->reg_lock);
811
812                 if (atomic_read(&chip->interrupt_sleep_count)) {
813                         atomic_set(&chip->interrupt_sleep_count, 0);
814                         wake_up(&chip->interrupt_sleep);
815                 }
816         }
817
818         status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG);
819         if (status & 1) {
820                 if (chip->timer)
821                         snd_timer_interrupt(chip->timer, chip->timer->sticks);
822         }
823         snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status);
824
825         if (chip->rawmidi)
826                 snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data);
827         return IRQ_HANDLED;
828 }
829
830 static struct snd_pcm_hardware snd_ymfpci_playback =
831 {
832         .info =                 (SNDRV_PCM_INFO_MMAP |
833                                  SNDRV_PCM_INFO_MMAP_VALID | 
834                                  SNDRV_PCM_INFO_INTERLEAVED |
835                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
836                                  SNDRV_PCM_INFO_PAUSE |
837                                  SNDRV_PCM_INFO_RESUME),
838         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
839         .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
840         .rate_min =             8000,
841         .rate_max =             48000,
842         .channels_min =         1,
843         .channels_max =         2,
844         .buffer_bytes_max =     256 * 1024, /* FIXME: enough? */
845         .period_bytes_min =     64,
846         .period_bytes_max =     256 * 1024, /* FIXME: enough? */
847         .periods_min =          3,
848         .periods_max =          1024,
849         .fifo_size =            0,
850 };
851
852 static struct snd_pcm_hardware snd_ymfpci_capture =
853 {
854         .info =                 (SNDRV_PCM_INFO_MMAP |
855                                  SNDRV_PCM_INFO_MMAP_VALID |
856                                  SNDRV_PCM_INFO_INTERLEAVED |
857                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
858                                  SNDRV_PCM_INFO_PAUSE |
859                                  SNDRV_PCM_INFO_RESUME),
860         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
861         .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
862         .rate_min =             8000,
863         .rate_max =             48000,
864         .channels_min =         1,
865         .channels_max =         2,
866         .buffer_bytes_max =     256 * 1024, /* FIXME: enough? */
867         .period_bytes_min =     64,
868         .period_bytes_max =     256 * 1024, /* FIXME: enough? */
869         .periods_min =          3,
870         .periods_max =          1024,
871         .fifo_size =            0,
872 };
873
874 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime)
875 {
876         kfree(runtime->private_data);
877 }
878
879 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream)
880 {
881         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
882         struct snd_pcm_runtime *runtime = substream->runtime;
883         struct snd_ymfpci_pcm *ypcm;
884
885         ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
886         if (ypcm == NULL)
887                 return -ENOMEM;
888         ypcm->chip = chip;
889         ypcm->type = PLAYBACK_VOICE;
890         ypcm->substream = substream;
891         runtime->hw = snd_ymfpci_playback;
892         runtime->private_data = ypcm;
893         runtime->private_free = snd_ymfpci_pcm_free_substream;
894         /* FIXME? True value is 256/48 = 5.33333 ms */
895         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX);
896         return 0;
897 }
898
899 /* call with spinlock held */
900 static void ymfpci_open_extension(struct snd_ymfpci *chip)
901 {
902         if (! chip->rear_opened) {
903                 if (! chip->spdif_opened) /* set AC3 */
904                         snd_ymfpci_writel(chip, YDSXGR_MODE,
905                                           snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30));
906                 /* enable second codec (4CHEN) */
907                 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
908                                   (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010);
909         }
910 }
911
912 /* call with spinlock held */
913 static void ymfpci_close_extension(struct snd_ymfpci *chip)
914 {
915         if (! chip->rear_opened) {
916                 if (! chip->spdif_opened)
917                         snd_ymfpci_writel(chip, YDSXGR_MODE,
918                                           snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30));
919                 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
920                                   (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010);
921         }
922 }
923
924 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream)
925 {
926         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
927         struct snd_pcm_runtime *runtime = substream->runtime;
928         struct snd_ymfpci_pcm *ypcm;
929         struct snd_kcontrol *kctl;
930         int err;
931         
932         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
933                 return err;
934         ypcm = runtime->private_data;
935         ypcm->output_front = 1;
936         ypcm->output_rear = chip->mode_dup4ch ? 1 : 0;
937         ypcm->swap_rear = 0;
938         spin_lock_irq(&chip->reg_lock);
939         if (ypcm->output_rear) {
940                 ymfpci_open_extension(chip);
941                 chip->rear_opened++;
942         }
943         spin_unlock_irq(&chip->reg_lock);
944
945         kctl = chip->pcm_mixer[substream->number].ctl;
946         kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
947         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
948         return 0;
949 }
950
951 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream)
952 {
953         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
954         struct snd_pcm_runtime *runtime = substream->runtime;
955         struct snd_ymfpci_pcm *ypcm;
956         int err;
957         
958         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
959                 return err;
960         ypcm = runtime->private_data;
961         ypcm->output_front = 0;
962         ypcm->output_rear = 1;
963         ypcm->swap_rear = 1;
964         spin_lock_irq(&chip->reg_lock);
965         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
966                           snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2);
967         ymfpci_open_extension(chip);
968         chip->spdif_pcm_bits = chip->spdif_bits;
969         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
970         chip->spdif_opened++;
971         spin_unlock_irq(&chip->reg_lock);
972
973         chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
974         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
975                        SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
976         return 0;
977 }
978
979 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream)
980 {
981         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
982         struct snd_pcm_runtime *runtime = substream->runtime;
983         struct snd_ymfpci_pcm *ypcm;
984         int err;
985         
986         if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
987                 return err;
988         ypcm = runtime->private_data;
989         ypcm->output_front = 0;
990         ypcm->output_rear = 1;
991         ypcm->swap_rear = 0;
992         spin_lock_irq(&chip->reg_lock);
993         ymfpci_open_extension(chip);
994         chip->rear_opened++;
995         spin_unlock_irq(&chip->reg_lock);
996         return 0;
997 }
998
999 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream,
1000                                    u32 capture_bank_number)
1001 {
1002         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1003         struct snd_pcm_runtime *runtime = substream->runtime;
1004         struct snd_ymfpci_pcm *ypcm;
1005
1006         ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
1007         if (ypcm == NULL)
1008                 return -ENOMEM;
1009         ypcm->chip = chip;
1010         ypcm->type = capture_bank_number + CAPTURE_REC;
1011         ypcm->substream = substream;    
1012         ypcm->capture_bank_number = capture_bank_number;
1013         chip->capture_substream[capture_bank_number] = substream;
1014         runtime->hw = snd_ymfpci_capture;
1015         /* FIXME? True value is 256/48 = 5.33333 ms */
1016         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX);
1017         runtime->private_data = ypcm;
1018         runtime->private_free = snd_ymfpci_pcm_free_substream;
1019         snd_ymfpci_hw_start(chip);
1020         return 0;
1021 }
1022
1023 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream)
1024 {
1025         return snd_ymfpci_capture_open(substream, 0);
1026 }
1027
1028 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream)
1029 {
1030         return snd_ymfpci_capture_open(substream, 1);
1031 }
1032
1033 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream)
1034 {
1035         return 0;
1036 }
1037
1038 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream)
1039 {
1040         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1041         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1042         struct snd_kcontrol *kctl;
1043
1044         spin_lock_irq(&chip->reg_lock);
1045         if (ypcm->output_rear && chip->rear_opened > 0) {
1046                 chip->rear_opened--;
1047                 ymfpci_close_extension(chip);
1048         }
1049         spin_unlock_irq(&chip->reg_lock);
1050         kctl = chip->pcm_mixer[substream->number].ctl;
1051         kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1052         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
1053         return snd_ymfpci_playback_close_1(substream);
1054 }
1055
1056 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream)
1057 {
1058         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1059
1060         spin_lock_irq(&chip->reg_lock);
1061         chip->spdif_opened = 0;
1062         ymfpci_close_extension(chip);
1063         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
1064                           snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2);
1065         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1066         spin_unlock_irq(&chip->reg_lock);
1067         chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1068         snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
1069                        SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
1070         return snd_ymfpci_playback_close_1(substream);
1071 }
1072
1073 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream)
1074 {
1075         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1076
1077         spin_lock_irq(&chip->reg_lock);
1078         if (chip->rear_opened > 0) {
1079                 chip->rear_opened--;
1080                 ymfpci_close_extension(chip);
1081         }
1082         spin_unlock_irq(&chip->reg_lock);
1083         return snd_ymfpci_playback_close_1(substream);
1084 }
1085
1086 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream)
1087 {
1088         struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
1089         struct snd_pcm_runtime *runtime = substream->runtime;
1090         struct snd_ymfpci_pcm *ypcm = runtime->private_data;
1091
1092         if (ypcm != NULL) {
1093                 chip->capture_substream[ypcm->capture_bank_number] = NULL;
1094                 snd_ymfpci_hw_stop(chip);
1095         }
1096         return 0;
1097 }
1098
1099 static struct snd_pcm_ops snd_ymfpci_playback_ops = {
1100         .open =                 snd_ymfpci_playback_open,
1101         .close =                snd_ymfpci_playback_close,
1102         .ioctl =                snd_pcm_lib_ioctl,
1103         .hw_params =            snd_ymfpci_playback_hw_params,
1104         .hw_free =              snd_ymfpci_playback_hw_free,
1105         .prepare =              snd_ymfpci_playback_prepare,
1106         .trigger =              snd_ymfpci_playback_trigger,
1107         .pointer =              snd_ymfpci_playback_pointer,
1108 };
1109
1110 static struct snd_pcm_ops snd_ymfpci_capture_rec_ops = {
1111         .open =                 snd_ymfpci_capture_rec_open,
1112         .close =                snd_ymfpci_capture_close,
1113         .ioctl =                snd_pcm_lib_ioctl,
1114         .hw_params =            snd_ymfpci_capture_hw_params,
1115         .hw_free =              snd_ymfpci_capture_hw_free,
1116         .prepare =              snd_ymfpci_capture_prepare,
1117         .trigger =              snd_ymfpci_capture_trigger,
1118         .pointer =              snd_ymfpci_capture_pointer,
1119 };
1120
1121 int __devinit snd_ymfpci_pcm(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1122 {
1123         struct snd_pcm *pcm;
1124         int err;
1125
1126         if (rpcm)
1127                 *rpcm = NULL;
1128         if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0)
1129                 return err;
1130         pcm->private_data = chip;
1131
1132         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops);
1133         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops);
1134
1135         /* global setup */
1136         pcm->info_flags = 0;
1137         strcpy(pcm->name, "YMFPCI");
1138         chip->pcm = pcm;
1139
1140         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1141                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1142
1143         if (rpcm)
1144                 *rpcm = pcm;
1145         return 0;
1146 }
1147
1148 static struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = {
1149         .open =                 snd_ymfpci_capture_ac97_open,
1150         .close =                snd_ymfpci_capture_close,
1151         .ioctl =                snd_pcm_lib_ioctl,
1152         .hw_params =            snd_ymfpci_capture_hw_params,
1153         .hw_free =              snd_ymfpci_capture_hw_free,
1154         .prepare =              snd_ymfpci_capture_prepare,
1155         .trigger =              snd_ymfpci_capture_trigger,
1156         .pointer =              snd_ymfpci_capture_pointer,
1157 };
1158
1159 int __devinit snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1160 {
1161         struct snd_pcm *pcm;
1162         int err;
1163
1164         if (rpcm)
1165                 *rpcm = NULL;
1166         if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0)
1167                 return err;
1168         pcm->private_data = chip;
1169
1170         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops);
1171
1172         /* global setup */
1173         pcm->info_flags = 0;
1174         sprintf(pcm->name, "YMFPCI - %s",
1175                 chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97");
1176         chip->pcm2 = pcm;
1177
1178         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1179                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1180
1181         if (rpcm)
1182                 *rpcm = pcm;
1183         return 0;
1184 }
1185
1186 static struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = {
1187         .open =                 snd_ymfpci_playback_spdif_open,
1188         .close =                snd_ymfpci_playback_spdif_close,
1189         .ioctl =                snd_pcm_lib_ioctl,
1190         .hw_params =            snd_ymfpci_playback_hw_params,
1191         .hw_free =              snd_ymfpci_playback_hw_free,
1192         .prepare =              snd_ymfpci_playback_prepare,
1193         .trigger =              snd_ymfpci_playback_trigger,
1194         .pointer =              snd_ymfpci_playback_pointer,
1195 };
1196
1197 int __devinit snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1198 {
1199         struct snd_pcm *pcm;
1200         int err;
1201
1202         if (rpcm)
1203                 *rpcm = NULL;
1204         if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0)
1205                 return err;
1206         pcm->private_data = chip;
1207
1208         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops);
1209
1210         /* global setup */
1211         pcm->info_flags = 0;
1212         strcpy(pcm->name, "YMFPCI - IEC958");
1213         chip->pcm_spdif = pcm;
1214
1215         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1216                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1217
1218         if (rpcm)
1219                 *rpcm = pcm;
1220         return 0;
1221 }
1222
1223 static struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = {
1224         .open =                 snd_ymfpci_playback_4ch_open,
1225         .close =                snd_ymfpci_playback_4ch_close,
1226         .ioctl =                snd_pcm_lib_ioctl,
1227         .hw_params =            snd_ymfpci_playback_hw_params,
1228         .hw_free =              snd_ymfpci_playback_hw_free,
1229         .prepare =              snd_ymfpci_playback_prepare,
1230         .trigger =              snd_ymfpci_playback_trigger,
1231         .pointer =              snd_ymfpci_playback_pointer,
1232 };
1233
1234 int __devinit snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
1235 {
1236         struct snd_pcm *pcm;
1237         int err;
1238
1239         if (rpcm)
1240                 *rpcm = NULL;
1241         if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0)
1242                 return err;
1243         pcm->private_data = chip;
1244
1245         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops);
1246
1247         /* global setup */
1248         pcm->info_flags = 0;
1249         strcpy(pcm->name, "YMFPCI - Rear PCM");
1250         chip->pcm_4ch = pcm;
1251
1252         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1253                                               snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
1254
1255         if (rpcm)
1256                 *rpcm = pcm;
1257         return 0;
1258 }
1259
1260 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1261 {
1262         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1263         uinfo->count = 1;
1264         return 0;
1265 }
1266
1267 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol,
1268                                         struct snd_ctl_elem_value *ucontrol)
1269 {
1270         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1271
1272         spin_lock_irq(&chip->reg_lock);
1273         ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff;
1274         ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff;
1275         ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1276         spin_unlock_irq(&chip->reg_lock);
1277         return 0;
1278 }
1279
1280 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol,
1281                                          struct snd_ctl_elem_value *ucontrol)
1282 {
1283         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1284         unsigned int val;
1285         int change;
1286
1287         val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1288               (ucontrol->value.iec958.status[1] << 8);
1289         spin_lock_irq(&chip->reg_lock);
1290         change = chip->spdif_bits != val;
1291         chip->spdif_bits = val;
1292         if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL)
1293                 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
1294         spin_unlock_irq(&chip->reg_lock);
1295         return change;
1296 }
1297
1298 static struct snd_kcontrol_new snd_ymfpci_spdif_default __devinitdata =
1299 {
1300         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1301         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1302         .info =         snd_ymfpci_spdif_default_info,
1303         .get =          snd_ymfpci_spdif_default_get,
1304         .put =          snd_ymfpci_spdif_default_put
1305 };
1306
1307 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1308 {
1309         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1310         uinfo->count = 1;
1311         return 0;
1312 }
1313
1314 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1315                                       struct snd_ctl_elem_value *ucontrol)
1316 {
1317         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1318
1319         spin_lock_irq(&chip->reg_lock);
1320         ucontrol->value.iec958.status[0] = 0x3e;
1321         ucontrol->value.iec958.status[1] = 0xff;
1322         spin_unlock_irq(&chip->reg_lock);
1323         return 0;
1324 }
1325
1326 static struct snd_kcontrol_new snd_ymfpci_spdif_mask __devinitdata =
1327 {
1328         .access =       SNDRV_CTL_ELEM_ACCESS_READ,
1329         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1330         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1331         .info =         snd_ymfpci_spdif_mask_info,
1332         .get =          snd_ymfpci_spdif_mask_get,
1333 };
1334
1335 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1336 {
1337         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1338         uinfo->count = 1;
1339         return 0;
1340 }
1341
1342 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1343                                         struct snd_ctl_elem_value *ucontrol)
1344 {
1345         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1346
1347         spin_lock_irq(&chip->reg_lock);
1348         ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff;
1349         ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff;
1350         ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
1351         spin_unlock_irq(&chip->reg_lock);
1352         return 0;
1353 }
1354
1355 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1356                                         struct snd_ctl_elem_value *ucontrol)
1357 {
1358         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1359         unsigned int val;
1360         int change;
1361
1362         val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
1363               (ucontrol->value.iec958.status[1] << 8);
1364         spin_lock_irq(&chip->reg_lock);
1365         change = chip->spdif_pcm_bits != val;
1366         chip->spdif_pcm_bits = val;
1367         if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2))
1368                 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
1369         spin_unlock_irq(&chip->reg_lock);
1370         return change;
1371 }
1372
1373 static struct snd_kcontrol_new snd_ymfpci_spdif_stream __devinitdata =
1374 {
1375         .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1376         .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1377         .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1378         .info =         snd_ymfpci_spdif_stream_info,
1379         .get =          snd_ymfpci_spdif_stream_get,
1380         .put =          snd_ymfpci_spdif_stream_put
1381 };
1382
1383 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info)
1384 {
1385         static char *texts[3] = {"AC'97", "IEC958", "ZV Port"};
1386
1387         info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1388         info->count = 1;
1389         info->value.enumerated.items = 3;
1390         if (info->value.enumerated.item > 2)
1391                 info->value.enumerated.item = 2;
1392         strcpy(info->value.enumerated.name, texts[info->value.enumerated.item]);
1393         return 0;
1394 }
1395
1396 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1397 {
1398         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1399         u16 reg;
1400
1401         spin_lock_irq(&chip->reg_lock);
1402         reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1403         spin_unlock_irq(&chip->reg_lock);
1404         if (!(reg & 0x100))
1405                 value->value.enumerated.item[0] = 0;
1406         else
1407                 value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0);
1408         return 0;
1409 }
1410
1411 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
1412 {
1413         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1414         u16 reg, old_reg;
1415
1416         spin_lock_irq(&chip->reg_lock);
1417         old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
1418         if (value->value.enumerated.item[0] == 0)
1419                 reg = old_reg & ~0x100;
1420         else
1421                 reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9);
1422         snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg);
1423         spin_unlock_irq(&chip->reg_lock);
1424         return reg != old_reg;
1425 }
1426
1427 static struct snd_kcontrol_new snd_ymfpci_drec_source __devinitdata = {
1428         .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE,
1429         .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
1430         .name =         "Direct Recording Source",
1431         .info =         snd_ymfpci_drec_source_info,
1432         .get =          snd_ymfpci_drec_source_get,
1433         .put =          snd_ymfpci_drec_source_put
1434 };
1435
1436 /*
1437  *  Mixer controls
1438  */
1439
1440 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \
1441 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1442   .info = snd_ymfpci_info_single, \
1443   .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \
1444   .private_value = ((reg) | ((shift) << 16)) }
1445
1446 static int snd_ymfpci_info_single(struct snd_kcontrol *kcontrol,
1447                                   struct snd_ctl_elem_info *uinfo)
1448 {
1449         int reg = kcontrol->private_value & 0xffff;
1450
1451         switch (reg) {
1452         case YDSXGR_SPDIFOUTCTRL: break;
1453         case YDSXGR_SPDIFINCTRL: break;
1454         default: return -EINVAL;
1455         }
1456         uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1457         uinfo->count = 1;
1458         uinfo->value.integer.min = 0;
1459         uinfo->value.integer.max = 1;
1460         return 0;
1461 }
1462
1463 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol,
1464                                  struct snd_ctl_elem_value *ucontrol)
1465 {
1466         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1467         int reg = kcontrol->private_value & 0xffff;
1468         unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1469         unsigned int mask = 1;
1470         
1471         switch (reg) {
1472         case YDSXGR_SPDIFOUTCTRL: break;
1473         case YDSXGR_SPDIFINCTRL: break;
1474         default: return -EINVAL;
1475         }
1476         ucontrol->value.integer.value[0] =
1477                 (snd_ymfpci_readl(chip, reg) >> shift) & mask;
1478         return 0;
1479 }
1480
1481 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol,
1482                                  struct snd_ctl_elem_value *ucontrol)
1483 {
1484         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1485         int reg = kcontrol->private_value & 0xffff;
1486         unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
1487         unsigned int mask = 1;
1488         int change;
1489         unsigned int val, oval;
1490         
1491         switch (reg) {
1492         case YDSXGR_SPDIFOUTCTRL: break;
1493         case YDSXGR_SPDIFINCTRL: break;
1494         default: return -EINVAL;
1495         }
1496         val = (ucontrol->value.integer.value[0] & mask);
1497         val <<= shift;
1498         spin_lock_irq(&chip->reg_lock);
1499         oval = snd_ymfpci_readl(chip, reg);
1500         val = (oval & ~(mask << shift)) | val;
1501         change = val != oval;
1502         snd_ymfpci_writel(chip, reg, val);
1503         spin_unlock_irq(&chip->reg_lock);
1504         return change;
1505 }
1506
1507 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0);
1508
1509 #define YMFPCI_DOUBLE(xname, xindex, reg) \
1510 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
1511   .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
1512   .info = snd_ymfpci_info_double, \
1513   .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \
1514   .private_value = reg, \
1515   .tlv = { .p = db_scale_native } }
1516
1517 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1518 {
1519         unsigned int reg = kcontrol->private_value;
1520
1521         if (reg < 0x80 || reg >= 0xc0)
1522                 return -EINVAL;
1523         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1524         uinfo->count = 2;
1525         uinfo->value.integer.min = 0;
1526         uinfo->value.integer.max = 16383;
1527         return 0;
1528 }
1529
1530 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1531 {
1532         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1533         unsigned int reg = kcontrol->private_value;
1534         unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1535         unsigned int val;
1536         
1537         if (reg < 0x80 || reg >= 0xc0)
1538                 return -EINVAL;
1539         spin_lock_irq(&chip->reg_lock);
1540         val = snd_ymfpci_readl(chip, reg);
1541         spin_unlock_irq(&chip->reg_lock);
1542         ucontrol->value.integer.value[0] = (val >> shift_left) & mask;
1543         ucontrol->value.integer.value[1] = (val >> shift_right) & mask;
1544         return 0;
1545 }
1546
1547 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1548 {
1549         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1550         unsigned int reg = kcontrol->private_value;
1551         unsigned int shift_left = 0, shift_right = 16, mask = 16383;
1552         int change;
1553         unsigned int val1, val2, oval;
1554         
1555         if (reg < 0x80 || reg >= 0xc0)
1556                 return -EINVAL;
1557         val1 = ucontrol->value.integer.value[0] & mask;
1558         val2 = ucontrol->value.integer.value[1] & mask;
1559         val1 <<= shift_left;
1560         val2 <<= shift_right;
1561         spin_lock_irq(&chip->reg_lock);
1562         oval = snd_ymfpci_readl(chip, reg);
1563         val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
1564         change = val1 != oval;
1565         snd_ymfpci_writel(chip, reg, val1);
1566         spin_unlock_irq(&chip->reg_lock);
1567         return change;
1568 }
1569
1570 /*
1571  * 4ch duplication
1572  */
1573 static int snd_ymfpci_info_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1574 {
1575         uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1576         uinfo->count = 1;
1577         uinfo->value.integer.min = 0;
1578         uinfo->value.integer.max = 1;
1579         return 0;
1580 }
1581
1582 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1583 {
1584         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1585         ucontrol->value.integer.value[0] = chip->mode_dup4ch;
1586         return 0;
1587 }
1588
1589 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1590 {
1591         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1592         int change;
1593         change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch);
1594         if (change)
1595                 chip->mode_dup4ch = !!ucontrol->value.integer.value[0];
1596         return change;
1597 }
1598
1599
1600 static struct snd_kcontrol_new snd_ymfpci_controls[] __devinitdata = {
1601 YMFPCI_DOUBLE("Wave Playback Volume", 0, YDSXGR_NATIVEDACOUTVOL),
1602 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL),
1603 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL),
1604 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL),
1605 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL),
1606 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL),
1607 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL),
1608 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL),
1609 YMFPCI_DOUBLE("FM Legacy Volume", 0, YDSXGR_LEGACYOUTVOL),
1610 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL),
1611 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL),
1612 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL),
1613 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL),
1614 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0),
1615 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0),
1616 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4),
1617 {
1618         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1619         .name = "4ch Duplication",
1620         .info = snd_ymfpci_info_dup4ch,
1621         .get = snd_ymfpci_get_dup4ch,
1622         .put = snd_ymfpci_put_dup4ch,
1623 },
1624 };
1625
1626
1627 /*
1628  * GPIO
1629  */
1630
1631 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin)
1632 {
1633         u16 reg, mode;
1634         unsigned long flags;
1635
1636         spin_lock_irqsave(&chip->reg_lock, flags);
1637         reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1638         reg &= ~(1 << (pin + 8));
1639         reg |= (1 << pin);
1640         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1641         /* set the level mode for input line */
1642         mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG);
1643         mode &= ~(3 << (pin * 2));
1644         snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode);
1645         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1646         mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS);
1647         spin_unlock_irqrestore(&chip->reg_lock, flags);
1648         return (mode >> pin) & 1;
1649 }
1650
1651 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable)
1652 {
1653         u16 reg;
1654         unsigned long flags;
1655
1656         spin_lock_irqsave(&chip->reg_lock, flags);
1657         reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
1658         reg &= ~(1 << pin);
1659         reg &= ~(1 << (pin + 8));
1660         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
1661         snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin);
1662         snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
1663         spin_unlock_irqrestore(&chip->reg_lock, flags);
1664
1665         return 0;
1666 }
1667
1668 static int snd_ymfpci_gpio_sw_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
1669 {
1670         uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1671         uinfo->count = 1;
1672         uinfo->value.integer.min = 0;
1673         uinfo->value.integer.max = 1;
1674         return 0;
1675 }
1676
1677 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1678 {
1679         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1680         int pin = (int)kcontrol->private_value;
1681         ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1682         return 0;
1683 }
1684
1685 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
1686 {
1687         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1688         int pin = (int)kcontrol->private_value;
1689
1690         if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) {
1691                 snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]);
1692                 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
1693                 return 1;
1694         }
1695         return 0;
1696 }
1697
1698 static struct snd_kcontrol_new snd_ymfpci_rear_shared __devinitdata = {
1699         .name = "Shared Rear/Line-In Switch",
1700         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1701         .info = snd_ymfpci_gpio_sw_info,
1702         .get = snd_ymfpci_gpio_sw_get,
1703         .put = snd_ymfpci_gpio_sw_put,
1704         .private_value = 2,
1705 };
1706
1707 /*
1708  * PCM voice volume
1709  */
1710
1711 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol,
1712                                    struct snd_ctl_elem_info *uinfo)
1713 {
1714         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1715         uinfo->count = 2;
1716         uinfo->value.integer.min = 0;
1717         uinfo->value.integer.max = 0x8000;
1718         return 0;
1719 }
1720
1721 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol,
1722                                   struct snd_ctl_elem_value *ucontrol)
1723 {
1724         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1725         unsigned int subs = kcontrol->id.subdevice;
1726
1727         ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left;
1728         ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right;
1729         return 0;
1730 }
1731
1732 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol,
1733                                   struct snd_ctl_elem_value *ucontrol)
1734 {
1735         struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
1736         unsigned int subs = kcontrol->id.subdevice;
1737         struct snd_pcm_substream *substream;
1738         unsigned long flags;
1739
1740         if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left ||
1741             ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) {
1742                 chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0];
1743                 chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1];
1744
1745                 substream = (struct snd_pcm_substream *)kcontrol->private_value;
1746                 spin_lock_irqsave(&chip->voice_lock, flags);
1747                 if (substream->runtime && substream->runtime->private_data) {
1748                         struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
1749                         if (!ypcm->use_441_slot)
1750                                 ypcm->update_pcm_vol = 2;
1751                         else
1752                                 snd_ymfpci_pcm_441_volume_set(ypcm);
1753                 }
1754                 spin_unlock_irqrestore(&chip->voice_lock, flags);
1755                 return 1;
1756         }
1757         return 0;
1758 }
1759
1760 static struct snd_kcontrol_new snd_ymfpci_pcm_volume __devinitdata = {
1761         .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1762         .name = "PCM Playback Volume",
1763         .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
1764                 SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1765         .info = snd_ymfpci_pcm_vol_info,
1766         .get = snd_ymfpci_pcm_vol_get,
1767         .put = snd_ymfpci_pcm_vol_put,
1768 };
1769
1770
1771 /*
1772  *  Mixer routines
1773  */
1774
1775 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1776 {
1777         struct snd_ymfpci *chip = bus->private_data;
1778         chip->ac97_bus = NULL;
1779 }
1780
1781 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97)
1782 {
1783         struct snd_ymfpci *chip = ac97->private_data;
1784         chip->ac97 = NULL;
1785 }
1786
1787 int __devinit snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch)
1788 {
1789         struct snd_ac97_template ac97;
1790         struct snd_kcontrol *kctl;
1791         struct snd_pcm_substream *substream;
1792         unsigned int idx;
1793         int err;
1794         static struct snd_ac97_bus_ops ops = {
1795                 .write = snd_ymfpci_codec_write,
1796                 .read = snd_ymfpci_codec_read,
1797         };
1798
1799         if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
1800                 return err;
1801         chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus;
1802         chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */
1803
1804         memset(&ac97, 0, sizeof(ac97));
1805         ac97.private_data = chip;
1806         ac97.private_free = snd_ymfpci_mixer_free_ac97;
1807         if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
1808                 return err;
1809
1810         /* to be sure */
1811         snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS,
1812                              AC97_EA_VRA|AC97_EA_VRM, 0);
1813
1814         for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) {
1815                 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0)
1816                         return err;
1817         }
1818
1819         /* add S/PDIF control */
1820         snd_assert(chip->pcm_spdif != NULL, return -EIO);
1821         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0)
1822                 return err;
1823         kctl->id.device = chip->pcm_spdif->device;
1824         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0)
1825                 return err;
1826         kctl->id.device = chip->pcm_spdif->device;
1827         if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0)
1828                 return err;
1829         kctl->id.device = chip->pcm_spdif->device;
1830         chip->spdif_pcm_ctl = kctl;
1831
1832         /* direct recording source */
1833         if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
1834             (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0)
1835                 return err;
1836
1837         /*
1838          * shared rear/line-in
1839          */
1840         if (rear_switch) {
1841                 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0)
1842                         return err;
1843         }
1844
1845         /* per-voice volume */
1846         substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
1847         for (idx = 0; idx < 32; ++idx) {
1848                 kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip);
1849                 if (!kctl)
1850                         return -ENOMEM;
1851                 kctl->id.device = chip->pcm->device;
1852                 kctl->id.subdevice = idx;
1853                 kctl->private_value = (unsigned long)substream;
1854                 if ((err = snd_ctl_add(chip->card, kctl)) < 0)
1855                         return err;
1856                 chip->pcm_mixer[idx].left = 0x8000;
1857                 chip->pcm_mixer[idx].right = 0x8000;
1858                 chip->pcm_mixer[idx].ctl = kctl;
1859                 substream = substream->next;
1860         }
1861
1862         return 0;
1863 }
1864
1865
1866 /*
1867  * timer
1868  */
1869
1870 static int snd_ymfpci_timer_start(struct snd_timer *timer)
1871 {
1872         struct snd_ymfpci *chip;
1873         unsigned long flags;
1874         unsigned int count;
1875
1876         chip = snd_timer_chip(timer);
1877         count = (timer->sticks << 1) - 1;
1878         spin_lock_irqsave(&chip->reg_lock, flags);
1879         snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count);
1880         snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03);
1881         spin_unlock_irqrestore(&chip->reg_lock, flags);
1882         return 0;
1883 }
1884
1885 static int snd_ymfpci_timer_stop(struct snd_timer *timer)
1886 {
1887         struct snd_ymfpci *chip;
1888         unsigned long flags;
1889
1890         chip = snd_timer_chip(timer);
1891         spin_lock_irqsave(&chip->reg_lock, flags);
1892         snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00);
1893         spin_unlock_irqrestore(&chip->reg_lock, flags);
1894         return 0;
1895 }
1896
1897 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer,
1898                                                unsigned long *num, unsigned long *den)
1899 {
1900         *num = 1;
1901         *den = 48000;
1902         return 0;
1903 }
1904
1905 static struct snd_timer_hardware snd_ymfpci_timer_hw = {
1906         .flags = SNDRV_TIMER_HW_AUTO,
1907         .resolution = 20833, /* 1/fs = 20.8333...us */
1908         .ticks = 0x8000,
1909         .start = snd_ymfpci_timer_start,
1910         .stop = snd_ymfpci_timer_stop,
1911         .precise_resolution = snd_ymfpci_timer_precise_resolution,
1912 };
1913
1914 int __devinit snd_ymfpci_timer(struct snd_ymfpci *chip, int device)
1915 {
1916         struct snd_timer *timer = NULL;
1917         struct snd_timer_id tid;
1918         int err;
1919
1920         tid.dev_class = SNDRV_TIMER_CLASS_CARD;
1921         tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
1922         tid.card = chip->card->number;
1923         tid.device = device;
1924         tid.subdevice = 0;
1925         if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) {
1926                 strcpy(timer->name, "YMFPCI timer");
1927                 timer->private_data = chip;
1928                 timer->hw = snd_ymfpci_timer_hw;
1929         }
1930         chip->timer = timer;
1931         return err;
1932 }
1933
1934
1935 /*
1936  *  proc interface
1937  */
1938
1939 static void snd_ymfpci_proc_read(struct snd_info_entry *entry, 
1940                                  struct snd_info_buffer *buffer)
1941 {
1942         struct snd_ymfpci *chip = entry->private_data;
1943         int i;
1944         
1945         snd_iprintf(buffer, "YMFPCI\n\n");
1946         for (i = 0; i <= YDSXGR_WORKBASE; i += 4)
1947                 snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i));
1948 }
1949
1950 static int __devinit snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip)
1951 {
1952         struct snd_info_entry *entry;
1953         
1954         if (! snd_card_proc_new(card, "ymfpci", &entry))
1955                 snd_info_set_text_ops(entry, chip, snd_ymfpci_proc_read);
1956         return 0;
1957 }
1958
1959 /*
1960  *  initialization routines
1961  */
1962
1963 static void snd_ymfpci_aclink_reset(struct pci_dev * pci)
1964 {
1965         u8 cmd;
1966
1967         pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd);
1968 #if 0 // force to reset
1969         if (cmd & 0x03) {
1970 #endif
1971                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1972                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03);
1973                 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
1974                 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0);
1975                 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0);
1976 #if 0
1977         }
1978 #endif
1979 }
1980
1981 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip)
1982 {
1983         snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001);
1984 }
1985
1986 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip)
1987 {
1988         u32 val;
1989         int timeout = 1000;
1990
1991         val = snd_ymfpci_readl(chip, YDSXGR_CONFIG);
1992         if (val)
1993                 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000);
1994         while (timeout-- > 0) {
1995                 val = snd_ymfpci_readl(chip, YDSXGR_STATUS);
1996                 if ((val & 0x00000002) == 0)
1997                         break;
1998         }
1999 }
2000
2001 #define FIRMWARE_IN_THE_KERNEL
2002
2003 #ifdef FIRMWARE_IN_THE_KERNEL
2004
2005 #include "ymfpci_image.h"
2006
2007 static struct firmware snd_ymfpci_dsp_microcode = {
2008         .size = YDSXG_DSPLENGTH,
2009         .data = (u8 *)DspInst,
2010 };
2011 static struct firmware snd_ymfpci_controller_microcode = {
2012         .size = YDSXG_CTRLLENGTH,
2013         .data = (u8 *)CntrlInst,
2014 };
2015 static struct firmware snd_ymfpci_controller_1e_microcode = {
2016         .size = YDSXG_CTRLLENGTH,
2017         .data = (u8 *)CntrlInst1E,
2018 };
2019 #endif
2020
2021 #ifdef __LITTLE_ENDIAN
2022 static inline void snd_ymfpci_convert_from_le(const struct firmware *fw) { }
2023 #else
2024 static void snd_ymfpci_convert_from_le(const struct firmware *fw)
2025 {
2026         int i;
2027         u32 *data = (u32 *)fw->data;
2028
2029         for (i = 0; i < fw->size / 4; ++i)
2030                 le32_to_cpus(&data[i]);
2031 }
2032 #endif
2033
2034 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
2035 {
2036         int err, is_1e;
2037         const char *name;
2038
2039         err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw",
2040                                &chip->pci->dev);
2041         if (err >= 0) {
2042                 if (chip->dsp_microcode->size == YDSXG_DSPLENGTH)
2043                         snd_ymfpci_convert_from_le(chip->dsp_microcode);
2044                 else {
2045                         snd_printk(KERN_ERR "DSP microcode has wrong size\n");
2046                         err = -EINVAL;
2047                 }
2048         }
2049         if (err < 0) {
2050 #ifdef FIRMWARE_IN_THE_KERNEL
2051                 chip->dsp_microcode = &snd_ymfpci_dsp_microcode;
2052 #else
2053                 return err;
2054 #endif
2055         }
2056         is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
2057                 chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
2058                 chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
2059                 chip->device_id == PCI_DEVICE_ID_YAMAHA_754;
2060         name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw";
2061         err = request_firmware(&chip->controller_microcode, name,
2062                                &chip->pci->dev);
2063         if (err >= 0) {
2064                 if (chip->controller_microcode->size == YDSXG_CTRLLENGTH)
2065                         snd_ymfpci_convert_from_le(chip->controller_microcode);
2066                 else {
2067                         snd_printk(KERN_ERR "controller microcode"
2068                                    " has wrong size\n");
2069                         err = -EINVAL;
2070                 }
2071         }
2072         if (err < 0) {
2073 #ifdef FIRMWARE_IN_THE_KERNEL
2074                 chip->controller_microcode =
2075                         is_1e ? &snd_ymfpci_controller_1e_microcode
2076                               : &snd_ymfpci_controller_microcode;
2077 #else
2078                 return err;
2079 #endif
2080         }
2081         return 0;
2082 }
2083
2084 static void snd_ymfpci_download_image(struct snd_ymfpci *chip)
2085 {
2086         int i;
2087         u16 ctrl;
2088         u32 *inst;
2089
2090         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000);
2091         snd_ymfpci_disable_dsp(chip);
2092         snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000);
2093         snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000);
2094         snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000);
2095         snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000);
2096         snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000);
2097         snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000);
2098         snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000);
2099         ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2100         snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2101
2102         /* setup DSP instruction code */
2103         inst = (u32 *)chip->dsp_microcode->data;
2104         for (i = 0; i < YDSXG_DSPLENGTH / 4; i++)
2105                 snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2), inst[i]);
2106
2107         /* setup control instruction code */
2108         inst = (u32 *)chip->controller_microcode->data;
2109         for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++)
2110                 snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2), inst[i]);
2111
2112         snd_ymfpci_enable_dsp(chip);
2113 }
2114
2115 static int __devinit snd_ymfpci_memalloc(struct snd_ymfpci *chip)
2116 {
2117         long size, playback_ctrl_size;
2118         int voice, bank, reg;
2119         u8 *ptr;
2120         dma_addr_t ptr_addr;
2121
2122         playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES;
2123         chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2;
2124         chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2;
2125         chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2;
2126         chip->work_size = YDSXG_DEFAULT_WORK_SIZE;
2127         
2128         size = ALIGN(playback_ctrl_size, 0x100) +
2129                ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) +
2130                ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) +
2131                ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) +
2132                chip->work_size;
2133         /* work_ptr must be aligned to 256 bytes, but it's already
2134            covered with the kernel page allocation mechanism */
2135         if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
2136                                 size, &chip->work_ptr) < 0) 
2137                 return -ENOMEM;
2138         ptr = chip->work_ptr.area;
2139         ptr_addr = chip->work_ptr.addr;
2140         memset(ptr, 0, size);   /* for sure */
2141
2142         chip->bank_base_playback = ptr;
2143         chip->bank_base_playback_addr = ptr_addr;
2144         chip->ctrl_playback = (u32 *)ptr;
2145         chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES);
2146         ptr += ALIGN(playback_ctrl_size, 0x100);
2147         ptr_addr += ALIGN(playback_ctrl_size, 0x100);
2148         for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) {
2149                 chip->voices[voice].number = voice;
2150                 chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr;
2151                 chip->voices[voice].bank_addr = ptr_addr;
2152                 for (bank = 0; bank < 2; bank++) {
2153                         chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr;
2154                         ptr += chip->bank_size_playback;
2155                         ptr_addr += chip->bank_size_playback;
2156                 }
2157         }
2158         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2159         ptr_addr = ALIGN(ptr_addr, 0x100);
2160         chip->bank_base_capture = ptr;
2161         chip->bank_base_capture_addr = ptr_addr;
2162         for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++)
2163                 for (bank = 0; bank < 2; bank++) {
2164                         chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr;
2165                         ptr += chip->bank_size_capture;
2166                         ptr_addr += chip->bank_size_capture;
2167                 }
2168         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2169         ptr_addr = ALIGN(ptr_addr, 0x100);
2170         chip->bank_base_effect = ptr;
2171         chip->bank_base_effect_addr = ptr_addr;
2172         for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++)
2173                 for (bank = 0; bank < 2; bank++) {
2174                         chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr;
2175                         ptr += chip->bank_size_effect;
2176                         ptr_addr += chip->bank_size_effect;
2177                 }
2178         ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
2179         ptr_addr = ALIGN(ptr_addr, 0x100);
2180         chip->work_base = ptr;
2181         chip->work_base_addr = ptr_addr;
2182         
2183         snd_assert(ptr + chip->work_size == chip->work_ptr.area + chip->work_ptr.bytes, );
2184
2185         snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr);
2186         snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr);
2187         snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr);
2188         snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr);
2189         snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2);
2190
2191         /* S/PDIF output initialization */
2192         chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff;
2193         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0);
2194         snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
2195
2196         /* S/PDIF input initialization */
2197         snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0);
2198
2199         /* digital mixer setup */
2200         for (reg = 0x80; reg < 0xc0; reg += 4)
2201                 snd_ymfpci_writel(chip, reg, 0);
2202         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff);
2203         snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff);
2204         snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff);
2205         snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff);
2206         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff);
2207         snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff);
2208         snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff);
2209         
2210         return 0;
2211 }
2212
2213 static int snd_ymfpci_free(struct snd_ymfpci *chip)
2214 {
2215         u16 ctrl;
2216
2217         snd_assert(chip != NULL, return -EINVAL);
2218
2219         if (chip->res_reg_area) {       /* don't touch busy hardware */
2220                 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2221                 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
2222                 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0);
2223                 snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0);
2224                 snd_ymfpci_disable_dsp(chip);
2225                 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0);
2226                 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0);
2227                 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0);
2228                 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0);
2229                 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0);
2230                 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
2231                 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
2232         }
2233
2234         snd_ymfpci_ac3_done(chip);
2235
2236         /* Set PCI device to D3 state */
2237 #if 0
2238         /* FIXME: temporarily disabled, otherwise we cannot fire up
2239          * the chip again unless reboot.  ACPI bug?
2240          */
2241         pci_set_power_state(chip->pci, 3);
2242 #endif
2243
2244 #ifdef CONFIG_PM
2245         vfree(chip->saved_regs);
2246 #endif
2247         release_and_free_resource(chip->mpu_res);
2248         release_and_free_resource(chip->fm_res);
2249         snd_ymfpci_free_gameport(chip);
2250         if (chip->reg_area_virt)
2251                 iounmap(chip->reg_area_virt);
2252         if (chip->work_ptr.area)
2253                 snd_dma_free_pages(&chip->work_ptr);
2254         
2255         if (chip->irq >= 0)
2256                 free_irq(chip->irq, chip);
2257         release_and_free_resource(chip->res_reg_area);
2258
2259         pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl);
2260         
2261         pci_disable_device(chip->pci);
2262 #ifdef FIRMWARE_IN_THE_KERNEL
2263         if (chip->dsp_microcode != &snd_ymfpci_dsp_microcode)
2264 #endif
2265                 release_firmware(chip->dsp_microcode);
2266 #ifdef FIRMWARE_IN_THE_KERNEL
2267         if (chip->controller_microcode != &snd_ymfpci_controller_microcode &&
2268             chip->controller_microcode != &snd_ymfpci_controller_1e_microcode)
2269 #endif
2270                 release_firmware(chip->controller_microcode);
2271         kfree(chip);
2272         return 0;
2273 }
2274
2275 static int snd_ymfpci_dev_free(struct snd_device *device)
2276 {
2277         struct snd_ymfpci *chip = device->device_data;
2278         return snd_ymfpci_free(chip);
2279 }
2280
2281 #ifdef CONFIG_PM
2282 static int saved_regs_index[] = {
2283         /* spdif */
2284         YDSXGR_SPDIFOUTCTRL,
2285         YDSXGR_SPDIFOUTSTATUS,
2286         YDSXGR_SPDIFINCTRL,
2287         /* volumes */
2288         YDSXGR_PRIADCLOOPVOL,
2289         YDSXGR_NATIVEDACINVOL,
2290         YDSXGR_NATIVEDACOUTVOL,
2291         YDSXGR_BUF441OUTVOL,
2292         YDSXGR_NATIVEADCINVOL,
2293         YDSXGR_SPDIFLOOPVOL,
2294         YDSXGR_SPDIFOUTVOL,
2295         YDSXGR_ZVOUTVOL,
2296         YDSXGR_LEGACYOUTVOL,
2297         /* address bases */
2298         YDSXGR_PLAYCTRLBASE,
2299         YDSXGR_RECCTRLBASE,
2300         YDSXGR_EFFCTRLBASE,
2301         YDSXGR_WORKBASE,
2302         /* capture set up */
2303         YDSXGR_MAPOFREC,
2304         YDSXGR_RECFORMAT,
2305         YDSXGR_RECSLOTSR,
2306         YDSXGR_ADCFORMAT,
2307         YDSXGR_ADCSLOTSR,
2308 };
2309 #define YDSXGR_NUM_SAVED_REGS   ARRAY_SIZE(saved_regs_index)
2310
2311 int snd_ymfpci_suspend(struct pci_dev *pci, pm_message_t state)
2312 {
2313         struct snd_card *card = pci_get_drvdata(pci);
2314         struct snd_ymfpci *chip = card->private_data;
2315         unsigned int i;
2316         
2317         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
2318         snd_pcm_suspend_all(chip->pcm);
2319         snd_pcm_suspend_all(chip->pcm2);
2320         snd_pcm_suspend_all(chip->pcm_spdif);
2321         snd_pcm_suspend_all(chip->pcm_4ch);
2322         snd_ac97_suspend(chip->ac97);
2323         for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2324                 chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]);
2325         chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE);
2326         snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
2327         snd_ymfpci_disable_dsp(chip);
2328         pci_disable_device(pci);
2329         pci_save_state(pci);
2330         pci_set_power_state(pci, pci_choose_state(pci, state));
2331         return 0;
2332 }
2333
2334 int snd_ymfpci_resume(struct pci_dev *pci)
2335 {
2336         struct snd_card *card = pci_get_drvdata(pci);
2337         struct snd_ymfpci *chip = card->private_data;
2338         unsigned int i;
2339
2340         pci_set_power_state(pci, PCI_D0);
2341         pci_restore_state(pci);
2342         if (pci_enable_device(pci) < 0) {
2343                 printk(KERN_ERR "ymfpci: pci_enable_device failed, "
2344                        "disabling device\n");
2345                 snd_card_disconnect(card);
2346                 return -EIO;
2347         }
2348         pci_set_master(pci);
2349         snd_ymfpci_aclink_reset(pci);
2350         snd_ymfpci_codec_ready(chip, 0);
2351         snd_ymfpci_download_image(chip);
2352         udelay(100);
2353
2354         for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
2355                 snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]);
2356
2357         snd_ac97_resume(chip->ac97);
2358
2359         /* start hw again */
2360         if (chip->start_count > 0) {
2361                 spin_lock_irq(&chip->reg_lock);
2362                 snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode);
2363                 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT);
2364                 spin_unlock_irq(&chip->reg_lock);
2365         }
2366         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
2367         return 0;
2368 }
2369 #endif /* CONFIG_PM */
2370
2371 int __devinit snd_ymfpci_create(struct snd_card *card,
2372                                 struct pci_dev * pci,
2373                                 unsigned short old_legacy_ctrl,
2374                                 struct snd_ymfpci ** rchip)
2375 {
2376         struct snd_ymfpci *chip;
2377         int err;
2378         static struct snd_device_ops ops = {
2379                 .dev_free =     snd_ymfpci_dev_free,
2380         };
2381         
2382         *rchip = NULL;
2383
2384         /* enable PCI device */
2385         if ((err = pci_enable_device(pci)) < 0)
2386                 return err;
2387
2388         chip = kzalloc(sizeof(*chip), GFP_KERNEL);
2389         if (chip == NULL) {
2390                 pci_disable_device(pci);
2391                 return -ENOMEM;
2392         }
2393         chip->old_legacy_ctrl = old_legacy_ctrl;
2394         spin_lock_init(&chip->reg_lock);
2395         spin_lock_init(&chip->voice_lock);
2396         init_waitqueue_head(&chip->interrupt_sleep);
2397         atomic_set(&chip->interrupt_sleep_count, 0);
2398         chip->card = card;
2399         chip->pci = pci;
2400         chip->irq = -1;
2401         chip->device_id = pci->device;
2402         pci_read_config_byte(pci, PCI_REVISION_ID, &chip->rev);
2403         chip->reg_area_phys = pci_resource_start(pci, 0);
2404         chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000);
2405         pci_set_master(pci);
2406         chip->src441_used = -1;
2407
2408         if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) {
2409                 snd_printk(KERN_ERR "unable to grab memory region 0x%lx-0x%lx\n", chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1);
2410                 snd_ymfpci_free(chip);
2411                 return -EBUSY;
2412         }
2413         if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED,
2414                         "YMFPCI", chip)) {
2415                 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
2416                 snd_ymfpci_free(chip);
2417                 return -EBUSY;
2418         }
2419         chip->irq = pci->irq;
2420
2421         snd_ymfpci_aclink_reset(pci);
2422         if (snd_ymfpci_codec_ready(chip, 0) < 0) {
2423                 snd_ymfpci_free(chip);
2424                 return -EIO;
2425         }
2426
2427         err = snd_ymfpci_request_firmware(chip);
2428         if (err < 0) {
2429                 snd_printk(KERN_ERR "firmware request failed: %d\n", err);
2430                 snd_ymfpci_free(chip);
2431                 return err;
2432         }
2433         snd_ymfpci_download_image(chip);
2434
2435         udelay(100); /* seems we need a delay after downloading image.. */
2436
2437         if (snd_ymfpci_memalloc(chip) < 0) {
2438                 snd_ymfpci_free(chip);
2439                 return -EIO;
2440         }
2441
2442         if ((err = snd_ymfpci_ac3_init(chip)) < 0) {
2443                 snd_ymfpci_free(chip);
2444                 return err;
2445         }
2446
2447 #ifdef CONFIG_PM
2448         chip->saved_regs = vmalloc(YDSXGR_NUM_SAVED_REGS * sizeof(u32));
2449         if (chip->saved_regs == NULL) {
2450                 snd_ymfpci_free(chip);
2451                 return -ENOMEM;
2452         }
2453 #endif
2454
2455         if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
2456                 snd_ymfpci_free(chip);
2457                 return err;
2458         }
2459
2460         snd_ymfpci_proc_init(card, chip);
2461
2462         snd_card_set_dev(card, &pci->dev);
2463
2464         *rchip = chip;
2465         return 0;
2466 }