sound: irq: Remove IRQF_DISABLED
[linux-2.6.git] / sound / pci / sis7019.c
1 /*
2  *  Driver for SiS7019 Audio Accelerator
3  *
4  *  Copyright (C) 2004-2007, David Dillow
5  *  Written by David Dillow <dave@thedillows.org>
6  *  Inspired by the Trident 4D-WaveDX/NX driver.
7  *
8  *  All rights reserved.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License as published by
12  *  the Free Software Foundation, version 2.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
22  */
23
24 #include <linux/init.h>
25 #include <linux/pci.h>
26 #include <linux/time.h>
27 #include <linux/slab.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <sound/core.h>
32 #include <sound/ac97_codec.h>
33 #include <sound/initval.h>
34 #include "sis7019.h"
35
36 MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
37 MODULE_DESCRIPTION("SiS7019");
38 MODULE_LICENSE("GPL");
39 MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
40
41 static int index = SNDRV_DEFAULT_IDX1;  /* Index 0-MAX */
42 static char *id = SNDRV_DEFAULT_STR1;   /* ID for this card */
43 static int enable = 1;
44
45 module_param(index, int, 0444);
46 MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
47 module_param(id, charp, 0444);
48 MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
49 module_param(enable, bool, 0444);
50 MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
51
52 static DEFINE_PCI_DEVICE_TABLE(snd_sis7019_ids) = {
53         { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
54         { 0, }
55 };
56
57 MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
58
59 /* There are three timing modes for the voices.
60  *
61  * For both playback and capture, when the buffer is one or two periods long,
62  * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
63  * to let us know when the periods have ended.
64  *
65  * When performing playback with more than two periods per buffer, we set
66  * the "Stop Sample Offset" and tell the hardware to interrupt us when we
67  * reach it. We then update the offset and continue on until we are
68  * interrupted for the next period.
69  *
70  * Capture channels do not have a SSO, so we allocate a playback channel to
71  * use as a timer for the capture periods. We use the SSO on the playback
72  * channel to clock out virtual periods, and adjust the virtual period length
73  * to maintain synchronization. This algorithm came from the Trident driver.
74  *
75  * FIXME: It'd be nice to make use of some of the synth features in the
76  * hardware, but a woeful lack of documentation is a significant roadblock.
77  */
78 struct voice {
79         u16 flags;
80 #define         VOICE_IN_USE            1
81 #define         VOICE_CAPTURE           2
82 #define         VOICE_SSO_TIMING        4
83 #define         VOICE_SYNC_TIMING       8
84         u16 sync_cso;
85         u16 period_size;
86         u16 buffer_size;
87         u16 sync_period_size;
88         u16 sync_buffer_size;
89         u32 sso;
90         u32 vperiod;
91         struct snd_pcm_substream *substream;
92         struct voice *timing;
93         void __iomem *ctrl_base;
94         void __iomem *wave_base;
95         void __iomem *sync_base;
96         int num;
97 };
98
99 /* We need four pages to store our wave parameters during a suspend. If
100  * we're not doing power management, we still need to allocate a page
101  * for the silence buffer.
102  */
103 #ifdef CONFIG_PM
104 #define SIS_SUSPEND_PAGES       4
105 #else
106 #define SIS_SUSPEND_PAGES       1
107 #endif
108
109 struct sis7019 {
110         unsigned long ioport;
111         void __iomem *ioaddr;
112         int irq;
113         int codecs_present;
114
115         struct pci_dev *pci;
116         struct snd_pcm *pcm;
117         struct snd_card *card;
118         struct snd_ac97 *ac97[3];
119
120         /* Protect against more than one thread hitting the AC97
121          * registers (in a more polite manner than pounding the hardware
122          * semaphore)
123          */
124         struct mutex ac97_mutex;
125
126         /* voice_lock protects allocation/freeing of the voice descriptions
127          */
128         spinlock_t voice_lock;
129
130         struct voice voices[64];
131         struct voice capture_voice;
132
133         /* Allocate pages to store the internal wave state during
134          * suspends. When we're operating, this can be used as a silence
135          * buffer for a timing channel.
136          */
137         void *suspend_state[SIS_SUSPEND_PAGES];
138
139         int silence_users;
140         dma_addr_t silence_dma_addr;
141 };
142
143 #define SIS_PRIMARY_CODEC_PRESENT       0x0001
144 #define SIS_SECONDARY_CODEC_PRESENT     0x0002
145 #define SIS_TERTIARY_CODEC_PRESENT      0x0004
146
147 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
148  * documented range of 8-0xfff8 samples. Given that they are 0-based,
149  * that places our period/buffer range at 9-0xfff9 samples. That makes the
150  * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
151  * max samples / min samples gives us the max periods in a buffer.
152  *
153  * We'll add a constraint upon open that limits the period and buffer sample
154  * size to values that are legal for the hardware.
155  */
156 static struct snd_pcm_hardware sis_playback_hw_info = {
157         .info = (SNDRV_PCM_INFO_MMAP |
158                  SNDRV_PCM_INFO_MMAP_VALID |
159                  SNDRV_PCM_INFO_INTERLEAVED |
160                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
161                  SNDRV_PCM_INFO_SYNC_START |
162                  SNDRV_PCM_INFO_RESUME),
163         .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
164                     SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
165         .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
166         .rate_min = 4000,
167         .rate_max = 48000,
168         .channels_min = 1,
169         .channels_max = 2,
170         .buffer_bytes_max = (0xfff9 * 4),
171         .period_bytes_min = 9,
172         .period_bytes_max = (0xfff9 * 4),
173         .periods_min = 1,
174         .periods_max = (0xfff9 / 9),
175 };
176
177 static struct snd_pcm_hardware sis_capture_hw_info = {
178         .info = (SNDRV_PCM_INFO_MMAP |
179                  SNDRV_PCM_INFO_MMAP_VALID |
180                  SNDRV_PCM_INFO_INTERLEAVED |
181                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
182                  SNDRV_PCM_INFO_SYNC_START |
183                  SNDRV_PCM_INFO_RESUME),
184         .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
185                     SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
186         .rates = SNDRV_PCM_RATE_48000,
187         .rate_min = 4000,
188         .rate_max = 48000,
189         .channels_min = 1,
190         .channels_max = 2,
191         .buffer_bytes_max = (0xfff9 * 4),
192         .period_bytes_min = 9,
193         .period_bytes_max = (0xfff9 * 4),
194         .periods_min = 1,
195         .periods_max = (0xfff9 / 9),
196 };
197
198 static void sis_update_sso(struct voice *voice, u16 period)
199 {
200         void __iomem *base = voice->ctrl_base;
201
202         voice->sso += period;
203         if (voice->sso >= voice->buffer_size)
204                 voice->sso -= voice->buffer_size;
205
206         /* Enforce the documented hardware minimum offset */
207         if (voice->sso < 8)
208                 voice->sso = 8;
209
210         /* The SSO is in the upper 16 bits of the register. */
211         writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
212 }
213
214 static void sis_update_voice(struct voice *voice)
215 {
216         if (voice->flags & VOICE_SSO_TIMING) {
217                 sis_update_sso(voice, voice->period_size);
218         } else if (voice->flags & VOICE_SYNC_TIMING) {
219                 int sync;
220
221                 /* If we've not hit the end of the virtual period, update
222                  * our records and keep going.
223                  */
224                 if (voice->vperiod > voice->period_size) {
225                         voice->vperiod -= voice->period_size;
226                         if (voice->vperiod < voice->period_size)
227                                 sis_update_sso(voice, voice->vperiod);
228                         else
229                                 sis_update_sso(voice, voice->period_size);
230                         return;
231                 }
232
233                 /* Calculate our relative offset between the target and
234                  * the actual CSO value. Since we're operating in a loop,
235                  * if the value is more than half way around, we can
236                  * consider ourselves wrapped.
237                  */
238                 sync = voice->sync_cso;
239                 sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
240                 if (sync > (voice->sync_buffer_size / 2))
241                         sync -= voice->sync_buffer_size;
242
243                 /* If sync is positive, then we interrupted too early, and
244                  * we'll need to come back in a few samples and try again.
245                  * There's a minimum wait, as it takes some time for the DMA
246                  * engine to startup, etc...
247                  */
248                 if (sync > 0) {
249                         if (sync < 16)
250                                 sync = 16;
251                         sis_update_sso(voice, sync);
252                         return;
253                 }
254
255                 /* Ok, we interrupted right on time, or (hopefully) just
256                  * a bit late. We'll adjst our next waiting period based
257                  * on how close we got.
258                  *
259                  * We need to stay just behind the actual channel to ensure
260                  * it really is past a period when we get our interrupt --
261                  * otherwise we'll fall into the early code above and have
262                  * a minimum wait time, which makes us quite late here,
263                  * eating into the user's time to refresh the buffer, esp.
264                  * if using small periods.
265                  *
266                  * If we're less than 9 samples behind, we're on target.
267                  * Otherwise, shorten the next vperiod by the amount we've
268                  * been delayed.
269                  */
270                 if (sync > -9)
271                         voice->vperiod = voice->sync_period_size + 1;
272                 else
273                         voice->vperiod = voice->sync_period_size + sync + 10;
274
275                 if (voice->vperiod < voice->buffer_size) {
276                         sis_update_sso(voice, voice->vperiod);
277                         voice->vperiod = 0;
278                 } else
279                         sis_update_sso(voice, voice->period_size);
280
281                 sync = voice->sync_cso + voice->sync_period_size;
282                 if (sync >= voice->sync_buffer_size)
283                         sync -= voice->sync_buffer_size;
284                 voice->sync_cso = sync;
285         }
286
287         snd_pcm_period_elapsed(voice->substream);
288 }
289
290 static void sis_voice_irq(u32 status, struct voice *voice)
291 {
292         int bit;
293
294         while (status) {
295                 bit = __ffs(status);
296                 status >>= bit + 1;
297                 voice += bit;
298                 sis_update_voice(voice);
299                 voice++;
300         }
301 }
302
303 static irqreturn_t sis_interrupt(int irq, void *dev)
304 {
305         struct sis7019 *sis = dev;
306         unsigned long io = sis->ioport;
307         struct voice *voice;
308         u32 intr, status;
309
310         /* We only use the DMA interrupts, and we don't enable any other
311          * source of interrupts. But, it is possible to see an interrupt
312          * status that didn't actually interrupt us, so eliminate anything
313          * we're not expecting to avoid falsely claiming an IRQ, and an
314          * ensuing endless loop.
315          */
316         intr = inl(io + SIS_GISR);
317         intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
318                 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
319         if (!intr)
320                 return IRQ_NONE;
321
322         do {
323                 status = inl(io + SIS_PISR_A);
324                 if (status) {
325                         sis_voice_irq(status, sis->voices);
326                         outl(status, io + SIS_PISR_A);
327                 }
328
329                 status = inl(io + SIS_PISR_B);
330                 if (status) {
331                         sis_voice_irq(status, &sis->voices[32]);
332                         outl(status, io + SIS_PISR_B);
333                 }
334
335                 status = inl(io + SIS_RISR);
336                 if (status) {
337                         voice = &sis->capture_voice;
338                         if (!voice->timing)
339                                 snd_pcm_period_elapsed(voice->substream);
340
341                         outl(status, io + SIS_RISR);
342                 }
343
344                 outl(intr, io + SIS_GISR);
345                 intr = inl(io + SIS_GISR);
346                 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
347                         SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
348         } while (intr);
349
350         return IRQ_HANDLED;
351 }
352
353 static u32 sis_rate_to_delta(unsigned int rate)
354 {
355         u32 delta;
356
357         /* This was copied from the trident driver, but it seems its gotten
358          * around a bit... nevertheless, it works well.
359          *
360          * We special case 44100 and 8000 since rounding with the equation
361          * does not give us an accurate enough value. For 11025 and 22050
362          * the equation gives us the best answer. All other frequencies will
363          * also use the equation. JDW
364          */
365         if (rate == 44100)
366                 delta = 0xeb3;
367         else if (rate == 8000)
368                 delta = 0x2ab;
369         else if (rate == 48000)
370                 delta = 0x1000;
371         else
372                 delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff;
373         return delta;
374 }
375
376 static void __sis_map_silence(struct sis7019 *sis)
377 {
378         /* Helper function: must hold sis->voice_lock on entry */
379         if (!sis->silence_users)
380                 sis->silence_dma_addr = pci_map_single(sis->pci,
381                                                 sis->suspend_state[0],
382                                                 4096, PCI_DMA_TODEVICE);
383         sis->silence_users++;
384 }
385
386 static void __sis_unmap_silence(struct sis7019 *sis)
387 {
388         /* Helper function: must hold sis->voice_lock on entry */
389         sis->silence_users--;
390         if (!sis->silence_users)
391                 pci_unmap_single(sis->pci, sis->silence_dma_addr, 4096,
392                                         PCI_DMA_TODEVICE);
393 }
394
395 static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
396 {
397         unsigned long flags;
398
399         spin_lock_irqsave(&sis->voice_lock, flags);
400         if (voice->timing) {
401                 __sis_unmap_silence(sis);
402                 voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
403                                                 VOICE_SYNC_TIMING);
404                 voice->timing = NULL;
405         }
406         voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
407         spin_unlock_irqrestore(&sis->voice_lock, flags);
408 }
409
410 static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
411 {
412         /* Must hold the voice_lock on entry */
413         struct voice *voice;
414         int i;
415
416         for (i = 0; i < 64; i++) {
417                 voice = &sis->voices[i];
418                 if (voice->flags & VOICE_IN_USE)
419                         continue;
420                 voice->flags |= VOICE_IN_USE;
421                 goto found_one;
422         }
423         voice = NULL;
424
425 found_one:
426         return voice;
427 }
428
429 static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
430 {
431         struct voice *voice;
432         unsigned long flags;
433
434         spin_lock_irqsave(&sis->voice_lock, flags);
435         voice = __sis_alloc_playback_voice(sis);
436         spin_unlock_irqrestore(&sis->voice_lock, flags);
437
438         return voice;
439 }
440
441 static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
442                                         struct snd_pcm_hw_params *hw_params)
443 {
444         struct sis7019 *sis = snd_pcm_substream_chip(substream);
445         struct snd_pcm_runtime *runtime = substream->runtime;
446         struct voice *voice = runtime->private_data;
447         unsigned int period_size, buffer_size;
448         unsigned long flags;
449         int needed;
450
451         /* If there are one or two periods per buffer, we don't need a
452          * timing voice, as we can use the capture channel's interrupts
453          * to clock out the periods.
454          */
455         period_size = params_period_size(hw_params);
456         buffer_size = params_buffer_size(hw_params);
457         needed = (period_size != buffer_size &&
458                         period_size != (buffer_size / 2));
459
460         if (needed && !voice->timing) {
461                 spin_lock_irqsave(&sis->voice_lock, flags);
462                 voice->timing = __sis_alloc_playback_voice(sis);
463                 if (voice->timing)
464                         __sis_map_silence(sis);
465                 spin_unlock_irqrestore(&sis->voice_lock, flags);
466                 if (!voice->timing)
467                         return -ENOMEM;
468                 voice->timing->substream = substream;
469         } else if (!needed && voice->timing) {
470                 sis_free_voice(sis, voice);
471                 voice->timing = NULL;
472         }
473
474         return 0;
475 }
476
477 static int sis_playback_open(struct snd_pcm_substream *substream)
478 {
479         struct sis7019 *sis = snd_pcm_substream_chip(substream);
480         struct snd_pcm_runtime *runtime = substream->runtime;
481         struct voice *voice;
482
483         voice = sis_alloc_playback_voice(sis);
484         if (!voice)
485                 return -EAGAIN;
486
487         voice->substream = substream;
488         runtime->private_data = voice;
489         runtime->hw = sis_playback_hw_info;
490         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
491                                                 9, 0xfff9);
492         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
493                                                 9, 0xfff9);
494         snd_pcm_set_sync(substream);
495         return 0;
496 }
497
498 static int sis_substream_close(struct snd_pcm_substream *substream)
499 {
500         struct sis7019 *sis = snd_pcm_substream_chip(substream);
501         struct snd_pcm_runtime *runtime = substream->runtime;
502         struct voice *voice = runtime->private_data;
503
504         sis_free_voice(sis, voice);
505         return 0;
506 }
507
508 static int sis_playback_hw_params(struct snd_pcm_substream *substream,
509                                         struct snd_pcm_hw_params *hw_params)
510 {
511         return snd_pcm_lib_malloc_pages(substream,
512                                         params_buffer_bytes(hw_params));
513 }
514
515 static int sis_hw_free(struct snd_pcm_substream *substream)
516 {
517         return snd_pcm_lib_free_pages(substream);
518 }
519
520 static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
521 {
522         struct snd_pcm_runtime *runtime = substream->runtime;
523         struct voice *voice = runtime->private_data;
524         void __iomem *ctrl_base = voice->ctrl_base;
525         void __iomem *wave_base = voice->wave_base;
526         u32 format, dma_addr, control, sso_eso, delta, reg;
527         u16 leo;
528
529         /* We rely on the PCM core to ensure that the parameters for this
530          * substream do not change on us while we're programming the HW.
531          */
532         format = 0;
533         if (snd_pcm_format_width(runtime->format) == 8)
534                 format |= SIS_PLAY_DMA_FORMAT_8BIT;
535         if (!snd_pcm_format_signed(runtime->format))
536                 format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
537         if (runtime->channels == 1)
538                 format |= SIS_PLAY_DMA_FORMAT_MONO;
539
540         /* The baseline setup is for a single period per buffer, and
541          * we add bells and whistles as needed from there.
542          */
543         dma_addr = runtime->dma_addr;
544         leo = runtime->buffer_size - 1;
545         control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
546         sso_eso = leo;
547
548         if (runtime->period_size == (runtime->buffer_size / 2)) {
549                 control |= SIS_PLAY_DMA_INTR_AT_MLP;
550         } else if (runtime->period_size != runtime->buffer_size) {
551                 voice->flags |= VOICE_SSO_TIMING;
552                 voice->sso = runtime->period_size - 1;
553                 voice->period_size = runtime->period_size;
554                 voice->buffer_size = runtime->buffer_size;
555
556                 control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
557                 control |= SIS_PLAY_DMA_INTR_AT_SSO;
558                 sso_eso |= (runtime->period_size - 1) << 16;
559         }
560
561         delta = sis_rate_to_delta(runtime->rate);
562
563         /* Ok, we're ready to go, set up the channel.
564          */
565         writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
566         writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
567         writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
568         writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
569
570         for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
571                 writel(0, wave_base + reg);
572
573         writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
574         writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
575         writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
576                         SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
577                         SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
578                         wave_base + SIS_WAVE_CHANNEL_CONTROL);
579
580         /* Force PCI writes to post. */
581         readl(ctrl_base);
582
583         return 0;
584 }
585
586 static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
587 {
588         struct sis7019 *sis = snd_pcm_substream_chip(substream);
589         unsigned long io = sis->ioport;
590         struct snd_pcm_substream *s;
591         struct voice *voice;
592         void *chip;
593         int starting;
594         u32 record = 0;
595         u32 play[2] = { 0, 0 };
596
597         /* No locks needed, as the PCM core will hold the locks on the
598          * substreams, and the HW will only start/stop the indicated voices
599          * without changing the state of the others.
600          */
601         switch (cmd) {
602         case SNDRV_PCM_TRIGGER_START:
603         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
604         case SNDRV_PCM_TRIGGER_RESUME:
605                 starting = 1;
606                 break;
607         case SNDRV_PCM_TRIGGER_STOP:
608         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
609         case SNDRV_PCM_TRIGGER_SUSPEND:
610                 starting = 0;
611                 break;
612         default:
613                 return -EINVAL;
614         }
615
616         snd_pcm_group_for_each_entry(s, substream) {
617                 /* Make sure it is for us... */
618                 chip = snd_pcm_substream_chip(s);
619                 if (chip != sis)
620                         continue;
621
622                 voice = s->runtime->private_data;
623                 if (voice->flags & VOICE_CAPTURE) {
624                         record |= 1 << voice->num;
625                         voice = voice->timing;
626                 }
627
628                 /* voice could be NULL if this a recording stream, and it
629                  * doesn't have an external timing channel.
630                  */
631                 if (voice)
632                         play[voice->num / 32] |= 1 << (voice->num & 0x1f);
633
634                 snd_pcm_trigger_done(s, substream);
635         }
636
637         if (starting) {
638                 if (record)
639                         outl(record, io + SIS_RECORD_START_REG);
640                 if (play[0])
641                         outl(play[0], io + SIS_PLAY_START_A_REG);
642                 if (play[1])
643                         outl(play[1], io + SIS_PLAY_START_B_REG);
644         } else {
645                 if (record)
646                         outl(record, io + SIS_RECORD_STOP_REG);
647                 if (play[0])
648                         outl(play[0], io + SIS_PLAY_STOP_A_REG);
649                 if (play[1])
650                         outl(play[1], io + SIS_PLAY_STOP_B_REG);
651         }
652         return 0;
653 }
654
655 static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
656 {
657         struct snd_pcm_runtime *runtime = substream->runtime;
658         struct voice *voice = runtime->private_data;
659         u32 cso;
660
661         cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
662         cso &= 0xffff;
663         return cso;
664 }
665
666 static int sis_capture_open(struct snd_pcm_substream *substream)
667 {
668         struct sis7019 *sis = snd_pcm_substream_chip(substream);
669         struct snd_pcm_runtime *runtime = substream->runtime;
670         struct voice *voice = &sis->capture_voice;
671         unsigned long flags;
672
673         /* FIXME: The driver only supports recording from one channel
674          * at the moment, but it could support more.
675          */
676         spin_lock_irqsave(&sis->voice_lock, flags);
677         if (voice->flags & VOICE_IN_USE)
678                 voice = NULL;
679         else
680                 voice->flags |= VOICE_IN_USE;
681         spin_unlock_irqrestore(&sis->voice_lock, flags);
682
683         if (!voice)
684                 return -EAGAIN;
685
686         voice->substream = substream;
687         runtime->private_data = voice;
688         runtime->hw = sis_capture_hw_info;
689         runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
690         snd_pcm_limit_hw_rates(runtime);
691         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
692                                                 9, 0xfff9);
693         snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
694                                                 9, 0xfff9);
695         snd_pcm_set_sync(substream);
696         return 0;
697 }
698
699 static int sis_capture_hw_params(struct snd_pcm_substream *substream,
700                                         struct snd_pcm_hw_params *hw_params)
701 {
702         struct sis7019 *sis = snd_pcm_substream_chip(substream);
703         int rc;
704
705         rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
706                                                 params_rate(hw_params));
707         if (rc)
708                 goto out;
709
710         rc = snd_pcm_lib_malloc_pages(substream,
711                                         params_buffer_bytes(hw_params));
712         if (rc < 0)
713                 goto out;
714
715         rc = sis_alloc_timing_voice(substream, hw_params);
716
717 out:
718         return rc;
719 }
720
721 static void sis_prepare_timing_voice(struct voice *voice,
722                                         struct snd_pcm_substream *substream)
723 {
724         struct sis7019 *sis = snd_pcm_substream_chip(substream);
725         struct snd_pcm_runtime *runtime = substream->runtime;
726         struct voice *timing = voice->timing;
727         void __iomem *play_base = timing->ctrl_base;
728         void __iomem *wave_base = timing->wave_base;
729         u16 buffer_size, period_size;
730         u32 format, control, sso_eso, delta;
731         u32 vperiod, sso, reg;
732
733         /* Set our initial buffer and period as large as we can given a
734          * single page of silence.
735          */
736         buffer_size = 4096 / runtime->channels;
737         buffer_size /= snd_pcm_format_size(runtime->format, 1);
738         period_size = buffer_size;
739
740         /* Initially, we want to interrupt just a bit behind the end of
741          * the period we're clocking out. 12 samples seems to give a good
742          * delay.
743          *
744          * We want to spread our interrupts throughout the virtual period,
745          * so that we don't end up with two interrupts back to back at the
746          * end -- this helps minimize the effects of any jitter. Adjust our
747          * clocking period size so that the last period is at least a fourth
748          * of a full period.
749          *
750          * This is all moot if we don't need to use virtual periods.
751          */
752         vperiod = runtime->period_size + 12;
753         if (vperiod > period_size) {
754                 u16 tail = vperiod % period_size;
755                 u16 quarter_period = period_size / 4;
756
757                 if (tail && tail < quarter_period) {
758                         u16 loops = vperiod / period_size;
759
760                         tail = quarter_period - tail;
761                         tail += loops - 1;
762                         tail /= loops;
763                         period_size -= tail;
764                 }
765
766                 sso = period_size - 1;
767         } else {
768                 /* The initial period will fit inside the buffer, so we
769                  * don't need to use virtual periods -- disable them.
770                  */
771                 period_size = runtime->period_size;
772                 sso = vperiod - 1;
773                 vperiod = 0;
774         }
775
776         /* The interrupt handler implements the timing synchronization, so
777          * setup its state.
778          */
779         timing->flags |= VOICE_SYNC_TIMING;
780         timing->sync_base = voice->ctrl_base;
781         timing->sync_cso = runtime->period_size;
782         timing->sync_period_size = runtime->period_size;
783         timing->sync_buffer_size = runtime->buffer_size;
784         timing->period_size = period_size;
785         timing->buffer_size = buffer_size;
786         timing->sso = sso;
787         timing->vperiod = vperiod;
788
789         /* Using unsigned samples with the all-zero silence buffer
790          * forces the output to the lower rail, killing playback.
791          * So ignore unsigned vs signed -- it doesn't change the timing.
792          */
793         format = 0;
794         if (snd_pcm_format_width(runtime->format) == 8)
795                 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
796         if (runtime->channels == 1)
797                 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
798
799         control = timing->buffer_size - 1;
800         control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
801         sso_eso = timing->buffer_size - 1;
802         sso_eso |= timing->sso << 16;
803
804         delta = sis_rate_to_delta(runtime->rate);
805
806         /* We've done the math, now configure the channel.
807          */
808         writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
809         writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
810         writel(control, play_base + SIS_PLAY_DMA_CONTROL);
811         writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
812
813         for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
814                 writel(0, wave_base + reg);
815
816         writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
817         writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
818         writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
819                         SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
820                         SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
821                         wave_base + SIS_WAVE_CHANNEL_CONTROL);
822 }
823
824 static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
825 {
826         struct snd_pcm_runtime *runtime = substream->runtime;
827         struct voice *voice = runtime->private_data;
828         void __iomem *rec_base = voice->ctrl_base;
829         u32 format, dma_addr, control;
830         u16 leo;
831
832         /* We rely on the PCM core to ensure that the parameters for this
833          * substream do not change on us while we're programming the HW.
834          */
835         format = 0;
836         if (snd_pcm_format_width(runtime->format) == 8)
837                 format = SIS_CAPTURE_DMA_FORMAT_8BIT;
838         if (!snd_pcm_format_signed(runtime->format))
839                 format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
840         if (runtime->channels == 1)
841                 format |= SIS_CAPTURE_DMA_FORMAT_MONO;
842
843         dma_addr = runtime->dma_addr;
844         leo = runtime->buffer_size - 1;
845         control = leo | SIS_CAPTURE_DMA_LOOP;
846
847         /* If we've got more than two periods per buffer, then we have
848          * use a timing voice to clock out the periods. Otherwise, we can
849          * use the capture channel's interrupts.
850          */
851         if (voice->timing) {
852                 sis_prepare_timing_voice(voice, substream);
853         } else {
854                 control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
855                 if (runtime->period_size != runtime->buffer_size)
856                         control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
857         }
858
859         writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
860         writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
861         writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
862
863         /* Force the writes to post. */
864         readl(rec_base);
865
866         return 0;
867 }
868
869 static struct snd_pcm_ops sis_playback_ops = {
870         .open = sis_playback_open,
871         .close = sis_substream_close,
872         .ioctl = snd_pcm_lib_ioctl,
873         .hw_params = sis_playback_hw_params,
874         .hw_free = sis_hw_free,
875         .prepare = sis_pcm_playback_prepare,
876         .trigger = sis_pcm_trigger,
877         .pointer = sis_pcm_pointer,
878 };
879
880 static struct snd_pcm_ops sis_capture_ops = {
881         .open = sis_capture_open,
882         .close = sis_substream_close,
883         .ioctl = snd_pcm_lib_ioctl,
884         .hw_params = sis_capture_hw_params,
885         .hw_free = sis_hw_free,
886         .prepare = sis_pcm_capture_prepare,
887         .trigger = sis_pcm_trigger,
888         .pointer = sis_pcm_pointer,
889 };
890
891 static int __devinit sis_pcm_create(struct sis7019 *sis)
892 {
893         struct snd_pcm *pcm;
894         int rc;
895
896         /* We have 64 voices, and the driver currently records from
897          * only one channel, though that could change in the future.
898          */
899         rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
900         if (rc)
901                 return rc;
902
903         pcm->private_data = sis;
904         strcpy(pcm->name, "SiS7019");
905         sis->pcm = pcm;
906
907         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
908         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
909
910         /* Try to preallocate some memory, but it's not the end of the
911          * world if this fails.
912          */
913         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
914                                 snd_dma_pci_data(sis->pci), 64*1024, 128*1024);
915
916         return 0;
917 }
918
919 static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
920 {
921         unsigned long io = sis->ioport;
922         unsigned short val = 0xffff;
923         u16 status;
924         u16 rdy;
925         int count;
926         static const u16 codec_ready[3] = {
927                 SIS_AC97_STATUS_CODEC_READY,
928                 SIS_AC97_STATUS_CODEC2_READY,
929                 SIS_AC97_STATUS_CODEC3_READY,
930         };
931
932         rdy = codec_ready[codec];
933
934
935         /* Get the AC97 semaphore -- software first, so we don't spin
936          * pounding out IO reads on the hardware semaphore...
937          */
938         mutex_lock(&sis->ac97_mutex);
939
940         count = 0xffff;
941         while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
942                 udelay(1);
943
944         if (!count)
945                 goto timeout;
946
947         /* ... and wait for any outstanding commands to complete ...
948          */
949         count = 0xffff;
950         do {
951                 status = inw(io + SIS_AC97_STATUS);
952                 if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
953                         break;
954
955                 udelay(1);
956         } while (--count);
957
958         if (!count)
959                 goto timeout_sema;
960
961         /* ... before sending our command and waiting for it to finish ...
962          */
963         outl(cmd, io + SIS_AC97_CMD);
964         udelay(10);
965
966         count = 0xffff;
967         while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
968                 udelay(1);
969
970         /* ... and reading the results (if any).
971          */
972         val = inl(io + SIS_AC97_CMD) >> 16;
973
974 timeout_sema:
975         outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
976 timeout:
977         mutex_unlock(&sis->ac97_mutex);
978
979         if (!count) {
980                 printk(KERN_ERR "sis7019: ac97 codec %d timeout cmd 0x%08x\n",
981                                         codec, cmd);
982         }
983
984         return val;
985 }
986
987 static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
988                                 unsigned short val)
989 {
990         static const u32 cmd[3] = {
991                 SIS_AC97_CMD_CODEC_WRITE,
992                 SIS_AC97_CMD_CODEC2_WRITE,
993                 SIS_AC97_CMD_CODEC3_WRITE,
994         };
995         sis_ac97_rw(ac97->private_data, ac97->num,
996                         (val << 16) | (reg << 8) | cmd[ac97->num]);
997 }
998
999 static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
1000 {
1001         static const u32 cmd[3] = {
1002                 SIS_AC97_CMD_CODEC_READ,
1003                 SIS_AC97_CMD_CODEC2_READ,
1004                 SIS_AC97_CMD_CODEC3_READ,
1005         };
1006         return sis_ac97_rw(ac97->private_data, ac97->num,
1007                                         (reg << 8) | cmd[ac97->num]);
1008 }
1009
1010 static int __devinit sis_mixer_create(struct sis7019 *sis)
1011 {
1012         struct snd_ac97_bus *bus;
1013         struct snd_ac97_template ac97;
1014         static struct snd_ac97_bus_ops ops = {
1015                 .write = sis_ac97_write,
1016                 .read = sis_ac97_read,
1017         };
1018         int rc;
1019
1020         memset(&ac97, 0, sizeof(ac97));
1021         ac97.private_data = sis;
1022
1023         rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
1024         if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1025                 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
1026         ac97.num = 1;
1027         if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
1028                 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
1029         ac97.num = 2;
1030         if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
1031                 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
1032
1033         /* If we return an error here, then snd_card_free() should
1034          * free up any ac97 codecs that got created, as well as the bus.
1035          */
1036         return rc;
1037 }
1038
1039 static void sis_free_suspend(struct sis7019 *sis)
1040 {
1041         int i;
1042
1043         for (i = 0; i < SIS_SUSPEND_PAGES; i++)
1044                 kfree(sis->suspend_state[i]);
1045 }
1046
1047 static int sis_chip_free(struct sis7019 *sis)
1048 {
1049         /* Reset the chip, and disable all interrputs.
1050          */
1051         outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1052         udelay(25);
1053         outl(0, sis->ioport + SIS_GCR);
1054         outl(0, sis->ioport + SIS_GIER);
1055
1056         /* Now, free everything we allocated.
1057          */
1058         if (sis->irq >= 0)
1059                 free_irq(sis->irq, sis);
1060
1061         if (sis->ioaddr)
1062                 iounmap(sis->ioaddr);
1063
1064         pci_release_regions(sis->pci);
1065         pci_disable_device(sis->pci);
1066
1067         sis_free_suspend(sis);
1068         return 0;
1069 }
1070
1071 static int sis_dev_free(struct snd_device *dev)
1072 {
1073         struct sis7019 *sis = dev->device_data;
1074         return sis_chip_free(sis);
1075 }
1076
1077 static int sis_chip_init(struct sis7019 *sis)
1078 {
1079         unsigned long io = sis->ioport;
1080         void __iomem *ioaddr = sis->ioaddr;
1081         u16 status;
1082         int count;
1083         int i;
1084
1085         /* Reset the audio controller
1086          */
1087         outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1088         udelay(25);
1089         outl(0, io + SIS_GCR);
1090
1091         /* Get the AC-link semaphore, and reset the codecs
1092          */
1093         count = 0xffff;
1094         while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1095                 udelay(1);
1096
1097         if (!count)
1098                 return -EIO;
1099
1100         outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1101         udelay(250);
1102
1103         count = 0xffff;
1104         while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1105                 udelay(1);
1106
1107         /* Now that we've finished the reset, find out what's attached.
1108          */
1109         status = inl(io + SIS_AC97_STATUS);
1110         if (status & SIS_AC97_STATUS_CODEC_READY)
1111                 sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1112         if (status & SIS_AC97_STATUS_CODEC2_READY)
1113                 sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1114         if (status & SIS_AC97_STATUS_CODEC3_READY)
1115                 sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1116
1117         /* All done, let go of the semaphore, and check for errors
1118          */
1119         outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1120         if (!sis->codecs_present || !count)
1121                 return -EIO;
1122
1123         /* Let the hardware know that the audio driver is alive,
1124          * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1125          * record channels. We're going to want to use Variable Rate Audio
1126          * for recording, to avoid needlessly resampling from 48kHZ.
1127          */
1128         outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1129         outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1130                 SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1131                 SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1132                 SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1133
1134         /* All AC97 PCM slots should be sourced from sub-mixer 0.
1135          */
1136         outl(0, io + SIS_AC97_PSR);
1137
1138         /* There is only one valid DMA setup for a PCI environment.
1139          */
1140         outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1141
1142         /* Reset the synchronization groups for all of the channels
1143          * to be asyncronous. If we start doing SPDIF or 5.1 sound, etc.
1144          * we'll need to change how we handle these. Until then, we just
1145          * assign sub-mixer 0 to all playback channels, and avoid any
1146          * attenuation on the audio.
1147          */
1148         outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1149         outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1150         outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1151         outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1152         outl(0, io + SIS_MIXER_SYNC_GROUP);
1153
1154         for (i = 0; i < 64; i++) {
1155                 writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1156                 writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1157                                 SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1158         }
1159
1160         /* Don't attenuate any audio set for the wave amplifier.
1161          *
1162          * FIXME: Maximum attenuation is set for the music amp, which will
1163          * need to change if we start using the synth engine.
1164          */
1165         outl(0xffff0000, io + SIS_WEVCR);
1166
1167         /* Ensure that the wave engine is in normal operating mode.
1168          */
1169         outl(0, io + SIS_WECCR);
1170
1171         /* Go ahead and enable the DMA interrupts. They won't go live
1172          * until we start a channel.
1173          */
1174         outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1175                 SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1176
1177         return 0;
1178 }
1179
1180 #ifdef CONFIG_PM
1181 static int sis_suspend(struct pci_dev *pci, pm_message_t state)
1182 {
1183         struct snd_card *card = pci_get_drvdata(pci);
1184         struct sis7019 *sis = card->private_data;
1185         void __iomem *ioaddr = sis->ioaddr;
1186         int i;
1187
1188         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1189         snd_pcm_suspend_all(sis->pcm);
1190         if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1191                 snd_ac97_suspend(sis->ac97[0]);
1192         if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1193                 snd_ac97_suspend(sis->ac97[1]);
1194         if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1195                 snd_ac97_suspend(sis->ac97[2]);
1196
1197         /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1198          */
1199         if (sis->irq >= 0) {
1200                 free_irq(sis->irq, sis);
1201                 sis->irq = -1;
1202         }
1203
1204         /* Save the internal state away
1205          */
1206         for (i = 0; i < 4; i++) {
1207                 memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1208                 ioaddr += 4096;
1209         }
1210
1211         pci_disable_device(pci);
1212         pci_save_state(pci);
1213         pci_set_power_state(pci, pci_choose_state(pci, state));
1214         return 0;
1215 }
1216
1217 static int sis_resume(struct pci_dev *pci)
1218 {
1219         struct snd_card *card = pci_get_drvdata(pci);
1220         struct sis7019 *sis = card->private_data;
1221         void __iomem *ioaddr = sis->ioaddr;
1222         int i;
1223
1224         pci_set_power_state(pci, PCI_D0);
1225         pci_restore_state(pci);
1226
1227         if (pci_enable_device(pci) < 0) {
1228                 printk(KERN_ERR "sis7019: unable to re-enable device\n");
1229                 goto error;
1230         }
1231
1232         if (sis_chip_init(sis)) {
1233                 printk(KERN_ERR "sis7019: unable to re-init controller\n");
1234                 goto error;
1235         }
1236
1237         if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
1238                         KBUILD_MODNAME, sis)) {
1239                 printk(KERN_ERR "sis7019: unable to regain IRQ %d\n", pci->irq);
1240                 goto error;
1241         }
1242
1243         /* Restore saved state, then clear out the page we use for the
1244          * silence buffer.
1245          */
1246         for (i = 0; i < 4; i++) {
1247                 memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1248                 ioaddr += 4096;
1249         }
1250
1251         memset(sis->suspend_state[0], 0, 4096);
1252
1253         sis->irq = pci->irq;
1254         pci_set_master(pci);
1255
1256         if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1257                 snd_ac97_resume(sis->ac97[0]);
1258         if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1259                 snd_ac97_resume(sis->ac97[1]);
1260         if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1261                 snd_ac97_resume(sis->ac97[2]);
1262
1263         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1264         return 0;
1265
1266 error:
1267         snd_card_disconnect(card);
1268         return -EIO;
1269 }
1270 #endif /* CONFIG_PM */
1271
1272 static int sis_alloc_suspend(struct sis7019 *sis)
1273 {
1274         int i;
1275
1276         /* We need 16K to store the internal wave engine state during a
1277          * suspend, but we don't need it to be contiguous, so play nice
1278          * with the memory system. We'll also use this area for a silence
1279          * buffer.
1280          */
1281         for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1282                 sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
1283                 if (!sis->suspend_state[i])
1284                         return -ENOMEM;
1285         }
1286         memset(sis->suspend_state[0], 0, 4096);
1287
1288         return 0;
1289 }
1290
1291 static int __devinit sis_chip_create(struct snd_card *card,
1292                                         struct pci_dev *pci)
1293 {
1294         struct sis7019 *sis = card->private_data;
1295         struct voice *voice;
1296         static struct snd_device_ops ops = {
1297                 .dev_free = sis_dev_free,
1298         };
1299         int rc;
1300         int i;
1301
1302         rc = pci_enable_device(pci);
1303         if (rc)
1304                 goto error_out;
1305
1306         if (pci_set_dma_mask(pci, DMA_BIT_MASK(30)) < 0) {
1307                 printk(KERN_ERR "sis7019: architecture does not support "
1308                                         "30-bit PCI busmaster DMA");
1309                 goto error_out_enabled;
1310         }
1311
1312         memset(sis, 0, sizeof(*sis));
1313         mutex_init(&sis->ac97_mutex);
1314         spin_lock_init(&sis->voice_lock);
1315         sis->card = card;
1316         sis->pci = pci;
1317         sis->irq = -1;
1318         sis->ioport = pci_resource_start(pci, 0);
1319
1320         rc = pci_request_regions(pci, "SiS7019");
1321         if (rc) {
1322                 printk(KERN_ERR "sis7019: unable request regions\n");
1323                 goto error_out_enabled;
1324         }
1325
1326         rc = -EIO;
1327         sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000);
1328         if (!sis->ioaddr) {
1329                 printk(KERN_ERR "sis7019: unable to remap MMIO, aborting\n");
1330                 goto error_out_cleanup;
1331         }
1332
1333         rc = sis_alloc_suspend(sis);
1334         if (rc < 0) {
1335                 printk(KERN_ERR "sis7019: unable to allocate state storage\n");
1336                 goto error_out_cleanup;
1337         }
1338
1339         rc = sis_chip_init(sis);
1340         if (rc)
1341                 goto error_out_cleanup;
1342
1343         if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
1344                         KBUILD_MODNAME, sis)) {
1345                 printk(KERN_ERR "unable to allocate irq %d\n", sis->irq);
1346                 goto error_out_cleanup;
1347         }
1348
1349         sis->irq = pci->irq;
1350         pci_set_master(pci);
1351
1352         for (i = 0; i < 64; i++) {
1353                 voice = &sis->voices[i];
1354                 voice->num = i;
1355                 voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1356                 voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1357         }
1358
1359         voice = &sis->capture_voice;
1360         voice->flags = VOICE_CAPTURE;
1361         voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1362         voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1363
1364         rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
1365         if (rc)
1366                 goto error_out_cleanup;
1367
1368         snd_card_set_dev(card, &pci->dev);
1369
1370         return 0;
1371
1372 error_out_cleanup:
1373         sis_chip_free(sis);
1374
1375 error_out_enabled:
1376         pci_disable_device(pci);
1377
1378 error_out:
1379         return rc;
1380 }
1381
1382 static int __devinit snd_sis7019_probe(struct pci_dev *pci,
1383                                         const struct pci_device_id *pci_id)
1384 {
1385         struct snd_card *card;
1386         struct sis7019 *sis;
1387         int rc;
1388
1389         rc = -ENOENT;
1390         if (!enable)
1391                 goto error_out;
1392
1393         rc = snd_card_create(index, id, THIS_MODULE, sizeof(*sis), &card);
1394         if (rc < 0)
1395                 goto error_out;
1396
1397         strcpy(card->driver, "SiS7019");
1398         strcpy(card->shortname, "SiS7019");
1399         rc = sis_chip_create(card, pci);
1400         if (rc)
1401                 goto card_error_out;
1402
1403         sis = card->private_data;
1404
1405         rc = sis_mixer_create(sis);
1406         if (rc)
1407                 goto card_error_out;
1408
1409         rc = sis_pcm_create(sis);
1410         if (rc)
1411                 goto card_error_out;
1412
1413         snprintf(card->longname, sizeof(card->longname),
1414                         "%s Audio Accelerator with %s at 0x%lx, irq %d",
1415                         card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1416                         sis->ioport, sis->irq);
1417
1418         rc = snd_card_register(card);
1419         if (rc)
1420                 goto card_error_out;
1421
1422         pci_set_drvdata(pci, card);
1423         return 0;
1424
1425 card_error_out:
1426         snd_card_free(card);
1427
1428 error_out:
1429         return rc;
1430 }
1431
1432 static void __devexit snd_sis7019_remove(struct pci_dev *pci)
1433 {
1434         snd_card_free(pci_get_drvdata(pci));
1435         pci_set_drvdata(pci, NULL);
1436 }
1437
1438 static struct pci_driver sis7019_driver = {
1439         .name = KBUILD_MODNAME,
1440         .id_table = snd_sis7019_ids,
1441         .probe = snd_sis7019_probe,
1442         .remove = __devexit_p(snd_sis7019_remove),
1443
1444 #ifdef CONFIG_PM
1445         .suspend = sis_suspend,
1446         .resume = sis_resume,
1447 #endif
1448 };
1449
1450 static int __init sis7019_init(void)
1451 {
1452         return pci_register_driver(&sis7019_driver);
1453 }
1454
1455 static void __exit sis7019_exit(void)
1456 {
1457         pci_unregister_driver(&sis7019_driver);
1458 }
1459
1460 module_init(sis7019_init);
1461 module_exit(sis7019_exit);