[ALSA] Fix PCM write blocking
[linux-2.6.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <sound/driver.h>
24 #include <linux/slab.h>
25 #include <linux/time.h>
26 #include <sound/core.h>
27 #include <sound/control.h>
28 #include <sound/info.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/timer.h>
32
33 /*
34  * fill ring buffer with silence
35  * runtime->silence_start: starting pointer to silence area
36  * runtime->silence_filled: size filled with silence
37  * runtime->silence_threshold: threshold from application
38  * runtime->silence_size: maximal size from application
39  *
40  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41  */
42 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
43 {
44         struct snd_pcm_runtime *runtime = substream->runtime;
45         snd_pcm_uframes_t frames, ofs, transfer;
46
47         if (runtime->silence_size < runtime->boundary) {
48                 snd_pcm_sframes_t noise_dist, n;
49                 if (runtime->silence_start != runtime->control->appl_ptr) {
50                         n = runtime->control->appl_ptr - runtime->silence_start;
51                         if (n < 0)
52                                 n += runtime->boundary;
53                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54                                 runtime->silence_filled -= n;
55                         else
56                                 runtime->silence_filled = 0;
57                         runtime->silence_start = runtime->control->appl_ptr;
58                 }
59                 if (runtime->silence_filled >= runtime->buffer_size)
60                         return;
61                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
62                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
63                         return;
64                 frames = runtime->silence_threshold - noise_dist;
65                 if (frames > runtime->silence_size)
66                         frames = runtime->silence_size;
67         } else {
68                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
69                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
70                         runtime->silence_filled = avail > 0 ? avail : 0;
71                         runtime->silence_start = (runtime->status->hw_ptr +
72                                                   runtime->silence_filled) %
73                                                  runtime->boundary;
74                 } else {
75                         ofs = runtime->status->hw_ptr;
76                         frames = new_hw_ptr - ofs;
77                         if ((snd_pcm_sframes_t)frames < 0)
78                                 frames += runtime->boundary;
79                         runtime->silence_filled -= frames;
80                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
81                                 runtime->silence_filled = 0;
82                                 runtime->silence_start = new_hw_ptr;
83                         } else {
84                                 runtime->silence_start = ofs;
85                         }
86                 }
87                 frames = runtime->buffer_size - runtime->silence_filled;
88         }
89         snd_assert(frames <= runtime->buffer_size, return);
90         if (frames == 0)
91                 return;
92         ofs = runtime->silence_start % runtime->buffer_size;
93         while (frames > 0) {
94                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
95                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
96                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
97                         if (substream->ops->silence) {
98                                 int err;
99                                 err = substream->ops->silence(substream, -1, ofs, transfer);
100                                 snd_assert(err >= 0, );
101                         } else {
102                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
103                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
104                         }
105                 } else {
106                         unsigned int c;
107                         unsigned int channels = runtime->channels;
108                         if (substream->ops->silence) {
109                                 for (c = 0; c < channels; ++c) {
110                                         int err;
111                                         err = substream->ops->silence(substream, c, ofs, transfer);
112                                         snd_assert(err >= 0, );
113                                 }
114                         } else {
115                                 size_t dma_csize = runtime->dma_bytes / channels;
116                                 for (c = 0; c < channels; ++c) {
117                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
118                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
119                                 }
120                         }
121                 }
122                 runtime->silence_filled += transfer;
123                 frames -= transfer;
124                 ofs = 0;
125         }
126 }
127
128 static void xrun(struct snd_pcm_substream *substream)
129 {
130         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
131 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
132         if (substream->pstr->xrun_debug) {
133                 snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n",
134                            substream->pcm->card->number,
135                            substream->pcm->device,
136                            substream->stream ? 'c' : 'p');
137                 if (substream->pstr->xrun_debug > 1)
138                         dump_stack();
139         }
140 #endif
141 }
142
143 static inline snd_pcm_uframes_t snd_pcm_update_hw_ptr_pos(struct snd_pcm_substream *substream,
144                                                           struct snd_pcm_runtime *runtime)
145 {
146         snd_pcm_uframes_t pos;
147
148         pos = substream->ops->pointer(substream);
149         if (pos == SNDRV_PCM_POS_XRUN)
150                 return pos; /* XRUN */
151 #ifdef CONFIG_SND_DEBUG
152         if (pos >= runtime->buffer_size) {
153                 snd_printk(KERN_ERR  "BUG: stream = %i, pos = 0x%lx, buffer size = 0x%lx, period size = 0x%lx\n", substream->stream, pos, runtime->buffer_size, runtime->period_size);
154         }
155 #endif
156         pos -= pos % runtime->min_align;
157         return pos;
158 }
159
160 static inline int snd_pcm_update_hw_ptr_post(struct snd_pcm_substream *substream,
161                                              struct snd_pcm_runtime *runtime)
162 {
163         snd_pcm_uframes_t avail;
164
165         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
166                 avail = snd_pcm_playback_avail(runtime);
167         else
168                 avail = snd_pcm_capture_avail(runtime);
169         if (avail > runtime->avail_max)
170                 runtime->avail_max = avail;
171         if (avail >= runtime->stop_threshold) {
172                 if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING)
173                         snd_pcm_drain_done(substream);
174                 else
175                         xrun(substream);
176                 return -EPIPE;
177         }
178         if (avail >= runtime->control->avail_min)
179                 wake_up(&runtime->sleep);
180         return 0;
181 }
182
183 static inline int snd_pcm_update_hw_ptr_interrupt(struct snd_pcm_substream *substream)
184 {
185         struct snd_pcm_runtime *runtime = substream->runtime;
186         snd_pcm_uframes_t pos;
187         snd_pcm_uframes_t new_hw_ptr, hw_ptr_interrupt;
188         snd_pcm_sframes_t delta;
189
190         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_MMAP)
191                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
192         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
193         if (pos == SNDRV_PCM_POS_XRUN) {
194                 xrun(substream);
195                 return -EPIPE;
196         }
197         if (runtime->period_size == runtime->buffer_size)
198                 goto __next_buf;
199         new_hw_ptr = runtime->hw_ptr_base + pos;
200         hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size;
201
202         delta = hw_ptr_interrupt - new_hw_ptr;
203         if (delta > 0) {
204                 if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
205 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
206                         if (runtime->periods > 1 && substream->pstr->xrun_debug) {
207                                 snd_printd(KERN_ERR "Unexpected hw_pointer value [1] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
208                                 if (substream->pstr->xrun_debug > 1)
209                                         dump_stack();
210                         }
211 #endif
212                         return 0;
213                 }
214               __next_buf:
215                 runtime->hw_ptr_base += runtime->buffer_size;
216                 if (runtime->hw_ptr_base == runtime->boundary)
217                         runtime->hw_ptr_base = 0;
218                 new_hw_ptr = runtime->hw_ptr_base + pos;
219         }
220
221         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
222             runtime->silence_size > 0)
223                 snd_pcm_playback_silence(substream, new_hw_ptr);
224
225         runtime->status->hw_ptr = new_hw_ptr;
226         runtime->hw_ptr_interrupt = new_hw_ptr - new_hw_ptr % runtime->period_size;
227
228         return snd_pcm_update_hw_ptr_post(substream, runtime);
229 }
230
231 /* CAUTION: call it with irq disabled */
232 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
233 {
234         struct snd_pcm_runtime *runtime = substream->runtime;
235         snd_pcm_uframes_t pos;
236         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr;
237         snd_pcm_sframes_t delta;
238
239         old_hw_ptr = runtime->status->hw_ptr;
240         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
241         if (pos == SNDRV_PCM_POS_XRUN) {
242                 xrun(substream);
243                 return -EPIPE;
244         }
245         new_hw_ptr = runtime->hw_ptr_base + pos;
246
247         delta = old_hw_ptr - new_hw_ptr;
248         if (delta > 0) {
249                 if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
250 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
251                         if (runtime->periods > 2 && substream->pstr->xrun_debug) {
252                                 snd_printd(KERN_ERR "Unexpected hw_pointer value [2] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
253                                 if (substream->pstr->xrun_debug > 1)
254                                         dump_stack();
255                         }
256 #endif
257                         return 0;
258                 }
259                 runtime->hw_ptr_base += runtime->buffer_size;
260                 if (runtime->hw_ptr_base == runtime->boundary)
261                         runtime->hw_ptr_base = 0;
262                 new_hw_ptr = runtime->hw_ptr_base + pos;
263         }
264         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
265             runtime->silence_size > 0)
266                 snd_pcm_playback_silence(substream, new_hw_ptr);
267
268         runtime->status->hw_ptr = new_hw_ptr;
269
270         return snd_pcm_update_hw_ptr_post(substream, runtime);
271 }
272
273 /**
274  * snd_pcm_set_ops - set the PCM operators
275  * @pcm: the pcm instance
276  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
277  * @ops: the operator table
278  *
279  * Sets the given PCM operators to the pcm instance.
280  */
281 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
282 {
283         struct snd_pcm_str *stream = &pcm->streams[direction];
284         struct snd_pcm_substream *substream;
285         
286         for (substream = stream->substream; substream != NULL; substream = substream->next)
287                 substream->ops = ops;
288 }
289
290 EXPORT_SYMBOL(snd_pcm_set_ops);
291
292 /**
293  * snd_pcm_sync - set the PCM sync id
294  * @substream: the pcm substream
295  *
296  * Sets the PCM sync identifier for the card.
297  */
298 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
299 {
300         struct snd_pcm_runtime *runtime = substream->runtime;
301         
302         runtime->sync.id32[0] = substream->pcm->card->number;
303         runtime->sync.id32[1] = -1;
304         runtime->sync.id32[2] = -1;
305         runtime->sync.id32[3] = -1;
306 }
307
308 EXPORT_SYMBOL(snd_pcm_set_sync);
309
310 /*
311  *  Standard ioctl routine
312  */
313
314 static inline unsigned int div32(unsigned int a, unsigned int b, 
315                                  unsigned int *r)
316 {
317         if (b == 0) {
318                 *r = 0;
319                 return UINT_MAX;
320         }
321         *r = a % b;
322         return a / b;
323 }
324
325 static inline unsigned int div_down(unsigned int a, unsigned int b)
326 {
327         if (b == 0)
328                 return UINT_MAX;
329         return a / b;
330 }
331
332 static inline unsigned int div_up(unsigned int a, unsigned int b)
333 {
334         unsigned int r;
335         unsigned int q;
336         if (b == 0)
337                 return UINT_MAX;
338         q = div32(a, b, &r);
339         if (r)
340                 ++q;
341         return q;
342 }
343
344 static inline unsigned int mul(unsigned int a, unsigned int b)
345 {
346         if (a == 0)
347                 return 0;
348         if (div_down(UINT_MAX, a) < b)
349                 return UINT_MAX;
350         return a * b;
351 }
352
353 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
354                                     unsigned int c, unsigned int *r)
355 {
356         u_int64_t n = (u_int64_t) a * b;
357         if (c == 0) {
358                 snd_assert(n > 0, );
359                 *r = 0;
360                 return UINT_MAX;
361         }
362         div64_32(&n, c, r);
363         if (n >= UINT_MAX) {
364                 *r = 0;
365                 return UINT_MAX;
366         }
367         return n;
368 }
369
370 /**
371  * snd_interval_refine - refine the interval value of configurator
372  * @i: the interval value to refine
373  * @v: the interval value to refer to
374  *
375  * Refines the interval value with the reference value.
376  * The interval is changed to the range satisfying both intervals.
377  * The interval status (min, max, integer, etc.) are evaluated.
378  *
379  * Returns non-zero if the value is changed, zero if not changed.
380  */
381 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
382 {
383         int changed = 0;
384         snd_assert(!snd_interval_empty(i), return -EINVAL);
385         if (i->min < v->min) {
386                 i->min = v->min;
387                 i->openmin = v->openmin;
388                 changed = 1;
389         } else if (i->min == v->min && !i->openmin && v->openmin) {
390                 i->openmin = 1;
391                 changed = 1;
392         }
393         if (i->max > v->max) {
394                 i->max = v->max;
395                 i->openmax = v->openmax;
396                 changed = 1;
397         } else if (i->max == v->max && !i->openmax && v->openmax) {
398                 i->openmax = 1;
399                 changed = 1;
400         }
401         if (!i->integer && v->integer) {
402                 i->integer = 1;
403                 changed = 1;
404         }
405         if (i->integer) {
406                 if (i->openmin) {
407                         i->min++;
408                         i->openmin = 0;
409                 }
410                 if (i->openmax) {
411                         i->max--;
412                         i->openmax = 0;
413                 }
414         } else if (!i->openmin && !i->openmax && i->min == i->max)
415                 i->integer = 1;
416         if (snd_interval_checkempty(i)) {
417                 snd_interval_none(i);
418                 return -EINVAL;
419         }
420         return changed;
421 }
422
423 EXPORT_SYMBOL(snd_interval_refine);
424
425 static int snd_interval_refine_first(struct snd_interval *i)
426 {
427         snd_assert(!snd_interval_empty(i), return -EINVAL);
428         if (snd_interval_single(i))
429                 return 0;
430         i->max = i->min;
431         i->openmax = i->openmin;
432         if (i->openmax)
433                 i->max++;
434         return 1;
435 }
436
437 static int snd_interval_refine_last(struct snd_interval *i)
438 {
439         snd_assert(!snd_interval_empty(i), return -EINVAL);
440         if (snd_interval_single(i))
441                 return 0;
442         i->min = i->max;
443         i->openmin = i->openmax;
444         if (i->openmin)
445                 i->min--;
446         return 1;
447 }
448
449 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
450 {
451         if (a->empty || b->empty) {
452                 snd_interval_none(c);
453                 return;
454         }
455         c->empty = 0;
456         c->min = mul(a->min, b->min);
457         c->openmin = (a->openmin || b->openmin);
458         c->max = mul(a->max,  b->max);
459         c->openmax = (a->openmax || b->openmax);
460         c->integer = (a->integer && b->integer);
461 }
462
463 /**
464  * snd_interval_div - refine the interval value with division
465  * @a: dividend
466  * @b: divisor
467  * @c: quotient
468  *
469  * c = a / b
470  *
471  * Returns non-zero if the value is changed, zero if not changed.
472  */
473 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
474 {
475         unsigned int r;
476         if (a->empty || b->empty) {
477                 snd_interval_none(c);
478                 return;
479         }
480         c->empty = 0;
481         c->min = div32(a->min, b->max, &r);
482         c->openmin = (r || a->openmin || b->openmax);
483         if (b->min > 0) {
484                 c->max = div32(a->max, b->min, &r);
485                 if (r) {
486                         c->max++;
487                         c->openmax = 1;
488                 } else
489                         c->openmax = (a->openmax || b->openmin);
490         } else {
491                 c->max = UINT_MAX;
492                 c->openmax = 0;
493         }
494         c->integer = 0;
495 }
496
497 /**
498  * snd_interval_muldivk - refine the interval value
499  * @a: dividend 1
500  * @b: dividend 2
501  * @k: divisor (as integer)
502  * @c: result
503   *
504  * c = a * b / k
505  *
506  * Returns non-zero if the value is changed, zero if not changed.
507  */
508 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
509                       unsigned int k, struct snd_interval *c)
510 {
511         unsigned int r;
512         if (a->empty || b->empty) {
513                 snd_interval_none(c);
514                 return;
515         }
516         c->empty = 0;
517         c->min = muldiv32(a->min, b->min, k, &r);
518         c->openmin = (r || a->openmin || b->openmin);
519         c->max = muldiv32(a->max, b->max, k, &r);
520         if (r) {
521                 c->max++;
522                 c->openmax = 1;
523         } else
524                 c->openmax = (a->openmax || b->openmax);
525         c->integer = 0;
526 }
527
528 /**
529  * snd_interval_mulkdiv - refine the interval value
530  * @a: dividend 1
531  * @k: dividend 2 (as integer)
532  * @b: divisor
533  * @c: result
534  *
535  * c = a * k / b
536  *
537  * Returns non-zero if the value is changed, zero if not changed.
538  */
539 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
540                       const struct snd_interval *b, struct snd_interval *c)
541 {
542         unsigned int r;
543         if (a->empty || b->empty) {
544                 snd_interval_none(c);
545                 return;
546         }
547         c->empty = 0;
548         c->min = muldiv32(a->min, k, b->max, &r);
549         c->openmin = (r || a->openmin || b->openmax);
550         if (b->min > 0) {
551                 c->max = muldiv32(a->max, k, b->min, &r);
552                 if (r) {
553                         c->max++;
554                         c->openmax = 1;
555                 } else
556                         c->openmax = (a->openmax || b->openmin);
557         } else {
558                 c->max = UINT_MAX;
559                 c->openmax = 0;
560         }
561         c->integer = 0;
562 }
563
564 /* ---- */
565
566
567 /**
568  * snd_interval_ratnum - refine the interval value
569  * @i: interval to refine
570  * @rats_count: number of ratnum_t 
571  * @rats: ratnum_t array
572  * @nump: pointer to store the resultant numerator
573  * @denp: pointer to store the resultant denominator
574  *
575  * Returns non-zero if the value is changed, zero if not changed.
576  */
577 int snd_interval_ratnum(struct snd_interval *i,
578                         unsigned int rats_count, struct snd_ratnum *rats,
579                         unsigned int *nump, unsigned int *denp)
580 {
581         unsigned int best_num, best_diff, best_den;
582         unsigned int k;
583         struct snd_interval t;
584         int err;
585
586         best_num = best_den = best_diff = 0;
587         for (k = 0; k < rats_count; ++k) {
588                 unsigned int num = rats[k].num;
589                 unsigned int den;
590                 unsigned int q = i->min;
591                 int diff;
592                 if (q == 0)
593                         q = 1;
594                 den = div_down(num, q);
595                 if (den < rats[k].den_min)
596                         continue;
597                 if (den > rats[k].den_max)
598                         den = rats[k].den_max;
599                 else {
600                         unsigned int r;
601                         r = (den - rats[k].den_min) % rats[k].den_step;
602                         if (r != 0)
603                                 den -= r;
604                 }
605                 diff = num - q * den;
606                 if (best_num == 0 ||
607                     diff * best_den < best_diff * den) {
608                         best_diff = diff;
609                         best_den = den;
610                         best_num = num;
611                 }
612         }
613         if (best_den == 0) {
614                 i->empty = 1;
615                 return -EINVAL;
616         }
617         t.min = div_down(best_num, best_den);
618         t.openmin = !!(best_num % best_den);
619         
620         best_num = best_den = best_diff = 0;
621         for (k = 0; k < rats_count; ++k) {
622                 unsigned int num = rats[k].num;
623                 unsigned int den;
624                 unsigned int q = i->max;
625                 int diff;
626                 if (q == 0) {
627                         i->empty = 1;
628                         return -EINVAL;
629                 }
630                 den = div_up(num, q);
631                 if (den > rats[k].den_max)
632                         continue;
633                 if (den < rats[k].den_min)
634                         den = rats[k].den_min;
635                 else {
636                         unsigned int r;
637                         r = (den - rats[k].den_min) % rats[k].den_step;
638                         if (r != 0)
639                                 den += rats[k].den_step - r;
640                 }
641                 diff = q * den - num;
642                 if (best_num == 0 ||
643                     diff * best_den < best_diff * den) {
644                         best_diff = diff;
645                         best_den = den;
646                         best_num = num;
647                 }
648         }
649         if (best_den == 0) {
650                 i->empty = 1;
651                 return -EINVAL;
652         }
653         t.max = div_up(best_num, best_den);
654         t.openmax = !!(best_num % best_den);
655         t.integer = 0;
656         err = snd_interval_refine(i, &t);
657         if (err < 0)
658                 return err;
659
660         if (snd_interval_single(i)) {
661                 if (nump)
662                         *nump = best_num;
663                 if (denp)
664                         *denp = best_den;
665         }
666         return err;
667 }
668
669 EXPORT_SYMBOL(snd_interval_ratnum);
670
671 /**
672  * snd_interval_ratden - refine the interval value
673  * @i: interval to refine
674  * @rats_count: number of struct ratden
675  * @rats: struct ratden array
676  * @nump: pointer to store the resultant numerator
677  * @denp: pointer to store the resultant denominator
678  *
679  * Returns non-zero if the value is changed, zero if not changed.
680  */
681 static int snd_interval_ratden(struct snd_interval *i,
682                                unsigned int rats_count, struct snd_ratden *rats,
683                                unsigned int *nump, unsigned int *denp)
684 {
685         unsigned int best_num, best_diff, best_den;
686         unsigned int k;
687         struct snd_interval t;
688         int err;
689
690         best_num = best_den = best_diff = 0;
691         for (k = 0; k < rats_count; ++k) {
692                 unsigned int num;
693                 unsigned int den = rats[k].den;
694                 unsigned int q = i->min;
695                 int diff;
696                 num = mul(q, den);
697                 if (num > rats[k].num_max)
698                         continue;
699                 if (num < rats[k].num_min)
700                         num = rats[k].num_max;
701                 else {
702                         unsigned int r;
703                         r = (num - rats[k].num_min) % rats[k].num_step;
704                         if (r != 0)
705                                 num += rats[k].num_step - r;
706                 }
707                 diff = num - q * den;
708                 if (best_num == 0 ||
709                     diff * best_den < best_diff * den) {
710                         best_diff = diff;
711                         best_den = den;
712                         best_num = num;
713                 }
714         }
715         if (best_den == 0) {
716                 i->empty = 1;
717                 return -EINVAL;
718         }
719         t.min = div_down(best_num, best_den);
720         t.openmin = !!(best_num % best_den);
721         
722         best_num = best_den = best_diff = 0;
723         for (k = 0; k < rats_count; ++k) {
724                 unsigned int num;
725                 unsigned int den = rats[k].den;
726                 unsigned int q = i->max;
727                 int diff;
728                 num = mul(q, den);
729                 if (num < rats[k].num_min)
730                         continue;
731                 if (num > rats[k].num_max)
732                         num = rats[k].num_max;
733                 else {
734                         unsigned int r;
735                         r = (num - rats[k].num_min) % rats[k].num_step;
736                         if (r != 0)
737                                 num -= r;
738                 }
739                 diff = q * den - num;
740                 if (best_num == 0 ||
741                     diff * best_den < best_diff * den) {
742                         best_diff = diff;
743                         best_den = den;
744                         best_num = num;
745                 }
746         }
747         if (best_den == 0) {
748                 i->empty = 1;
749                 return -EINVAL;
750         }
751         t.max = div_up(best_num, best_den);
752         t.openmax = !!(best_num % best_den);
753         t.integer = 0;
754         err = snd_interval_refine(i, &t);
755         if (err < 0)
756                 return err;
757
758         if (snd_interval_single(i)) {
759                 if (nump)
760                         *nump = best_num;
761                 if (denp)
762                         *denp = best_den;
763         }
764         return err;
765 }
766
767 /**
768  * snd_interval_list - refine the interval value from the list
769  * @i: the interval value to refine
770  * @count: the number of elements in the list
771  * @list: the value list
772  * @mask: the bit-mask to evaluate
773  *
774  * Refines the interval value from the list.
775  * When mask is non-zero, only the elements corresponding to bit 1 are
776  * evaluated.
777  *
778  * Returns non-zero if the value is changed, zero if not changed.
779  */
780 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
781 {
782         unsigned int k;
783         int changed = 0;
784
785         if (!count) {
786                 i->empty = 1;
787                 return -EINVAL;
788         }
789         for (k = 0; k < count; k++) {
790                 if (mask && !(mask & (1 << k)))
791                         continue;
792                 if (i->min == list[k] && !i->openmin)
793                         goto _l1;
794                 if (i->min < list[k]) {
795                         i->min = list[k];
796                         i->openmin = 0;
797                         changed = 1;
798                         goto _l1;
799                 }
800         }
801         i->empty = 1;
802         return -EINVAL;
803  _l1:
804         for (k = count; k-- > 0;) {
805                 if (mask && !(mask & (1 << k)))
806                         continue;
807                 if (i->max == list[k] && !i->openmax)
808                         goto _l2;
809                 if (i->max > list[k]) {
810                         i->max = list[k];
811                         i->openmax = 0;
812                         changed = 1;
813                         goto _l2;
814                 }
815         }
816         i->empty = 1;
817         return -EINVAL;
818  _l2:
819         if (snd_interval_checkempty(i)) {
820                 i->empty = 1;
821                 return -EINVAL;
822         }
823         return changed;
824 }
825
826 EXPORT_SYMBOL(snd_interval_list);
827
828 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
829 {
830         unsigned int n;
831         int changed = 0;
832         n = (i->min - min) % step;
833         if (n != 0 || i->openmin) {
834                 i->min += step - n;
835                 changed = 1;
836         }
837         n = (i->max - min) % step;
838         if (n != 0 || i->openmax) {
839                 i->max -= n;
840                 changed = 1;
841         }
842         if (snd_interval_checkempty(i)) {
843                 i->empty = 1;
844                 return -EINVAL;
845         }
846         return changed;
847 }
848
849 /* Info constraints helpers */
850
851 /**
852  * snd_pcm_hw_rule_add - add the hw-constraint rule
853  * @runtime: the pcm runtime instance
854  * @cond: condition bits
855  * @var: the variable to evaluate
856  * @func: the evaluation function
857  * @private: the private data pointer passed to function
858  * @dep: the dependent variables
859  *
860  * Returns zero if successful, or a negative error code on failure.
861  */
862 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
863                         int var,
864                         snd_pcm_hw_rule_func_t func, void *private,
865                         int dep, ...)
866 {
867         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
868         struct snd_pcm_hw_rule *c;
869         unsigned int k;
870         va_list args;
871         va_start(args, dep);
872         if (constrs->rules_num >= constrs->rules_all) {
873                 struct snd_pcm_hw_rule *new;
874                 unsigned int new_rules = constrs->rules_all + 16;
875                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
876                 if (!new)
877                         return -ENOMEM;
878                 if (constrs->rules) {
879                         memcpy(new, constrs->rules,
880                                constrs->rules_num * sizeof(*c));
881                         kfree(constrs->rules);
882                 }
883                 constrs->rules = new;
884                 constrs->rules_all = new_rules;
885         }
886         c = &constrs->rules[constrs->rules_num];
887         c->cond = cond;
888         c->func = func;
889         c->var = var;
890         c->private = private;
891         k = 0;
892         while (1) {
893                 snd_assert(k < ARRAY_SIZE(c->deps), return -EINVAL);
894                 c->deps[k++] = dep;
895                 if (dep < 0)
896                         break;
897                 dep = va_arg(args, int);
898         }
899         constrs->rules_num++;
900         va_end(args);
901         return 0;
902 }                                   
903
904 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
905
906 /**
907  * snd_pcm_hw_constraint_mask
908  * @runtime: PCM runtime instance
909  * @var: hw_params variable to apply the mask
910  * @mask: the bitmap mask
911  *
912  * Apply the constraint of the given bitmap mask to a mask parameter.
913  */
914 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
915                                u_int32_t mask)
916 {
917         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
918         struct snd_mask *maskp = constrs_mask(constrs, var);
919         *maskp->bits &= mask;
920         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
921         if (*maskp->bits == 0)
922                 return -EINVAL;
923         return 0;
924 }
925
926 /**
927  * snd_pcm_hw_constraint_mask64
928  * @runtime: PCM runtime instance
929  * @var: hw_params variable to apply the mask
930  * @mask: the 64bit bitmap mask
931  *
932  * Apply the constraint of the given bitmap mask to a mask parameter.
933  */
934 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
935                                  u_int64_t mask)
936 {
937         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
938         struct snd_mask *maskp = constrs_mask(constrs, var);
939         maskp->bits[0] &= (u_int32_t)mask;
940         maskp->bits[1] &= (u_int32_t)(mask >> 32);
941         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
942         if (! maskp->bits[0] && ! maskp->bits[1])
943                 return -EINVAL;
944         return 0;
945 }
946
947 /**
948  * snd_pcm_hw_constraint_integer
949  * @runtime: PCM runtime instance
950  * @var: hw_params variable to apply the integer constraint
951  *
952  * Apply the constraint of integer to an interval parameter.
953  */
954 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
955 {
956         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
957         return snd_interval_setinteger(constrs_interval(constrs, var));
958 }
959
960 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
961
962 /**
963  * snd_pcm_hw_constraint_minmax
964  * @runtime: PCM runtime instance
965  * @var: hw_params variable to apply the range
966  * @min: the minimal value
967  * @max: the maximal value
968  * 
969  * Apply the min/max range constraint to an interval parameter.
970  */
971 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
972                                  unsigned int min, unsigned int max)
973 {
974         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
975         struct snd_interval t;
976         t.min = min;
977         t.max = max;
978         t.openmin = t.openmax = 0;
979         t.integer = 0;
980         return snd_interval_refine(constrs_interval(constrs, var), &t);
981 }
982
983 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
984
985 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
986                                 struct snd_pcm_hw_rule *rule)
987 {
988         struct snd_pcm_hw_constraint_list *list = rule->private;
989         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
990 }               
991
992
993 /**
994  * snd_pcm_hw_constraint_list
995  * @runtime: PCM runtime instance
996  * @cond: condition bits
997  * @var: hw_params variable to apply the list constraint
998  * @l: list
999  * 
1000  * Apply the list of constraints to an interval parameter.
1001  */
1002 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1003                                unsigned int cond,
1004                                snd_pcm_hw_param_t var,
1005                                struct snd_pcm_hw_constraint_list *l)
1006 {
1007         return snd_pcm_hw_rule_add(runtime, cond, var,
1008                                    snd_pcm_hw_rule_list, l,
1009                                    var, -1);
1010 }
1011
1012 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1013
1014 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1015                                    struct snd_pcm_hw_rule *rule)
1016 {
1017         struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1018         unsigned int num = 0, den = 0;
1019         int err;
1020         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1021                                   r->nrats, r->rats, &num, &den);
1022         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1023                 params->rate_num = num;
1024                 params->rate_den = den;
1025         }
1026         return err;
1027 }
1028
1029 /**
1030  * snd_pcm_hw_constraint_ratnums
1031  * @runtime: PCM runtime instance
1032  * @cond: condition bits
1033  * @var: hw_params variable to apply the ratnums constraint
1034  * @r: struct snd_ratnums constriants
1035  */
1036 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1037                                   unsigned int cond,
1038                                   snd_pcm_hw_param_t var,
1039                                   struct snd_pcm_hw_constraint_ratnums *r)
1040 {
1041         return snd_pcm_hw_rule_add(runtime, cond, var,
1042                                    snd_pcm_hw_rule_ratnums, r,
1043                                    var, -1);
1044 }
1045
1046 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1047
1048 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1049                                    struct snd_pcm_hw_rule *rule)
1050 {
1051         struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1052         unsigned int num = 0, den = 0;
1053         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1054                                   r->nrats, r->rats, &num, &den);
1055         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1056                 params->rate_num = num;
1057                 params->rate_den = den;
1058         }
1059         return err;
1060 }
1061
1062 /**
1063  * snd_pcm_hw_constraint_ratdens
1064  * @runtime: PCM runtime instance
1065  * @cond: condition bits
1066  * @var: hw_params variable to apply the ratdens constraint
1067  * @r: struct snd_ratdens constriants
1068  */
1069 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1070                                   unsigned int cond,
1071                                   snd_pcm_hw_param_t var,
1072                                   struct snd_pcm_hw_constraint_ratdens *r)
1073 {
1074         return snd_pcm_hw_rule_add(runtime, cond, var,
1075                                    snd_pcm_hw_rule_ratdens, r,
1076                                    var, -1);
1077 }
1078
1079 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1080
1081 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1082                                   struct snd_pcm_hw_rule *rule)
1083 {
1084         unsigned int l = (unsigned long) rule->private;
1085         int width = l & 0xffff;
1086         unsigned int msbits = l >> 16;
1087         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1088         if (snd_interval_single(i) && snd_interval_value(i) == width)
1089                 params->msbits = msbits;
1090         return 0;
1091 }
1092
1093 /**
1094  * snd_pcm_hw_constraint_msbits
1095  * @runtime: PCM runtime instance
1096  * @cond: condition bits
1097  * @width: sample bits width
1098  * @msbits: msbits width
1099  */
1100 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1101                                  unsigned int cond,
1102                                  unsigned int width,
1103                                  unsigned int msbits)
1104 {
1105         unsigned long l = (msbits << 16) | width;
1106         return snd_pcm_hw_rule_add(runtime, cond, -1,
1107                                     snd_pcm_hw_rule_msbits,
1108                                     (void*) l,
1109                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1110 }
1111
1112 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1113
1114 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1115                                 struct snd_pcm_hw_rule *rule)
1116 {
1117         unsigned long step = (unsigned long) rule->private;
1118         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1119 }
1120
1121 /**
1122  * snd_pcm_hw_constraint_step
1123  * @runtime: PCM runtime instance
1124  * @cond: condition bits
1125  * @var: hw_params variable to apply the step constraint
1126  * @step: step size
1127  */
1128 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1129                                unsigned int cond,
1130                                snd_pcm_hw_param_t var,
1131                                unsigned long step)
1132 {
1133         return snd_pcm_hw_rule_add(runtime, cond, var, 
1134                                    snd_pcm_hw_rule_step, (void *) step,
1135                                    var, -1);
1136 }
1137
1138 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1139
1140 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1141 {
1142         static unsigned int pow2_sizes[] = {
1143                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1144                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1145                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1146                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1147         };
1148         return snd_interval_list(hw_param_interval(params, rule->var),
1149                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1150 }               
1151
1152 /**
1153  * snd_pcm_hw_constraint_pow2
1154  * @runtime: PCM runtime instance
1155  * @cond: condition bits
1156  * @var: hw_params variable to apply the power-of-2 constraint
1157  */
1158 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1159                                unsigned int cond,
1160                                snd_pcm_hw_param_t var)
1161 {
1162         return snd_pcm_hw_rule_add(runtime, cond, var, 
1163                                    snd_pcm_hw_rule_pow2, NULL,
1164                                    var, -1);
1165 }
1166
1167 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1168
1169 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1170                                   snd_pcm_hw_param_t var)
1171 {
1172         if (hw_is_mask(var)) {
1173                 snd_mask_any(hw_param_mask(params, var));
1174                 params->cmask |= 1 << var;
1175                 params->rmask |= 1 << var;
1176                 return;
1177         }
1178         if (hw_is_interval(var)) {
1179                 snd_interval_any(hw_param_interval(params, var));
1180                 params->cmask |= 1 << var;
1181                 params->rmask |= 1 << var;
1182                 return;
1183         }
1184         snd_BUG();
1185 }
1186
1187 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1188 {
1189         unsigned int k;
1190         memset(params, 0, sizeof(*params));
1191         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1192                 _snd_pcm_hw_param_any(params, k);
1193         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1194                 _snd_pcm_hw_param_any(params, k);
1195         params->info = ~0U;
1196 }
1197
1198 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1199
1200 /**
1201  * snd_pcm_hw_param_value
1202  * @params: the hw_params instance
1203  * @var: parameter to retrieve
1204  * @dir: pointer to the direction (-1,0,1) or NULL
1205  *
1206  * Return the value for field PAR if it's fixed in configuration space 
1207  *  defined by PARAMS. Return -EINVAL otherwise
1208  */
1209 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1210                            snd_pcm_hw_param_t var, int *dir)
1211 {
1212         if (hw_is_mask(var)) {
1213                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1214                 if (!snd_mask_single(mask))
1215                         return -EINVAL;
1216                 if (dir)
1217                         *dir = 0;
1218                 return snd_mask_value(mask);
1219         }
1220         if (hw_is_interval(var)) {
1221                 const struct snd_interval *i = hw_param_interval_c(params, var);
1222                 if (!snd_interval_single(i))
1223                         return -EINVAL;
1224                 if (dir)
1225                         *dir = i->openmin;
1226                 return snd_interval_value(i);
1227         }
1228         return -EINVAL;
1229 }
1230
1231 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1232
1233 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1234                                 snd_pcm_hw_param_t var)
1235 {
1236         if (hw_is_mask(var)) {
1237                 snd_mask_none(hw_param_mask(params, var));
1238                 params->cmask |= 1 << var;
1239                 params->rmask |= 1 << var;
1240         } else if (hw_is_interval(var)) {
1241                 snd_interval_none(hw_param_interval(params, var));
1242                 params->cmask |= 1 << var;
1243                 params->rmask |= 1 << var;
1244         } else {
1245                 snd_BUG();
1246         }
1247 }
1248
1249 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1250
1251 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1252                                    snd_pcm_hw_param_t var)
1253 {
1254         int changed;
1255         if (hw_is_mask(var))
1256                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1257         else if (hw_is_interval(var))
1258                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1259         else
1260                 return -EINVAL;
1261         if (changed) {
1262                 params->cmask |= 1 << var;
1263                 params->rmask |= 1 << var;
1264         }
1265         return changed;
1266 }
1267
1268
1269 /**
1270  * snd_pcm_hw_param_first
1271  * @pcm: PCM instance
1272  * @params: the hw_params instance
1273  * @var: parameter to retrieve
1274  * @dir: pointer to the direction (-1,0,1) or NULL
1275  *
1276  * Inside configuration space defined by PARAMS remove from PAR all 
1277  * values > minimum. Reduce configuration space accordingly.
1278  * Return the minimum.
1279  */
1280 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1281                            struct snd_pcm_hw_params *params, 
1282                            snd_pcm_hw_param_t var, int *dir)
1283 {
1284         int changed = _snd_pcm_hw_param_first(params, var);
1285         if (changed < 0)
1286                 return changed;
1287         if (params->rmask) {
1288                 int err = snd_pcm_hw_refine(pcm, params);
1289                 snd_assert(err >= 0, return err);
1290         }
1291         return snd_pcm_hw_param_value(params, var, dir);
1292 }
1293
1294 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1295
1296 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1297                                   snd_pcm_hw_param_t var)
1298 {
1299         int changed;
1300         if (hw_is_mask(var))
1301                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1302         else if (hw_is_interval(var))
1303                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1304         else
1305                 return -EINVAL;
1306         if (changed) {
1307                 params->cmask |= 1 << var;
1308                 params->rmask |= 1 << var;
1309         }
1310         return changed;
1311 }
1312
1313
1314 /**
1315  * snd_pcm_hw_param_last
1316  * @pcm: PCM instance
1317  * @params: the hw_params instance
1318  * @var: parameter to retrieve
1319  * @dir: pointer to the direction (-1,0,1) or NULL
1320  *
1321  * Inside configuration space defined by PARAMS remove from PAR all 
1322  * values < maximum. Reduce configuration space accordingly.
1323  * Return the maximum.
1324  */
1325 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1326                           struct snd_pcm_hw_params *params,
1327                           snd_pcm_hw_param_t var, int *dir)
1328 {
1329         int changed = _snd_pcm_hw_param_last(params, var);
1330         if (changed < 0)
1331                 return changed;
1332         if (params->rmask) {
1333                 int err = snd_pcm_hw_refine(pcm, params);
1334                 snd_assert(err >= 0, return err);
1335         }
1336         return snd_pcm_hw_param_value(params, var, dir);
1337 }
1338
1339 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1340
1341 /**
1342  * snd_pcm_hw_param_choose
1343  * @pcm: PCM instance
1344  * @params: the hw_params instance
1345  *
1346  * Choose one configuration from configuration space defined by PARAMS
1347  * The configuration chosen is that obtained fixing in this order:
1348  * first access, first format, first subformat, min channels,
1349  * min rate, min period time, max buffer size, min tick time
1350  */
1351 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1352                              struct snd_pcm_hw_params *params)
1353 {
1354         static int vars[] = {
1355                 SNDRV_PCM_HW_PARAM_ACCESS,
1356                 SNDRV_PCM_HW_PARAM_FORMAT,
1357                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1358                 SNDRV_PCM_HW_PARAM_CHANNELS,
1359                 SNDRV_PCM_HW_PARAM_RATE,
1360                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1361                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1362                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1363                 -1
1364         };
1365         int err, *v;
1366
1367         for (v = vars; *v != -1; v++) {
1368                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1369                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1370                 else
1371                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1372                 snd_assert(err >= 0, return err);
1373         }
1374         return 0;
1375 }
1376
1377 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1378                                    void *arg)
1379 {
1380         struct snd_pcm_runtime *runtime = substream->runtime;
1381         unsigned long flags;
1382         snd_pcm_stream_lock_irqsave(substream, flags);
1383         if (snd_pcm_running(substream) &&
1384             snd_pcm_update_hw_ptr(substream) >= 0)
1385                 runtime->status->hw_ptr %= runtime->buffer_size;
1386         else
1387                 runtime->status->hw_ptr = 0;
1388         snd_pcm_stream_unlock_irqrestore(substream, flags);
1389         return 0;
1390 }
1391
1392 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1393                                           void *arg)
1394 {
1395         struct snd_pcm_channel_info *info = arg;
1396         struct snd_pcm_runtime *runtime = substream->runtime;
1397         int width;
1398         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1399                 info->offset = -1;
1400                 return 0;
1401         }
1402         width = snd_pcm_format_physical_width(runtime->format);
1403         if (width < 0)
1404                 return width;
1405         info->offset = 0;
1406         switch (runtime->access) {
1407         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1408         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1409                 info->first = info->channel * width;
1410                 info->step = runtime->channels * width;
1411                 break;
1412         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1413         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1414         {
1415                 size_t size = runtime->dma_bytes / runtime->channels;
1416                 info->first = info->channel * size * 8;
1417                 info->step = width;
1418                 break;
1419         }
1420         default:
1421                 snd_BUG();
1422                 break;
1423         }
1424         return 0;
1425 }
1426
1427 /**
1428  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1429  * @substream: the pcm substream instance
1430  * @cmd: ioctl command
1431  * @arg: ioctl argument
1432  *
1433  * Processes the generic ioctl commands for PCM.
1434  * Can be passed as the ioctl callback for PCM ops.
1435  *
1436  * Returns zero if successful, or a negative error code on failure.
1437  */
1438 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1439                       unsigned int cmd, void *arg)
1440 {
1441         switch (cmd) {
1442         case SNDRV_PCM_IOCTL1_INFO:
1443                 return 0;
1444         case SNDRV_PCM_IOCTL1_RESET:
1445                 return snd_pcm_lib_ioctl_reset(substream, arg);
1446         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1447                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1448         }
1449         return -ENXIO;
1450 }
1451
1452 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1453
1454 /*
1455  *  Conditions
1456  */
1457
1458 static void snd_pcm_system_tick_set(struct snd_pcm_substream *substream, 
1459                                     unsigned long ticks)
1460 {
1461         struct snd_pcm_runtime *runtime = substream->runtime;
1462         if (ticks == 0)
1463                 del_timer(&runtime->tick_timer);
1464         else {
1465                 ticks += (1000000 / HZ) - 1;
1466                 ticks /= (1000000 / HZ);
1467                 mod_timer(&runtime->tick_timer, jiffies + ticks);
1468         }
1469 }
1470
1471 /* Temporary alias */
1472 void snd_pcm_tick_set(struct snd_pcm_substream *substream, unsigned long ticks)
1473 {
1474         snd_pcm_system_tick_set(substream, ticks);
1475 }
1476
1477 void snd_pcm_tick_prepare(struct snd_pcm_substream *substream)
1478 {
1479         struct snd_pcm_runtime *runtime = substream->runtime;
1480         snd_pcm_uframes_t frames = ULONG_MAX;
1481         snd_pcm_uframes_t avail, dist;
1482         unsigned int ticks;
1483         u_int64_t n;
1484         u_int32_t r;
1485         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
1486                 if (runtime->silence_size >= runtime->boundary) {
1487                         frames = 1;
1488                 } else if (runtime->silence_size > 0 &&
1489                            runtime->silence_filled < runtime->buffer_size) {
1490                         snd_pcm_sframes_t noise_dist;
1491                         noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
1492                         if (noise_dist > (snd_pcm_sframes_t)runtime->silence_threshold)
1493                                 frames = noise_dist - runtime->silence_threshold;
1494                 }
1495                 avail = snd_pcm_playback_avail(runtime);
1496         } else {
1497                 avail = snd_pcm_capture_avail(runtime);
1498         }
1499         if (avail < runtime->control->avail_min) {
1500                 snd_pcm_sframes_t to_avail_min =
1501                         runtime->control->avail_min - avail;
1502                 if (to_avail_min > 0 &&
1503                     frames > (snd_pcm_uframes_t)to_avail_min)
1504                         frames = to_avail_min;
1505         }
1506         if (avail < runtime->buffer_size) {
1507                 snd_pcm_sframes_t to_buffer_size =
1508                         runtime->buffer_size - avail;
1509                 if (to_buffer_size > 0 &&
1510                     frames > (snd_pcm_uframes_t)to_buffer_size)
1511                         frames = to_buffer_size;
1512         }
1513         if (frames == ULONG_MAX) {
1514                 snd_pcm_tick_set(substream, 0);
1515                 return;
1516         }
1517         dist = runtime->status->hw_ptr - runtime->hw_ptr_base;
1518         /* Distance to next interrupt */
1519         dist = runtime->period_size - dist % runtime->period_size;
1520         if (dist <= frames) {
1521                 snd_pcm_tick_set(substream, 0);
1522                 return;
1523         }
1524         /* the base time is us */
1525         n = frames;
1526         n *= 1000000;
1527         div64_32(&n, runtime->tick_time * runtime->rate, &r);
1528         ticks = n + (r > 0 ? 1 : 0);
1529         if (ticks < runtime->sleep_min)
1530                 ticks = runtime->sleep_min;
1531         snd_pcm_tick_set(substream, (unsigned long) ticks);
1532 }
1533
1534 void snd_pcm_tick_elapsed(struct snd_pcm_substream *substream)
1535 {
1536         struct snd_pcm_runtime *runtime;
1537         unsigned long flags;
1538         
1539         snd_assert(substream != NULL, return);
1540         runtime = substream->runtime;
1541         snd_assert(runtime != NULL, return);
1542
1543         snd_pcm_stream_lock_irqsave(substream, flags);
1544         if (!snd_pcm_running(substream) ||
1545             snd_pcm_update_hw_ptr(substream) < 0)
1546                 goto _end;
1547         if (runtime->sleep_min)
1548                 snd_pcm_tick_prepare(substream);
1549  _end:
1550         snd_pcm_stream_unlock_irqrestore(substream, flags);
1551 }
1552
1553 /**
1554  * snd_pcm_period_elapsed - update the pcm status for the next period
1555  * @substream: the pcm substream instance
1556  *
1557  * This function is called from the interrupt handler when the
1558  * PCM has processed the period size.  It will update the current
1559  * pointer, set up the tick, wake up sleepers, etc.
1560  *
1561  * Even if more than one periods have elapsed since the last call, you
1562  * have to call this only once.
1563  */
1564 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1565 {
1566         struct snd_pcm_runtime *runtime;
1567         unsigned long flags;
1568
1569         snd_assert(substream != NULL, return);
1570         runtime = substream->runtime;
1571         snd_assert(runtime != NULL, return);
1572
1573         if (runtime->transfer_ack_begin)
1574                 runtime->transfer_ack_begin(substream);
1575
1576         snd_pcm_stream_lock_irqsave(substream, flags);
1577         if (!snd_pcm_running(substream) ||
1578             snd_pcm_update_hw_ptr_interrupt(substream) < 0)
1579                 goto _end;
1580
1581         if (substream->timer_running)
1582                 snd_timer_interrupt(substream->timer, 1);
1583         if (runtime->sleep_min)
1584                 snd_pcm_tick_prepare(substream);
1585  _end:
1586         snd_pcm_stream_unlock_irqrestore(substream, flags);
1587         if (runtime->transfer_ack_end)
1588                 runtime->transfer_ack_end(substream);
1589         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1590 }
1591
1592 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1593
1594 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1595                                       unsigned int hwoff,
1596                                       unsigned long data, unsigned int off,
1597                                       snd_pcm_uframes_t frames)
1598 {
1599         struct snd_pcm_runtime *runtime = substream->runtime;
1600         int err;
1601         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1602         if (substream->ops->copy) {
1603                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1604                         return err;
1605         } else {
1606                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1607                 snd_assert(runtime->dma_area, return -EFAULT);
1608                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1609                         return -EFAULT;
1610         }
1611         return 0;
1612 }
1613  
1614 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1615                           unsigned long data, unsigned int off,
1616                           snd_pcm_uframes_t size);
1617
1618 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1619                                             unsigned long data,
1620                                             snd_pcm_uframes_t size,
1621                                             int nonblock,
1622                                             transfer_f transfer)
1623 {
1624         struct snd_pcm_runtime *runtime = substream->runtime;
1625         snd_pcm_uframes_t xfer = 0;
1626         snd_pcm_uframes_t offset = 0;
1627         int err = 0;
1628
1629         if (size == 0)
1630                 return 0;
1631         if (size > runtime->xfer_align)
1632                 size -= size % runtime->xfer_align;
1633
1634         snd_pcm_stream_lock_irq(substream);
1635         switch (runtime->status->state) {
1636         case SNDRV_PCM_STATE_PREPARED:
1637         case SNDRV_PCM_STATE_RUNNING:
1638         case SNDRV_PCM_STATE_PAUSED:
1639                 break;
1640         case SNDRV_PCM_STATE_XRUN:
1641                 err = -EPIPE;
1642                 goto _end_unlock;
1643         case SNDRV_PCM_STATE_SUSPENDED:
1644                 err = -ESTRPIPE;
1645                 goto _end_unlock;
1646         default:
1647                 err = -EBADFD;
1648                 goto _end_unlock;
1649         }
1650
1651         while (size > 0) {
1652                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1653                 snd_pcm_uframes_t avail;
1654                 snd_pcm_uframes_t cont;
1655                 if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1656                         snd_pcm_update_hw_ptr(substream);
1657                 avail = snd_pcm_playback_avail(runtime);
1658                 if (!avail ||
1659                     (snd_pcm_running(substream) &&
1660                      ((avail < runtime->control->avail_min && size > avail) ||
1661                       (size >= runtime->xfer_align &&
1662                        avail < runtime->xfer_align)))) {
1663                         wait_queue_t wait;
1664                         enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state;
1665                         long tout;
1666
1667                         if (nonblock) {
1668                                 err = -EAGAIN;
1669                                 goto _end_unlock;
1670                         }
1671
1672                         init_waitqueue_entry(&wait, current);
1673                         add_wait_queue(&runtime->sleep, &wait);
1674                         while (1) {
1675                                 if (signal_pending(current)) {
1676                                         state = SIGNALED;
1677                                         break;
1678                                 }
1679                                 set_current_state(TASK_INTERRUPTIBLE);
1680                                 snd_pcm_stream_unlock_irq(substream);
1681                                 tout = schedule_timeout(10 * HZ);
1682                                 snd_pcm_stream_lock_irq(substream);
1683                                 if (tout == 0) {
1684                                         if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
1685                                             runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
1686                                                 state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
1687                                                 break;
1688                                         }
1689                                 }
1690                                 switch (runtime->status->state) {
1691                                 case SNDRV_PCM_STATE_XRUN:
1692                                 case SNDRV_PCM_STATE_DRAINING:
1693                                         state = ERROR;
1694                                         goto _end_loop;
1695                                 case SNDRV_PCM_STATE_SUSPENDED:
1696                                         state = SUSPENDED;
1697                                         goto _end_loop;
1698                                 case SNDRV_PCM_STATE_SETUP:
1699                                         state = DROPPED;
1700                                         goto _end_loop;
1701                                 default:
1702                                         break;
1703                                 }
1704                                 avail = snd_pcm_playback_avail(runtime);
1705                                 if (avail >= runtime->control->avail_min) {
1706                                         state = READY;
1707                                         break;
1708                                 }
1709                         }
1710                        _end_loop:
1711                         remove_wait_queue(&runtime->sleep, &wait);
1712
1713                         switch (state) {
1714                         case ERROR:
1715                                 err = -EPIPE;
1716                                 goto _end_unlock;
1717                         case SUSPENDED:
1718                                 err = -ESTRPIPE;
1719                                 goto _end_unlock;
1720                         case SIGNALED:
1721                                 err = -ERESTARTSYS;
1722                                 goto _end_unlock;
1723                         case EXPIRED:
1724                                 snd_printd("playback write error (DMA or IRQ trouble?)\n");
1725                                 err = -EIO;
1726                                 goto _end_unlock;
1727                         case DROPPED:
1728                                 err = -EBADFD;
1729                                 goto _end_unlock;
1730                         default:
1731                                 break;
1732                         }
1733                 }
1734                 if (avail > runtime->xfer_align)
1735                         avail -= avail % runtime->xfer_align;
1736                 frames = size > avail ? avail : size;
1737                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1738                 if (frames > cont)
1739                         frames = cont;
1740                 snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
1741                 appl_ptr = runtime->control->appl_ptr;
1742                 appl_ofs = appl_ptr % runtime->buffer_size;
1743                 snd_pcm_stream_unlock_irq(substream);
1744                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
1745                         goto _end;
1746                 snd_pcm_stream_lock_irq(substream);
1747                 switch (runtime->status->state) {
1748                 case SNDRV_PCM_STATE_XRUN:
1749                         err = -EPIPE;
1750                         goto _end_unlock;
1751                 case SNDRV_PCM_STATE_SUSPENDED:
1752                         err = -ESTRPIPE;
1753                         goto _end_unlock;
1754                 default:
1755                         break;
1756                 }
1757                 appl_ptr += frames;
1758                 if (appl_ptr >= runtime->boundary)
1759                         appl_ptr -= runtime->boundary;
1760                 runtime->control->appl_ptr = appl_ptr;
1761                 if (substream->ops->ack)
1762                         substream->ops->ack(substream);
1763
1764                 offset += frames;
1765                 size -= frames;
1766                 xfer += frames;
1767                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1768                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1769                         err = snd_pcm_start(substream);
1770                         if (err < 0)
1771                                 goto _end_unlock;
1772                 }
1773                 if (runtime->sleep_min &&
1774                     runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1775                         snd_pcm_tick_prepare(substream);
1776         }
1777  _end_unlock:
1778         snd_pcm_stream_unlock_irq(substream);
1779  _end:
1780         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1781 }
1782
1783 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1784 {
1785         struct snd_pcm_runtime *runtime;
1786         int nonblock;
1787
1788         snd_assert(substream != NULL, return -ENXIO);
1789         runtime = substream->runtime;
1790         snd_assert(runtime != NULL, return -ENXIO);
1791         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
1792         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1793                 return -EBADFD;
1794
1795         nonblock = !!(substream->f_flags & O_NONBLOCK);
1796
1797         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1798             runtime->channels > 1)
1799                 return -EINVAL;
1800         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1801                                   snd_pcm_lib_write_transfer);
1802 }
1803
1804 EXPORT_SYMBOL(snd_pcm_lib_write);
1805
1806 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1807                                        unsigned int hwoff,
1808                                        unsigned long data, unsigned int off,
1809                                        snd_pcm_uframes_t frames)
1810 {
1811         struct snd_pcm_runtime *runtime = substream->runtime;
1812         int err;
1813         void __user **bufs = (void __user **)data;
1814         int channels = runtime->channels;
1815         int c;
1816         if (substream->ops->copy) {
1817                 snd_assert(substream->ops->silence != NULL, return -EINVAL);
1818                 for (c = 0; c < channels; ++c, ++bufs) {
1819                         if (*bufs == NULL) {
1820                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
1821                                         return err;
1822                         } else {
1823                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1824                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
1825                                         return err;
1826                         }
1827                 }
1828         } else {
1829                 /* default transfer behaviour */
1830                 size_t dma_csize = runtime->dma_bytes / channels;
1831                 snd_assert(runtime->dma_area, return -EFAULT);
1832                 for (c = 0; c < channels; ++c, ++bufs) {
1833                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
1834                         if (*bufs == NULL) {
1835                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
1836                         } else {
1837                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1838                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
1839                                         return -EFAULT;
1840                         }
1841                 }
1842         }
1843         return 0;
1844 }
1845  
1846 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
1847                                      void __user **bufs,
1848                                      snd_pcm_uframes_t frames)
1849 {
1850         struct snd_pcm_runtime *runtime;
1851         int nonblock;
1852
1853         snd_assert(substream != NULL, return -ENXIO);
1854         runtime = substream->runtime;
1855         snd_assert(runtime != NULL, return -ENXIO);
1856         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
1857         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1858                 return -EBADFD;
1859
1860         nonblock = !!(substream->f_flags & O_NONBLOCK);
1861
1862         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
1863                 return -EINVAL;
1864         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
1865                                   nonblock, snd_pcm_lib_writev_transfer);
1866 }
1867
1868 EXPORT_SYMBOL(snd_pcm_lib_writev);
1869
1870 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
1871                                      unsigned int hwoff,
1872                                      unsigned long data, unsigned int off,
1873                                      snd_pcm_uframes_t frames)
1874 {
1875         struct snd_pcm_runtime *runtime = substream->runtime;
1876         int err;
1877         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1878         if (substream->ops->copy) {
1879                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1880                         return err;
1881         } else {
1882                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1883                 snd_assert(runtime->dma_area, return -EFAULT);
1884                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
1885                         return -EFAULT;
1886         }
1887         return 0;
1888 }
1889
1890 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
1891                                            unsigned long data,
1892                                            snd_pcm_uframes_t size,
1893                                            int nonblock,
1894                                            transfer_f transfer)
1895 {
1896         struct snd_pcm_runtime *runtime = substream->runtime;
1897         snd_pcm_uframes_t xfer = 0;
1898         snd_pcm_uframes_t offset = 0;
1899         int err = 0;
1900
1901         if (size == 0)
1902                 return 0;
1903         if (size > runtime->xfer_align)
1904                 size -= size % runtime->xfer_align;
1905
1906         snd_pcm_stream_lock_irq(substream);
1907         switch (runtime->status->state) {
1908         case SNDRV_PCM_STATE_PREPARED:
1909                 if (size >= runtime->start_threshold) {
1910                         err = snd_pcm_start(substream);
1911                         if (err < 0)
1912                                 goto _end_unlock;
1913                 }
1914                 break;
1915         case SNDRV_PCM_STATE_DRAINING:
1916         case SNDRV_PCM_STATE_RUNNING:
1917         case SNDRV_PCM_STATE_PAUSED:
1918                 break;
1919         case SNDRV_PCM_STATE_XRUN:
1920                 err = -EPIPE;
1921                 goto _end_unlock;
1922         case SNDRV_PCM_STATE_SUSPENDED:
1923                 err = -ESTRPIPE;
1924                 goto _end_unlock;
1925         default:
1926                 err = -EBADFD;
1927                 goto _end_unlock;
1928         }
1929
1930         while (size > 0) {
1931                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1932                 snd_pcm_uframes_t avail;
1933                 snd_pcm_uframes_t cont;
1934                 if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1935                         snd_pcm_update_hw_ptr(substream);
1936               __draining:
1937                 avail = snd_pcm_capture_avail(runtime);
1938                 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
1939                         if (avail < runtime->xfer_align) {
1940                                 err = -EPIPE;
1941                                 goto _end_unlock;
1942                         }
1943                 } else if ((avail < runtime->control->avail_min && size > avail) ||
1944                            (size >= runtime->xfer_align && avail < runtime->xfer_align)) {
1945                         wait_queue_t wait;
1946                         enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state;
1947                         long tout;
1948
1949                         if (nonblock) {
1950                                 err = -EAGAIN;
1951                                 goto _end_unlock;
1952                         }
1953
1954                         init_waitqueue_entry(&wait, current);
1955                         add_wait_queue(&runtime->sleep, &wait);
1956                         while (1) {
1957                                 if (signal_pending(current)) {
1958                                         state = SIGNALED;
1959                                         break;
1960                                 }
1961                                 set_current_state(TASK_INTERRUPTIBLE);
1962                                 snd_pcm_stream_unlock_irq(substream);
1963                                 tout = schedule_timeout(10 * HZ);
1964                                 snd_pcm_stream_lock_irq(substream);
1965                                 if (tout == 0) {
1966                                         if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
1967                                             runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
1968                                                 state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
1969                                                 break;
1970                                         }
1971                                 }
1972                                 switch (runtime->status->state) {
1973                                 case SNDRV_PCM_STATE_XRUN:
1974                                         state = ERROR;
1975                                         goto _end_loop;
1976                                 case SNDRV_PCM_STATE_SUSPENDED:
1977                                         state = SUSPENDED;
1978                                         goto _end_loop;
1979                                 case SNDRV_PCM_STATE_DRAINING:
1980                                         goto __draining;
1981                                 case SNDRV_PCM_STATE_SETUP:
1982                                         state = DROPPED;
1983                                         goto _end_loop;
1984                                 default:
1985                                         break;
1986                                 }
1987                                 avail = snd_pcm_capture_avail(runtime);
1988                                 if (avail >= runtime->control->avail_min) {
1989                                         state = READY;
1990                                         break;
1991                                 }
1992                         }
1993                        _end_loop:
1994                         remove_wait_queue(&runtime->sleep, &wait);
1995
1996                         switch (state) {
1997                         case ERROR:
1998                                 err = -EPIPE;
1999                                 goto _end_unlock;
2000                         case SUSPENDED:
2001                                 err = -ESTRPIPE;
2002                                 goto _end_unlock;
2003                         case SIGNALED:
2004                                 err = -ERESTARTSYS;
2005                                 goto _end_unlock;
2006                         case EXPIRED:
2007                                 snd_printd("capture read error (DMA or IRQ trouble?)\n");
2008                                 err = -EIO;
2009                                 goto _end_unlock;
2010                         case DROPPED:
2011                                 err = -EBADFD;
2012                                 goto _end_unlock;
2013                         default:
2014                                 break;
2015                         }
2016                 }
2017                 if (avail > runtime->xfer_align)
2018                         avail -= avail % runtime->xfer_align;
2019                 frames = size > avail ? avail : size;
2020                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2021                 if (frames > cont)
2022                         frames = cont;
2023                 snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
2024                 appl_ptr = runtime->control->appl_ptr;
2025                 appl_ofs = appl_ptr % runtime->buffer_size;
2026                 snd_pcm_stream_unlock_irq(substream);
2027                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
2028                         goto _end;
2029                 snd_pcm_stream_lock_irq(substream);
2030                 switch (runtime->status->state) {
2031                 case SNDRV_PCM_STATE_XRUN:
2032                         err = -EPIPE;
2033                         goto _end_unlock;
2034                 case SNDRV_PCM_STATE_SUSPENDED:
2035                         err = -ESTRPIPE;
2036                         goto _end_unlock;
2037                 default:
2038                         break;
2039                 }
2040                 appl_ptr += frames;
2041                 if (appl_ptr >= runtime->boundary)
2042                         appl_ptr -= runtime->boundary;
2043                 runtime->control->appl_ptr = appl_ptr;
2044                 if (substream->ops->ack)
2045                         substream->ops->ack(substream);
2046
2047                 offset += frames;
2048                 size -= frames;
2049                 xfer += frames;
2050                 if (runtime->sleep_min &&
2051                     runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2052                         snd_pcm_tick_prepare(substream);
2053         }
2054  _end_unlock:
2055         snd_pcm_stream_unlock_irq(substream);
2056  _end:
2057         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2058 }
2059
2060 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2061 {
2062         struct snd_pcm_runtime *runtime;
2063         int nonblock;
2064         
2065         snd_assert(substream != NULL, return -ENXIO);
2066         runtime = substream->runtime;
2067         snd_assert(runtime != NULL, return -ENXIO);
2068         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2069         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2070                 return -EBADFD;
2071
2072         nonblock = !!(substream->f_flags & O_NONBLOCK);
2073         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2074                 return -EINVAL;
2075         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2076 }
2077
2078 EXPORT_SYMBOL(snd_pcm_lib_read);
2079
2080 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2081                                       unsigned int hwoff,
2082                                       unsigned long data, unsigned int off,
2083                                       snd_pcm_uframes_t frames)
2084 {
2085         struct snd_pcm_runtime *runtime = substream->runtime;
2086         int err;
2087         void __user **bufs = (void __user **)data;
2088         int channels = runtime->channels;
2089         int c;
2090         if (substream->ops->copy) {
2091                 for (c = 0; c < channels; ++c, ++bufs) {
2092                         char __user *buf;
2093                         if (*bufs == NULL)
2094                                 continue;
2095                         buf = *bufs + samples_to_bytes(runtime, off);
2096                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2097                                 return err;
2098                 }
2099         } else {
2100                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2101                 snd_assert(runtime->dma_area, return -EFAULT);
2102                 for (c = 0; c < channels; ++c, ++bufs) {
2103                         char *hwbuf;
2104                         char __user *buf;
2105                         if (*bufs == NULL)
2106                                 continue;
2107
2108                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2109                         buf = *bufs + samples_to_bytes(runtime, off);
2110                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2111                                 return -EFAULT;
2112                 }
2113         }
2114         return 0;
2115 }
2116  
2117 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2118                                     void __user **bufs,
2119                                     snd_pcm_uframes_t frames)
2120 {
2121         struct snd_pcm_runtime *runtime;
2122         int nonblock;
2123
2124         snd_assert(substream != NULL, return -ENXIO);
2125         runtime = substream->runtime;
2126         snd_assert(runtime != NULL, return -ENXIO);
2127         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2128         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2129                 return -EBADFD;
2130
2131         nonblock = !!(substream->f_flags & O_NONBLOCK);
2132         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2133                 return -EINVAL;
2134         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2135 }
2136
2137 EXPORT_SYMBOL(snd_pcm_lib_readv);