[ALSA] Optimize for config without PROC_FS (pci drivers)
[linux-2.6.git] / sound / pci / fm801.c
1 /*
2  *  The driver for the ForteMedia FM801 based soundcards
3  *  Copyright (c) by Jaroslav Kysela <perex@suse.cz>
4  *
5  *
6  *   This program is free software; you can redistribute it and/or modify
7  *   it under the terms of the GNU General Public License as published by
8  *   the Free Software Foundation; either version 2 of the License, or
9  *   (at your option) any later version.
10  *
11  *   This program is distributed in the hope that it will be useful,
12  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *   GNU General Public License for more details.
15  *
16  *   You should have received a copy of the GNU General Public License
17  *   along with this program; if not, write to the Free Software
18  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
19  *
20  */
21
22 #include <sound/driver.h>
23 #include <linux/delay.h>
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/pci.h>
27 #include <linux/slab.h>
28 #include <linux/moduleparam.h>
29 #include <sound/core.h>
30 #include <sound/pcm.h>
31 #include <sound/ac97_codec.h>
32 #include <sound/mpu401.h>
33 #include <sound/opl3.h>
34 #include <sound/initval.h>
35
36 #include <asm/io.h>
37
38 #if (defined(CONFIG_SND_FM801_TEA575X) || defined(CONFIG_SND_FM801_TEA575X_MODULE)) && (defined(CONFIG_VIDEO_DEV) || defined(CONFIG_VIDEO_DEV_MODULE))
39 #include <sound/tea575x-tuner.h>
40 #define TEA575X_RADIO 1
41 #endif
42
43 MODULE_AUTHOR("Jaroslav Kysela <perex@suse.cz>");
44 MODULE_DESCRIPTION("ForteMedia FM801");
45 MODULE_LICENSE("GPL");
46 MODULE_SUPPORTED_DEVICE("{{ForteMedia,FM801},"
47                 "{Genius,SoundMaker Live 5.1}}");
48
49 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 0-MAX */
50 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
51 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;      /* Enable this card */
52 /*
53  *  Enable TEA575x tuner
54  *    1 = MediaForte 256-PCS
55  *    2 = MediaForte 256-PCPR
56  *    3 = MediaForte 64-PCR
57  *  High 16-bits are video (radio) device number + 1
58  */
59 static int tea575x_tuner[SNDRV_CARDS] = { [0 ... (SNDRV_CARDS-1)] = 0 };
60
61 module_param_array(index, int, NULL, 0444);
62 MODULE_PARM_DESC(index, "Index value for the FM801 soundcard.");
63 module_param_array(id, charp, NULL, 0444);
64 MODULE_PARM_DESC(id, "ID string for the FM801 soundcard.");
65 module_param_array(enable, bool, NULL, 0444);
66 MODULE_PARM_DESC(enable, "Enable FM801 soundcard.");
67 module_param_array(tea575x_tuner, int, NULL, 0444);
68 MODULE_PARM_DESC(tea575x_tuner, "Enable TEA575x tuner.");
69
70 /*
71  *  Direct registers
72  */
73
74 #define FM801_REG(chip, reg)    (chip->port + FM801_##reg)
75
76 #define FM801_PCM_VOL           0x00    /* PCM Output Volume */
77 #define FM801_FM_VOL            0x02    /* FM Output Volume */
78 #define FM801_I2S_VOL           0x04    /* I2S Volume */
79 #define FM801_REC_SRC           0x06    /* Record Source */
80 #define FM801_PLY_CTRL          0x08    /* Playback Control */
81 #define FM801_PLY_COUNT         0x0a    /* Playback Count */
82 #define FM801_PLY_BUF1          0x0c    /* Playback Bufer I */
83 #define FM801_PLY_BUF2          0x10    /* Playback Buffer II */
84 #define FM801_CAP_CTRL          0x14    /* Capture Control */
85 #define FM801_CAP_COUNT         0x16    /* Capture Count */
86 #define FM801_CAP_BUF1          0x18    /* Capture Buffer I */
87 #define FM801_CAP_BUF2          0x1c    /* Capture Buffer II */
88 #define FM801_CODEC_CTRL        0x22    /* Codec Control */
89 #define FM801_I2S_MODE          0x24    /* I2S Mode Control */
90 #define FM801_VOLUME            0x26    /* Volume Up/Down/Mute Status */
91 #define FM801_I2C_CTRL          0x29    /* I2C Control */
92 #define FM801_AC97_CMD          0x2a    /* AC'97 Command */
93 #define FM801_AC97_DATA         0x2c    /* AC'97 Data */
94 #define FM801_MPU401_DATA       0x30    /* MPU401 Data */
95 #define FM801_MPU401_CMD        0x31    /* MPU401 Command */
96 #define FM801_GPIO_CTRL         0x52    /* General Purpose I/O Control */
97 #define FM801_GEN_CTRL          0x54    /* General Control */
98 #define FM801_IRQ_MASK          0x56    /* Interrupt Mask */
99 #define FM801_IRQ_STATUS        0x5a    /* Interrupt Status */
100 #define FM801_OPL3_BANK0        0x68    /* OPL3 Status Read / Bank 0 Write */
101 #define FM801_OPL3_DATA0        0x69    /* OPL3 Data 0 Write */
102 #define FM801_OPL3_BANK1        0x6a    /* OPL3 Bank 1 Write */
103 #define FM801_OPL3_DATA1        0x6b    /* OPL3 Bank 1 Write */
104 #define FM801_POWERDOWN         0x70    /* Blocks Power Down Control */
105
106 /* codec access */
107 #define FM801_AC97_READ         (1<<7)  /* read=1, write=0 */
108 #define FM801_AC97_VALID        (1<<8)  /* port valid=1 */
109 #define FM801_AC97_BUSY         (1<<9)  /* busy=1 */
110 #define FM801_AC97_ADDR_SHIFT   10      /* codec id (2bit) */
111
112 /* playback and record control register bits */
113 #define FM801_BUF1_LAST         (1<<1)
114 #define FM801_BUF2_LAST         (1<<2)
115 #define FM801_START             (1<<5)
116 #define FM801_PAUSE             (1<<6)
117 #define FM801_IMMED_STOP        (1<<7)
118 #define FM801_RATE_SHIFT        8
119 #define FM801_RATE_MASK         (15 << FM801_RATE_SHIFT)
120 #define FM801_CHANNELS_4        (1<<12) /* playback only */
121 #define FM801_CHANNELS_6        (2<<12) /* playback only */
122 #define FM801_CHANNELS_6MS      (3<<12) /* playback only */
123 #define FM801_CHANNELS_MASK     (3<<12)
124 #define FM801_16BIT             (1<<14)
125 #define FM801_STEREO            (1<<15)
126
127 /* IRQ status bits */
128 #define FM801_IRQ_PLAYBACK      (1<<8)
129 #define FM801_IRQ_CAPTURE       (1<<9)
130 #define FM801_IRQ_VOLUME        (1<<14)
131 #define FM801_IRQ_MPU           (1<<15)
132
133 /* GPIO control register */
134 #define FM801_GPIO_GP0          (1<<0)  /* read/write */
135 #define FM801_GPIO_GP1          (1<<1)
136 #define FM801_GPIO_GP2          (1<<2)
137 #define FM801_GPIO_GP3          (1<<3)
138 #define FM801_GPIO_GP(x)        (1<<(0+(x)))
139 #define FM801_GPIO_GD0          (1<<8)  /* directions: 1 = input, 0 = output*/
140 #define FM801_GPIO_GD1          (1<<9)
141 #define FM801_GPIO_GD2          (1<<10)
142 #define FM801_GPIO_GD3          (1<<11)
143 #define FM801_GPIO_GD(x)        (1<<(8+(x)))
144 #define FM801_GPIO_GS0          (1<<12) /* function select: */
145 #define FM801_GPIO_GS1          (1<<13) /*    1 = GPIO */
146 #define FM801_GPIO_GS2          (1<<14) /*    0 = other (S/PDIF, VOL) */
147 #define FM801_GPIO_GS3          (1<<15)
148 #define FM801_GPIO_GS(x)        (1<<(12+(x)))
149         
150 /*
151
152  */
153
154 struct fm801 {
155         int irq;
156
157         unsigned long port;     /* I/O port number */
158         unsigned int multichannel: 1,   /* multichannel support */
159                      secondary: 1;      /* secondary codec */
160         unsigned char secondary_addr;   /* address of the secondary codec */
161
162         unsigned short ply_ctrl; /* playback control */
163         unsigned short cap_ctrl; /* capture control */
164
165         unsigned long ply_buffer;
166         unsigned int ply_buf;
167         unsigned int ply_count;
168         unsigned int ply_size;
169         unsigned int ply_pos;
170
171         unsigned long cap_buffer;
172         unsigned int cap_buf;
173         unsigned int cap_count;
174         unsigned int cap_size;
175         unsigned int cap_pos;
176
177         struct snd_ac97_bus *ac97_bus;
178         struct snd_ac97 *ac97;
179         struct snd_ac97 *ac97_sec;
180
181         struct pci_dev *pci;
182         struct snd_card *card;
183         struct snd_pcm *pcm;
184         struct snd_rawmidi *rmidi;
185         struct snd_pcm_substream *playback_substream;
186         struct snd_pcm_substream *capture_substream;
187         unsigned int p_dma_size;
188         unsigned int c_dma_size;
189
190         spinlock_t reg_lock;
191         struct snd_info_entry *proc_entry;
192
193 #ifdef TEA575X_RADIO
194         struct snd_tea575x tea;
195 #endif
196
197 #ifdef CONFIG_PM
198         u16 saved_regs[0x20];
199 #endif
200 };
201
202 static struct pci_device_id snd_fm801_ids[] = {
203         { 0x1319, 0x0801, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, },   /* FM801 */
204         { 0x5213, 0x0510, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, },   /* Gallant Odyssey Sound 4 */
205         { 0, }
206 };
207
208 MODULE_DEVICE_TABLE(pci, snd_fm801_ids);
209
210 /*
211  *  common I/O routines
212  */
213
214 static int snd_fm801_update_bits(struct fm801 *chip, unsigned short reg,
215                                  unsigned short mask, unsigned short value)
216 {
217         int change;
218         unsigned long flags;
219         unsigned short old, new;
220
221         spin_lock_irqsave(&chip->reg_lock, flags);
222         old = inw(chip->port + reg);
223         new = (old & ~mask) | value;
224         change = old != new;
225         if (change)
226                 outw(new, chip->port + reg);
227         spin_unlock_irqrestore(&chip->reg_lock, flags);
228         return change;
229 }
230
231 static void snd_fm801_codec_write(struct snd_ac97 *ac97,
232                                   unsigned short reg,
233                                   unsigned short val)
234 {
235         struct fm801 *chip = ac97->private_data;
236         int idx;
237
238         /*
239          *  Wait until the codec interface is not ready..
240          */
241         for (idx = 0; idx < 100; idx++) {
242                 if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
243                         goto ok1;
244                 udelay(10);
245         }
246         snd_printk(KERN_ERR "AC'97 interface is busy (1)\n");
247         return;
248
249  ok1:
250         /* write data and address */
251         outw(val, FM801_REG(chip, AC97_DATA));
252         outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT), FM801_REG(chip, AC97_CMD));
253         /*
254          *  Wait until the write command is not completed..
255          */
256         for (idx = 0; idx < 1000; idx++) {
257                 if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
258                         return;
259                 udelay(10);
260         }
261         snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num);
262 }
263
264 static unsigned short snd_fm801_codec_read(struct snd_ac97 *ac97, unsigned short reg)
265 {
266         struct fm801 *chip = ac97->private_data;
267         int idx;
268
269         /*
270          *  Wait until the codec interface is not ready..
271          */
272         for (idx = 0; idx < 100; idx++) {
273                 if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
274                         goto ok1;
275                 udelay(10);
276         }
277         snd_printk(KERN_ERR "AC'97 interface is busy (1)\n");
278         return 0;
279
280  ok1:
281         /* read command */
282         outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT) | FM801_AC97_READ,
283              FM801_REG(chip, AC97_CMD));
284         for (idx = 0; idx < 100; idx++) {
285                 if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
286                         goto ok2;
287                 udelay(10);
288         }
289         snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num);
290         return 0;
291
292  ok2:
293         for (idx = 0; idx < 1000; idx++) {
294                 if (inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_VALID)
295                         goto ok3;
296                 udelay(10);
297         }
298         snd_printk(KERN_ERR "AC'97 interface #%d is not valid (2)\n", ac97->num);
299         return 0;
300
301  ok3:
302         return inw(FM801_REG(chip, AC97_DATA));
303 }
304
305 static unsigned int rates[] = {
306   5500,  8000,  9600, 11025,
307   16000, 19200, 22050, 32000,
308   38400, 44100, 48000
309 };
310
311 static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
312         .count = ARRAY_SIZE(rates),
313         .list = rates,
314         .mask = 0,
315 };
316
317 static unsigned int channels[] = {
318   2, 4, 6
319 };
320
321 #define CHANNELS sizeof(channels) / sizeof(channels[0])
322
323 static struct snd_pcm_hw_constraint_list hw_constraints_channels = {
324         .count = CHANNELS,
325         .list = channels,
326         .mask = 0,
327 };
328
329 /*
330  *  Sample rate routines
331  */
332
333 static unsigned short snd_fm801_rate_bits(unsigned int rate)
334 {
335         unsigned int idx;
336
337         for (idx = 0; idx < ARRAY_SIZE(rates); idx++)
338                 if (rates[idx] == rate)
339                         return idx;
340         snd_BUG();
341         return ARRAY_SIZE(rates) - 1;
342 }
343
344 /*
345  *  PCM part
346  */
347
348 static int snd_fm801_playback_trigger(struct snd_pcm_substream *substream,
349                                       int cmd)
350 {
351         struct fm801 *chip = snd_pcm_substream_chip(substream);
352
353         spin_lock(&chip->reg_lock);
354         switch (cmd) {
355         case SNDRV_PCM_TRIGGER_START:
356                 chip->ply_ctrl &= ~(FM801_BUF1_LAST |
357                                      FM801_BUF2_LAST |
358                                      FM801_PAUSE);
359                 chip->ply_ctrl |= FM801_START |
360                                    FM801_IMMED_STOP;
361                 break;
362         case SNDRV_PCM_TRIGGER_STOP:
363                 chip->ply_ctrl &= ~(FM801_START | FM801_PAUSE);
364                 break;
365         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
366         case SNDRV_PCM_TRIGGER_SUSPEND:
367                 chip->ply_ctrl |= FM801_PAUSE;
368                 break;
369         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
370         case SNDRV_PCM_TRIGGER_RESUME:
371                 chip->ply_ctrl &= ~FM801_PAUSE;
372                 break;
373         default:
374                 spin_unlock(&chip->reg_lock);
375                 snd_BUG();
376                 return -EINVAL;
377         }
378         outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL));
379         spin_unlock(&chip->reg_lock);
380         return 0;
381 }
382
383 static int snd_fm801_capture_trigger(struct snd_pcm_substream *substream,
384                                      int cmd)
385 {
386         struct fm801 *chip = snd_pcm_substream_chip(substream);
387
388         spin_lock(&chip->reg_lock);
389         switch (cmd) {
390         case SNDRV_PCM_TRIGGER_START:
391                 chip->cap_ctrl &= ~(FM801_BUF1_LAST |
392                                      FM801_BUF2_LAST |
393                                      FM801_PAUSE);
394                 chip->cap_ctrl |= FM801_START |
395                                    FM801_IMMED_STOP;
396                 break;
397         case SNDRV_PCM_TRIGGER_STOP:
398                 chip->cap_ctrl &= ~(FM801_START | FM801_PAUSE);
399                 break;
400         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
401         case SNDRV_PCM_TRIGGER_SUSPEND:
402                 chip->cap_ctrl |= FM801_PAUSE;
403                 break;
404         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
405         case SNDRV_PCM_TRIGGER_RESUME:
406                 chip->cap_ctrl &= ~FM801_PAUSE;
407                 break;
408         default:
409                 spin_unlock(&chip->reg_lock);
410                 snd_BUG();
411                 return -EINVAL;
412         }
413         outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL));
414         spin_unlock(&chip->reg_lock);
415         return 0;
416 }
417
418 static int snd_fm801_hw_params(struct snd_pcm_substream *substream,
419                                struct snd_pcm_hw_params *hw_params)
420 {
421         return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
422 }
423
424 static int snd_fm801_hw_free(struct snd_pcm_substream *substream)
425 {
426         return snd_pcm_lib_free_pages(substream);
427 }
428
429 static int snd_fm801_playback_prepare(struct snd_pcm_substream *substream)
430 {
431         struct fm801 *chip = snd_pcm_substream_chip(substream);
432         struct snd_pcm_runtime *runtime = substream->runtime;
433
434         chip->ply_size = snd_pcm_lib_buffer_bytes(substream);
435         chip->ply_count = snd_pcm_lib_period_bytes(substream);
436         spin_lock_irq(&chip->reg_lock);
437         chip->ply_ctrl &= ~(FM801_START | FM801_16BIT |
438                              FM801_STEREO | FM801_RATE_MASK |
439                              FM801_CHANNELS_MASK);
440         if (snd_pcm_format_width(runtime->format) == 16)
441                 chip->ply_ctrl |= FM801_16BIT;
442         if (runtime->channels > 1) {
443                 chip->ply_ctrl |= FM801_STEREO;
444                 if (runtime->channels == 4)
445                         chip->ply_ctrl |= FM801_CHANNELS_4;
446                 else if (runtime->channels == 6)
447                         chip->ply_ctrl |= FM801_CHANNELS_6;
448         }
449         chip->ply_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
450         chip->ply_buf = 0;
451         outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL));
452         outw(chip->ply_count - 1, FM801_REG(chip, PLY_COUNT));
453         chip->ply_buffer = runtime->dma_addr;
454         chip->ply_pos = 0;
455         outl(chip->ply_buffer, FM801_REG(chip, PLY_BUF1));
456         outl(chip->ply_buffer + (chip->ply_count % chip->ply_size), FM801_REG(chip, PLY_BUF2));
457         spin_unlock_irq(&chip->reg_lock);
458         return 0;
459 }
460
461 static int snd_fm801_capture_prepare(struct snd_pcm_substream *substream)
462 {
463         struct fm801 *chip = snd_pcm_substream_chip(substream);
464         struct snd_pcm_runtime *runtime = substream->runtime;
465
466         chip->cap_size = snd_pcm_lib_buffer_bytes(substream);
467         chip->cap_count = snd_pcm_lib_period_bytes(substream);
468         spin_lock_irq(&chip->reg_lock);
469         chip->cap_ctrl &= ~(FM801_START | FM801_16BIT |
470                              FM801_STEREO | FM801_RATE_MASK);
471         if (snd_pcm_format_width(runtime->format) == 16)
472                 chip->cap_ctrl |= FM801_16BIT;
473         if (runtime->channels > 1)
474                 chip->cap_ctrl |= FM801_STEREO;
475         chip->cap_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
476         chip->cap_buf = 0;
477         outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL));
478         outw(chip->cap_count - 1, FM801_REG(chip, CAP_COUNT));
479         chip->cap_buffer = runtime->dma_addr;
480         chip->cap_pos = 0;
481         outl(chip->cap_buffer, FM801_REG(chip, CAP_BUF1));
482         outl(chip->cap_buffer + (chip->cap_count % chip->cap_size), FM801_REG(chip, CAP_BUF2));
483         spin_unlock_irq(&chip->reg_lock);
484         return 0;
485 }
486
487 static snd_pcm_uframes_t snd_fm801_playback_pointer(struct snd_pcm_substream *substream)
488 {
489         struct fm801 *chip = snd_pcm_substream_chip(substream);
490         size_t ptr;
491
492         if (!(chip->ply_ctrl & FM801_START))
493                 return 0;
494         spin_lock(&chip->reg_lock);
495         ptr = chip->ply_pos + (chip->ply_count - 1) - inw(FM801_REG(chip, PLY_COUNT));
496         if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_PLAYBACK) {
497                 ptr += chip->ply_count;
498                 ptr %= chip->ply_size;
499         }
500         spin_unlock(&chip->reg_lock);
501         return bytes_to_frames(substream->runtime, ptr);
502 }
503
504 static snd_pcm_uframes_t snd_fm801_capture_pointer(struct snd_pcm_substream *substream)
505 {
506         struct fm801 *chip = snd_pcm_substream_chip(substream);
507         size_t ptr;
508
509         if (!(chip->cap_ctrl & FM801_START))
510                 return 0;
511         spin_lock(&chip->reg_lock);
512         ptr = chip->cap_pos + (chip->cap_count - 1) - inw(FM801_REG(chip, CAP_COUNT));
513         if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_CAPTURE) {
514                 ptr += chip->cap_count;
515                 ptr %= chip->cap_size;
516         }
517         spin_unlock(&chip->reg_lock);
518         return bytes_to_frames(substream->runtime, ptr);
519 }
520
521 static irqreturn_t snd_fm801_interrupt(int irq, void *dev_id, struct pt_regs *regs)
522 {
523         struct fm801 *chip = dev_id;
524         unsigned short status;
525         unsigned int tmp;
526
527         status = inw(FM801_REG(chip, IRQ_STATUS));
528         status &= FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU|FM801_IRQ_VOLUME;
529         if (! status)
530                 return IRQ_NONE;
531         /* ack first */
532         outw(status, FM801_REG(chip, IRQ_STATUS));
533         if (chip->pcm && (status & FM801_IRQ_PLAYBACK) && chip->playback_substream) {
534                 spin_lock(&chip->reg_lock);
535                 chip->ply_buf++;
536                 chip->ply_pos += chip->ply_count;
537                 chip->ply_pos %= chip->ply_size;
538                 tmp = chip->ply_pos + chip->ply_count;
539                 tmp %= chip->ply_size;
540                 outl(chip->ply_buffer + tmp,
541                                 (chip->ply_buf & 1) ?
542                                         FM801_REG(chip, PLY_BUF1) :
543                                         FM801_REG(chip, PLY_BUF2));
544                 spin_unlock(&chip->reg_lock);
545                 snd_pcm_period_elapsed(chip->playback_substream);
546         }
547         if (chip->pcm && (status & FM801_IRQ_CAPTURE) && chip->capture_substream) {
548                 spin_lock(&chip->reg_lock);
549                 chip->cap_buf++;
550                 chip->cap_pos += chip->cap_count;
551                 chip->cap_pos %= chip->cap_size;
552                 tmp = chip->cap_pos + chip->cap_count;
553                 tmp %= chip->cap_size;
554                 outl(chip->cap_buffer + tmp,
555                                 (chip->cap_buf & 1) ?
556                                         FM801_REG(chip, CAP_BUF1) :
557                                         FM801_REG(chip, CAP_BUF2));
558                 spin_unlock(&chip->reg_lock);
559                 snd_pcm_period_elapsed(chip->capture_substream);
560         }
561         if (chip->rmidi && (status & FM801_IRQ_MPU))
562                 snd_mpu401_uart_interrupt(irq, chip->rmidi->private_data, regs);
563         if (status & FM801_IRQ_VOLUME)
564                 ;/* TODO */
565
566         return IRQ_HANDLED;
567 }
568
569 static struct snd_pcm_hardware snd_fm801_playback =
570 {
571         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
572                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
573                                  SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
574                                  SNDRV_PCM_INFO_MMAP_VALID),
575         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
576         .rates =                SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
577         .rate_min =             5500,
578         .rate_max =             48000,
579         .channels_min =         1,
580         .channels_max =         2,
581         .buffer_bytes_max =     (128*1024),
582         .period_bytes_min =     64,
583         .period_bytes_max =     (128*1024),
584         .periods_min =          1,
585         .periods_max =          1024,
586         .fifo_size =            0,
587 };
588
589 static struct snd_pcm_hardware snd_fm801_capture =
590 {
591         .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
592                                  SNDRV_PCM_INFO_BLOCK_TRANSFER |
593                                  SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
594                                  SNDRV_PCM_INFO_MMAP_VALID),
595         .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
596         .rates =                SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
597         .rate_min =             5500,
598         .rate_max =             48000,
599         .channels_min =         1,
600         .channels_max =         2,
601         .buffer_bytes_max =     (128*1024),
602         .period_bytes_min =     64,
603         .period_bytes_max =     (128*1024),
604         .periods_min =          1,
605         .periods_max =          1024,
606         .fifo_size =            0,
607 };
608
609 static int snd_fm801_playback_open(struct snd_pcm_substream *substream)
610 {
611         struct fm801 *chip = snd_pcm_substream_chip(substream);
612         struct snd_pcm_runtime *runtime = substream->runtime;
613         int err;
614
615         chip->playback_substream = substream;
616         runtime->hw = snd_fm801_playback;
617         snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
618                                    &hw_constraints_rates);
619         if (chip->multichannel) {
620                 runtime->hw.channels_max = 6;
621                 snd_pcm_hw_constraint_list(runtime, 0,
622                                            SNDRV_PCM_HW_PARAM_CHANNELS,
623                                            &hw_constraints_channels);
624         }
625         if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
626                 return err;
627         return 0;
628 }
629
630 static int snd_fm801_capture_open(struct snd_pcm_substream *substream)
631 {
632         struct fm801 *chip = snd_pcm_substream_chip(substream);
633         struct snd_pcm_runtime *runtime = substream->runtime;
634         int err;
635
636         chip->capture_substream = substream;
637         runtime->hw = snd_fm801_capture;
638         snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
639                                    &hw_constraints_rates);
640         if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
641                 return err;
642         return 0;
643 }
644
645 static int snd_fm801_playback_close(struct snd_pcm_substream *substream)
646 {
647         struct fm801 *chip = snd_pcm_substream_chip(substream);
648
649         chip->playback_substream = NULL;
650         return 0;
651 }
652
653 static int snd_fm801_capture_close(struct snd_pcm_substream *substream)
654 {
655         struct fm801 *chip = snd_pcm_substream_chip(substream);
656
657         chip->capture_substream = NULL;
658         return 0;
659 }
660
661 static struct snd_pcm_ops snd_fm801_playback_ops = {
662         .open =         snd_fm801_playback_open,
663         .close =        snd_fm801_playback_close,
664         .ioctl =        snd_pcm_lib_ioctl,
665         .hw_params =    snd_fm801_hw_params,
666         .hw_free =      snd_fm801_hw_free,
667         .prepare =      snd_fm801_playback_prepare,
668         .trigger =      snd_fm801_playback_trigger,
669         .pointer =      snd_fm801_playback_pointer,
670 };
671
672 static struct snd_pcm_ops snd_fm801_capture_ops = {
673         .open =         snd_fm801_capture_open,
674         .close =        snd_fm801_capture_close,
675         .ioctl =        snd_pcm_lib_ioctl,
676         .hw_params =    snd_fm801_hw_params,
677         .hw_free =      snd_fm801_hw_free,
678         .prepare =      snd_fm801_capture_prepare,
679         .trigger =      snd_fm801_capture_trigger,
680         .pointer =      snd_fm801_capture_pointer,
681 };
682
683 static int __devinit snd_fm801_pcm(struct fm801 *chip, int device, struct snd_pcm ** rpcm)
684 {
685         struct snd_pcm *pcm;
686         int err;
687
688         if (rpcm)
689                 *rpcm = NULL;
690         if ((err = snd_pcm_new(chip->card, "FM801", device, 1, 1, &pcm)) < 0)
691                 return err;
692
693         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_fm801_playback_ops);
694         snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_fm801_capture_ops);
695
696         pcm->private_data = chip;
697         pcm->info_flags = 0;
698         strcpy(pcm->name, "FM801");
699         chip->pcm = pcm;
700
701         snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
702                                               snd_dma_pci_data(chip->pci),
703                                               chip->multichannel ? 128*1024 : 64*1024, 128*1024);
704
705         if (rpcm)
706                 *rpcm = pcm;
707         return 0;
708 }
709
710 /*
711  *  TEA5757 radio
712  */
713
714 #ifdef TEA575X_RADIO
715
716 /* 256PCS GPIO numbers */
717 #define TEA_256PCS_DATA                 1
718 #define TEA_256PCS_WRITE_ENABLE         2       /* inverted */
719 #define TEA_256PCS_BUS_CLOCK            3
720
721 static void snd_fm801_tea575x_256pcs_write(struct snd_tea575x *tea, unsigned int val)
722 {
723         struct fm801 *chip = tea->private_data;
724         unsigned short reg;
725         int i = 25;
726
727         spin_lock_irq(&chip->reg_lock);
728         reg = inw(FM801_REG(chip, GPIO_CTRL));
729         /* use GPIO lines and set write enable bit */
730         reg |= FM801_GPIO_GS(TEA_256PCS_DATA) |
731                FM801_GPIO_GS(TEA_256PCS_WRITE_ENABLE) |
732                FM801_GPIO_GS(TEA_256PCS_BUS_CLOCK);
733         /* all of lines are in the write direction */
734         /* clear data and clock lines */
735         reg &= ~(FM801_GPIO_GD(TEA_256PCS_DATA) |
736                  FM801_GPIO_GD(TEA_256PCS_WRITE_ENABLE) |
737                  FM801_GPIO_GD(TEA_256PCS_BUS_CLOCK) |
738                  FM801_GPIO_GP(TEA_256PCS_DATA) |
739                  FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK) |
740                  FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE));
741         outw(reg, FM801_REG(chip, GPIO_CTRL));
742         udelay(1);
743
744         while (i--) {
745                 if (val & (1 << i))
746                         reg |= FM801_GPIO_GP(TEA_256PCS_DATA);
747                 else
748                         reg &= ~FM801_GPIO_GP(TEA_256PCS_DATA);
749                 outw(reg, FM801_REG(chip, GPIO_CTRL));
750                 udelay(1);
751                 reg |= FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
752                 outw(reg, FM801_REG(chip, GPIO_CTRL));
753                 reg &= ~FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
754                 outw(reg, FM801_REG(chip, GPIO_CTRL));
755                 udelay(1);
756         }
757
758         /* and reset the write enable bit */
759         reg |= FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE) |
760                FM801_GPIO_GP(TEA_256PCS_DATA);
761         outw(reg, FM801_REG(chip, GPIO_CTRL));
762         spin_unlock_irq(&chip->reg_lock);
763 }
764
765 static unsigned int snd_fm801_tea575x_256pcs_read(struct snd_tea575x *tea)
766 {
767         struct fm801 *chip = tea->private_data;
768         unsigned short reg;
769         unsigned int val = 0;
770         int i;
771         
772         spin_lock_irq(&chip->reg_lock);
773         reg = inw(FM801_REG(chip, GPIO_CTRL));
774         /* use GPIO lines, set data direction to input */
775         reg |= FM801_GPIO_GS(TEA_256PCS_DATA) |
776                FM801_GPIO_GS(TEA_256PCS_WRITE_ENABLE) |
777                FM801_GPIO_GS(TEA_256PCS_BUS_CLOCK) |
778                FM801_GPIO_GD(TEA_256PCS_DATA) |
779                FM801_GPIO_GP(TEA_256PCS_DATA) |
780                FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE);
781         /* all of lines are in the write direction, except data */
782         /* clear data, write enable and clock lines */
783         reg &= ~(FM801_GPIO_GD(TEA_256PCS_WRITE_ENABLE) |
784                  FM801_GPIO_GD(TEA_256PCS_BUS_CLOCK) |
785                  FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK));
786
787         for (i = 0; i < 24; i++) {
788                 reg &= ~FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
789                 outw(reg, FM801_REG(chip, GPIO_CTRL));
790                 udelay(1);
791                 reg |= FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
792                 outw(reg, FM801_REG(chip, GPIO_CTRL));
793                 udelay(1);
794                 val <<= 1;
795                 if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_256PCS_DATA))
796                         val |= 1;
797         }
798
799         spin_unlock_irq(&chip->reg_lock);
800
801         return val;
802 }
803
804 /* 256PCPR GPIO numbers */
805 #define TEA_256PCPR_BUS_CLOCK           0
806 #define TEA_256PCPR_DATA                1
807 #define TEA_256PCPR_WRITE_ENABLE        2       /* inverted */
808
809 static void snd_fm801_tea575x_256pcpr_write(struct snd_tea575x *tea, unsigned int val)
810 {
811         struct fm801 *chip = tea->private_data;
812         unsigned short reg;
813         int i = 25;
814
815         spin_lock_irq(&chip->reg_lock);
816         reg = inw(FM801_REG(chip, GPIO_CTRL));
817         /* use GPIO lines and set write enable bit */
818         reg |= FM801_GPIO_GS(TEA_256PCPR_DATA) |
819                FM801_GPIO_GS(TEA_256PCPR_WRITE_ENABLE) |
820                FM801_GPIO_GS(TEA_256PCPR_BUS_CLOCK);
821         /* all of lines are in the write direction */
822         /* clear data and clock lines */
823         reg &= ~(FM801_GPIO_GD(TEA_256PCPR_DATA) |
824                  FM801_GPIO_GD(TEA_256PCPR_WRITE_ENABLE) |
825                  FM801_GPIO_GD(TEA_256PCPR_BUS_CLOCK) |
826                  FM801_GPIO_GP(TEA_256PCPR_DATA) |
827                  FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK) |
828                  FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE));
829         outw(reg, FM801_REG(chip, GPIO_CTRL));
830         udelay(1);
831
832         while (i--) {
833                 if (val & (1 << i))
834                         reg |= FM801_GPIO_GP(TEA_256PCPR_DATA);
835                 else
836                         reg &= ~FM801_GPIO_GP(TEA_256PCPR_DATA);
837                 outw(reg, FM801_REG(chip, GPIO_CTRL));
838                 udelay(1);
839                 reg |= FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
840                 outw(reg, FM801_REG(chip, GPIO_CTRL));
841                 reg &= ~FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
842                 outw(reg, FM801_REG(chip, GPIO_CTRL));
843                 udelay(1);
844         }
845
846         /* and reset the write enable bit */
847         reg |= FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE) |
848                FM801_GPIO_GP(TEA_256PCPR_DATA);
849         outw(reg, FM801_REG(chip, GPIO_CTRL));
850         spin_unlock_irq(&chip->reg_lock);
851 }
852
853 static unsigned int snd_fm801_tea575x_256pcpr_read(struct snd_tea575x *tea)
854 {
855         struct fm801 *chip = tea->private_data;
856         unsigned short reg;
857         unsigned int val = 0;
858         int i;
859         
860         spin_lock_irq(&chip->reg_lock);
861         reg = inw(FM801_REG(chip, GPIO_CTRL));
862         /* use GPIO lines, set data direction to input */
863         reg |= FM801_GPIO_GS(TEA_256PCPR_DATA) |
864                FM801_GPIO_GS(TEA_256PCPR_WRITE_ENABLE) |
865                FM801_GPIO_GS(TEA_256PCPR_BUS_CLOCK) |
866                FM801_GPIO_GD(TEA_256PCPR_DATA) |
867                FM801_GPIO_GP(TEA_256PCPR_DATA) |
868                FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE);
869         /* all of lines are in the write direction, except data */
870         /* clear data, write enable and clock lines */
871         reg &= ~(FM801_GPIO_GD(TEA_256PCPR_WRITE_ENABLE) |
872                  FM801_GPIO_GD(TEA_256PCPR_BUS_CLOCK) |
873                  FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK));
874
875         for (i = 0; i < 24; i++) {
876                 reg &= ~FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
877                 outw(reg, FM801_REG(chip, GPIO_CTRL));
878                 udelay(1);
879                 reg |= FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
880                 outw(reg, FM801_REG(chip, GPIO_CTRL));
881                 udelay(1);
882                 val <<= 1;
883                 if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_256PCPR_DATA))
884                         val |= 1;
885         }
886
887         spin_unlock_irq(&chip->reg_lock);
888
889         return val;
890 }
891
892 /* 64PCR GPIO numbers */
893 #define TEA_64PCR_BUS_CLOCK             0
894 #define TEA_64PCR_WRITE_ENABLE          1       /* inverted */
895 #define TEA_64PCR_DATA                  2
896
897 static void snd_fm801_tea575x_64pcr_write(struct snd_tea575x *tea, unsigned int val)
898 {
899         struct fm801 *chip = tea->private_data;
900         unsigned short reg;
901         int i = 25;
902
903         spin_lock_irq(&chip->reg_lock);
904         reg = inw(FM801_REG(chip, GPIO_CTRL));
905         /* use GPIO lines and set write enable bit */
906         reg |= FM801_GPIO_GS(TEA_64PCR_DATA) |
907                FM801_GPIO_GS(TEA_64PCR_WRITE_ENABLE) |
908                FM801_GPIO_GS(TEA_64PCR_BUS_CLOCK);
909         /* all of lines are in the write direction */
910         /* clear data and clock lines */
911         reg &= ~(FM801_GPIO_GD(TEA_64PCR_DATA) |
912                  FM801_GPIO_GD(TEA_64PCR_WRITE_ENABLE) |
913                  FM801_GPIO_GD(TEA_64PCR_BUS_CLOCK) |
914                  FM801_GPIO_GP(TEA_64PCR_DATA) |
915                  FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK) |
916                  FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE));
917         outw(reg, FM801_REG(chip, GPIO_CTRL));
918         udelay(1);
919
920         while (i--) {
921                 if (val & (1 << i))
922                         reg |= FM801_GPIO_GP(TEA_64PCR_DATA);
923                 else
924                         reg &= ~FM801_GPIO_GP(TEA_64PCR_DATA);
925                 outw(reg, FM801_REG(chip, GPIO_CTRL));
926                 udelay(1);
927                 reg |= FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
928                 outw(reg, FM801_REG(chip, GPIO_CTRL));
929                 reg &= ~FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
930                 outw(reg, FM801_REG(chip, GPIO_CTRL));
931                 udelay(1);
932         }
933
934         /* and reset the write enable bit */
935         reg |= FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE) |
936                FM801_GPIO_GP(TEA_64PCR_DATA);
937         outw(reg, FM801_REG(chip, GPIO_CTRL));
938         spin_unlock_irq(&chip->reg_lock);
939 }
940
941 static unsigned int snd_fm801_tea575x_64pcr_read(struct snd_tea575x *tea)
942 {
943         struct fm801 *chip = tea->private_data;
944         unsigned short reg;
945         unsigned int val = 0;
946         int i;
947         
948         spin_lock_irq(&chip->reg_lock);
949         reg = inw(FM801_REG(chip, GPIO_CTRL));
950         /* use GPIO lines, set data direction to input */
951         reg |= FM801_GPIO_GS(TEA_64PCR_DATA) |
952                FM801_GPIO_GS(TEA_64PCR_WRITE_ENABLE) |
953                FM801_GPIO_GS(TEA_64PCR_BUS_CLOCK) |
954                FM801_GPIO_GD(TEA_64PCR_DATA) |
955                FM801_GPIO_GP(TEA_64PCR_DATA) |
956                FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE);
957         /* all of lines are in the write direction, except data */
958         /* clear data, write enable and clock lines */
959         reg &= ~(FM801_GPIO_GD(TEA_64PCR_WRITE_ENABLE) |
960                  FM801_GPIO_GD(TEA_64PCR_BUS_CLOCK) |
961                  FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK));
962
963         for (i = 0; i < 24; i++) {
964                 reg &= ~FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
965                 outw(reg, FM801_REG(chip, GPIO_CTRL));
966                 udelay(1);
967                 reg |= FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
968                 outw(reg, FM801_REG(chip, GPIO_CTRL));
969                 udelay(1);
970                 val <<= 1;
971                 if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_64PCR_DATA))
972                         val |= 1;
973         }
974
975         spin_unlock_irq(&chip->reg_lock);
976
977         return val;
978 }
979
980 static struct snd_tea575x_ops snd_fm801_tea_ops[3] = {
981         {
982                 /* 1 = MediaForte 256-PCS */
983                 .write = snd_fm801_tea575x_256pcs_write,
984                 .read = snd_fm801_tea575x_256pcs_read,
985         },
986         {
987                 /* 2 = MediaForte 256-PCPR */
988                 .write = snd_fm801_tea575x_256pcpr_write,
989                 .read = snd_fm801_tea575x_256pcpr_read,
990         },
991         {
992                 /* 3 = MediaForte 64-PCR */
993                 .write = snd_fm801_tea575x_64pcr_write,
994                 .read = snd_fm801_tea575x_64pcr_read,
995         }
996 };
997 #endif
998
999 /*
1000  *  Mixer routines
1001  */
1002
1003 #define FM801_SINGLE(xname, reg, shift, mask, invert) \
1004 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_single, \
1005   .get = snd_fm801_get_single, .put = snd_fm801_put_single, \
1006   .private_value = reg | (shift << 8) | (mask << 16) | (invert << 24) }
1007
1008 static int snd_fm801_info_single(struct snd_kcontrol *kcontrol,
1009                                  struct snd_ctl_elem_info *uinfo)
1010 {
1011         int mask = (kcontrol->private_value >> 16) & 0xff;
1012
1013         uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1014         uinfo->count = 1;
1015         uinfo->value.integer.min = 0;
1016         uinfo->value.integer.max = mask;
1017         return 0;
1018 }
1019
1020 static int snd_fm801_get_single(struct snd_kcontrol *kcontrol,
1021                                 struct snd_ctl_elem_value *ucontrol)
1022 {
1023         struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1024         int reg = kcontrol->private_value & 0xff;
1025         int shift = (kcontrol->private_value >> 8) & 0xff;
1026         int mask = (kcontrol->private_value >> 16) & 0xff;
1027         int invert = (kcontrol->private_value >> 24) & 0xff;
1028
1029         ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift) & mask;
1030         if (invert)
1031                 ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
1032         return 0;
1033 }
1034
1035 static int snd_fm801_put_single(struct snd_kcontrol *kcontrol,
1036                                 struct snd_ctl_elem_value *ucontrol)
1037 {
1038         struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1039         int reg = kcontrol->private_value & 0xff;
1040         int shift = (kcontrol->private_value >> 8) & 0xff;
1041         int mask = (kcontrol->private_value >> 16) & 0xff;
1042         int invert = (kcontrol->private_value >> 24) & 0xff;
1043         unsigned short val;
1044
1045         val = (ucontrol->value.integer.value[0] & mask);
1046         if (invert)
1047                 val = mask - val;
1048         return snd_fm801_update_bits(chip, reg, mask << shift, val << shift);
1049 }
1050
1051 #define FM801_DOUBLE(xname, reg, shift_left, shift_right, mask, invert) \
1052 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_double, \
1053   .get = snd_fm801_get_double, .put = snd_fm801_put_double, \
1054   .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24) }
1055
1056 static int snd_fm801_info_double(struct snd_kcontrol *kcontrol,
1057                                  struct snd_ctl_elem_info *uinfo)
1058 {
1059         int mask = (kcontrol->private_value >> 16) & 0xff;
1060
1061         uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1062         uinfo->count = 2;
1063         uinfo->value.integer.min = 0;
1064         uinfo->value.integer.max = mask;
1065         return 0;
1066 }
1067
1068 static int snd_fm801_get_double(struct snd_kcontrol *kcontrol,
1069                                 struct snd_ctl_elem_value *ucontrol)
1070 {
1071         struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1072         int reg = kcontrol->private_value & 0xff;
1073         int shift_left = (kcontrol->private_value >> 8) & 0x0f;
1074         int shift_right = (kcontrol->private_value >> 12) & 0x0f;
1075         int mask = (kcontrol->private_value >> 16) & 0xff;
1076         int invert = (kcontrol->private_value >> 24) & 0xff;
1077
1078         spin_lock_irq(&chip->reg_lock);
1079         ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift_left) & mask;
1080         ucontrol->value.integer.value[1] = (inw(chip->port + reg) >> shift_right) & mask;
1081         spin_unlock_irq(&chip->reg_lock);
1082         if (invert) {
1083                 ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
1084                 ucontrol->value.integer.value[1] = mask - ucontrol->value.integer.value[1];
1085         }
1086         return 0;
1087 }
1088
1089 static int snd_fm801_put_double(struct snd_kcontrol *kcontrol,
1090                                 struct snd_ctl_elem_value *ucontrol)
1091 {
1092         struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1093         int reg = kcontrol->private_value & 0xff;
1094         int shift_left = (kcontrol->private_value >> 8) & 0x0f;
1095         int shift_right = (kcontrol->private_value >> 12) & 0x0f;
1096         int mask = (kcontrol->private_value >> 16) & 0xff;
1097         int invert = (kcontrol->private_value >> 24) & 0xff;
1098         unsigned short val1, val2;
1099  
1100         val1 = ucontrol->value.integer.value[0] & mask;
1101         val2 = ucontrol->value.integer.value[1] & mask;
1102         if (invert) {
1103                 val1 = mask - val1;
1104                 val2 = mask - val2;
1105         }
1106         return snd_fm801_update_bits(chip, reg,
1107                                      (mask << shift_left) | (mask << shift_right),
1108                                      (val1 << shift_left ) | (val2 << shift_right));
1109 }
1110
1111 static int snd_fm801_info_mux(struct snd_kcontrol *kcontrol,
1112                               struct snd_ctl_elem_info *uinfo)
1113 {
1114         static char *texts[5] = {
1115                 "AC97 Primary", "FM", "I2S", "PCM", "AC97 Secondary"
1116         };
1117  
1118         uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1119         uinfo->count = 1;
1120         uinfo->value.enumerated.items = 5;
1121         if (uinfo->value.enumerated.item > 4)
1122                 uinfo->value.enumerated.item = 4;
1123         strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
1124         return 0;
1125 }
1126
1127 static int snd_fm801_get_mux(struct snd_kcontrol *kcontrol,
1128                              struct snd_ctl_elem_value *ucontrol)
1129 {
1130         struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1131         unsigned short val;
1132  
1133         val = inw(FM801_REG(chip, REC_SRC)) & 7;
1134         if (val > 4)
1135                 val = 4;
1136         ucontrol->value.enumerated.item[0] = val;
1137         return 0;
1138 }
1139
1140 static int snd_fm801_put_mux(struct snd_kcontrol *kcontrol,
1141                              struct snd_ctl_elem_value *ucontrol)
1142 {
1143         struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1144         unsigned short val;
1145  
1146         if ((val = ucontrol->value.enumerated.item[0]) > 4)
1147                 return -EINVAL;
1148         return snd_fm801_update_bits(chip, FM801_REC_SRC, 7, val);
1149 }
1150
1151 #define FM801_CONTROLS ARRAY_SIZE(snd_fm801_controls)
1152
1153 static struct snd_kcontrol_new snd_fm801_controls[] __devinitdata = {
1154 FM801_DOUBLE("Wave Playback Volume", FM801_PCM_VOL, 0, 8, 31, 1),
1155 FM801_SINGLE("Wave Playback Switch", FM801_PCM_VOL, 15, 1, 1),
1156 FM801_DOUBLE("I2S Playback Volume", FM801_I2S_VOL, 0, 8, 31, 1),
1157 FM801_SINGLE("I2S Playback Switch", FM801_I2S_VOL, 15, 1, 1),
1158 FM801_DOUBLE("FM Playback Volume", FM801_FM_VOL, 0, 8, 31, 1),
1159 FM801_SINGLE("FM Playback Switch", FM801_FM_VOL, 15, 1, 1),
1160 {
1161         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1162         .name = "Digital Capture Source",
1163         .info = snd_fm801_info_mux,
1164         .get = snd_fm801_get_mux,
1165         .put = snd_fm801_put_mux,
1166 }
1167 };
1168
1169 #define FM801_CONTROLS_MULTI ARRAY_SIZE(snd_fm801_controls_multi)
1170
1171 static struct snd_kcontrol_new snd_fm801_controls_multi[] __devinitdata = {
1172 FM801_SINGLE("AC97 2ch->4ch Copy Switch", FM801_CODEC_CTRL, 7, 1, 0),
1173 FM801_SINGLE("AC97 18-bit Switch", FM801_CODEC_CTRL, 10, 1, 0),
1174 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), FM801_I2S_MODE, 8, 1, 0),
1175 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",PLAYBACK,SWITCH), FM801_I2S_MODE, 9, 1, 0),
1176 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",CAPTURE,SWITCH), FM801_I2S_MODE, 10, 1, 0),
1177 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), FM801_GEN_CTRL, 2, 1, 0),
1178 };
1179
1180 static void snd_fm801_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1181 {
1182         struct fm801 *chip = bus->private_data;
1183         chip->ac97_bus = NULL;
1184 }
1185
1186 static void snd_fm801_mixer_free_ac97(struct snd_ac97 *ac97)
1187 {
1188         struct fm801 *chip = ac97->private_data;
1189         if (ac97->num == 0) {
1190                 chip->ac97 = NULL;
1191         } else {
1192                 chip->ac97_sec = NULL;
1193         }
1194 }
1195
1196 static int __devinit snd_fm801_mixer(struct fm801 *chip)
1197 {
1198         struct snd_ac97_template ac97;
1199         unsigned int i;
1200         int err;
1201         static struct snd_ac97_bus_ops ops = {
1202                 .write = snd_fm801_codec_write,
1203                 .read = snd_fm801_codec_read,
1204         };
1205
1206         if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
1207                 return err;
1208         chip->ac97_bus->private_free = snd_fm801_mixer_free_ac97_bus;
1209
1210         memset(&ac97, 0, sizeof(ac97));
1211         ac97.private_data = chip;
1212         ac97.private_free = snd_fm801_mixer_free_ac97;
1213         if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
1214                 return err;
1215         if (chip->secondary) {
1216                 ac97.num = 1;
1217                 ac97.addr = chip->secondary_addr;
1218                 if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97_sec)) < 0)
1219                         return err;
1220         }
1221         for (i = 0; i < FM801_CONTROLS; i++)
1222                 snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls[i], chip));
1223         if (chip->multichannel) {
1224                 for (i = 0; i < FM801_CONTROLS_MULTI; i++)
1225                         snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls_multi[i], chip));
1226         }
1227         return 0;
1228 }
1229
1230 /*
1231  *  initialization routines
1232  */
1233
1234 static int wait_for_codec(struct fm801 *chip, unsigned int codec_id,
1235                           unsigned short reg, unsigned long waits)
1236 {
1237         unsigned long timeout = jiffies + waits;
1238
1239         outw(FM801_AC97_READ | (codec_id << FM801_AC97_ADDR_SHIFT) | reg,
1240              FM801_REG(chip, AC97_CMD));
1241         udelay(5);
1242         do {
1243                 if ((inw(FM801_REG(chip, AC97_CMD)) & (FM801_AC97_VALID|FM801_AC97_BUSY))
1244                     == FM801_AC97_VALID)
1245                         return 0;
1246                 schedule_timeout_uninterruptible(1);
1247         } while (time_after(timeout, jiffies));
1248         return -EIO;
1249 }
1250
1251 static int snd_fm801_chip_init(struct fm801 *chip, int resume)
1252 {
1253         int id;
1254         unsigned short cmdw;
1255
1256         /* codec cold reset + AC'97 warm reset */
1257         outw((1<<5) | (1<<6), FM801_REG(chip, CODEC_CTRL));
1258         inw(FM801_REG(chip, CODEC_CTRL)); /* flush posting data */
1259         udelay(100);
1260         outw(0, FM801_REG(chip, CODEC_CTRL));
1261
1262         if (wait_for_codec(chip, 0, AC97_RESET, msecs_to_jiffies(750)) < 0) {
1263                 snd_printk(KERN_ERR "Primary AC'97 codec not found\n");
1264                 if (! resume)
1265                         return -EIO;
1266         }
1267
1268         if (chip->multichannel) {
1269                 if (chip->secondary_addr) {
1270                         wait_for_codec(chip, chip->secondary_addr,
1271                                        AC97_VENDOR_ID1, msecs_to_jiffies(50));
1272                 } else {
1273                         /* my card has the secondary codec */
1274                         /* at address #3, so the loop is inverted */
1275                         for (id = 3; id > 0; id--) {
1276                                 if (! wait_for_codec(chip, id, AC97_VENDOR_ID1,
1277                                                      msecs_to_jiffies(50))) {
1278                                         cmdw = inw(FM801_REG(chip, AC97_DATA));
1279                                         if (cmdw != 0xffff && cmdw != 0) {
1280                                                 chip->secondary = 1;
1281                                                 chip->secondary_addr = id;
1282                                                 break;
1283                                         }
1284                                 }
1285                         }
1286                 }
1287
1288                 /* the recovery phase, it seems that probing for non-existing codec might */
1289                 /* cause timeout problems */
1290                 wait_for_codec(chip, 0, AC97_VENDOR_ID1, msecs_to_jiffies(750));
1291         }
1292
1293         /* init volume */
1294         outw(0x0808, FM801_REG(chip, PCM_VOL));
1295         outw(0x9f1f, FM801_REG(chip, FM_VOL));
1296         outw(0x8808, FM801_REG(chip, I2S_VOL));
1297
1298         /* I2S control - I2S mode */
1299         outw(0x0003, FM801_REG(chip, I2S_MODE));
1300
1301         /* interrupt setup - unmask MPU, PLAYBACK & CAPTURE */
1302         cmdw = inw(FM801_REG(chip, IRQ_MASK));
1303         cmdw &= ~0x0083;
1304         outw(cmdw, FM801_REG(chip, IRQ_MASK));
1305
1306         /* interrupt clear */
1307         outw(FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU, FM801_REG(chip, IRQ_STATUS));
1308
1309         return 0;
1310 }
1311
1312
1313 static int snd_fm801_free(struct fm801 *chip)
1314 {
1315         unsigned short cmdw;
1316
1317         if (chip->irq < 0)
1318                 goto __end_hw;
1319
1320         /* interrupt setup - mask everything */
1321         cmdw = inw(FM801_REG(chip, IRQ_MASK));
1322         cmdw |= 0x00c3;
1323         outw(cmdw, FM801_REG(chip, IRQ_MASK));
1324
1325       __end_hw:
1326 #ifdef TEA575X_RADIO
1327         snd_tea575x_exit(&chip->tea);
1328 #endif
1329         if (chip->irq >= 0)
1330                 free_irq(chip->irq, chip);
1331         pci_release_regions(chip->pci);
1332         pci_disable_device(chip->pci);
1333
1334         kfree(chip);
1335         return 0;
1336 }
1337
1338 static int snd_fm801_dev_free(struct snd_device *device)
1339 {
1340         struct fm801 *chip = device->device_data;
1341         return snd_fm801_free(chip);
1342 }
1343
1344 static int __devinit snd_fm801_create(struct snd_card *card,
1345                                       struct pci_dev * pci,
1346                                       int tea575x_tuner,
1347                                       struct fm801 ** rchip)
1348 {
1349         struct fm801 *chip;
1350         unsigned char rev;
1351         int err;
1352         static struct snd_device_ops ops = {
1353                 .dev_free =     snd_fm801_dev_free,
1354         };
1355
1356         *rchip = NULL;
1357         if ((err = pci_enable_device(pci)) < 0)
1358                 return err;
1359         chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1360         if (chip == NULL) {
1361                 pci_disable_device(pci);
1362                 return -ENOMEM;
1363         }
1364         spin_lock_init(&chip->reg_lock);
1365         chip->card = card;
1366         chip->pci = pci;
1367         chip->irq = -1;
1368         if ((err = pci_request_regions(pci, "FM801")) < 0) {
1369                 kfree(chip);
1370                 pci_disable_device(pci);
1371                 return err;
1372         }
1373         chip->port = pci_resource_start(pci, 0);
1374         if (request_irq(pci->irq, snd_fm801_interrupt, SA_INTERRUPT|SA_SHIRQ,
1375                         "FM801", chip)) {
1376                 snd_printk(KERN_ERR "unable to grab IRQ %d\n", chip->irq);
1377                 snd_fm801_free(chip);
1378                 return -EBUSY;
1379         }
1380         chip->irq = pci->irq;
1381         pci_set_master(pci);
1382
1383         pci_read_config_byte(pci, PCI_REVISION_ID, &rev);
1384         if (rev >= 0xb1)        /* FM801-AU */
1385                 chip->multichannel = 1;
1386
1387         snd_fm801_chip_init(chip, 0);
1388
1389         if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
1390                 snd_fm801_free(chip);
1391                 return err;
1392         }
1393
1394         snd_card_set_dev(card, &pci->dev);
1395
1396 #ifdef TEA575X_RADIO
1397         if (tea575x_tuner > 0 && (tea575x_tuner & 0xffff) < 4) {
1398                 chip->tea.dev_nr = tea575x_tuner >> 16;
1399                 chip->tea.card = card;
1400                 chip->tea.freq_fixup = 10700;
1401                 chip->tea.private_data = chip;
1402                 chip->tea.ops = &snd_fm801_tea_ops[(tea575x_tuner & 0xffff) - 1];
1403                 snd_tea575x_init(&chip->tea);
1404         }
1405 #endif
1406
1407         *rchip = chip;
1408         return 0;
1409 }
1410
1411 static int __devinit snd_card_fm801_probe(struct pci_dev *pci,
1412                                           const struct pci_device_id *pci_id)
1413 {
1414         static int dev;
1415         struct snd_card *card;
1416         struct fm801 *chip;
1417         struct snd_opl3 *opl3;
1418         int err;
1419
1420         if (dev >= SNDRV_CARDS)
1421                 return -ENODEV;
1422         if (!enable[dev]) {
1423                 dev++;
1424                 return -ENOENT;
1425         }
1426
1427         card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
1428         if (card == NULL)
1429                 return -ENOMEM;
1430         if ((err = snd_fm801_create(card, pci, tea575x_tuner[dev], &chip)) < 0) {
1431                 snd_card_free(card);
1432                 return err;
1433         }
1434         card->private_data = chip;
1435
1436         strcpy(card->driver, "FM801");
1437         strcpy(card->shortname, "ForteMedia FM801-");
1438         strcat(card->shortname, chip->multichannel ? "AU" : "AS");
1439         sprintf(card->longname, "%s at 0x%lx, irq %i",
1440                 card->shortname, chip->port, chip->irq);
1441
1442         if ((err = snd_fm801_pcm(chip, 0, NULL)) < 0) {
1443                 snd_card_free(card);
1444                 return err;
1445         }
1446         if ((err = snd_fm801_mixer(chip)) < 0) {
1447                 snd_card_free(card);
1448                 return err;
1449         }
1450         if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_FM801,
1451                                        FM801_REG(chip, MPU401_DATA), 1,
1452                                        chip->irq, 0, &chip->rmidi)) < 0) {
1453                 snd_card_free(card);
1454                 return err;
1455         }
1456         if ((err = snd_opl3_create(card, FM801_REG(chip, OPL3_BANK0),
1457                                    FM801_REG(chip, OPL3_BANK1),
1458                                    OPL3_HW_OPL3_FM801, 1, &opl3)) < 0) {
1459                 snd_card_free(card);
1460                 return err;
1461         }
1462         if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
1463                 snd_card_free(card);
1464                 return err;
1465         }
1466
1467         if ((err = snd_card_register(card)) < 0) {
1468                 snd_card_free(card);
1469                 return err;
1470         }
1471         pci_set_drvdata(pci, card);
1472         dev++;
1473         return 0;
1474 }
1475
1476 static void __devexit snd_card_fm801_remove(struct pci_dev *pci)
1477 {
1478         snd_card_free(pci_get_drvdata(pci));
1479         pci_set_drvdata(pci, NULL);
1480 }
1481
1482 #ifdef CONFIG_PM
1483 static unsigned char saved_regs[] = {
1484         FM801_PCM_VOL, FM801_I2S_VOL, FM801_FM_VOL, FM801_REC_SRC,
1485         FM801_PLY_CTRL, FM801_PLY_COUNT, FM801_PLY_BUF1, FM801_PLY_BUF2,
1486         FM801_CAP_CTRL, FM801_CAP_COUNT, FM801_CAP_BUF1, FM801_CAP_BUF2,
1487         FM801_CODEC_CTRL, FM801_I2S_MODE, FM801_VOLUME, FM801_GEN_CTRL,
1488 };
1489
1490 static int snd_fm801_suspend(struct pci_dev *pci, pm_message_t state)
1491 {
1492         struct snd_card *card = pci_get_drvdata(pci);
1493         struct fm801 *chip = card->private_data;
1494         int i;
1495
1496         snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1497         snd_pcm_suspend_all(chip->pcm);
1498         snd_ac97_suspend(chip->ac97);
1499         snd_ac97_suspend(chip->ac97_sec);
1500         for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
1501                 chip->saved_regs[i] = inw(chip->port + saved_regs[i]);
1502         /* FIXME: tea575x suspend */
1503
1504         pci_set_power_state(pci, PCI_D3hot);
1505         pci_disable_device(pci);
1506         pci_save_state(pci);
1507         return 0;
1508 }
1509
1510 static int snd_fm801_resume(struct pci_dev *pci)
1511 {
1512         struct snd_card *card = pci_get_drvdata(pci);
1513         struct fm801 *chip = card->private_data;
1514         int i;
1515
1516         pci_restore_state(pci);
1517         pci_enable_device(pci);
1518         pci_set_power_state(pci, PCI_D0);
1519         pci_set_master(pci);
1520
1521         snd_fm801_chip_init(chip, 1);
1522         snd_ac97_resume(chip->ac97);
1523         snd_ac97_resume(chip->ac97_sec);
1524         for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
1525                 outw(chip->saved_regs[i], chip->port + saved_regs[i]);
1526
1527         snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1528         return 0;
1529 }
1530 #endif
1531
1532 static struct pci_driver driver = {
1533         .name = "FM801",
1534         .id_table = snd_fm801_ids,
1535         .probe = snd_card_fm801_probe,
1536         .remove = __devexit_p(snd_card_fm801_remove),
1537 #ifdef CONFIG_PM
1538         .suspend = snd_fm801_suspend,
1539         .resume = snd_fm801_resume,
1540 #endif
1541 };
1542
1543 static int __init alsa_card_fm801_init(void)
1544 {
1545         return pci_register_driver(&driver);
1546 }
1547
1548 static void __exit alsa_card_fm801_exit(void)
1549 {
1550         pci_unregister_driver(&driver);
1551 }
1552
1553 module_init(alsa_card_fm801_init)
1554 module_exit(alsa_card_fm801_exit)