Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-2.6
[linux-2.6.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <sound/core.h>
27 #include <sound/control.h>
28 #include <sound/info.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/timer.h>
32
33 /*
34  * fill ring buffer with silence
35  * runtime->silence_start: starting pointer to silence area
36  * runtime->silence_filled: size filled with silence
37  * runtime->silence_threshold: threshold from application
38  * runtime->silence_size: maximal size from application
39  *
40  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41  */
42 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
43 {
44         struct snd_pcm_runtime *runtime = substream->runtime;
45         snd_pcm_uframes_t frames, ofs, transfer;
46
47         if (runtime->silence_size < runtime->boundary) {
48                 snd_pcm_sframes_t noise_dist, n;
49                 if (runtime->silence_start != runtime->control->appl_ptr) {
50                         n = runtime->control->appl_ptr - runtime->silence_start;
51                         if (n < 0)
52                                 n += runtime->boundary;
53                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54                                 runtime->silence_filled -= n;
55                         else
56                                 runtime->silence_filled = 0;
57                         runtime->silence_start = runtime->control->appl_ptr;
58                 }
59                 if (runtime->silence_filled >= runtime->buffer_size)
60                         return;
61                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
62                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
63                         return;
64                 frames = runtime->silence_threshold - noise_dist;
65                 if (frames > runtime->silence_size)
66                         frames = runtime->silence_size;
67         } else {
68                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
69                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
70                         runtime->silence_filled = avail > 0 ? avail : 0;
71                         runtime->silence_start = (runtime->status->hw_ptr +
72                                                   runtime->silence_filled) %
73                                                  runtime->boundary;
74                 } else {
75                         ofs = runtime->status->hw_ptr;
76                         frames = new_hw_ptr - ofs;
77                         if ((snd_pcm_sframes_t)frames < 0)
78                                 frames += runtime->boundary;
79                         runtime->silence_filled -= frames;
80                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
81                                 runtime->silence_filled = 0;
82                                 runtime->silence_start = new_hw_ptr;
83                         } else {
84                                 runtime->silence_start = ofs;
85                         }
86                 }
87                 frames = runtime->buffer_size - runtime->silence_filled;
88         }
89         if (snd_BUG_ON(frames > runtime->buffer_size))
90                 return;
91         if (frames == 0)
92                 return;
93         ofs = runtime->silence_start % runtime->buffer_size;
94         while (frames > 0) {
95                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
96                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
97                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
98                         if (substream->ops->silence) {
99                                 int err;
100                                 err = substream->ops->silence(substream, -1, ofs, transfer);
101                                 snd_BUG_ON(err < 0);
102                         } else {
103                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
104                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
105                         }
106                 } else {
107                         unsigned int c;
108                         unsigned int channels = runtime->channels;
109                         if (substream->ops->silence) {
110                                 for (c = 0; c < channels; ++c) {
111                                         int err;
112                                         err = substream->ops->silence(substream, c, ofs, transfer);
113                                         snd_BUG_ON(err < 0);
114                                 }
115                         } else {
116                                 size_t dma_csize = runtime->dma_bytes / channels;
117                                 for (c = 0; c < channels; ++c) {
118                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
119                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
120                                 }
121                         }
122                 }
123                 runtime->silence_filled += transfer;
124                 frames -= transfer;
125                 ofs = 0;
126         }
127 }
128
129 static void pcm_debug_name(struct snd_pcm_substream *substream,
130                            char *name, size_t len)
131 {
132         snprintf(name, len, "pcmC%dD%d%c:%d",
133                  substream->pcm->card->number,
134                  substream->pcm->device,
135                  substream->stream ? 'c' : 'p',
136                  substream->number);
137 }
138
139 #define XRUN_DEBUG_BASIC        (1<<0)
140 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
141 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
142 #define XRUN_DEBUG_PERIODUPDATE (1<<3)  /* full period update info */
143 #define XRUN_DEBUG_HWPTRUPDATE  (1<<4)  /* full hwptr update info */
144 #define XRUN_DEBUG_LOG          (1<<5)  /* show last 10 positions on err */
145 #define XRUN_DEBUG_LOGONCE      (1<<6)  /* do above only once */
146
147 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
148
149 #define xrun_debug(substream, mask) \
150                         ((substream)->pstr->xrun_debug & (mask))
151 #else
152 #define xrun_debug(substream, mask)     0
153 #endif
154
155 #define dump_stack_on_xrun(substream) do {                      \
156                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
157                         dump_stack();                           \
158         } while (0)
159
160 static void xrun(struct snd_pcm_substream *substream)
161 {
162         struct snd_pcm_runtime *runtime = substream->runtime;
163
164         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
165                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
166         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
167         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
168                 char name[16];
169                 pcm_debug_name(substream, name, sizeof(name));
170                 snd_printd(KERN_DEBUG "XRUN: %s\n", name);
171                 dump_stack_on_xrun(substream);
172         }
173 }
174
175 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
176 #define hw_ptr_error(substream, fmt, args...)                           \
177         do {                                                            \
178                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
179                         xrun_log_show(substream);                       \
180                         if (printk_ratelimit()) {                       \
181                                 snd_printd("PCM: " fmt, ##args);        \
182                         }                                               \
183                         dump_stack_on_xrun(substream);                  \
184                 }                                                       \
185         } while (0)
186
187 #define XRUN_LOG_CNT    10
188
189 struct hwptr_log_entry {
190         unsigned long jiffies;
191         snd_pcm_uframes_t pos;
192         snd_pcm_uframes_t period_size;
193         snd_pcm_uframes_t buffer_size;
194         snd_pcm_uframes_t old_hw_ptr;
195         snd_pcm_uframes_t hw_ptr_base;
196 };
197
198 struct snd_pcm_hwptr_log {
199         unsigned int idx;
200         unsigned int hit: 1;
201         struct hwptr_log_entry entries[XRUN_LOG_CNT];
202 };
203
204 static void xrun_log(struct snd_pcm_substream *substream,
205                      snd_pcm_uframes_t pos)
206 {
207         struct snd_pcm_runtime *runtime = substream->runtime;
208         struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
209         struct hwptr_log_entry *entry;
210
211         if (log == NULL) {
212                 log = kzalloc(sizeof(*log), GFP_ATOMIC);
213                 if (log == NULL)
214                         return;
215                 runtime->hwptr_log = log;
216         } else {
217                 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
218                         return;
219         }
220         entry = &log->entries[log->idx];
221         entry->jiffies = jiffies;
222         entry->pos = pos;
223         entry->period_size = runtime->period_size;
224         entry->buffer_size = runtime->buffer_size;;
225         entry->old_hw_ptr = runtime->status->hw_ptr;
226         entry->hw_ptr_base = runtime->hw_ptr_base;
227         log->idx = (log->idx + 1) % XRUN_LOG_CNT;
228 }
229
230 static void xrun_log_show(struct snd_pcm_substream *substream)
231 {
232         struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
233         struct hwptr_log_entry *entry;
234         char name[16];
235         unsigned int idx;
236         int cnt;
237
238         if (log == NULL)
239                 return;
240         if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
241                 return;
242         pcm_debug_name(substream, name, sizeof(name));
243         for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
244                 entry = &log->entries[idx];
245                 if (entry->period_size == 0)
246                         break;
247                 snd_printd("hwptr log: %s: j=%lu, pos=%ld/%ld/%ld, "
248                            "hwptr=%ld/%ld\n",
249                            name, entry->jiffies, (unsigned long)entry->pos,
250                            (unsigned long)entry->period_size,
251                            (unsigned long)entry->buffer_size,
252                            (unsigned long)entry->old_hw_ptr,
253                            (unsigned long)entry->hw_ptr_base);
254                 idx++;
255                 idx %= XRUN_LOG_CNT;
256         }
257         log->hit = 1;
258 }
259
260 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
261
262 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
263 #define xrun_log(substream, pos)        do { } while (0)
264 #define xrun_log_show(substream)        do { } while (0)
265
266 #endif
267
268 int snd_pcm_update_state(struct snd_pcm_substream *substream,
269                          struct snd_pcm_runtime *runtime)
270 {
271         snd_pcm_uframes_t avail;
272
273         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
274                 avail = snd_pcm_playback_avail(runtime);
275         else
276                 avail = snd_pcm_capture_avail(runtime);
277         if (avail > runtime->avail_max)
278                 runtime->avail_max = avail;
279         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
280                 if (avail >= runtime->buffer_size) {
281                         snd_pcm_drain_done(substream);
282                         return -EPIPE;
283                 }
284         } else {
285                 if (avail >= runtime->stop_threshold) {
286                         xrun(substream);
287                         return -EPIPE;
288                 }
289         }
290         if (avail >= runtime->control->avail_min)
291                 wake_up(runtime->twake ? &runtime->tsleep : &runtime->sleep);
292         return 0;
293 }
294
295 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
296                                   unsigned int in_interrupt)
297 {
298         struct snd_pcm_runtime *runtime = substream->runtime;
299         snd_pcm_uframes_t pos;
300         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
301         snd_pcm_sframes_t hdelta, delta;
302         unsigned long jdelta;
303
304         old_hw_ptr = runtime->status->hw_ptr;
305         pos = substream->ops->pointer(substream);
306         if (pos == SNDRV_PCM_POS_XRUN) {
307                 xrun(substream);
308                 return -EPIPE;
309         }
310         if (pos >= runtime->buffer_size) {
311                 if (printk_ratelimit()) {
312                         char name[16];
313                         pcm_debug_name(substream, name, sizeof(name));
314                         xrun_log_show(substream);
315                         snd_printd(KERN_ERR  "BUG: %s, pos = %ld, "
316                                    "buffer size = %ld, period size = %ld\n",
317                                    name, pos, runtime->buffer_size,
318                                    runtime->period_size);
319                 }
320                 pos = 0;
321         }
322         pos -= pos % runtime->min_align;
323         if (xrun_debug(substream, XRUN_DEBUG_LOG))
324                 xrun_log(substream, pos);
325         hw_base = runtime->hw_ptr_base;
326         new_hw_ptr = hw_base + pos;
327         if (in_interrupt) {
328                 /* we know that one period was processed */
329                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
330                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
331                 if (delta > new_hw_ptr) {
332                         hw_base += runtime->buffer_size;
333                         if (hw_base >= runtime->boundary)
334                                 hw_base = 0;
335                         new_hw_ptr = hw_base + pos;
336                         goto __delta;
337                 }
338         }
339         /* new_hw_ptr might be lower than old_hw_ptr in case when */
340         /* pointer crosses the end of the ring buffer */
341         if (new_hw_ptr < old_hw_ptr) {
342                 hw_base += runtime->buffer_size;
343                 if (hw_base >= runtime->boundary)
344                         hw_base = 0;
345                 new_hw_ptr = hw_base + pos;
346         }
347       __delta:
348         delta = (new_hw_ptr - old_hw_ptr) % runtime->boundary;
349         if (xrun_debug(substream, in_interrupt ?
350                         XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
351                 char name[16];
352                 pcm_debug_name(substream, name, sizeof(name));
353                 snd_printd("%s_update: %s: pos=%u/%u/%u, "
354                            "hwptr=%ld/%ld/%ld/%ld\n",
355                            in_interrupt ? "period" : "hwptr",
356                            name,
357                            (unsigned int)pos,
358                            (unsigned int)runtime->period_size,
359                            (unsigned int)runtime->buffer_size,
360                            (unsigned long)delta,
361                            (unsigned long)old_hw_ptr,
362                            (unsigned long)new_hw_ptr,
363                            (unsigned long)runtime->hw_ptr_base);
364         }
365         /* something must be really wrong */
366         if (delta >= runtime->buffer_size + runtime->period_size) {
367                 hw_ptr_error(substream,
368                                "Unexpected hw_pointer value %s"
369                                "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
370                                "old_hw_ptr=%ld)\n",
371                                      in_interrupt ? "[Q] " : "[P]",
372                                      substream->stream, (long)pos,
373                                      (long)new_hw_ptr, (long)old_hw_ptr);
374                 return 0;
375         }
376
377         /* Do jiffies check only in xrun_debug mode */
378         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
379                 goto no_jiffies_check;
380
381         /* Skip the jiffies check for hardwares with BATCH flag.
382          * Such hardware usually just increases the position at each IRQ,
383          * thus it can't give any strange position.
384          */
385         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
386                 goto no_jiffies_check;
387         hdelta = delta;
388         if (hdelta < runtime->delay)
389                 goto no_jiffies_check;
390         hdelta -= runtime->delay;
391         jdelta = jiffies - runtime->hw_ptr_jiffies;
392         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
393                 delta = jdelta /
394                         (((runtime->period_size * HZ) / runtime->rate)
395                                                                 + HZ/100);
396                 /* move new_hw_ptr according jiffies not pos variable */
397                 new_hw_ptr = old_hw_ptr;
398                 hw_base = delta;
399                 /* use loop to avoid checks for delta overflows */
400                 /* the delta value is small or zero in most cases */
401                 while (delta > 0) {
402                         new_hw_ptr += runtime->period_size;
403                         if (new_hw_ptr >= runtime->boundary)
404                                 new_hw_ptr -= runtime->boundary;
405                         delta--;
406                 }
407                 /* align hw_base to buffer_size */
408                 hw_ptr_error(substream,
409                              "hw_ptr skipping! %s"
410                              "(pos=%ld, delta=%ld, period=%ld, "
411                              "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
412                              in_interrupt ? "[Q] " : "",
413                              (long)pos, (long)hdelta,
414                              (long)runtime->period_size, jdelta,
415                              ((hdelta * HZ) / runtime->rate), hw_base,
416                              (unsigned long)old_hw_ptr,
417                              (unsigned long)new_hw_ptr);
418                 /* reset values to proper state */
419                 delta = 0;
420                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
421         }
422  no_jiffies_check:
423         if (delta > runtime->period_size + runtime->period_size / 2) {
424                 hw_ptr_error(substream,
425                              "Lost interrupts? %s"
426                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
427                              "old_hw_ptr=%ld)\n",
428                              in_interrupt ? "[Q] " : "",
429                              substream->stream, (long)delta,
430                              (long)new_hw_ptr,
431                              (long)old_hw_ptr);
432         }
433
434         if (runtime->status->hw_ptr == new_hw_ptr)
435                 return 0;
436
437         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
438             runtime->silence_size > 0)
439                 snd_pcm_playback_silence(substream, new_hw_ptr);
440
441         if (in_interrupt) {
442                 runtime->hw_ptr_interrupt = new_hw_ptr -
443                                 (new_hw_ptr % runtime->period_size);
444         }
445         runtime->hw_ptr_base = hw_base;
446         runtime->status->hw_ptr = new_hw_ptr;
447         runtime->hw_ptr_jiffies = jiffies;
448         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
449                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
450
451         return snd_pcm_update_state(substream, runtime);
452 }
453
454 /* CAUTION: call it with irq disabled */
455 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
456 {
457         return snd_pcm_update_hw_ptr0(substream, 0);
458 }
459
460 /**
461  * snd_pcm_set_ops - set the PCM operators
462  * @pcm: the pcm instance
463  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
464  * @ops: the operator table
465  *
466  * Sets the given PCM operators to the pcm instance.
467  */
468 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
469 {
470         struct snd_pcm_str *stream = &pcm->streams[direction];
471         struct snd_pcm_substream *substream;
472         
473         for (substream = stream->substream; substream != NULL; substream = substream->next)
474                 substream->ops = ops;
475 }
476
477 EXPORT_SYMBOL(snd_pcm_set_ops);
478
479 /**
480  * snd_pcm_sync - set the PCM sync id
481  * @substream: the pcm substream
482  *
483  * Sets the PCM sync identifier for the card.
484  */
485 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
486 {
487         struct snd_pcm_runtime *runtime = substream->runtime;
488         
489         runtime->sync.id32[0] = substream->pcm->card->number;
490         runtime->sync.id32[1] = -1;
491         runtime->sync.id32[2] = -1;
492         runtime->sync.id32[3] = -1;
493 }
494
495 EXPORT_SYMBOL(snd_pcm_set_sync);
496
497 /*
498  *  Standard ioctl routine
499  */
500
501 static inline unsigned int div32(unsigned int a, unsigned int b, 
502                                  unsigned int *r)
503 {
504         if (b == 0) {
505                 *r = 0;
506                 return UINT_MAX;
507         }
508         *r = a % b;
509         return a / b;
510 }
511
512 static inline unsigned int div_down(unsigned int a, unsigned int b)
513 {
514         if (b == 0)
515                 return UINT_MAX;
516         return a / b;
517 }
518
519 static inline unsigned int div_up(unsigned int a, unsigned int b)
520 {
521         unsigned int r;
522         unsigned int q;
523         if (b == 0)
524                 return UINT_MAX;
525         q = div32(a, b, &r);
526         if (r)
527                 ++q;
528         return q;
529 }
530
531 static inline unsigned int mul(unsigned int a, unsigned int b)
532 {
533         if (a == 0)
534                 return 0;
535         if (div_down(UINT_MAX, a) < b)
536                 return UINT_MAX;
537         return a * b;
538 }
539
540 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
541                                     unsigned int c, unsigned int *r)
542 {
543         u_int64_t n = (u_int64_t) a * b;
544         if (c == 0) {
545                 snd_BUG_ON(!n);
546                 *r = 0;
547                 return UINT_MAX;
548         }
549         n = div_u64_rem(n, c, r);
550         if (n >= UINT_MAX) {
551                 *r = 0;
552                 return UINT_MAX;
553         }
554         return n;
555 }
556
557 /**
558  * snd_interval_refine - refine the interval value of configurator
559  * @i: the interval value to refine
560  * @v: the interval value to refer to
561  *
562  * Refines the interval value with the reference value.
563  * The interval is changed to the range satisfying both intervals.
564  * The interval status (min, max, integer, etc.) are evaluated.
565  *
566  * Returns non-zero if the value is changed, zero if not changed.
567  */
568 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
569 {
570         int changed = 0;
571         if (snd_BUG_ON(snd_interval_empty(i)))
572                 return -EINVAL;
573         if (i->min < v->min) {
574                 i->min = v->min;
575                 i->openmin = v->openmin;
576                 changed = 1;
577         } else if (i->min == v->min && !i->openmin && v->openmin) {
578                 i->openmin = 1;
579                 changed = 1;
580         }
581         if (i->max > v->max) {
582                 i->max = v->max;
583                 i->openmax = v->openmax;
584                 changed = 1;
585         } else if (i->max == v->max && !i->openmax && v->openmax) {
586                 i->openmax = 1;
587                 changed = 1;
588         }
589         if (!i->integer && v->integer) {
590                 i->integer = 1;
591                 changed = 1;
592         }
593         if (i->integer) {
594                 if (i->openmin) {
595                         i->min++;
596                         i->openmin = 0;
597                 }
598                 if (i->openmax) {
599                         i->max--;
600                         i->openmax = 0;
601                 }
602         } else if (!i->openmin && !i->openmax && i->min == i->max)
603                 i->integer = 1;
604         if (snd_interval_checkempty(i)) {
605                 snd_interval_none(i);
606                 return -EINVAL;
607         }
608         return changed;
609 }
610
611 EXPORT_SYMBOL(snd_interval_refine);
612
613 static int snd_interval_refine_first(struct snd_interval *i)
614 {
615         if (snd_BUG_ON(snd_interval_empty(i)))
616                 return -EINVAL;
617         if (snd_interval_single(i))
618                 return 0;
619         i->max = i->min;
620         i->openmax = i->openmin;
621         if (i->openmax)
622                 i->max++;
623         return 1;
624 }
625
626 static int snd_interval_refine_last(struct snd_interval *i)
627 {
628         if (snd_BUG_ON(snd_interval_empty(i)))
629                 return -EINVAL;
630         if (snd_interval_single(i))
631                 return 0;
632         i->min = i->max;
633         i->openmin = i->openmax;
634         if (i->openmin)
635                 i->min--;
636         return 1;
637 }
638
639 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
640 {
641         if (a->empty || b->empty) {
642                 snd_interval_none(c);
643                 return;
644         }
645         c->empty = 0;
646         c->min = mul(a->min, b->min);
647         c->openmin = (a->openmin || b->openmin);
648         c->max = mul(a->max,  b->max);
649         c->openmax = (a->openmax || b->openmax);
650         c->integer = (a->integer && b->integer);
651 }
652
653 /**
654  * snd_interval_div - refine the interval value with division
655  * @a: dividend
656  * @b: divisor
657  * @c: quotient
658  *
659  * c = a / b
660  *
661  * Returns non-zero if the value is changed, zero if not changed.
662  */
663 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
664 {
665         unsigned int r;
666         if (a->empty || b->empty) {
667                 snd_interval_none(c);
668                 return;
669         }
670         c->empty = 0;
671         c->min = div32(a->min, b->max, &r);
672         c->openmin = (r || a->openmin || b->openmax);
673         if (b->min > 0) {
674                 c->max = div32(a->max, b->min, &r);
675                 if (r) {
676                         c->max++;
677                         c->openmax = 1;
678                 } else
679                         c->openmax = (a->openmax || b->openmin);
680         } else {
681                 c->max = UINT_MAX;
682                 c->openmax = 0;
683         }
684         c->integer = 0;
685 }
686
687 /**
688  * snd_interval_muldivk - refine the interval value
689  * @a: dividend 1
690  * @b: dividend 2
691  * @k: divisor (as integer)
692  * @c: result
693   *
694  * c = a * b / k
695  *
696  * Returns non-zero if the value is changed, zero if not changed.
697  */
698 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
699                       unsigned int k, struct snd_interval *c)
700 {
701         unsigned int r;
702         if (a->empty || b->empty) {
703                 snd_interval_none(c);
704                 return;
705         }
706         c->empty = 0;
707         c->min = muldiv32(a->min, b->min, k, &r);
708         c->openmin = (r || a->openmin || b->openmin);
709         c->max = muldiv32(a->max, b->max, k, &r);
710         if (r) {
711                 c->max++;
712                 c->openmax = 1;
713         } else
714                 c->openmax = (a->openmax || b->openmax);
715         c->integer = 0;
716 }
717
718 /**
719  * snd_interval_mulkdiv - refine the interval value
720  * @a: dividend 1
721  * @k: dividend 2 (as integer)
722  * @b: divisor
723  * @c: result
724  *
725  * c = a * k / b
726  *
727  * Returns non-zero if the value is changed, zero if not changed.
728  */
729 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
730                       const struct snd_interval *b, struct snd_interval *c)
731 {
732         unsigned int r;
733         if (a->empty || b->empty) {
734                 snd_interval_none(c);
735                 return;
736         }
737         c->empty = 0;
738         c->min = muldiv32(a->min, k, b->max, &r);
739         c->openmin = (r || a->openmin || b->openmax);
740         if (b->min > 0) {
741                 c->max = muldiv32(a->max, k, b->min, &r);
742                 if (r) {
743                         c->max++;
744                         c->openmax = 1;
745                 } else
746                         c->openmax = (a->openmax || b->openmin);
747         } else {
748                 c->max = UINT_MAX;
749                 c->openmax = 0;
750         }
751         c->integer = 0;
752 }
753
754 /* ---- */
755
756
757 /**
758  * snd_interval_ratnum - refine the interval value
759  * @i: interval to refine
760  * @rats_count: number of ratnum_t 
761  * @rats: ratnum_t array
762  * @nump: pointer to store the resultant numerator
763  * @denp: pointer to store the resultant denominator
764  *
765  * Returns non-zero if the value is changed, zero if not changed.
766  */
767 int snd_interval_ratnum(struct snd_interval *i,
768                         unsigned int rats_count, struct snd_ratnum *rats,
769                         unsigned int *nump, unsigned int *denp)
770 {
771         unsigned int best_num, best_den;
772         int best_diff;
773         unsigned int k;
774         struct snd_interval t;
775         int err;
776         unsigned int result_num, result_den;
777         int result_diff;
778
779         best_num = best_den = best_diff = 0;
780         for (k = 0; k < rats_count; ++k) {
781                 unsigned int num = rats[k].num;
782                 unsigned int den;
783                 unsigned int q = i->min;
784                 int diff;
785                 if (q == 0)
786                         q = 1;
787                 den = div_up(num, q);
788                 if (den < rats[k].den_min)
789                         continue;
790                 if (den > rats[k].den_max)
791                         den = rats[k].den_max;
792                 else {
793                         unsigned int r;
794                         r = (den - rats[k].den_min) % rats[k].den_step;
795                         if (r != 0)
796                                 den -= r;
797                 }
798                 diff = num - q * den;
799                 if (diff < 0)
800                         diff = -diff;
801                 if (best_num == 0 ||
802                     diff * best_den < best_diff * den) {
803                         best_diff = diff;
804                         best_den = den;
805                         best_num = num;
806                 }
807         }
808         if (best_den == 0) {
809                 i->empty = 1;
810                 return -EINVAL;
811         }
812         t.min = div_down(best_num, best_den);
813         t.openmin = !!(best_num % best_den);
814         
815         result_num = best_num;
816         result_diff = best_diff;
817         result_den = best_den;
818         best_num = best_den = best_diff = 0;
819         for (k = 0; k < rats_count; ++k) {
820                 unsigned int num = rats[k].num;
821                 unsigned int den;
822                 unsigned int q = i->max;
823                 int diff;
824                 if (q == 0) {
825                         i->empty = 1;
826                         return -EINVAL;
827                 }
828                 den = div_down(num, q);
829                 if (den > rats[k].den_max)
830                         continue;
831                 if (den < rats[k].den_min)
832                         den = rats[k].den_min;
833                 else {
834                         unsigned int r;
835                         r = (den - rats[k].den_min) % rats[k].den_step;
836                         if (r != 0)
837                                 den += rats[k].den_step - r;
838                 }
839                 diff = q * den - num;
840                 if (diff < 0)
841                         diff = -diff;
842                 if (best_num == 0 ||
843                     diff * best_den < best_diff * den) {
844                         best_diff = diff;
845                         best_den = den;
846                         best_num = num;
847                 }
848         }
849         if (best_den == 0) {
850                 i->empty = 1;
851                 return -EINVAL;
852         }
853         t.max = div_up(best_num, best_den);
854         t.openmax = !!(best_num % best_den);
855         t.integer = 0;
856         err = snd_interval_refine(i, &t);
857         if (err < 0)
858                 return err;
859
860         if (snd_interval_single(i)) {
861                 if (best_diff * result_den < result_diff * best_den) {
862                         result_num = best_num;
863                         result_den = best_den;
864                 }
865                 if (nump)
866                         *nump = result_num;
867                 if (denp)
868                         *denp = result_den;
869         }
870         return err;
871 }
872
873 EXPORT_SYMBOL(snd_interval_ratnum);
874
875 /**
876  * snd_interval_ratden - refine the interval value
877  * @i: interval to refine
878  * @rats_count: number of struct ratden
879  * @rats: struct ratden array
880  * @nump: pointer to store the resultant numerator
881  * @denp: pointer to store the resultant denominator
882  *
883  * Returns non-zero if the value is changed, zero if not changed.
884  */
885 static int snd_interval_ratden(struct snd_interval *i,
886                                unsigned int rats_count, struct snd_ratden *rats,
887                                unsigned int *nump, unsigned int *denp)
888 {
889         unsigned int best_num, best_diff, best_den;
890         unsigned int k;
891         struct snd_interval t;
892         int err;
893
894         best_num = best_den = best_diff = 0;
895         for (k = 0; k < rats_count; ++k) {
896                 unsigned int num;
897                 unsigned int den = rats[k].den;
898                 unsigned int q = i->min;
899                 int diff;
900                 num = mul(q, den);
901                 if (num > rats[k].num_max)
902                         continue;
903                 if (num < rats[k].num_min)
904                         num = rats[k].num_max;
905                 else {
906                         unsigned int r;
907                         r = (num - rats[k].num_min) % rats[k].num_step;
908                         if (r != 0)
909                                 num += rats[k].num_step - r;
910                 }
911                 diff = num - q * den;
912                 if (best_num == 0 ||
913                     diff * best_den < best_diff * den) {
914                         best_diff = diff;
915                         best_den = den;
916                         best_num = num;
917                 }
918         }
919         if (best_den == 0) {
920                 i->empty = 1;
921                 return -EINVAL;
922         }
923         t.min = div_down(best_num, best_den);
924         t.openmin = !!(best_num % best_den);
925         
926         best_num = best_den = best_diff = 0;
927         for (k = 0; k < rats_count; ++k) {
928                 unsigned int num;
929                 unsigned int den = rats[k].den;
930                 unsigned int q = i->max;
931                 int diff;
932                 num = mul(q, den);
933                 if (num < rats[k].num_min)
934                         continue;
935                 if (num > rats[k].num_max)
936                         num = rats[k].num_max;
937                 else {
938                         unsigned int r;
939                         r = (num - rats[k].num_min) % rats[k].num_step;
940                         if (r != 0)
941                                 num -= r;
942                 }
943                 diff = q * den - num;
944                 if (best_num == 0 ||
945                     diff * best_den < best_diff * den) {
946                         best_diff = diff;
947                         best_den = den;
948                         best_num = num;
949                 }
950         }
951         if (best_den == 0) {
952                 i->empty = 1;
953                 return -EINVAL;
954         }
955         t.max = div_up(best_num, best_den);
956         t.openmax = !!(best_num % best_den);
957         t.integer = 0;
958         err = snd_interval_refine(i, &t);
959         if (err < 0)
960                 return err;
961
962         if (snd_interval_single(i)) {
963                 if (nump)
964                         *nump = best_num;
965                 if (denp)
966                         *denp = best_den;
967         }
968         return err;
969 }
970
971 /**
972  * snd_interval_list - refine the interval value from the list
973  * @i: the interval value to refine
974  * @count: the number of elements in the list
975  * @list: the value list
976  * @mask: the bit-mask to evaluate
977  *
978  * Refines the interval value from the list.
979  * When mask is non-zero, only the elements corresponding to bit 1 are
980  * evaluated.
981  *
982  * Returns non-zero if the value is changed, zero if not changed.
983  */
984 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
985 {
986         unsigned int k;
987         struct snd_interval list_range;
988
989         if (!count) {
990                 i->empty = 1;
991                 return -EINVAL;
992         }
993         snd_interval_any(&list_range);
994         list_range.min = UINT_MAX;
995         list_range.max = 0;
996         for (k = 0; k < count; k++) {
997                 if (mask && !(mask & (1 << k)))
998                         continue;
999                 if (!snd_interval_test(i, list[k]))
1000                         continue;
1001                 list_range.min = min(list_range.min, list[k]);
1002                 list_range.max = max(list_range.max, list[k]);
1003         }
1004         return snd_interval_refine(i, &list_range);
1005 }
1006
1007 EXPORT_SYMBOL(snd_interval_list);
1008
1009 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1010 {
1011         unsigned int n;
1012         int changed = 0;
1013         n = (i->min - min) % step;
1014         if (n != 0 || i->openmin) {
1015                 i->min += step - n;
1016                 changed = 1;
1017         }
1018         n = (i->max - min) % step;
1019         if (n != 0 || i->openmax) {
1020                 i->max -= n;
1021                 changed = 1;
1022         }
1023         if (snd_interval_checkempty(i)) {
1024                 i->empty = 1;
1025                 return -EINVAL;
1026         }
1027         return changed;
1028 }
1029
1030 /* Info constraints helpers */
1031
1032 /**
1033  * snd_pcm_hw_rule_add - add the hw-constraint rule
1034  * @runtime: the pcm runtime instance
1035  * @cond: condition bits
1036  * @var: the variable to evaluate
1037  * @func: the evaluation function
1038  * @private: the private data pointer passed to function
1039  * @dep: the dependent variables
1040  *
1041  * Returns zero if successful, or a negative error code on failure.
1042  */
1043 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1044                         int var,
1045                         snd_pcm_hw_rule_func_t func, void *private,
1046                         int dep, ...)
1047 {
1048         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1049         struct snd_pcm_hw_rule *c;
1050         unsigned int k;
1051         va_list args;
1052         va_start(args, dep);
1053         if (constrs->rules_num >= constrs->rules_all) {
1054                 struct snd_pcm_hw_rule *new;
1055                 unsigned int new_rules = constrs->rules_all + 16;
1056                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1057                 if (!new)
1058                         return -ENOMEM;
1059                 if (constrs->rules) {
1060                         memcpy(new, constrs->rules,
1061                                constrs->rules_num * sizeof(*c));
1062                         kfree(constrs->rules);
1063                 }
1064                 constrs->rules = new;
1065                 constrs->rules_all = new_rules;
1066         }
1067         c = &constrs->rules[constrs->rules_num];
1068         c->cond = cond;
1069         c->func = func;
1070         c->var = var;
1071         c->private = private;
1072         k = 0;
1073         while (1) {
1074                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps)))
1075                         return -EINVAL;
1076                 c->deps[k++] = dep;
1077                 if (dep < 0)
1078                         break;
1079                 dep = va_arg(args, int);
1080         }
1081         constrs->rules_num++;
1082         va_end(args);
1083         return 0;
1084 }                                   
1085
1086 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1087
1088 /**
1089  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1090  * @runtime: PCM runtime instance
1091  * @var: hw_params variable to apply the mask
1092  * @mask: the bitmap mask
1093  *
1094  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1095  */
1096 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1097                                u_int32_t mask)
1098 {
1099         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1100         struct snd_mask *maskp = constrs_mask(constrs, var);
1101         *maskp->bits &= mask;
1102         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1103         if (*maskp->bits == 0)
1104                 return -EINVAL;
1105         return 0;
1106 }
1107
1108 /**
1109  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1110  * @runtime: PCM runtime instance
1111  * @var: hw_params variable to apply the mask
1112  * @mask: the 64bit bitmap mask
1113  *
1114  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1115  */
1116 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1117                                  u_int64_t mask)
1118 {
1119         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1120         struct snd_mask *maskp = constrs_mask(constrs, var);
1121         maskp->bits[0] &= (u_int32_t)mask;
1122         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1123         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1124         if (! maskp->bits[0] && ! maskp->bits[1])
1125                 return -EINVAL;
1126         return 0;
1127 }
1128
1129 /**
1130  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1131  * @runtime: PCM runtime instance
1132  * @var: hw_params variable to apply the integer constraint
1133  *
1134  * Apply the constraint of integer to an interval parameter.
1135  */
1136 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1137 {
1138         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1139         return snd_interval_setinteger(constrs_interval(constrs, var));
1140 }
1141
1142 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1143
1144 /**
1145  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1146  * @runtime: PCM runtime instance
1147  * @var: hw_params variable to apply the range
1148  * @min: the minimal value
1149  * @max: the maximal value
1150  * 
1151  * Apply the min/max range constraint to an interval parameter.
1152  */
1153 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1154                                  unsigned int min, unsigned int max)
1155 {
1156         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1157         struct snd_interval t;
1158         t.min = min;
1159         t.max = max;
1160         t.openmin = t.openmax = 0;
1161         t.integer = 0;
1162         return snd_interval_refine(constrs_interval(constrs, var), &t);
1163 }
1164
1165 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1166
1167 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1168                                 struct snd_pcm_hw_rule *rule)
1169 {
1170         struct snd_pcm_hw_constraint_list *list = rule->private;
1171         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1172 }               
1173
1174
1175 /**
1176  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1177  * @runtime: PCM runtime instance
1178  * @cond: condition bits
1179  * @var: hw_params variable to apply the list constraint
1180  * @l: list
1181  * 
1182  * Apply the list of constraints to an interval parameter.
1183  */
1184 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1185                                unsigned int cond,
1186                                snd_pcm_hw_param_t var,
1187                                struct snd_pcm_hw_constraint_list *l)
1188 {
1189         return snd_pcm_hw_rule_add(runtime, cond, var,
1190                                    snd_pcm_hw_rule_list, l,
1191                                    var, -1);
1192 }
1193
1194 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1195
1196 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1197                                    struct snd_pcm_hw_rule *rule)
1198 {
1199         struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1200         unsigned int num = 0, den = 0;
1201         int err;
1202         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1203                                   r->nrats, r->rats, &num, &den);
1204         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1205                 params->rate_num = num;
1206                 params->rate_den = den;
1207         }
1208         return err;
1209 }
1210
1211 /**
1212  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1213  * @runtime: PCM runtime instance
1214  * @cond: condition bits
1215  * @var: hw_params variable to apply the ratnums constraint
1216  * @r: struct snd_ratnums constriants
1217  */
1218 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1219                                   unsigned int cond,
1220                                   snd_pcm_hw_param_t var,
1221                                   struct snd_pcm_hw_constraint_ratnums *r)
1222 {
1223         return snd_pcm_hw_rule_add(runtime, cond, var,
1224                                    snd_pcm_hw_rule_ratnums, r,
1225                                    var, -1);
1226 }
1227
1228 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1229
1230 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1231                                    struct snd_pcm_hw_rule *rule)
1232 {
1233         struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1234         unsigned int num = 0, den = 0;
1235         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1236                                   r->nrats, r->rats, &num, &den);
1237         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1238                 params->rate_num = num;
1239                 params->rate_den = den;
1240         }
1241         return err;
1242 }
1243
1244 /**
1245  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1246  * @runtime: PCM runtime instance
1247  * @cond: condition bits
1248  * @var: hw_params variable to apply the ratdens constraint
1249  * @r: struct snd_ratdens constriants
1250  */
1251 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1252                                   unsigned int cond,
1253                                   snd_pcm_hw_param_t var,
1254                                   struct snd_pcm_hw_constraint_ratdens *r)
1255 {
1256         return snd_pcm_hw_rule_add(runtime, cond, var,
1257                                    snd_pcm_hw_rule_ratdens, r,
1258                                    var, -1);
1259 }
1260
1261 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1262
1263 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1264                                   struct snd_pcm_hw_rule *rule)
1265 {
1266         unsigned int l = (unsigned long) rule->private;
1267         int width = l & 0xffff;
1268         unsigned int msbits = l >> 16;
1269         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1270         if (snd_interval_single(i) && snd_interval_value(i) == width)
1271                 params->msbits = msbits;
1272         return 0;
1273 }
1274
1275 /**
1276  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1277  * @runtime: PCM runtime instance
1278  * @cond: condition bits
1279  * @width: sample bits width
1280  * @msbits: msbits width
1281  */
1282 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1283                                  unsigned int cond,
1284                                  unsigned int width,
1285                                  unsigned int msbits)
1286 {
1287         unsigned long l = (msbits << 16) | width;
1288         return snd_pcm_hw_rule_add(runtime, cond, -1,
1289                                     snd_pcm_hw_rule_msbits,
1290                                     (void*) l,
1291                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1292 }
1293
1294 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1295
1296 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1297                                 struct snd_pcm_hw_rule *rule)
1298 {
1299         unsigned long step = (unsigned long) rule->private;
1300         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1301 }
1302
1303 /**
1304  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1305  * @runtime: PCM runtime instance
1306  * @cond: condition bits
1307  * @var: hw_params variable to apply the step constraint
1308  * @step: step size
1309  */
1310 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1311                                unsigned int cond,
1312                                snd_pcm_hw_param_t var,
1313                                unsigned long step)
1314 {
1315         return snd_pcm_hw_rule_add(runtime, cond, var, 
1316                                    snd_pcm_hw_rule_step, (void *) step,
1317                                    var, -1);
1318 }
1319
1320 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1321
1322 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1323 {
1324         static unsigned int pow2_sizes[] = {
1325                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1326                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1327                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1328                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1329         };
1330         return snd_interval_list(hw_param_interval(params, rule->var),
1331                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1332 }               
1333
1334 /**
1335  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1336  * @runtime: PCM runtime instance
1337  * @cond: condition bits
1338  * @var: hw_params variable to apply the power-of-2 constraint
1339  */
1340 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1341                                unsigned int cond,
1342                                snd_pcm_hw_param_t var)
1343 {
1344         return snd_pcm_hw_rule_add(runtime, cond, var, 
1345                                    snd_pcm_hw_rule_pow2, NULL,
1346                                    var, -1);
1347 }
1348
1349 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1350
1351 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1352                                   snd_pcm_hw_param_t var)
1353 {
1354         if (hw_is_mask(var)) {
1355                 snd_mask_any(hw_param_mask(params, var));
1356                 params->cmask |= 1 << var;
1357                 params->rmask |= 1 << var;
1358                 return;
1359         }
1360         if (hw_is_interval(var)) {
1361                 snd_interval_any(hw_param_interval(params, var));
1362                 params->cmask |= 1 << var;
1363                 params->rmask |= 1 << var;
1364                 return;
1365         }
1366         snd_BUG();
1367 }
1368
1369 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1370 {
1371         unsigned int k;
1372         memset(params, 0, sizeof(*params));
1373         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1374                 _snd_pcm_hw_param_any(params, k);
1375         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1376                 _snd_pcm_hw_param_any(params, k);
1377         params->info = ~0U;
1378 }
1379
1380 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1381
1382 /**
1383  * snd_pcm_hw_param_value - return @params field @var value
1384  * @params: the hw_params instance
1385  * @var: parameter to retrieve
1386  * @dir: pointer to the direction (-1,0,1) or %NULL
1387  *
1388  * Return the value for field @var if it's fixed in configuration space
1389  * defined by @params. Return -%EINVAL otherwise.
1390  */
1391 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1392                            snd_pcm_hw_param_t var, int *dir)
1393 {
1394         if (hw_is_mask(var)) {
1395                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1396                 if (!snd_mask_single(mask))
1397                         return -EINVAL;
1398                 if (dir)
1399                         *dir = 0;
1400                 return snd_mask_value(mask);
1401         }
1402         if (hw_is_interval(var)) {
1403                 const struct snd_interval *i = hw_param_interval_c(params, var);
1404                 if (!snd_interval_single(i))
1405                         return -EINVAL;
1406                 if (dir)
1407                         *dir = i->openmin;
1408                 return snd_interval_value(i);
1409         }
1410         return -EINVAL;
1411 }
1412
1413 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1414
1415 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1416                                 snd_pcm_hw_param_t var)
1417 {
1418         if (hw_is_mask(var)) {
1419                 snd_mask_none(hw_param_mask(params, var));
1420                 params->cmask |= 1 << var;
1421                 params->rmask |= 1 << var;
1422         } else if (hw_is_interval(var)) {
1423                 snd_interval_none(hw_param_interval(params, var));
1424                 params->cmask |= 1 << var;
1425                 params->rmask |= 1 << var;
1426         } else {
1427                 snd_BUG();
1428         }
1429 }
1430
1431 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1432
1433 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1434                                    snd_pcm_hw_param_t var)
1435 {
1436         int changed;
1437         if (hw_is_mask(var))
1438                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1439         else if (hw_is_interval(var))
1440                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1441         else
1442                 return -EINVAL;
1443         if (changed) {
1444                 params->cmask |= 1 << var;
1445                 params->rmask |= 1 << var;
1446         }
1447         return changed;
1448 }
1449
1450
1451 /**
1452  * snd_pcm_hw_param_first - refine config space and return minimum value
1453  * @pcm: PCM instance
1454  * @params: the hw_params instance
1455  * @var: parameter to retrieve
1456  * @dir: pointer to the direction (-1,0,1) or %NULL
1457  *
1458  * Inside configuration space defined by @params remove from @var all
1459  * values > minimum. Reduce configuration space accordingly.
1460  * Return the minimum.
1461  */
1462 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1463                            struct snd_pcm_hw_params *params, 
1464                            snd_pcm_hw_param_t var, int *dir)
1465 {
1466         int changed = _snd_pcm_hw_param_first(params, var);
1467         if (changed < 0)
1468                 return changed;
1469         if (params->rmask) {
1470                 int err = snd_pcm_hw_refine(pcm, params);
1471                 if (snd_BUG_ON(err < 0))
1472                         return err;
1473         }
1474         return snd_pcm_hw_param_value(params, var, dir);
1475 }
1476
1477 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1478
1479 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1480                                   snd_pcm_hw_param_t var)
1481 {
1482         int changed;
1483         if (hw_is_mask(var))
1484                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1485         else if (hw_is_interval(var))
1486                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1487         else
1488                 return -EINVAL;
1489         if (changed) {
1490                 params->cmask |= 1 << var;
1491                 params->rmask |= 1 << var;
1492         }
1493         return changed;
1494 }
1495
1496
1497 /**
1498  * snd_pcm_hw_param_last - refine config space and return maximum value
1499  * @pcm: PCM instance
1500  * @params: the hw_params instance
1501  * @var: parameter to retrieve
1502  * @dir: pointer to the direction (-1,0,1) or %NULL
1503  *
1504  * Inside configuration space defined by @params remove from @var all
1505  * values < maximum. Reduce configuration space accordingly.
1506  * Return the maximum.
1507  */
1508 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1509                           struct snd_pcm_hw_params *params,
1510                           snd_pcm_hw_param_t var, int *dir)
1511 {
1512         int changed = _snd_pcm_hw_param_last(params, var);
1513         if (changed < 0)
1514                 return changed;
1515         if (params->rmask) {
1516                 int err = snd_pcm_hw_refine(pcm, params);
1517                 if (snd_BUG_ON(err < 0))
1518                         return err;
1519         }
1520         return snd_pcm_hw_param_value(params, var, dir);
1521 }
1522
1523 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1524
1525 /**
1526  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1527  * @pcm: PCM instance
1528  * @params: the hw_params instance
1529  *
1530  * Choose one configuration from configuration space defined by @params.
1531  * The configuration chosen is that obtained fixing in this order:
1532  * first access, first format, first subformat, min channels,
1533  * min rate, min period time, max buffer size, min tick time
1534  */
1535 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1536                              struct snd_pcm_hw_params *params)
1537 {
1538         static int vars[] = {
1539                 SNDRV_PCM_HW_PARAM_ACCESS,
1540                 SNDRV_PCM_HW_PARAM_FORMAT,
1541                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1542                 SNDRV_PCM_HW_PARAM_CHANNELS,
1543                 SNDRV_PCM_HW_PARAM_RATE,
1544                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1545                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1546                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1547                 -1
1548         };
1549         int err, *v;
1550
1551         for (v = vars; *v != -1; v++) {
1552                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1553                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1554                 else
1555                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1556                 if (snd_BUG_ON(err < 0))
1557                         return err;
1558         }
1559         return 0;
1560 }
1561
1562 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1563                                    void *arg)
1564 {
1565         struct snd_pcm_runtime *runtime = substream->runtime;
1566         unsigned long flags;
1567         snd_pcm_stream_lock_irqsave(substream, flags);
1568         if (snd_pcm_running(substream) &&
1569             snd_pcm_update_hw_ptr(substream) >= 0)
1570                 runtime->status->hw_ptr %= runtime->buffer_size;
1571         else
1572                 runtime->status->hw_ptr = 0;
1573         snd_pcm_stream_unlock_irqrestore(substream, flags);
1574         return 0;
1575 }
1576
1577 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1578                                           void *arg)
1579 {
1580         struct snd_pcm_channel_info *info = arg;
1581         struct snd_pcm_runtime *runtime = substream->runtime;
1582         int width;
1583         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1584                 info->offset = -1;
1585                 return 0;
1586         }
1587         width = snd_pcm_format_physical_width(runtime->format);
1588         if (width < 0)
1589                 return width;
1590         info->offset = 0;
1591         switch (runtime->access) {
1592         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1593         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1594                 info->first = info->channel * width;
1595                 info->step = runtime->channels * width;
1596                 break;
1597         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1598         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1599         {
1600                 size_t size = runtime->dma_bytes / runtime->channels;
1601                 info->first = info->channel * size * 8;
1602                 info->step = width;
1603                 break;
1604         }
1605         default:
1606                 snd_BUG();
1607                 break;
1608         }
1609         return 0;
1610 }
1611
1612 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1613                                        void *arg)
1614 {
1615         struct snd_pcm_hw_params *params = arg;
1616         snd_pcm_format_t format;
1617         int channels, width;
1618
1619         params->fifo_size = substream->runtime->hw.fifo_size;
1620         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1621                 format = params_format(params);
1622                 channels = params_channels(params);
1623                 width = snd_pcm_format_physical_width(format);
1624                 params->fifo_size /= width * channels;
1625         }
1626         return 0;
1627 }
1628
1629 /**
1630  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1631  * @substream: the pcm substream instance
1632  * @cmd: ioctl command
1633  * @arg: ioctl argument
1634  *
1635  * Processes the generic ioctl commands for PCM.
1636  * Can be passed as the ioctl callback for PCM ops.
1637  *
1638  * Returns zero if successful, or a negative error code on failure.
1639  */
1640 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1641                       unsigned int cmd, void *arg)
1642 {
1643         switch (cmd) {
1644         case SNDRV_PCM_IOCTL1_INFO:
1645                 return 0;
1646         case SNDRV_PCM_IOCTL1_RESET:
1647                 return snd_pcm_lib_ioctl_reset(substream, arg);
1648         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1649                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1650         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1651                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1652         }
1653         return -ENXIO;
1654 }
1655
1656 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1657
1658 /**
1659  * snd_pcm_period_elapsed - update the pcm status for the next period
1660  * @substream: the pcm substream instance
1661  *
1662  * This function is called from the interrupt handler when the
1663  * PCM has processed the period size.  It will update the current
1664  * pointer, wake up sleepers, etc.
1665  *
1666  * Even if more than one periods have elapsed since the last call, you
1667  * have to call this only once.
1668  */
1669 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1670 {
1671         struct snd_pcm_runtime *runtime;
1672         unsigned long flags;
1673
1674         if (PCM_RUNTIME_CHECK(substream))
1675                 return;
1676         runtime = substream->runtime;
1677
1678         if (runtime->transfer_ack_begin)
1679                 runtime->transfer_ack_begin(substream);
1680
1681         snd_pcm_stream_lock_irqsave(substream, flags);
1682         if (!snd_pcm_running(substream) ||
1683             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1684                 goto _end;
1685
1686         if (substream->timer_running)
1687                 snd_timer_interrupt(substream->timer, 1);
1688  _end:
1689         snd_pcm_stream_unlock_irqrestore(substream, flags);
1690         if (runtime->transfer_ack_end)
1691                 runtime->transfer_ack_end(substream);
1692         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1693 }
1694
1695 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1696
1697 /*
1698  * Wait until avail_min data becomes available
1699  * Returns a negative error code if any error occurs during operation.
1700  * The available space is stored on availp.  When err = 0 and avail = 0
1701  * on the capture stream, it indicates the stream is in DRAINING state.
1702  */
1703 static int wait_for_avail_min(struct snd_pcm_substream *substream,
1704                               snd_pcm_uframes_t *availp)
1705 {
1706         struct snd_pcm_runtime *runtime = substream->runtime;
1707         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1708         wait_queue_t wait;
1709         int err = 0;
1710         snd_pcm_uframes_t avail = 0;
1711         long tout;
1712
1713         init_waitqueue_entry(&wait, current);
1714         add_wait_queue(&runtime->tsleep, &wait);
1715         for (;;) {
1716                 if (signal_pending(current)) {
1717                         err = -ERESTARTSYS;
1718                         break;
1719                 }
1720                 set_current_state(TASK_INTERRUPTIBLE);
1721                 snd_pcm_stream_unlock_irq(substream);
1722                 tout = schedule_timeout(msecs_to_jiffies(10000));
1723                 snd_pcm_stream_lock_irq(substream);
1724                 switch (runtime->status->state) {
1725                 case SNDRV_PCM_STATE_SUSPENDED:
1726                         err = -ESTRPIPE;
1727                         goto _endloop;
1728                 case SNDRV_PCM_STATE_XRUN:
1729                         err = -EPIPE;
1730                         goto _endloop;
1731                 case SNDRV_PCM_STATE_DRAINING:
1732                         if (is_playback)
1733                                 err = -EPIPE;
1734                         else 
1735                                 avail = 0; /* indicate draining */
1736                         goto _endloop;
1737                 case SNDRV_PCM_STATE_OPEN:
1738                 case SNDRV_PCM_STATE_SETUP:
1739                 case SNDRV_PCM_STATE_DISCONNECTED:
1740                         err = -EBADFD;
1741                         goto _endloop;
1742                 }
1743                 if (!tout) {
1744                         snd_printd("%s write error (DMA or IRQ trouble?)\n",
1745                                    is_playback ? "playback" : "capture");
1746                         err = -EIO;
1747                         break;
1748                 }
1749                 if (is_playback)
1750                         avail = snd_pcm_playback_avail(runtime);
1751                 else
1752                         avail = snd_pcm_capture_avail(runtime);
1753                 if (avail >= runtime->control->avail_min)
1754                         break;
1755         }
1756  _endloop:
1757         remove_wait_queue(&runtime->tsleep, &wait);
1758         *availp = avail;
1759         return err;
1760 }
1761         
1762 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1763                                       unsigned int hwoff,
1764                                       unsigned long data, unsigned int off,
1765                                       snd_pcm_uframes_t frames)
1766 {
1767         struct snd_pcm_runtime *runtime = substream->runtime;
1768         int err;
1769         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1770         if (substream->ops->copy) {
1771                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1772                         return err;
1773         } else {
1774                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1775                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1776                         return -EFAULT;
1777         }
1778         return 0;
1779 }
1780  
1781 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1782                           unsigned long data, unsigned int off,
1783                           snd_pcm_uframes_t size);
1784
1785 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1786                                             unsigned long data,
1787                                             snd_pcm_uframes_t size,
1788                                             int nonblock,
1789                                             transfer_f transfer)
1790 {
1791         struct snd_pcm_runtime *runtime = substream->runtime;
1792         snd_pcm_uframes_t xfer = 0;
1793         snd_pcm_uframes_t offset = 0;
1794         int err = 0;
1795
1796         if (size == 0)
1797                 return 0;
1798
1799         snd_pcm_stream_lock_irq(substream);
1800         switch (runtime->status->state) {
1801         case SNDRV_PCM_STATE_PREPARED:
1802         case SNDRV_PCM_STATE_RUNNING:
1803         case SNDRV_PCM_STATE_PAUSED:
1804                 break;
1805         case SNDRV_PCM_STATE_XRUN:
1806                 err = -EPIPE;
1807                 goto _end_unlock;
1808         case SNDRV_PCM_STATE_SUSPENDED:
1809                 err = -ESTRPIPE;
1810                 goto _end_unlock;
1811         default:
1812                 err = -EBADFD;
1813                 goto _end_unlock;
1814         }
1815
1816         runtime->twake = 1;
1817         while (size > 0) {
1818                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1819                 snd_pcm_uframes_t avail;
1820                 snd_pcm_uframes_t cont;
1821                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1822                         snd_pcm_update_hw_ptr(substream);
1823                 avail = snd_pcm_playback_avail(runtime);
1824                 if (!avail) {
1825                         if (nonblock) {
1826                                 err = -EAGAIN;
1827                                 goto _end_unlock;
1828                         }
1829                         err = wait_for_avail_min(substream, &avail);
1830                         if (err < 0)
1831                                 goto _end_unlock;
1832                 }
1833                 frames = size > avail ? avail : size;
1834                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1835                 if (frames > cont)
1836                         frames = cont;
1837                 if (snd_BUG_ON(!frames)) {
1838                         runtime->twake = 0;
1839                         snd_pcm_stream_unlock_irq(substream);
1840                         return -EINVAL;
1841                 }
1842                 appl_ptr = runtime->control->appl_ptr;
1843                 appl_ofs = appl_ptr % runtime->buffer_size;
1844                 snd_pcm_stream_unlock_irq(substream);
1845                 err = transfer(substream, appl_ofs, data, offset, frames);
1846                 snd_pcm_stream_lock_irq(substream);
1847                 if (err < 0)
1848                         goto _end_unlock;
1849                 switch (runtime->status->state) {
1850                 case SNDRV_PCM_STATE_XRUN:
1851                         err = -EPIPE;
1852                         goto _end_unlock;
1853                 case SNDRV_PCM_STATE_SUSPENDED:
1854                         err = -ESTRPIPE;
1855                         goto _end_unlock;
1856                 default:
1857                         break;
1858                 }
1859                 appl_ptr += frames;
1860                 if (appl_ptr >= runtime->boundary)
1861                         appl_ptr -= runtime->boundary;
1862                 runtime->control->appl_ptr = appl_ptr;
1863                 if (substream->ops->ack)
1864                         substream->ops->ack(substream);
1865
1866                 offset += frames;
1867                 size -= frames;
1868                 xfer += frames;
1869                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1870                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1871                         err = snd_pcm_start(substream);
1872                         if (err < 0)
1873                                 goto _end_unlock;
1874                 }
1875         }
1876  _end_unlock:
1877         runtime->twake = 0;
1878         if (xfer > 0 && err >= 0)
1879                 snd_pcm_update_state(substream, runtime);
1880         snd_pcm_stream_unlock_irq(substream);
1881         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1882 }
1883
1884 /* sanity-check for read/write methods */
1885 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1886 {
1887         struct snd_pcm_runtime *runtime;
1888         if (PCM_RUNTIME_CHECK(substream))
1889                 return -ENXIO;
1890         runtime = substream->runtime;
1891         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1892                 return -EINVAL;
1893         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1894                 return -EBADFD;
1895         return 0;
1896 }
1897
1898 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1899 {
1900         struct snd_pcm_runtime *runtime;
1901         int nonblock;
1902         int err;
1903
1904         err = pcm_sanity_check(substream);
1905         if (err < 0)
1906                 return err;
1907         runtime = substream->runtime;
1908         nonblock = !!(substream->f_flags & O_NONBLOCK);
1909
1910         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1911             runtime->channels > 1)
1912                 return -EINVAL;
1913         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1914                                   snd_pcm_lib_write_transfer);
1915 }
1916
1917 EXPORT_SYMBOL(snd_pcm_lib_write);
1918
1919 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1920                                        unsigned int hwoff,
1921                                        unsigned long data, unsigned int off,
1922                                        snd_pcm_uframes_t frames)
1923 {
1924         struct snd_pcm_runtime *runtime = substream->runtime;
1925         int err;
1926         void __user **bufs = (void __user **)data;
1927         int channels = runtime->channels;
1928         int c;
1929         if (substream->ops->copy) {
1930                 if (snd_BUG_ON(!substream->ops->silence))
1931                         return -EINVAL;
1932                 for (c = 0; c < channels; ++c, ++bufs) {
1933                         if (*bufs == NULL) {
1934                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
1935                                         return err;
1936                         } else {
1937                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1938                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
1939                                         return err;
1940                         }
1941                 }
1942         } else {
1943                 /* default transfer behaviour */
1944                 size_t dma_csize = runtime->dma_bytes / channels;
1945                 for (c = 0; c < channels; ++c, ++bufs) {
1946                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
1947                         if (*bufs == NULL) {
1948                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
1949                         } else {
1950                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1951                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
1952                                         return -EFAULT;
1953                         }
1954                 }
1955         }
1956         return 0;
1957 }
1958  
1959 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
1960                                      void __user **bufs,
1961                                      snd_pcm_uframes_t frames)
1962 {
1963         struct snd_pcm_runtime *runtime;
1964         int nonblock;
1965         int err;
1966
1967         err = pcm_sanity_check(substream);
1968         if (err < 0)
1969                 return err;
1970         runtime = substream->runtime;
1971         nonblock = !!(substream->f_flags & O_NONBLOCK);
1972
1973         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
1974                 return -EINVAL;
1975         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
1976                                   nonblock, snd_pcm_lib_writev_transfer);
1977 }
1978
1979 EXPORT_SYMBOL(snd_pcm_lib_writev);
1980
1981 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
1982                                      unsigned int hwoff,
1983                                      unsigned long data, unsigned int off,
1984                                      snd_pcm_uframes_t frames)
1985 {
1986         struct snd_pcm_runtime *runtime = substream->runtime;
1987         int err;
1988         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1989         if (substream->ops->copy) {
1990                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1991                         return err;
1992         } else {
1993                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1994                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
1995                         return -EFAULT;
1996         }
1997         return 0;
1998 }
1999
2000 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2001                                            unsigned long data,
2002                                            snd_pcm_uframes_t size,
2003                                            int nonblock,
2004                                            transfer_f transfer)
2005 {
2006         struct snd_pcm_runtime *runtime = substream->runtime;
2007         snd_pcm_uframes_t xfer = 0;
2008         snd_pcm_uframes_t offset = 0;
2009         int err = 0;
2010
2011         if (size == 0)
2012                 return 0;
2013
2014         snd_pcm_stream_lock_irq(substream);
2015         switch (runtime->status->state) {
2016         case SNDRV_PCM_STATE_PREPARED:
2017                 if (size >= runtime->start_threshold) {
2018                         err = snd_pcm_start(substream);
2019                         if (err < 0)
2020                                 goto _end_unlock;
2021                 }
2022                 break;
2023         case SNDRV_PCM_STATE_DRAINING:
2024         case SNDRV_PCM_STATE_RUNNING:
2025         case SNDRV_PCM_STATE_PAUSED:
2026                 break;
2027         case SNDRV_PCM_STATE_XRUN:
2028                 err = -EPIPE;
2029                 goto _end_unlock;
2030         case SNDRV_PCM_STATE_SUSPENDED:
2031                 err = -ESTRPIPE;
2032                 goto _end_unlock;
2033         default:
2034                 err = -EBADFD;
2035                 goto _end_unlock;
2036         }
2037
2038         runtime->twake = 1;
2039         while (size > 0) {
2040                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2041                 snd_pcm_uframes_t avail;
2042                 snd_pcm_uframes_t cont;
2043                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2044                         snd_pcm_update_hw_ptr(substream);
2045                 avail = snd_pcm_capture_avail(runtime);
2046                 if (!avail) {
2047                         if (runtime->status->state ==
2048                             SNDRV_PCM_STATE_DRAINING) {
2049                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2050                                 goto _end_unlock;
2051                         }
2052                         if (nonblock) {
2053                                 err = -EAGAIN;
2054                                 goto _end_unlock;
2055                         }
2056                         err = wait_for_avail_min(substream, &avail);
2057                         if (err < 0)
2058                                 goto _end_unlock;
2059                         if (!avail)
2060                                 continue; /* draining */
2061                 }
2062                 frames = size > avail ? avail : size;
2063                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2064                 if (frames > cont)
2065                         frames = cont;
2066                 if (snd_BUG_ON(!frames)) {
2067                         runtime->twake = 0;
2068                         snd_pcm_stream_unlock_irq(substream);
2069                         return -EINVAL;
2070                 }
2071                 appl_ptr = runtime->control->appl_ptr;
2072                 appl_ofs = appl_ptr % runtime->buffer_size;
2073                 snd_pcm_stream_unlock_irq(substream);
2074                 err = transfer(substream, appl_ofs, data, offset, frames);
2075                 snd_pcm_stream_lock_irq(substream);
2076                 if (err < 0)
2077                         goto _end_unlock;
2078                 switch (runtime->status->state) {
2079                 case SNDRV_PCM_STATE_XRUN:
2080                         err = -EPIPE;
2081                         goto _end_unlock;
2082                 case SNDRV_PCM_STATE_SUSPENDED:
2083                         err = -ESTRPIPE;
2084                         goto _end_unlock;
2085                 default:
2086                         break;
2087                 }
2088                 appl_ptr += frames;
2089                 if (appl_ptr >= runtime->boundary)
2090                         appl_ptr -= runtime->boundary;
2091                 runtime->control->appl_ptr = appl_ptr;
2092                 if (substream->ops->ack)
2093                         substream->ops->ack(substream);
2094
2095                 offset += frames;
2096                 size -= frames;
2097                 xfer += frames;
2098         }
2099  _end_unlock:
2100         runtime->twake = 0;
2101         if (xfer > 0 && err >= 0)
2102                 snd_pcm_update_state(substream, runtime);
2103         snd_pcm_stream_unlock_irq(substream);
2104         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2105 }
2106
2107 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2108 {
2109         struct snd_pcm_runtime *runtime;
2110         int nonblock;
2111         int err;
2112         
2113         err = pcm_sanity_check(substream);
2114         if (err < 0)
2115                 return err;
2116         runtime = substream->runtime;
2117         nonblock = !!(substream->f_flags & O_NONBLOCK);
2118         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2119                 return -EINVAL;
2120         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2121 }
2122
2123 EXPORT_SYMBOL(snd_pcm_lib_read);
2124
2125 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2126                                       unsigned int hwoff,
2127                                       unsigned long data, unsigned int off,
2128                                       snd_pcm_uframes_t frames)
2129 {
2130         struct snd_pcm_runtime *runtime = substream->runtime;
2131         int err;
2132         void __user **bufs = (void __user **)data;
2133         int channels = runtime->channels;
2134         int c;
2135         if (substream->ops->copy) {
2136                 for (c = 0; c < channels; ++c, ++bufs) {
2137                         char __user *buf;
2138                         if (*bufs == NULL)
2139                                 continue;
2140                         buf = *bufs + samples_to_bytes(runtime, off);
2141                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2142                                 return err;
2143                 }
2144         } else {
2145                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2146                 for (c = 0; c < channels; ++c, ++bufs) {
2147                         char *hwbuf;
2148                         char __user *buf;
2149                         if (*bufs == NULL)
2150                                 continue;
2151
2152                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2153                         buf = *bufs + samples_to_bytes(runtime, off);
2154                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2155                                 return -EFAULT;
2156                 }
2157         }
2158         return 0;
2159 }
2160  
2161 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2162                                     void __user **bufs,
2163                                     snd_pcm_uframes_t frames)
2164 {
2165         struct snd_pcm_runtime *runtime;
2166         int nonblock;
2167         int err;
2168
2169         err = pcm_sanity_check(substream);
2170         if (err < 0)
2171                 return err;
2172         runtime = substream->runtime;
2173         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2174                 return -EBADFD;
2175
2176         nonblock = !!(substream->f_flags & O_NONBLOCK);
2177         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2178                 return -EINVAL;
2179         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2180 }
2181
2182 EXPORT_SYMBOL(snd_pcm_lib_readv);