ALSA: PCM midlevel: introduce mask for xrun_debug() macro
[linux-2.6.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <sound/core.h>
26 #include <sound/control.h>
27 #include <sound/info.h>
28 #include <sound/pcm.h>
29 #include <sound/pcm_params.h>
30 #include <sound/timer.h>
31
32 /*
33  * fill ring buffer with silence
34  * runtime->silence_start: starting pointer to silence area
35  * runtime->silence_filled: size filled with silence
36  * runtime->silence_threshold: threshold from application
37  * runtime->silence_size: maximal size from application
38  *
39  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
40  */
41 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
42 {
43         struct snd_pcm_runtime *runtime = substream->runtime;
44         snd_pcm_uframes_t frames, ofs, transfer;
45
46         if (runtime->silence_size < runtime->boundary) {
47                 snd_pcm_sframes_t noise_dist, n;
48                 if (runtime->silence_start != runtime->control->appl_ptr) {
49                         n = runtime->control->appl_ptr - runtime->silence_start;
50                         if (n < 0)
51                                 n += runtime->boundary;
52                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
53                                 runtime->silence_filled -= n;
54                         else
55                                 runtime->silence_filled = 0;
56                         runtime->silence_start = runtime->control->appl_ptr;
57                 }
58                 if (runtime->silence_filled >= runtime->buffer_size)
59                         return;
60                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
61                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
62                         return;
63                 frames = runtime->silence_threshold - noise_dist;
64                 if (frames > runtime->silence_size)
65                         frames = runtime->silence_size;
66         } else {
67                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
68                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
69                         runtime->silence_filled = avail > 0 ? avail : 0;
70                         runtime->silence_start = (runtime->status->hw_ptr +
71                                                   runtime->silence_filled) %
72                                                  runtime->boundary;
73                 } else {
74                         ofs = runtime->status->hw_ptr;
75                         frames = new_hw_ptr - ofs;
76                         if ((snd_pcm_sframes_t)frames < 0)
77                                 frames += runtime->boundary;
78                         runtime->silence_filled -= frames;
79                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
80                                 runtime->silence_filled = 0;
81                                 runtime->silence_start = new_hw_ptr;
82                         } else {
83                                 runtime->silence_start = ofs;
84                         }
85                 }
86                 frames = runtime->buffer_size - runtime->silence_filled;
87         }
88         if (snd_BUG_ON(frames > runtime->buffer_size))
89                 return;
90         if (frames == 0)
91                 return;
92         ofs = runtime->silence_start % runtime->buffer_size;
93         while (frames > 0) {
94                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
95                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
96                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
97                         if (substream->ops->silence) {
98                                 int err;
99                                 err = substream->ops->silence(substream, -1, ofs, transfer);
100                                 snd_BUG_ON(err < 0);
101                         } else {
102                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
103                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
104                         }
105                 } else {
106                         unsigned int c;
107                         unsigned int channels = runtime->channels;
108                         if (substream->ops->silence) {
109                                 for (c = 0; c < channels; ++c) {
110                                         int err;
111                                         err = substream->ops->silence(substream, c, ofs, transfer);
112                                         snd_BUG_ON(err < 0);
113                                 }
114                         } else {
115                                 size_t dma_csize = runtime->dma_bytes / channels;
116                                 for (c = 0; c < channels; ++c) {
117                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
118                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
119                                 }
120                         }
121                 }
122                 runtime->silence_filled += transfer;
123                 frames -= transfer;
124                 ofs = 0;
125         }
126 }
127
128 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
129 #define xrun_debug(substream, mask)     ((substream)->pstr->xrun_debug & (mask))
130 #else
131 #define xrun_debug(substream, mask)     0
132 #endif
133
134 #define dump_stack_on_xrun(substream) do {              \
135                 if (xrun_debug(substream, 2))           \
136                         dump_stack();                   \
137         } while (0)
138
139 static void xrun(struct snd_pcm_substream *substream)
140 {
141         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
142         if (xrun_debug(substream, 1)) {
143                 snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n",
144                            substream->pcm->card->number,
145                            substream->pcm->device,
146                            substream->stream ? 'c' : 'p');
147                 dump_stack_on_xrun(substream);
148         }
149 }
150
151 static snd_pcm_uframes_t
152 snd_pcm_update_hw_ptr_pos(struct snd_pcm_substream *substream,
153                           struct snd_pcm_runtime *runtime)
154 {
155         snd_pcm_uframes_t pos;
156
157         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
158                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
159         pos = substream->ops->pointer(substream);
160         if (pos == SNDRV_PCM_POS_XRUN)
161                 return pos; /* XRUN */
162         if (pos >= runtime->buffer_size) {
163                 if (printk_ratelimit()) {
164                         snd_printd(KERN_ERR  "BUG: stream = %i, pos = 0x%lx, "
165                                    "buffer size = 0x%lx, period size = 0x%lx\n",
166                                    substream->stream, pos, runtime->buffer_size,
167                                    runtime->period_size);
168                 }
169                 pos = 0;
170         }
171         pos -= pos % runtime->min_align;
172         return pos;
173 }
174
175 static int snd_pcm_update_hw_ptr_post(struct snd_pcm_substream *substream,
176                                       struct snd_pcm_runtime *runtime)
177 {
178         snd_pcm_uframes_t avail;
179
180         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
181                 avail = snd_pcm_playback_avail(runtime);
182         else
183                 avail = snd_pcm_capture_avail(runtime);
184         if (avail > runtime->avail_max)
185                 runtime->avail_max = avail;
186         if (avail >= runtime->stop_threshold) {
187                 if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING)
188                         snd_pcm_drain_done(substream);
189                 else
190                         xrun(substream);
191                 return -EPIPE;
192         }
193         if (avail >= runtime->control->avail_min)
194                 wake_up(&runtime->sleep);
195         return 0;
196 }
197
198 #define hw_ptr_error(substream, fmt, args...)                           \
199         do {                                                            \
200                 if (xrun_debug(substream, 1)) {                         \
201                         if (printk_ratelimit()) {                       \
202                                 snd_printd("PCM: " fmt, ##args);        \
203                         }                                               \
204                         dump_stack_on_xrun(substream);                  \
205                 }                                                       \
206         } while (0)
207
208 static int snd_pcm_update_hw_ptr_interrupt(struct snd_pcm_substream *substream)
209 {
210         struct snd_pcm_runtime *runtime = substream->runtime;
211         snd_pcm_uframes_t pos;
212         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_ptr_interrupt, hw_base;
213         snd_pcm_sframes_t hdelta, delta;
214         unsigned long jdelta;
215
216         old_hw_ptr = runtime->status->hw_ptr;
217         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
218         if (pos == SNDRV_PCM_POS_XRUN) {
219                 xrun(substream);
220                 return -EPIPE;
221         }
222         hw_base = runtime->hw_ptr_base;
223         new_hw_ptr = hw_base + pos;
224         hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size;
225         delta = new_hw_ptr - hw_ptr_interrupt;
226         if (hw_ptr_interrupt >= runtime->boundary) {
227                 hw_ptr_interrupt -= runtime->boundary;
228                 if (hw_base < runtime->boundary / 2)
229                         /* hw_base was already lapped; recalc delta */
230                         delta = new_hw_ptr - hw_ptr_interrupt;
231         }
232         if (delta < 0) {
233                 delta += runtime->buffer_size;
234                 if (delta < 0) {
235                         hw_ptr_error(substream, 
236                                      "Unexpected hw_pointer value "
237                                      "(stream=%i, pos=%ld, intr_ptr=%ld)\n",
238                                      substream->stream, (long)pos,
239                                      (long)hw_ptr_interrupt);
240                         /* rebase to interrupt position */
241                         hw_base = new_hw_ptr = hw_ptr_interrupt;
242                         /* align hw_base to buffer_size */
243                         hw_base -= hw_base % runtime->buffer_size;
244                         delta = 0;
245                 } else {
246                         hw_base += runtime->buffer_size;
247                         if (hw_base >= runtime->boundary)
248                                 hw_base = 0;
249                         new_hw_ptr = hw_base + pos;
250                 }
251         }
252
253         /* Do jiffies check only in xrun_debug mode */
254         if (!xrun_debug(substream, 4))
255                 goto no_jiffies_check;
256
257         /* Skip the jiffies check for hardwares with BATCH flag.
258          * Such hardware usually just increases the position at each IRQ,
259          * thus it can't give any strange position.
260          */
261         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
262                 goto no_jiffies_check;
263         hdelta = new_hw_ptr - old_hw_ptr;
264         jdelta = jiffies - runtime->hw_ptr_jiffies;
265         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
266                 delta = jdelta /
267                         (((runtime->period_size * HZ) / runtime->rate)
268                                                                 + HZ/100);
269                 hw_ptr_error(substream,
270                              "hw_ptr skipping! [Q] "
271                              "(pos=%ld, delta=%ld, period=%ld, "
272                              "jdelta=%lu/%lu/%lu)\n",
273                              (long)pos, (long)hdelta,
274                              (long)runtime->period_size, jdelta,
275                              ((hdelta * HZ) / runtime->rate), delta);
276                 hw_ptr_interrupt = runtime->hw_ptr_interrupt +
277                                    runtime->period_size * delta;
278                 if (hw_ptr_interrupt >= runtime->boundary)
279                         hw_ptr_interrupt -= runtime->boundary;
280                 /* rebase to interrupt position */
281                 hw_base = new_hw_ptr = hw_ptr_interrupt;
282                 /* align hw_base to buffer_size */
283                 hw_base -= hw_base % runtime->buffer_size;
284                 delta = 0;
285         }
286  no_jiffies_check:
287         if (delta > runtime->period_size + runtime->period_size / 2) {
288                 hw_ptr_error(substream,
289                              "Lost interrupts? "
290                              "(stream=%i, delta=%ld, intr_ptr=%ld)\n",
291                              substream->stream, (long)delta,
292                              (long)hw_ptr_interrupt);
293                 /* rebase hw_ptr_interrupt */
294                 hw_ptr_interrupt =
295                         new_hw_ptr - new_hw_ptr % runtime->period_size;
296         }
297         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
298             runtime->silence_size > 0)
299                 snd_pcm_playback_silence(substream, new_hw_ptr);
300
301         runtime->hw_ptr_base = hw_base;
302         runtime->status->hw_ptr = new_hw_ptr;
303         runtime->hw_ptr_jiffies = jiffies;
304         runtime->hw_ptr_interrupt = hw_ptr_interrupt;
305
306         return snd_pcm_update_hw_ptr_post(substream, runtime);
307 }
308
309 /* CAUTION: call it with irq disabled */
310 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
311 {
312         struct snd_pcm_runtime *runtime = substream->runtime;
313         snd_pcm_uframes_t pos;
314         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
315         snd_pcm_sframes_t delta;
316         unsigned long jdelta;
317
318         old_hw_ptr = runtime->status->hw_ptr;
319         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
320         if (pos == SNDRV_PCM_POS_XRUN) {
321                 xrun(substream);
322                 return -EPIPE;
323         }
324         hw_base = runtime->hw_ptr_base;
325         new_hw_ptr = hw_base + pos;
326
327         delta = new_hw_ptr - old_hw_ptr;
328         jdelta = jiffies - runtime->hw_ptr_jiffies;
329         if (delta < 0) {
330                 delta += runtime->buffer_size;
331                 if (delta < 0) {
332                         hw_ptr_error(substream, 
333                                      "Unexpected hw_pointer value [2] "
334                                      "(stream=%i, pos=%ld, old_ptr=%ld, jdelta=%li)\n",
335                                      substream->stream, (long)pos,
336                                      (long)old_hw_ptr, jdelta);
337                         return 0;
338                 }
339                 hw_base += runtime->buffer_size;
340                 if (hw_base >= runtime->boundary)
341                         hw_base = 0;
342                 new_hw_ptr = hw_base + pos;
343         }
344         /* Do jiffies check only in xrun_debug mode */
345         if (xrun_debug(substream, 4) &&
346             ((delta * HZ) / runtime->rate) > jdelta + HZ/100) {
347                 hw_ptr_error(substream,
348                              "hw_ptr skipping! "
349                              "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu)\n",
350                              (long)pos, (long)delta,
351                              (long)runtime->period_size, jdelta,
352                              ((delta * HZ) / runtime->rate));
353                 return 0;
354         }
355         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
356             runtime->silence_size > 0)
357                 snd_pcm_playback_silence(substream, new_hw_ptr);
358
359         runtime->hw_ptr_base = hw_base;
360         runtime->status->hw_ptr = new_hw_ptr;
361         runtime->hw_ptr_jiffies = jiffies;
362
363         return snd_pcm_update_hw_ptr_post(substream, runtime);
364 }
365
366 /**
367  * snd_pcm_set_ops - set the PCM operators
368  * @pcm: the pcm instance
369  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
370  * @ops: the operator table
371  *
372  * Sets the given PCM operators to the pcm instance.
373  */
374 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
375 {
376         struct snd_pcm_str *stream = &pcm->streams[direction];
377         struct snd_pcm_substream *substream;
378         
379         for (substream = stream->substream; substream != NULL; substream = substream->next)
380                 substream->ops = ops;
381 }
382
383 EXPORT_SYMBOL(snd_pcm_set_ops);
384
385 /**
386  * snd_pcm_sync - set the PCM sync id
387  * @substream: the pcm substream
388  *
389  * Sets the PCM sync identifier for the card.
390  */
391 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
392 {
393         struct snd_pcm_runtime *runtime = substream->runtime;
394         
395         runtime->sync.id32[0] = substream->pcm->card->number;
396         runtime->sync.id32[1] = -1;
397         runtime->sync.id32[2] = -1;
398         runtime->sync.id32[3] = -1;
399 }
400
401 EXPORT_SYMBOL(snd_pcm_set_sync);
402
403 /*
404  *  Standard ioctl routine
405  */
406
407 static inline unsigned int div32(unsigned int a, unsigned int b, 
408                                  unsigned int *r)
409 {
410         if (b == 0) {
411                 *r = 0;
412                 return UINT_MAX;
413         }
414         *r = a % b;
415         return a / b;
416 }
417
418 static inline unsigned int div_down(unsigned int a, unsigned int b)
419 {
420         if (b == 0)
421                 return UINT_MAX;
422         return a / b;
423 }
424
425 static inline unsigned int div_up(unsigned int a, unsigned int b)
426 {
427         unsigned int r;
428         unsigned int q;
429         if (b == 0)
430                 return UINT_MAX;
431         q = div32(a, b, &r);
432         if (r)
433                 ++q;
434         return q;
435 }
436
437 static inline unsigned int mul(unsigned int a, unsigned int b)
438 {
439         if (a == 0)
440                 return 0;
441         if (div_down(UINT_MAX, a) < b)
442                 return UINT_MAX;
443         return a * b;
444 }
445
446 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
447                                     unsigned int c, unsigned int *r)
448 {
449         u_int64_t n = (u_int64_t) a * b;
450         if (c == 0) {
451                 snd_BUG_ON(!n);
452                 *r = 0;
453                 return UINT_MAX;
454         }
455         div64_32(&n, c, r);
456         if (n >= UINT_MAX) {
457                 *r = 0;
458                 return UINT_MAX;
459         }
460         return n;
461 }
462
463 /**
464  * snd_interval_refine - refine the interval value of configurator
465  * @i: the interval value to refine
466  * @v: the interval value to refer to
467  *
468  * Refines the interval value with the reference value.
469  * The interval is changed to the range satisfying both intervals.
470  * The interval status (min, max, integer, etc.) are evaluated.
471  *
472  * Returns non-zero if the value is changed, zero if not changed.
473  */
474 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
475 {
476         int changed = 0;
477         if (snd_BUG_ON(snd_interval_empty(i)))
478                 return -EINVAL;
479         if (i->min < v->min) {
480                 i->min = v->min;
481                 i->openmin = v->openmin;
482                 changed = 1;
483         } else if (i->min == v->min && !i->openmin && v->openmin) {
484                 i->openmin = 1;
485                 changed = 1;
486         }
487         if (i->max > v->max) {
488                 i->max = v->max;
489                 i->openmax = v->openmax;
490                 changed = 1;
491         } else if (i->max == v->max && !i->openmax && v->openmax) {
492                 i->openmax = 1;
493                 changed = 1;
494         }
495         if (!i->integer && v->integer) {
496                 i->integer = 1;
497                 changed = 1;
498         }
499         if (i->integer) {
500                 if (i->openmin) {
501                         i->min++;
502                         i->openmin = 0;
503                 }
504                 if (i->openmax) {
505                         i->max--;
506                         i->openmax = 0;
507                 }
508         } else if (!i->openmin && !i->openmax && i->min == i->max)
509                 i->integer = 1;
510         if (snd_interval_checkempty(i)) {
511                 snd_interval_none(i);
512                 return -EINVAL;
513         }
514         return changed;
515 }
516
517 EXPORT_SYMBOL(snd_interval_refine);
518
519 static int snd_interval_refine_first(struct snd_interval *i)
520 {
521         if (snd_BUG_ON(snd_interval_empty(i)))
522                 return -EINVAL;
523         if (snd_interval_single(i))
524                 return 0;
525         i->max = i->min;
526         i->openmax = i->openmin;
527         if (i->openmax)
528                 i->max++;
529         return 1;
530 }
531
532 static int snd_interval_refine_last(struct snd_interval *i)
533 {
534         if (snd_BUG_ON(snd_interval_empty(i)))
535                 return -EINVAL;
536         if (snd_interval_single(i))
537                 return 0;
538         i->min = i->max;
539         i->openmin = i->openmax;
540         if (i->openmin)
541                 i->min--;
542         return 1;
543 }
544
545 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
546 {
547         if (a->empty || b->empty) {
548                 snd_interval_none(c);
549                 return;
550         }
551         c->empty = 0;
552         c->min = mul(a->min, b->min);
553         c->openmin = (a->openmin || b->openmin);
554         c->max = mul(a->max,  b->max);
555         c->openmax = (a->openmax || b->openmax);
556         c->integer = (a->integer && b->integer);
557 }
558
559 /**
560  * snd_interval_div - refine the interval value with division
561  * @a: dividend
562  * @b: divisor
563  * @c: quotient
564  *
565  * c = a / b
566  *
567  * Returns non-zero if the value is changed, zero if not changed.
568  */
569 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
570 {
571         unsigned int r;
572         if (a->empty || b->empty) {
573                 snd_interval_none(c);
574                 return;
575         }
576         c->empty = 0;
577         c->min = div32(a->min, b->max, &r);
578         c->openmin = (r || a->openmin || b->openmax);
579         if (b->min > 0) {
580                 c->max = div32(a->max, b->min, &r);
581                 if (r) {
582                         c->max++;
583                         c->openmax = 1;
584                 } else
585                         c->openmax = (a->openmax || b->openmin);
586         } else {
587                 c->max = UINT_MAX;
588                 c->openmax = 0;
589         }
590         c->integer = 0;
591 }
592
593 /**
594  * snd_interval_muldivk - refine the interval value
595  * @a: dividend 1
596  * @b: dividend 2
597  * @k: divisor (as integer)
598  * @c: result
599   *
600  * c = a * b / k
601  *
602  * Returns non-zero if the value is changed, zero if not changed.
603  */
604 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
605                       unsigned int k, struct snd_interval *c)
606 {
607         unsigned int r;
608         if (a->empty || b->empty) {
609                 snd_interval_none(c);
610                 return;
611         }
612         c->empty = 0;
613         c->min = muldiv32(a->min, b->min, k, &r);
614         c->openmin = (r || a->openmin || b->openmin);
615         c->max = muldiv32(a->max, b->max, k, &r);
616         if (r) {
617                 c->max++;
618                 c->openmax = 1;
619         } else
620                 c->openmax = (a->openmax || b->openmax);
621         c->integer = 0;
622 }
623
624 /**
625  * snd_interval_mulkdiv - refine the interval value
626  * @a: dividend 1
627  * @k: dividend 2 (as integer)
628  * @b: divisor
629  * @c: result
630  *
631  * c = a * k / b
632  *
633  * Returns non-zero if the value is changed, zero if not changed.
634  */
635 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
636                       const struct snd_interval *b, struct snd_interval *c)
637 {
638         unsigned int r;
639         if (a->empty || b->empty) {
640                 snd_interval_none(c);
641                 return;
642         }
643         c->empty = 0;
644         c->min = muldiv32(a->min, k, b->max, &r);
645         c->openmin = (r || a->openmin || b->openmax);
646         if (b->min > 0) {
647                 c->max = muldiv32(a->max, k, b->min, &r);
648                 if (r) {
649                         c->max++;
650                         c->openmax = 1;
651                 } else
652                         c->openmax = (a->openmax || b->openmin);
653         } else {
654                 c->max = UINT_MAX;
655                 c->openmax = 0;
656         }
657         c->integer = 0;
658 }
659
660 /* ---- */
661
662
663 /**
664  * snd_interval_ratnum - refine the interval value
665  * @i: interval to refine
666  * @rats_count: number of ratnum_t 
667  * @rats: ratnum_t array
668  * @nump: pointer to store the resultant numerator
669  * @denp: pointer to store the resultant denominator
670  *
671  * Returns non-zero if the value is changed, zero if not changed.
672  */
673 int snd_interval_ratnum(struct snd_interval *i,
674                         unsigned int rats_count, struct snd_ratnum *rats,
675                         unsigned int *nump, unsigned int *denp)
676 {
677         unsigned int best_num, best_diff, best_den;
678         unsigned int k;
679         struct snd_interval t;
680         int err;
681
682         best_num = best_den = best_diff = 0;
683         for (k = 0; k < rats_count; ++k) {
684                 unsigned int num = rats[k].num;
685                 unsigned int den;
686                 unsigned int q = i->min;
687                 int diff;
688                 if (q == 0)
689                         q = 1;
690                 den = div_down(num, q);
691                 if (den < rats[k].den_min)
692                         continue;
693                 if (den > rats[k].den_max)
694                         den = rats[k].den_max;
695                 else {
696                         unsigned int r;
697                         r = (den - rats[k].den_min) % rats[k].den_step;
698                         if (r != 0)
699                                 den -= r;
700                 }
701                 diff = num - q * den;
702                 if (best_num == 0 ||
703                     diff * best_den < best_diff * den) {
704                         best_diff = diff;
705                         best_den = den;
706                         best_num = num;
707                 }
708         }
709         if (best_den == 0) {
710                 i->empty = 1;
711                 return -EINVAL;
712         }
713         t.min = div_down(best_num, best_den);
714         t.openmin = !!(best_num % best_den);
715         
716         best_num = best_den = best_diff = 0;
717         for (k = 0; k < rats_count; ++k) {
718                 unsigned int num = rats[k].num;
719                 unsigned int den;
720                 unsigned int q = i->max;
721                 int diff;
722                 if (q == 0) {
723                         i->empty = 1;
724                         return -EINVAL;
725                 }
726                 den = div_up(num, q);
727                 if (den > rats[k].den_max)
728                         continue;
729                 if (den < rats[k].den_min)
730                         den = rats[k].den_min;
731                 else {
732                         unsigned int r;
733                         r = (den - rats[k].den_min) % rats[k].den_step;
734                         if (r != 0)
735                                 den += rats[k].den_step - r;
736                 }
737                 diff = q * den - num;
738                 if (best_num == 0 ||
739                     diff * best_den < best_diff * den) {
740                         best_diff = diff;
741                         best_den = den;
742                         best_num = num;
743                 }
744         }
745         if (best_den == 0) {
746                 i->empty = 1;
747                 return -EINVAL;
748         }
749         t.max = div_up(best_num, best_den);
750         t.openmax = !!(best_num % best_den);
751         t.integer = 0;
752         err = snd_interval_refine(i, &t);
753         if (err < 0)
754                 return err;
755
756         if (snd_interval_single(i)) {
757                 if (nump)
758                         *nump = best_num;
759                 if (denp)
760                         *denp = best_den;
761         }
762         return err;
763 }
764
765 EXPORT_SYMBOL(snd_interval_ratnum);
766
767 /**
768  * snd_interval_ratden - refine the interval value
769  * @i: interval to refine
770  * @rats_count: number of struct ratden
771  * @rats: struct ratden array
772  * @nump: pointer to store the resultant numerator
773  * @denp: pointer to store the resultant denominator
774  *
775  * Returns non-zero if the value is changed, zero if not changed.
776  */
777 static int snd_interval_ratden(struct snd_interval *i,
778                                unsigned int rats_count, struct snd_ratden *rats,
779                                unsigned int *nump, unsigned int *denp)
780 {
781         unsigned int best_num, best_diff, best_den;
782         unsigned int k;
783         struct snd_interval t;
784         int err;
785
786         best_num = best_den = best_diff = 0;
787         for (k = 0; k < rats_count; ++k) {
788                 unsigned int num;
789                 unsigned int den = rats[k].den;
790                 unsigned int q = i->min;
791                 int diff;
792                 num = mul(q, den);
793                 if (num > rats[k].num_max)
794                         continue;
795                 if (num < rats[k].num_min)
796                         num = rats[k].num_max;
797                 else {
798                         unsigned int r;
799                         r = (num - rats[k].num_min) % rats[k].num_step;
800                         if (r != 0)
801                                 num += rats[k].num_step - r;
802                 }
803                 diff = num - q * den;
804                 if (best_num == 0 ||
805                     diff * best_den < best_diff * den) {
806                         best_diff = diff;
807                         best_den = den;
808                         best_num = num;
809                 }
810         }
811         if (best_den == 0) {
812                 i->empty = 1;
813                 return -EINVAL;
814         }
815         t.min = div_down(best_num, best_den);
816         t.openmin = !!(best_num % best_den);
817         
818         best_num = best_den = best_diff = 0;
819         for (k = 0; k < rats_count; ++k) {
820                 unsigned int num;
821                 unsigned int den = rats[k].den;
822                 unsigned int q = i->max;
823                 int diff;
824                 num = mul(q, den);
825                 if (num < rats[k].num_min)
826                         continue;
827                 if (num > rats[k].num_max)
828                         num = rats[k].num_max;
829                 else {
830                         unsigned int r;
831                         r = (num - rats[k].num_min) % rats[k].num_step;
832                         if (r != 0)
833                                 num -= r;
834                 }
835                 diff = q * den - num;
836                 if (best_num == 0 ||
837                     diff * best_den < best_diff * den) {
838                         best_diff = diff;
839                         best_den = den;
840                         best_num = num;
841                 }
842         }
843         if (best_den == 0) {
844                 i->empty = 1;
845                 return -EINVAL;
846         }
847         t.max = div_up(best_num, best_den);
848         t.openmax = !!(best_num % best_den);
849         t.integer = 0;
850         err = snd_interval_refine(i, &t);
851         if (err < 0)
852                 return err;
853
854         if (snd_interval_single(i)) {
855                 if (nump)
856                         *nump = best_num;
857                 if (denp)
858                         *denp = best_den;
859         }
860         return err;
861 }
862
863 /**
864  * snd_interval_list - refine the interval value from the list
865  * @i: the interval value to refine
866  * @count: the number of elements in the list
867  * @list: the value list
868  * @mask: the bit-mask to evaluate
869  *
870  * Refines the interval value from the list.
871  * When mask is non-zero, only the elements corresponding to bit 1 are
872  * evaluated.
873  *
874  * Returns non-zero if the value is changed, zero if not changed.
875  */
876 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
877 {
878         unsigned int k;
879         int changed = 0;
880
881         if (!count) {
882                 i->empty = 1;
883                 return -EINVAL;
884         }
885         for (k = 0; k < count; k++) {
886                 if (mask && !(mask & (1 << k)))
887                         continue;
888                 if (i->min == list[k] && !i->openmin)
889                         goto _l1;
890                 if (i->min < list[k]) {
891                         i->min = list[k];
892                         i->openmin = 0;
893                         changed = 1;
894                         goto _l1;
895                 }
896         }
897         i->empty = 1;
898         return -EINVAL;
899  _l1:
900         for (k = count; k-- > 0;) {
901                 if (mask && !(mask & (1 << k)))
902                         continue;
903                 if (i->max == list[k] && !i->openmax)
904                         goto _l2;
905                 if (i->max > list[k]) {
906                         i->max = list[k];
907                         i->openmax = 0;
908                         changed = 1;
909                         goto _l2;
910                 }
911         }
912         i->empty = 1;
913         return -EINVAL;
914  _l2:
915         if (snd_interval_checkempty(i)) {
916                 i->empty = 1;
917                 return -EINVAL;
918         }
919         return changed;
920 }
921
922 EXPORT_SYMBOL(snd_interval_list);
923
924 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
925 {
926         unsigned int n;
927         int changed = 0;
928         n = (i->min - min) % step;
929         if (n != 0 || i->openmin) {
930                 i->min += step - n;
931                 changed = 1;
932         }
933         n = (i->max - min) % step;
934         if (n != 0 || i->openmax) {
935                 i->max -= n;
936                 changed = 1;
937         }
938         if (snd_interval_checkempty(i)) {
939                 i->empty = 1;
940                 return -EINVAL;
941         }
942         return changed;
943 }
944
945 /* Info constraints helpers */
946
947 /**
948  * snd_pcm_hw_rule_add - add the hw-constraint rule
949  * @runtime: the pcm runtime instance
950  * @cond: condition bits
951  * @var: the variable to evaluate
952  * @func: the evaluation function
953  * @private: the private data pointer passed to function
954  * @dep: the dependent variables
955  *
956  * Returns zero if successful, or a negative error code on failure.
957  */
958 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
959                         int var,
960                         snd_pcm_hw_rule_func_t func, void *private,
961                         int dep, ...)
962 {
963         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
964         struct snd_pcm_hw_rule *c;
965         unsigned int k;
966         va_list args;
967         va_start(args, dep);
968         if (constrs->rules_num >= constrs->rules_all) {
969                 struct snd_pcm_hw_rule *new;
970                 unsigned int new_rules = constrs->rules_all + 16;
971                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
972                 if (!new)
973                         return -ENOMEM;
974                 if (constrs->rules) {
975                         memcpy(new, constrs->rules,
976                                constrs->rules_num * sizeof(*c));
977                         kfree(constrs->rules);
978                 }
979                 constrs->rules = new;
980                 constrs->rules_all = new_rules;
981         }
982         c = &constrs->rules[constrs->rules_num];
983         c->cond = cond;
984         c->func = func;
985         c->var = var;
986         c->private = private;
987         k = 0;
988         while (1) {
989                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps)))
990                         return -EINVAL;
991                 c->deps[k++] = dep;
992                 if (dep < 0)
993                         break;
994                 dep = va_arg(args, int);
995         }
996         constrs->rules_num++;
997         va_end(args);
998         return 0;
999 }                                   
1000
1001 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1002
1003 /**
1004  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1005  * @runtime: PCM runtime instance
1006  * @var: hw_params variable to apply the mask
1007  * @mask: the bitmap mask
1008  *
1009  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1010  */
1011 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1012                                u_int32_t mask)
1013 {
1014         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1015         struct snd_mask *maskp = constrs_mask(constrs, var);
1016         *maskp->bits &= mask;
1017         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1018         if (*maskp->bits == 0)
1019                 return -EINVAL;
1020         return 0;
1021 }
1022
1023 /**
1024  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1025  * @runtime: PCM runtime instance
1026  * @var: hw_params variable to apply the mask
1027  * @mask: the 64bit bitmap mask
1028  *
1029  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1030  */
1031 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1032                                  u_int64_t mask)
1033 {
1034         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1035         struct snd_mask *maskp = constrs_mask(constrs, var);
1036         maskp->bits[0] &= (u_int32_t)mask;
1037         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1038         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1039         if (! maskp->bits[0] && ! maskp->bits[1])
1040                 return -EINVAL;
1041         return 0;
1042 }
1043
1044 /**
1045  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1046  * @runtime: PCM runtime instance
1047  * @var: hw_params variable to apply the integer constraint
1048  *
1049  * Apply the constraint of integer to an interval parameter.
1050  */
1051 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1052 {
1053         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1054         return snd_interval_setinteger(constrs_interval(constrs, var));
1055 }
1056
1057 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1058
1059 /**
1060  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1061  * @runtime: PCM runtime instance
1062  * @var: hw_params variable to apply the range
1063  * @min: the minimal value
1064  * @max: the maximal value
1065  * 
1066  * Apply the min/max range constraint to an interval parameter.
1067  */
1068 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1069                                  unsigned int min, unsigned int max)
1070 {
1071         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1072         struct snd_interval t;
1073         t.min = min;
1074         t.max = max;
1075         t.openmin = t.openmax = 0;
1076         t.integer = 0;
1077         return snd_interval_refine(constrs_interval(constrs, var), &t);
1078 }
1079
1080 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1081
1082 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1083                                 struct snd_pcm_hw_rule *rule)
1084 {
1085         struct snd_pcm_hw_constraint_list *list = rule->private;
1086         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1087 }               
1088
1089
1090 /**
1091  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1092  * @runtime: PCM runtime instance
1093  * @cond: condition bits
1094  * @var: hw_params variable to apply the list constraint
1095  * @l: list
1096  * 
1097  * Apply the list of constraints to an interval parameter.
1098  */
1099 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1100                                unsigned int cond,
1101                                snd_pcm_hw_param_t var,
1102                                struct snd_pcm_hw_constraint_list *l)
1103 {
1104         return snd_pcm_hw_rule_add(runtime, cond, var,
1105                                    snd_pcm_hw_rule_list, l,
1106                                    var, -1);
1107 }
1108
1109 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1110
1111 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1112                                    struct snd_pcm_hw_rule *rule)
1113 {
1114         struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1115         unsigned int num = 0, den = 0;
1116         int err;
1117         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1118                                   r->nrats, r->rats, &num, &den);
1119         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1120                 params->rate_num = num;
1121                 params->rate_den = den;
1122         }
1123         return err;
1124 }
1125
1126 /**
1127  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1128  * @runtime: PCM runtime instance
1129  * @cond: condition bits
1130  * @var: hw_params variable to apply the ratnums constraint
1131  * @r: struct snd_ratnums constriants
1132  */
1133 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1134                                   unsigned int cond,
1135                                   snd_pcm_hw_param_t var,
1136                                   struct snd_pcm_hw_constraint_ratnums *r)
1137 {
1138         return snd_pcm_hw_rule_add(runtime, cond, var,
1139                                    snd_pcm_hw_rule_ratnums, r,
1140                                    var, -1);
1141 }
1142
1143 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1144
1145 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1146                                    struct snd_pcm_hw_rule *rule)
1147 {
1148         struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1149         unsigned int num = 0, den = 0;
1150         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1151                                   r->nrats, r->rats, &num, &den);
1152         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1153                 params->rate_num = num;
1154                 params->rate_den = den;
1155         }
1156         return err;
1157 }
1158
1159 /**
1160  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1161  * @runtime: PCM runtime instance
1162  * @cond: condition bits
1163  * @var: hw_params variable to apply the ratdens constraint
1164  * @r: struct snd_ratdens constriants
1165  */
1166 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1167                                   unsigned int cond,
1168                                   snd_pcm_hw_param_t var,
1169                                   struct snd_pcm_hw_constraint_ratdens *r)
1170 {
1171         return snd_pcm_hw_rule_add(runtime, cond, var,
1172                                    snd_pcm_hw_rule_ratdens, r,
1173                                    var, -1);
1174 }
1175
1176 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1177
1178 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1179                                   struct snd_pcm_hw_rule *rule)
1180 {
1181         unsigned int l = (unsigned long) rule->private;
1182         int width = l & 0xffff;
1183         unsigned int msbits = l >> 16;
1184         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1185         if (snd_interval_single(i) && snd_interval_value(i) == width)
1186                 params->msbits = msbits;
1187         return 0;
1188 }
1189
1190 /**
1191  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1192  * @runtime: PCM runtime instance
1193  * @cond: condition bits
1194  * @width: sample bits width
1195  * @msbits: msbits width
1196  */
1197 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1198                                  unsigned int cond,
1199                                  unsigned int width,
1200                                  unsigned int msbits)
1201 {
1202         unsigned long l = (msbits << 16) | width;
1203         return snd_pcm_hw_rule_add(runtime, cond, -1,
1204                                     snd_pcm_hw_rule_msbits,
1205                                     (void*) l,
1206                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1207 }
1208
1209 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1210
1211 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1212                                 struct snd_pcm_hw_rule *rule)
1213 {
1214         unsigned long step = (unsigned long) rule->private;
1215         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1216 }
1217
1218 /**
1219  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1220  * @runtime: PCM runtime instance
1221  * @cond: condition bits
1222  * @var: hw_params variable to apply the step constraint
1223  * @step: step size
1224  */
1225 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1226                                unsigned int cond,
1227                                snd_pcm_hw_param_t var,
1228                                unsigned long step)
1229 {
1230         return snd_pcm_hw_rule_add(runtime, cond, var, 
1231                                    snd_pcm_hw_rule_step, (void *) step,
1232                                    var, -1);
1233 }
1234
1235 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1236
1237 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1238 {
1239         static unsigned int pow2_sizes[] = {
1240                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1241                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1242                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1243                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1244         };
1245         return snd_interval_list(hw_param_interval(params, rule->var),
1246                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1247 }               
1248
1249 /**
1250  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1251  * @runtime: PCM runtime instance
1252  * @cond: condition bits
1253  * @var: hw_params variable to apply the power-of-2 constraint
1254  */
1255 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1256                                unsigned int cond,
1257                                snd_pcm_hw_param_t var)
1258 {
1259         return snd_pcm_hw_rule_add(runtime, cond, var, 
1260                                    snd_pcm_hw_rule_pow2, NULL,
1261                                    var, -1);
1262 }
1263
1264 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1265
1266 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1267                                   snd_pcm_hw_param_t var)
1268 {
1269         if (hw_is_mask(var)) {
1270                 snd_mask_any(hw_param_mask(params, var));
1271                 params->cmask |= 1 << var;
1272                 params->rmask |= 1 << var;
1273                 return;
1274         }
1275         if (hw_is_interval(var)) {
1276                 snd_interval_any(hw_param_interval(params, var));
1277                 params->cmask |= 1 << var;
1278                 params->rmask |= 1 << var;
1279                 return;
1280         }
1281         snd_BUG();
1282 }
1283
1284 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1285 {
1286         unsigned int k;
1287         memset(params, 0, sizeof(*params));
1288         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1289                 _snd_pcm_hw_param_any(params, k);
1290         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1291                 _snd_pcm_hw_param_any(params, k);
1292         params->info = ~0U;
1293 }
1294
1295 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1296
1297 /**
1298  * snd_pcm_hw_param_value - return @params field @var value
1299  * @params: the hw_params instance
1300  * @var: parameter to retrieve
1301  * @dir: pointer to the direction (-1,0,1) or %NULL
1302  *
1303  * Return the value for field @var if it's fixed in configuration space
1304  * defined by @params. Return -%EINVAL otherwise.
1305  */
1306 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1307                            snd_pcm_hw_param_t var, int *dir)
1308 {
1309         if (hw_is_mask(var)) {
1310                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1311                 if (!snd_mask_single(mask))
1312                         return -EINVAL;
1313                 if (dir)
1314                         *dir = 0;
1315                 return snd_mask_value(mask);
1316         }
1317         if (hw_is_interval(var)) {
1318                 const struct snd_interval *i = hw_param_interval_c(params, var);
1319                 if (!snd_interval_single(i))
1320                         return -EINVAL;
1321                 if (dir)
1322                         *dir = i->openmin;
1323                 return snd_interval_value(i);
1324         }
1325         return -EINVAL;
1326 }
1327
1328 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1329
1330 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1331                                 snd_pcm_hw_param_t var)
1332 {
1333         if (hw_is_mask(var)) {
1334                 snd_mask_none(hw_param_mask(params, var));
1335                 params->cmask |= 1 << var;
1336                 params->rmask |= 1 << var;
1337         } else if (hw_is_interval(var)) {
1338                 snd_interval_none(hw_param_interval(params, var));
1339                 params->cmask |= 1 << var;
1340                 params->rmask |= 1 << var;
1341         } else {
1342                 snd_BUG();
1343         }
1344 }
1345
1346 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1347
1348 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1349                                    snd_pcm_hw_param_t var)
1350 {
1351         int changed;
1352         if (hw_is_mask(var))
1353                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1354         else if (hw_is_interval(var))
1355                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1356         else
1357                 return -EINVAL;
1358         if (changed) {
1359                 params->cmask |= 1 << var;
1360                 params->rmask |= 1 << var;
1361         }
1362         return changed;
1363 }
1364
1365
1366 /**
1367  * snd_pcm_hw_param_first - refine config space and return minimum value
1368  * @pcm: PCM instance
1369  * @params: the hw_params instance
1370  * @var: parameter to retrieve
1371  * @dir: pointer to the direction (-1,0,1) or %NULL
1372  *
1373  * Inside configuration space defined by @params remove from @var all
1374  * values > minimum. Reduce configuration space accordingly.
1375  * Return the minimum.
1376  */
1377 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1378                            struct snd_pcm_hw_params *params, 
1379                            snd_pcm_hw_param_t var, int *dir)
1380 {
1381         int changed = _snd_pcm_hw_param_first(params, var);
1382         if (changed < 0)
1383                 return changed;
1384         if (params->rmask) {
1385                 int err = snd_pcm_hw_refine(pcm, params);
1386                 if (snd_BUG_ON(err < 0))
1387                         return err;
1388         }
1389         return snd_pcm_hw_param_value(params, var, dir);
1390 }
1391
1392 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1393
1394 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1395                                   snd_pcm_hw_param_t var)
1396 {
1397         int changed;
1398         if (hw_is_mask(var))
1399                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1400         else if (hw_is_interval(var))
1401                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1402         else
1403                 return -EINVAL;
1404         if (changed) {
1405                 params->cmask |= 1 << var;
1406                 params->rmask |= 1 << var;
1407         }
1408         return changed;
1409 }
1410
1411
1412 /**
1413  * snd_pcm_hw_param_last - refine config space and return maximum value
1414  * @pcm: PCM instance
1415  * @params: the hw_params instance
1416  * @var: parameter to retrieve
1417  * @dir: pointer to the direction (-1,0,1) or %NULL
1418  *
1419  * Inside configuration space defined by @params remove from @var all
1420  * values < maximum. Reduce configuration space accordingly.
1421  * Return the maximum.
1422  */
1423 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1424                           struct snd_pcm_hw_params *params,
1425                           snd_pcm_hw_param_t var, int *dir)
1426 {
1427         int changed = _snd_pcm_hw_param_last(params, var);
1428         if (changed < 0)
1429                 return changed;
1430         if (params->rmask) {
1431                 int err = snd_pcm_hw_refine(pcm, params);
1432                 if (snd_BUG_ON(err < 0))
1433                         return err;
1434         }
1435         return snd_pcm_hw_param_value(params, var, dir);
1436 }
1437
1438 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1439
1440 /**
1441  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1442  * @pcm: PCM instance
1443  * @params: the hw_params instance
1444  *
1445  * Choose one configuration from configuration space defined by @params.
1446  * The configuration chosen is that obtained fixing in this order:
1447  * first access, first format, first subformat, min channels,
1448  * min rate, min period time, max buffer size, min tick time
1449  */
1450 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1451                              struct snd_pcm_hw_params *params)
1452 {
1453         static int vars[] = {
1454                 SNDRV_PCM_HW_PARAM_ACCESS,
1455                 SNDRV_PCM_HW_PARAM_FORMAT,
1456                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1457                 SNDRV_PCM_HW_PARAM_CHANNELS,
1458                 SNDRV_PCM_HW_PARAM_RATE,
1459                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1460                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1461                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1462                 -1
1463         };
1464         int err, *v;
1465
1466         for (v = vars; *v != -1; v++) {
1467                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1468                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1469                 else
1470                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1471                 if (snd_BUG_ON(err < 0))
1472                         return err;
1473         }
1474         return 0;
1475 }
1476
1477 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1478                                    void *arg)
1479 {
1480         struct snd_pcm_runtime *runtime = substream->runtime;
1481         unsigned long flags;
1482         snd_pcm_stream_lock_irqsave(substream, flags);
1483         if (snd_pcm_running(substream) &&
1484             snd_pcm_update_hw_ptr(substream) >= 0)
1485                 runtime->status->hw_ptr %= runtime->buffer_size;
1486         else
1487                 runtime->status->hw_ptr = 0;
1488         snd_pcm_stream_unlock_irqrestore(substream, flags);
1489         return 0;
1490 }
1491
1492 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1493                                           void *arg)
1494 {
1495         struct snd_pcm_channel_info *info = arg;
1496         struct snd_pcm_runtime *runtime = substream->runtime;
1497         int width;
1498         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1499                 info->offset = -1;
1500                 return 0;
1501         }
1502         width = snd_pcm_format_physical_width(runtime->format);
1503         if (width < 0)
1504                 return width;
1505         info->offset = 0;
1506         switch (runtime->access) {
1507         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1508         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1509                 info->first = info->channel * width;
1510                 info->step = runtime->channels * width;
1511                 break;
1512         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1513         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1514         {
1515                 size_t size = runtime->dma_bytes / runtime->channels;
1516                 info->first = info->channel * size * 8;
1517                 info->step = width;
1518                 break;
1519         }
1520         default:
1521                 snd_BUG();
1522                 break;
1523         }
1524         return 0;
1525 }
1526
1527 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1528                                        void *arg)
1529 {
1530         struct snd_pcm_hw_params *params = arg;
1531         snd_pcm_format_t format;
1532         int channels, width;
1533
1534         params->fifo_size = substream->runtime->hw.fifo_size;
1535         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1536                 format = params_format(params);
1537                 channels = params_channels(params);
1538                 width = snd_pcm_format_physical_width(format);
1539                 params->fifo_size /= width * channels;
1540         }
1541         return 0;
1542 }
1543
1544 /**
1545  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1546  * @substream: the pcm substream instance
1547  * @cmd: ioctl command
1548  * @arg: ioctl argument
1549  *
1550  * Processes the generic ioctl commands for PCM.
1551  * Can be passed as the ioctl callback for PCM ops.
1552  *
1553  * Returns zero if successful, or a negative error code on failure.
1554  */
1555 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1556                       unsigned int cmd, void *arg)
1557 {
1558         switch (cmd) {
1559         case SNDRV_PCM_IOCTL1_INFO:
1560                 return 0;
1561         case SNDRV_PCM_IOCTL1_RESET:
1562                 return snd_pcm_lib_ioctl_reset(substream, arg);
1563         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1564                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1565         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1566                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1567         }
1568         return -ENXIO;
1569 }
1570
1571 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1572
1573 /**
1574  * snd_pcm_period_elapsed - update the pcm status for the next period
1575  * @substream: the pcm substream instance
1576  *
1577  * This function is called from the interrupt handler when the
1578  * PCM has processed the period size.  It will update the current
1579  * pointer, wake up sleepers, etc.
1580  *
1581  * Even if more than one periods have elapsed since the last call, you
1582  * have to call this only once.
1583  */
1584 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1585 {
1586         struct snd_pcm_runtime *runtime;
1587         unsigned long flags;
1588
1589         if (PCM_RUNTIME_CHECK(substream))
1590                 return;
1591         runtime = substream->runtime;
1592
1593         if (runtime->transfer_ack_begin)
1594                 runtime->transfer_ack_begin(substream);
1595
1596         snd_pcm_stream_lock_irqsave(substream, flags);
1597         if (!snd_pcm_running(substream) ||
1598             snd_pcm_update_hw_ptr_interrupt(substream) < 0)
1599                 goto _end;
1600
1601         if (substream->timer_running)
1602                 snd_timer_interrupt(substream->timer, 1);
1603  _end:
1604         snd_pcm_stream_unlock_irqrestore(substream, flags);
1605         if (runtime->transfer_ack_end)
1606                 runtime->transfer_ack_end(substream);
1607         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1608 }
1609
1610 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1611
1612 /*
1613  * Wait until avail_min data becomes available
1614  * Returns a negative error code if any error occurs during operation.
1615  * The available space is stored on availp.  When err = 0 and avail = 0
1616  * on the capture stream, it indicates the stream is in DRAINING state.
1617  */
1618 static int wait_for_avail_min(struct snd_pcm_substream *substream,
1619                               snd_pcm_uframes_t *availp)
1620 {
1621         struct snd_pcm_runtime *runtime = substream->runtime;
1622         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1623         wait_queue_t wait;
1624         int err = 0;
1625         snd_pcm_uframes_t avail = 0;
1626         long tout;
1627
1628         init_waitqueue_entry(&wait, current);
1629         add_wait_queue(&runtime->sleep, &wait);
1630         for (;;) {
1631                 if (signal_pending(current)) {
1632                         err = -ERESTARTSYS;
1633                         break;
1634                 }
1635                 set_current_state(TASK_INTERRUPTIBLE);
1636                 snd_pcm_stream_unlock_irq(substream);
1637                 tout = schedule_timeout(msecs_to_jiffies(10000));
1638                 snd_pcm_stream_lock_irq(substream);
1639                 switch (runtime->status->state) {
1640                 case SNDRV_PCM_STATE_SUSPENDED:
1641                         err = -ESTRPIPE;
1642                         goto _endloop;
1643                 case SNDRV_PCM_STATE_XRUN:
1644                         err = -EPIPE;
1645                         goto _endloop;
1646                 case SNDRV_PCM_STATE_DRAINING:
1647                         if (is_playback)
1648                                 err = -EPIPE;
1649                         else 
1650                                 avail = 0; /* indicate draining */
1651                         goto _endloop;
1652                 case SNDRV_PCM_STATE_OPEN:
1653                 case SNDRV_PCM_STATE_SETUP:
1654                 case SNDRV_PCM_STATE_DISCONNECTED:
1655                         err = -EBADFD;
1656                         goto _endloop;
1657                 }
1658                 if (!tout) {
1659                         snd_printd("%s write error (DMA or IRQ trouble?)\n",
1660                                    is_playback ? "playback" : "capture");
1661                         err = -EIO;
1662                         break;
1663                 }
1664                 if (is_playback)
1665                         avail = snd_pcm_playback_avail(runtime);
1666                 else
1667                         avail = snd_pcm_capture_avail(runtime);
1668                 if (avail >= runtime->control->avail_min)
1669                         break;
1670         }
1671  _endloop:
1672         remove_wait_queue(&runtime->sleep, &wait);
1673         *availp = avail;
1674         return err;
1675 }
1676         
1677 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1678                                       unsigned int hwoff,
1679                                       unsigned long data, unsigned int off,
1680                                       snd_pcm_uframes_t frames)
1681 {
1682         struct snd_pcm_runtime *runtime = substream->runtime;
1683         int err;
1684         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1685         if (substream->ops->copy) {
1686                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1687                         return err;
1688         } else {
1689                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1690                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1691                         return -EFAULT;
1692         }
1693         return 0;
1694 }
1695  
1696 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1697                           unsigned long data, unsigned int off,
1698                           snd_pcm_uframes_t size);
1699
1700 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1701                                             unsigned long data,
1702                                             snd_pcm_uframes_t size,
1703                                             int nonblock,
1704                                             transfer_f transfer)
1705 {
1706         struct snd_pcm_runtime *runtime = substream->runtime;
1707         snd_pcm_uframes_t xfer = 0;
1708         snd_pcm_uframes_t offset = 0;
1709         int err = 0;
1710
1711         if (size == 0)
1712                 return 0;
1713
1714         snd_pcm_stream_lock_irq(substream);
1715         switch (runtime->status->state) {
1716         case SNDRV_PCM_STATE_PREPARED:
1717         case SNDRV_PCM_STATE_RUNNING:
1718         case SNDRV_PCM_STATE_PAUSED:
1719                 break;
1720         case SNDRV_PCM_STATE_XRUN:
1721                 err = -EPIPE;
1722                 goto _end_unlock;
1723         case SNDRV_PCM_STATE_SUSPENDED:
1724                 err = -ESTRPIPE;
1725                 goto _end_unlock;
1726         default:
1727                 err = -EBADFD;
1728                 goto _end_unlock;
1729         }
1730
1731         while (size > 0) {
1732                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1733                 snd_pcm_uframes_t avail;
1734                 snd_pcm_uframes_t cont;
1735                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1736                         snd_pcm_update_hw_ptr(substream);
1737                 avail = snd_pcm_playback_avail(runtime);
1738                 if (!avail) {
1739                         if (nonblock) {
1740                                 err = -EAGAIN;
1741                                 goto _end_unlock;
1742                         }
1743                         err = wait_for_avail_min(substream, &avail);
1744                         if (err < 0)
1745                                 goto _end_unlock;
1746                 }
1747                 frames = size > avail ? avail : size;
1748                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1749                 if (frames > cont)
1750                         frames = cont;
1751                 if (snd_BUG_ON(!frames)) {
1752                         snd_pcm_stream_unlock_irq(substream);
1753                         return -EINVAL;
1754                 }
1755                 appl_ptr = runtime->control->appl_ptr;
1756                 appl_ofs = appl_ptr % runtime->buffer_size;
1757                 snd_pcm_stream_unlock_irq(substream);
1758                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
1759                         goto _end;
1760                 snd_pcm_stream_lock_irq(substream);
1761                 switch (runtime->status->state) {
1762                 case SNDRV_PCM_STATE_XRUN:
1763                         err = -EPIPE;
1764                         goto _end_unlock;
1765                 case SNDRV_PCM_STATE_SUSPENDED:
1766                         err = -ESTRPIPE;
1767                         goto _end_unlock;
1768                 default:
1769                         break;
1770                 }
1771                 appl_ptr += frames;
1772                 if (appl_ptr >= runtime->boundary)
1773                         appl_ptr -= runtime->boundary;
1774                 runtime->control->appl_ptr = appl_ptr;
1775                 if (substream->ops->ack)
1776                         substream->ops->ack(substream);
1777
1778                 offset += frames;
1779                 size -= frames;
1780                 xfer += frames;
1781                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1782                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1783                         err = snd_pcm_start(substream);
1784                         if (err < 0)
1785                                 goto _end_unlock;
1786                 }
1787         }
1788  _end_unlock:
1789         snd_pcm_stream_unlock_irq(substream);
1790  _end:
1791         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1792 }
1793
1794 /* sanity-check for read/write methods */
1795 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1796 {
1797         struct snd_pcm_runtime *runtime;
1798         if (PCM_RUNTIME_CHECK(substream))
1799                 return -ENXIO;
1800         runtime = substream->runtime;
1801         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1802                 return -EINVAL;
1803         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1804                 return -EBADFD;
1805         return 0;
1806 }
1807
1808 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1809 {
1810         struct snd_pcm_runtime *runtime;
1811         int nonblock;
1812         int err;
1813
1814         err = pcm_sanity_check(substream);
1815         if (err < 0)
1816                 return err;
1817         runtime = substream->runtime;
1818         nonblock = !!(substream->f_flags & O_NONBLOCK);
1819
1820         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1821             runtime->channels > 1)
1822                 return -EINVAL;
1823         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1824                                   snd_pcm_lib_write_transfer);
1825 }
1826
1827 EXPORT_SYMBOL(snd_pcm_lib_write);
1828
1829 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1830                                        unsigned int hwoff,
1831                                        unsigned long data, unsigned int off,
1832                                        snd_pcm_uframes_t frames)
1833 {
1834         struct snd_pcm_runtime *runtime = substream->runtime;
1835         int err;
1836         void __user **bufs = (void __user **)data;
1837         int channels = runtime->channels;
1838         int c;
1839         if (substream->ops->copy) {
1840                 if (snd_BUG_ON(!substream->ops->silence))
1841                         return -EINVAL;
1842                 for (c = 0; c < channels; ++c, ++bufs) {
1843                         if (*bufs == NULL) {
1844                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
1845                                         return err;
1846                         } else {
1847                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1848                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
1849                                         return err;
1850                         }
1851                 }
1852         } else {
1853                 /* default transfer behaviour */
1854                 size_t dma_csize = runtime->dma_bytes / channels;
1855                 for (c = 0; c < channels; ++c, ++bufs) {
1856                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
1857                         if (*bufs == NULL) {
1858                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
1859                         } else {
1860                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1861                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
1862                                         return -EFAULT;
1863                         }
1864                 }
1865         }
1866         return 0;
1867 }
1868  
1869 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
1870                                      void __user **bufs,
1871                                      snd_pcm_uframes_t frames)
1872 {
1873         struct snd_pcm_runtime *runtime;
1874         int nonblock;
1875         int err;
1876
1877         err = pcm_sanity_check(substream);
1878         if (err < 0)
1879                 return err;
1880         runtime = substream->runtime;
1881         nonblock = !!(substream->f_flags & O_NONBLOCK);
1882
1883         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
1884                 return -EINVAL;
1885         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
1886                                   nonblock, snd_pcm_lib_writev_transfer);
1887 }
1888
1889 EXPORT_SYMBOL(snd_pcm_lib_writev);
1890
1891 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
1892                                      unsigned int hwoff,
1893                                      unsigned long data, unsigned int off,
1894                                      snd_pcm_uframes_t frames)
1895 {
1896         struct snd_pcm_runtime *runtime = substream->runtime;
1897         int err;
1898         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1899         if (substream->ops->copy) {
1900                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1901                         return err;
1902         } else {
1903                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1904                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
1905                         return -EFAULT;
1906         }
1907         return 0;
1908 }
1909
1910 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
1911                                            unsigned long data,
1912                                            snd_pcm_uframes_t size,
1913                                            int nonblock,
1914                                            transfer_f transfer)
1915 {
1916         struct snd_pcm_runtime *runtime = substream->runtime;
1917         snd_pcm_uframes_t xfer = 0;
1918         snd_pcm_uframes_t offset = 0;
1919         int err = 0;
1920
1921         if (size == 0)
1922                 return 0;
1923
1924         snd_pcm_stream_lock_irq(substream);
1925         switch (runtime->status->state) {
1926         case SNDRV_PCM_STATE_PREPARED:
1927                 if (size >= runtime->start_threshold) {
1928                         err = snd_pcm_start(substream);
1929                         if (err < 0)
1930                                 goto _end_unlock;
1931                 }
1932                 break;
1933         case SNDRV_PCM_STATE_DRAINING:
1934         case SNDRV_PCM_STATE_RUNNING:
1935         case SNDRV_PCM_STATE_PAUSED:
1936                 break;
1937         case SNDRV_PCM_STATE_XRUN:
1938                 err = -EPIPE;
1939                 goto _end_unlock;
1940         case SNDRV_PCM_STATE_SUSPENDED:
1941                 err = -ESTRPIPE;
1942                 goto _end_unlock;
1943         default:
1944                 err = -EBADFD;
1945                 goto _end_unlock;
1946         }
1947
1948         while (size > 0) {
1949                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1950                 snd_pcm_uframes_t avail;
1951                 snd_pcm_uframes_t cont;
1952                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1953                         snd_pcm_update_hw_ptr(substream);
1954                 avail = snd_pcm_capture_avail(runtime);
1955                 if (!avail) {
1956                         if (runtime->status->state ==
1957                             SNDRV_PCM_STATE_DRAINING) {
1958                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
1959                                 goto _end_unlock;
1960                         }
1961                         if (nonblock) {
1962                                 err = -EAGAIN;
1963                                 goto _end_unlock;
1964                         }
1965                         err = wait_for_avail_min(substream, &avail);
1966                         if (err < 0)
1967                                 goto _end_unlock;
1968                         if (!avail)
1969                                 continue; /* draining */
1970                 }
1971                 frames = size > avail ? avail : size;
1972                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1973                 if (frames > cont)
1974                         frames = cont;
1975                 if (snd_BUG_ON(!frames)) {
1976                         snd_pcm_stream_unlock_irq(substream);
1977                         return -EINVAL;
1978                 }
1979                 appl_ptr = runtime->control->appl_ptr;
1980                 appl_ofs = appl_ptr % runtime->buffer_size;
1981                 snd_pcm_stream_unlock_irq(substream);
1982                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
1983                         goto _end;
1984                 snd_pcm_stream_lock_irq(substream);
1985                 switch (runtime->status->state) {
1986                 case SNDRV_PCM_STATE_XRUN:
1987                         err = -EPIPE;
1988                         goto _end_unlock;
1989                 case SNDRV_PCM_STATE_SUSPENDED:
1990                         err = -ESTRPIPE;
1991                         goto _end_unlock;
1992                 default:
1993                         break;
1994                 }
1995                 appl_ptr += frames;
1996                 if (appl_ptr >= runtime->boundary)
1997                         appl_ptr -= runtime->boundary;
1998                 runtime->control->appl_ptr = appl_ptr;
1999                 if (substream->ops->ack)
2000                         substream->ops->ack(substream);
2001
2002                 offset += frames;
2003                 size -= frames;
2004                 xfer += frames;
2005         }
2006  _end_unlock:
2007         snd_pcm_stream_unlock_irq(substream);
2008  _end:
2009         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2010 }
2011
2012 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2013 {
2014         struct snd_pcm_runtime *runtime;
2015         int nonblock;
2016         int err;
2017         
2018         err = pcm_sanity_check(substream);
2019         if (err < 0)
2020                 return err;
2021         runtime = substream->runtime;
2022         nonblock = !!(substream->f_flags & O_NONBLOCK);
2023         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2024                 return -EINVAL;
2025         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2026 }
2027
2028 EXPORT_SYMBOL(snd_pcm_lib_read);
2029
2030 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2031                                       unsigned int hwoff,
2032                                       unsigned long data, unsigned int off,
2033                                       snd_pcm_uframes_t frames)
2034 {
2035         struct snd_pcm_runtime *runtime = substream->runtime;
2036         int err;
2037         void __user **bufs = (void __user **)data;
2038         int channels = runtime->channels;
2039         int c;
2040         if (substream->ops->copy) {
2041                 for (c = 0; c < channels; ++c, ++bufs) {
2042                         char __user *buf;
2043                         if (*bufs == NULL)
2044                                 continue;
2045                         buf = *bufs + samples_to_bytes(runtime, off);
2046                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2047                                 return err;
2048                 }
2049         } else {
2050                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2051                 for (c = 0; c < channels; ++c, ++bufs) {
2052                         char *hwbuf;
2053                         char __user *buf;
2054                         if (*bufs == NULL)
2055                                 continue;
2056
2057                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2058                         buf = *bufs + samples_to_bytes(runtime, off);
2059                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2060                                 return -EFAULT;
2061                 }
2062         }
2063         return 0;
2064 }
2065  
2066 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2067                                     void __user **bufs,
2068                                     snd_pcm_uframes_t frames)
2069 {
2070         struct snd_pcm_runtime *runtime;
2071         int nonblock;
2072         int err;
2073
2074         err = pcm_sanity_check(substream);
2075         if (err < 0)
2076                 return err;
2077         runtime = substream->runtime;
2078         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2079                 return -EBADFD;
2080
2081         nonblock = !!(substream->f_flags & O_NONBLOCK);
2082         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2083                 return -EINVAL;
2084         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2085 }
2086
2087 EXPORT_SYMBOL(snd_pcm_lib_readv);