[ALSA] pcm core: fix silence_start calculations
[linux-2.6.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@suse.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <sound/driver.h>
24 #include <linux/slab.h>
25 #include <linux/time.h>
26 #include <sound/core.h>
27 #include <sound/control.h>
28 #include <sound/info.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/timer.h>
32
33 /*
34  * fill ring buffer with silence
35  * runtime->silence_start: starting pointer to silence area
36  * runtime->silence_filled: size filled with silence
37  * runtime->silence_threshold: threshold from application
38  * runtime->silence_size: maximal size from application
39  *
40  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41  */
42 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
43 {
44         struct snd_pcm_runtime *runtime = substream->runtime;
45         snd_pcm_uframes_t frames, ofs, transfer;
46
47         if (runtime->silence_size < runtime->boundary) {
48                 snd_pcm_sframes_t noise_dist, n;
49                 if (runtime->silence_start != runtime->control->appl_ptr) {
50                         n = runtime->control->appl_ptr - runtime->silence_start;
51                         if (n < 0)
52                                 n += runtime->boundary;
53                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54                                 runtime->silence_filled -= n;
55                         else
56                                 runtime->silence_filled = 0;
57                         runtime->silence_start = runtime->control->appl_ptr;
58                 }
59                 if (runtime->silence_filled >= runtime->buffer_size)
60                         return;
61                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
62                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
63                         return;
64                 frames = runtime->silence_threshold - noise_dist;
65                 if (frames > runtime->silence_size)
66                         frames = runtime->silence_size;
67         } else {
68                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
69                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
70                         runtime->silence_filled = avail > 0 ? avail : 0;
71                         runtime->silence_start = (runtime->status->hw_ptr +
72                                                   runtime->silence_filled) %
73                                                  runtime->boundary;
74                 } else {
75                         ofs = runtime->status->hw_ptr;
76                         frames = new_hw_ptr - ofs;
77                         if ((snd_pcm_sframes_t)frames < 0)
78                                 frames += runtime->boundary;
79                         runtime->silence_filled -= frames;
80                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
81                                 runtime->silence_filled = 0;
82                                 runtime->silence_start = new_hw_ptr;
83                         } else {
84                                 runtime->silence_start = ofs;
85                         }
86                 }
87                 frames = runtime->buffer_size - runtime->silence_filled;
88         }
89         snd_assert(frames <= runtime->buffer_size, return);
90         if (frames == 0)
91                 return;
92         ofs = runtime->silence_start % runtime->buffer_size;
93         while (frames > 0) {
94                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
95                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
96                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
97                         if (substream->ops->silence) {
98                                 int err;
99                                 err = substream->ops->silence(substream, -1, ofs, transfer);
100                                 snd_assert(err >= 0, );
101                         } else {
102                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
103                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
104                         }
105                 } else {
106                         unsigned int c;
107                         unsigned int channels = runtime->channels;
108                         if (substream->ops->silence) {
109                                 for (c = 0; c < channels; ++c) {
110                                         int err;
111                                         err = substream->ops->silence(substream, c, ofs, transfer);
112                                         snd_assert(err >= 0, );
113                                 }
114                         } else {
115                                 size_t dma_csize = runtime->dma_bytes / channels;
116                                 for (c = 0; c < channels; ++c) {
117                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
118                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
119                                 }
120                         }
121                 }
122                 runtime->silence_filled += transfer;
123                 frames -= transfer;
124                 ofs = 0;
125         }
126 }
127
128 static void xrun(struct snd_pcm_substream *substream)
129 {
130         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
131 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
132         if (substream->pstr->xrun_debug) {
133                 snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n",
134                            substream->pcm->card->number,
135                            substream->pcm->device,
136                            substream->stream ? 'c' : 'p');
137                 if (substream->pstr->xrun_debug > 1)
138                         dump_stack();
139         }
140 #endif
141 }
142
143 static inline snd_pcm_uframes_t snd_pcm_update_hw_ptr_pos(struct snd_pcm_substream *substream,
144                                                           struct snd_pcm_runtime *runtime)
145 {
146         snd_pcm_uframes_t pos;
147
148         pos = substream->ops->pointer(substream);
149         if (pos == SNDRV_PCM_POS_XRUN)
150                 return pos; /* XRUN */
151         if (runtime->tstamp_mode & SNDRV_PCM_TSTAMP_MMAP)
152                 getnstimeofday((struct timespec *)&runtime->status->tstamp);
153 #ifdef CONFIG_SND_DEBUG
154         if (pos >= runtime->buffer_size) {
155                 snd_printk(KERN_ERR  "BUG: stream = %i, pos = 0x%lx, buffer size = 0x%lx, period size = 0x%lx\n", substream->stream, pos, runtime->buffer_size, runtime->period_size);
156         }
157 #endif
158         pos -= pos % runtime->min_align;
159         return pos;
160 }
161
162 static inline int snd_pcm_update_hw_ptr_post(struct snd_pcm_substream *substream,
163                                              struct snd_pcm_runtime *runtime)
164 {
165         snd_pcm_uframes_t avail;
166
167         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
168                 avail = snd_pcm_playback_avail(runtime);
169         else
170                 avail = snd_pcm_capture_avail(runtime);
171         if (avail > runtime->avail_max)
172                 runtime->avail_max = avail;
173         if (avail >= runtime->stop_threshold) {
174                 if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING)
175                         snd_pcm_drain_done(substream);
176                 else
177                         xrun(substream);
178                 return -EPIPE;
179         }
180         if (avail >= runtime->control->avail_min)
181                 wake_up(&runtime->sleep);
182         return 0;
183 }
184
185 static inline int snd_pcm_update_hw_ptr_interrupt(struct snd_pcm_substream *substream)
186 {
187         struct snd_pcm_runtime *runtime = substream->runtime;
188         snd_pcm_uframes_t pos;
189         snd_pcm_uframes_t new_hw_ptr, hw_ptr_interrupt;
190         snd_pcm_sframes_t delta;
191
192         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
193         if (pos == SNDRV_PCM_POS_XRUN) {
194                 xrun(substream);
195                 return -EPIPE;
196         }
197         if (runtime->period_size == runtime->buffer_size)
198                 goto __next_buf;
199         new_hw_ptr = runtime->hw_ptr_base + pos;
200         hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size;
201
202         delta = hw_ptr_interrupt - new_hw_ptr;
203         if (delta > 0) {
204                 if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
205 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
206                         if (runtime->periods > 1 && substream->pstr->xrun_debug) {
207                                 snd_printd(KERN_ERR "Unexpected hw_pointer value [1] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
208                                 if (substream->pstr->xrun_debug > 1)
209                                         dump_stack();
210                         }
211 #endif
212                         return 0;
213                 }
214               __next_buf:
215                 runtime->hw_ptr_base += runtime->buffer_size;
216                 if (runtime->hw_ptr_base == runtime->boundary)
217                         runtime->hw_ptr_base = 0;
218                 new_hw_ptr = runtime->hw_ptr_base + pos;
219         }
220
221         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
222             runtime->silence_size > 0)
223                 snd_pcm_playback_silence(substream, new_hw_ptr);
224
225         runtime->status->hw_ptr = new_hw_ptr;
226         runtime->hw_ptr_interrupt = new_hw_ptr - new_hw_ptr % runtime->period_size;
227
228         return snd_pcm_update_hw_ptr_post(substream, runtime);
229 }
230
231 /* CAUTION: call it with irq disabled */
232 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
233 {
234         struct snd_pcm_runtime *runtime = substream->runtime;
235         snd_pcm_uframes_t pos;
236         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr;
237         snd_pcm_sframes_t delta;
238
239         old_hw_ptr = runtime->status->hw_ptr;
240         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
241         if (pos == SNDRV_PCM_POS_XRUN) {
242                 xrun(substream);
243                 return -EPIPE;
244         }
245         new_hw_ptr = runtime->hw_ptr_base + pos;
246
247         delta = old_hw_ptr - new_hw_ptr;
248         if (delta > 0) {
249                 if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
250 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
251                         if (runtime->periods > 2 && substream->pstr->xrun_debug) {
252                                 snd_printd(KERN_ERR "Unexpected hw_pointer value [2] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
253                                 if (substream->pstr->xrun_debug > 1)
254                                         dump_stack();
255                         }
256 #endif
257                         return 0;
258                 }
259                 runtime->hw_ptr_base += runtime->buffer_size;
260                 if (runtime->hw_ptr_base == runtime->boundary)
261                         runtime->hw_ptr_base = 0;
262                 new_hw_ptr = runtime->hw_ptr_base + pos;
263         }
264         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
265             runtime->silence_size > 0)
266                 snd_pcm_playback_silence(substream, new_hw_ptr);
267
268         runtime->status->hw_ptr = new_hw_ptr;
269
270         return snd_pcm_update_hw_ptr_post(substream, runtime);
271 }
272
273 /**
274  * snd_pcm_set_ops - set the PCM operators
275  * @pcm: the pcm instance
276  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
277  * @ops: the operator table
278  *
279  * Sets the given PCM operators to the pcm instance.
280  */
281 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
282 {
283         struct snd_pcm_str *stream = &pcm->streams[direction];
284         struct snd_pcm_substream *substream;
285         
286         for (substream = stream->substream; substream != NULL; substream = substream->next)
287                 substream->ops = ops;
288 }
289
290 EXPORT_SYMBOL(snd_pcm_set_ops);
291
292 /**
293  * snd_pcm_sync - set the PCM sync id
294  * @substream: the pcm substream
295  *
296  * Sets the PCM sync identifier for the card.
297  */
298 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
299 {
300         struct snd_pcm_runtime *runtime = substream->runtime;
301         
302         runtime->sync.id32[0] = substream->pcm->card->number;
303         runtime->sync.id32[1] = -1;
304         runtime->sync.id32[2] = -1;
305         runtime->sync.id32[3] = -1;
306 }
307
308 EXPORT_SYMBOL(snd_pcm_set_sync);
309
310 /*
311  *  Standard ioctl routine
312  */
313
314 static inline unsigned int div32(unsigned int a, unsigned int b, 
315                                  unsigned int *r)
316 {
317         if (b == 0) {
318                 *r = 0;
319                 return UINT_MAX;
320         }
321         *r = a % b;
322         return a / b;
323 }
324
325 static inline unsigned int div_down(unsigned int a, unsigned int b)
326 {
327         if (b == 0)
328                 return UINT_MAX;
329         return a / b;
330 }
331
332 static inline unsigned int div_up(unsigned int a, unsigned int b)
333 {
334         unsigned int r;
335         unsigned int q;
336         if (b == 0)
337                 return UINT_MAX;
338         q = div32(a, b, &r);
339         if (r)
340                 ++q;
341         return q;
342 }
343
344 static inline unsigned int mul(unsigned int a, unsigned int b)
345 {
346         if (a == 0)
347                 return 0;
348         if (div_down(UINT_MAX, a) < b)
349                 return UINT_MAX;
350         return a * b;
351 }
352
353 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
354                                     unsigned int c, unsigned int *r)
355 {
356         u_int64_t n = (u_int64_t) a * b;
357         if (c == 0) {
358                 snd_assert(n > 0, );
359                 *r = 0;
360                 return UINT_MAX;
361         }
362         div64_32(&n, c, r);
363         if (n >= UINT_MAX) {
364                 *r = 0;
365                 return UINT_MAX;
366         }
367         return n;
368 }
369
370 /**
371  * snd_interval_refine - refine the interval value of configurator
372  * @i: the interval value to refine
373  * @v: the interval value to refer to
374  *
375  * Refines the interval value with the reference value.
376  * The interval is changed to the range satisfying both intervals.
377  * The interval status (min, max, integer, etc.) are evaluated.
378  *
379  * Returns non-zero if the value is changed, zero if not changed.
380  */
381 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
382 {
383         int changed = 0;
384         snd_assert(!snd_interval_empty(i), return -EINVAL);
385         if (i->min < v->min) {
386                 i->min = v->min;
387                 i->openmin = v->openmin;
388                 changed = 1;
389         } else if (i->min == v->min && !i->openmin && v->openmin) {
390                 i->openmin = 1;
391                 changed = 1;
392         }
393         if (i->max > v->max) {
394                 i->max = v->max;
395                 i->openmax = v->openmax;
396                 changed = 1;
397         } else if (i->max == v->max && !i->openmax && v->openmax) {
398                 i->openmax = 1;
399                 changed = 1;
400         }
401         if (!i->integer && v->integer) {
402                 i->integer = 1;
403                 changed = 1;
404         }
405         if (i->integer) {
406                 if (i->openmin) {
407                         i->min++;
408                         i->openmin = 0;
409                 }
410                 if (i->openmax) {
411                         i->max--;
412                         i->openmax = 0;
413                 }
414         } else if (!i->openmin && !i->openmax && i->min == i->max)
415                 i->integer = 1;
416         if (snd_interval_checkempty(i)) {
417                 snd_interval_none(i);
418                 return -EINVAL;
419         }
420         return changed;
421 }
422
423 EXPORT_SYMBOL(snd_interval_refine);
424
425 static int snd_interval_refine_first(struct snd_interval *i)
426 {
427         snd_assert(!snd_interval_empty(i), return -EINVAL);
428         if (snd_interval_single(i))
429                 return 0;
430         i->max = i->min;
431         i->openmax = i->openmin;
432         if (i->openmax)
433                 i->max++;
434         return 1;
435 }
436
437 static int snd_interval_refine_last(struct snd_interval *i)
438 {
439         snd_assert(!snd_interval_empty(i), return -EINVAL);
440         if (snd_interval_single(i))
441                 return 0;
442         i->min = i->max;
443         i->openmin = i->openmax;
444         if (i->openmin)
445                 i->min--;
446         return 1;
447 }
448
449 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
450 {
451         if (a->empty || b->empty) {
452                 snd_interval_none(c);
453                 return;
454         }
455         c->empty = 0;
456         c->min = mul(a->min, b->min);
457         c->openmin = (a->openmin || b->openmin);
458         c->max = mul(a->max,  b->max);
459         c->openmax = (a->openmax || b->openmax);
460         c->integer = (a->integer && b->integer);
461 }
462
463 /**
464  * snd_interval_div - refine the interval value with division
465  * @a: dividend
466  * @b: divisor
467  * @c: quotient
468  *
469  * c = a / b
470  *
471  * Returns non-zero if the value is changed, zero if not changed.
472  */
473 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
474 {
475         unsigned int r;
476         if (a->empty || b->empty) {
477                 snd_interval_none(c);
478                 return;
479         }
480         c->empty = 0;
481         c->min = div32(a->min, b->max, &r);
482         c->openmin = (r || a->openmin || b->openmax);
483         if (b->min > 0) {
484                 c->max = div32(a->max, b->min, &r);
485                 if (r) {
486                         c->max++;
487                         c->openmax = 1;
488                 } else
489                         c->openmax = (a->openmax || b->openmin);
490         } else {
491                 c->max = UINT_MAX;
492                 c->openmax = 0;
493         }
494         c->integer = 0;
495 }
496
497 /**
498  * snd_interval_muldivk - refine the interval value
499  * @a: dividend 1
500  * @b: dividend 2
501  * @k: divisor (as integer)
502  * @c: result
503   *
504  * c = a * b / k
505  *
506  * Returns non-zero if the value is changed, zero if not changed.
507  */
508 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
509                       unsigned int k, struct snd_interval *c)
510 {
511         unsigned int r;
512         if (a->empty || b->empty) {
513                 snd_interval_none(c);
514                 return;
515         }
516         c->empty = 0;
517         c->min = muldiv32(a->min, b->min, k, &r);
518         c->openmin = (r || a->openmin || b->openmin);
519         c->max = muldiv32(a->max, b->max, k, &r);
520         if (r) {
521                 c->max++;
522                 c->openmax = 1;
523         } else
524                 c->openmax = (a->openmax || b->openmax);
525         c->integer = 0;
526 }
527
528 /**
529  * snd_interval_mulkdiv - refine the interval value
530  * @a: dividend 1
531  * @k: dividend 2 (as integer)
532  * @b: divisor
533  * @c: result
534  *
535  * c = a * k / b
536  *
537  * Returns non-zero if the value is changed, zero if not changed.
538  */
539 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
540                       const struct snd_interval *b, struct snd_interval *c)
541 {
542         unsigned int r;
543         if (a->empty || b->empty) {
544                 snd_interval_none(c);
545                 return;
546         }
547         c->empty = 0;
548         c->min = muldiv32(a->min, k, b->max, &r);
549         c->openmin = (r || a->openmin || b->openmax);
550         if (b->min > 0) {
551                 c->max = muldiv32(a->max, k, b->min, &r);
552                 if (r) {
553                         c->max++;
554                         c->openmax = 1;
555                 } else
556                         c->openmax = (a->openmax || b->openmin);
557         } else {
558                 c->max = UINT_MAX;
559                 c->openmax = 0;
560         }
561         c->integer = 0;
562 }
563
564 /* ---- */
565
566
567 /**
568  * snd_interval_ratnum - refine the interval value
569  * @i: interval to refine
570  * @rats_count: number of ratnum_t 
571  * @rats: ratnum_t array
572  * @nump: pointer to store the resultant numerator
573  * @denp: pointer to store the resultant denominator
574  *
575  * Returns non-zero if the value is changed, zero if not changed.
576  */
577 int snd_interval_ratnum(struct snd_interval *i,
578                         unsigned int rats_count, struct snd_ratnum *rats,
579                         unsigned int *nump, unsigned int *denp)
580 {
581         unsigned int best_num, best_diff, best_den;
582         unsigned int k;
583         struct snd_interval t;
584         int err;
585
586         best_num = best_den = best_diff = 0;
587         for (k = 0; k < rats_count; ++k) {
588                 unsigned int num = rats[k].num;
589                 unsigned int den;
590                 unsigned int q = i->min;
591                 int diff;
592                 if (q == 0)
593                         q = 1;
594                 den = div_down(num, q);
595                 if (den < rats[k].den_min)
596                         continue;
597                 if (den > rats[k].den_max)
598                         den = rats[k].den_max;
599                 else {
600                         unsigned int r;
601                         r = (den - rats[k].den_min) % rats[k].den_step;
602                         if (r != 0)
603                                 den -= r;
604                 }
605                 diff = num - q * den;
606                 if (best_num == 0 ||
607                     diff * best_den < best_diff * den) {
608                         best_diff = diff;
609                         best_den = den;
610                         best_num = num;
611                 }
612         }
613         if (best_den == 0) {
614                 i->empty = 1;
615                 return -EINVAL;
616         }
617         t.min = div_down(best_num, best_den);
618         t.openmin = !!(best_num % best_den);
619         
620         best_num = best_den = best_diff = 0;
621         for (k = 0; k < rats_count; ++k) {
622                 unsigned int num = rats[k].num;
623                 unsigned int den;
624                 unsigned int q = i->max;
625                 int diff;
626                 if (q == 0) {
627                         i->empty = 1;
628                         return -EINVAL;
629                 }
630                 den = div_up(num, q);
631                 if (den > rats[k].den_max)
632                         continue;
633                 if (den < rats[k].den_min)
634                         den = rats[k].den_min;
635                 else {
636                         unsigned int r;
637                         r = (den - rats[k].den_min) % rats[k].den_step;
638                         if (r != 0)
639                                 den += rats[k].den_step - r;
640                 }
641                 diff = q * den - num;
642                 if (best_num == 0 ||
643                     diff * best_den < best_diff * den) {
644                         best_diff = diff;
645                         best_den = den;
646                         best_num = num;
647                 }
648         }
649         if (best_den == 0) {
650                 i->empty = 1;
651                 return -EINVAL;
652         }
653         t.max = div_up(best_num, best_den);
654         t.openmax = !!(best_num % best_den);
655         t.integer = 0;
656         err = snd_interval_refine(i, &t);
657         if (err < 0)
658                 return err;
659
660         if (snd_interval_single(i)) {
661                 if (nump)
662                         *nump = best_num;
663                 if (denp)
664                         *denp = best_den;
665         }
666         return err;
667 }
668
669 EXPORT_SYMBOL(snd_interval_ratnum);
670
671 /**
672  * snd_interval_ratden - refine the interval value
673  * @i: interval to refine
674  * @rats_count: number of struct ratden
675  * @rats: struct ratden array
676  * @nump: pointer to store the resultant numerator
677  * @denp: pointer to store the resultant denominator
678  *
679  * Returns non-zero if the value is changed, zero if not changed.
680  */
681 static int snd_interval_ratden(struct snd_interval *i,
682                                unsigned int rats_count, struct snd_ratden *rats,
683                                unsigned int *nump, unsigned int *denp)
684 {
685         unsigned int best_num, best_diff, best_den;
686         unsigned int k;
687         struct snd_interval t;
688         int err;
689
690         best_num = best_den = best_diff = 0;
691         for (k = 0; k < rats_count; ++k) {
692                 unsigned int num;
693                 unsigned int den = rats[k].den;
694                 unsigned int q = i->min;
695                 int diff;
696                 num = mul(q, den);
697                 if (num > rats[k].num_max)
698                         continue;
699                 if (num < rats[k].num_min)
700                         num = rats[k].num_max;
701                 else {
702                         unsigned int r;
703                         r = (num - rats[k].num_min) % rats[k].num_step;
704                         if (r != 0)
705                                 num += rats[k].num_step - r;
706                 }
707                 diff = num - q * den;
708                 if (best_num == 0 ||
709                     diff * best_den < best_diff * den) {
710                         best_diff = diff;
711                         best_den = den;
712                         best_num = num;
713                 }
714         }
715         if (best_den == 0) {
716                 i->empty = 1;
717                 return -EINVAL;
718         }
719         t.min = div_down(best_num, best_den);
720         t.openmin = !!(best_num % best_den);
721         
722         best_num = best_den = best_diff = 0;
723         for (k = 0; k < rats_count; ++k) {
724                 unsigned int num;
725                 unsigned int den = rats[k].den;
726                 unsigned int q = i->max;
727                 int diff;
728                 num = mul(q, den);
729                 if (num < rats[k].num_min)
730                         continue;
731                 if (num > rats[k].num_max)
732                         num = rats[k].num_max;
733                 else {
734                         unsigned int r;
735                         r = (num - rats[k].num_min) % rats[k].num_step;
736                         if (r != 0)
737                                 num -= r;
738                 }
739                 diff = q * den - num;
740                 if (best_num == 0 ||
741                     diff * best_den < best_diff * den) {
742                         best_diff = diff;
743                         best_den = den;
744                         best_num = num;
745                 }
746         }
747         if (best_den == 0) {
748                 i->empty = 1;
749                 return -EINVAL;
750         }
751         t.max = div_up(best_num, best_den);
752         t.openmax = !!(best_num % best_den);
753         t.integer = 0;
754         err = snd_interval_refine(i, &t);
755         if (err < 0)
756                 return err;
757
758         if (snd_interval_single(i)) {
759                 if (nump)
760                         *nump = best_num;
761                 if (denp)
762                         *denp = best_den;
763         }
764         return err;
765 }
766
767 /**
768  * snd_interval_list - refine the interval value from the list
769  * @i: the interval value to refine
770  * @count: the number of elements in the list
771  * @list: the value list
772  * @mask: the bit-mask to evaluate
773  *
774  * Refines the interval value from the list.
775  * When mask is non-zero, only the elements corresponding to bit 1 are
776  * evaluated.
777  *
778  * Returns non-zero if the value is changed, zero if not changed.
779  */
780 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
781 {
782         unsigned int k;
783         int changed = 0;
784         for (k = 0; k < count; k++) {
785                 if (mask && !(mask & (1 << k)))
786                         continue;
787                 if (i->min == list[k] && !i->openmin)
788                         goto _l1;
789                 if (i->min < list[k]) {
790                         i->min = list[k];
791                         i->openmin = 0;
792                         changed = 1;
793                         goto _l1;
794                 }
795         }
796         i->empty = 1;
797         return -EINVAL;
798  _l1:
799         for (k = count; k-- > 0;) {
800                 if (mask && !(mask & (1 << k)))
801                         continue;
802                 if (i->max == list[k] && !i->openmax)
803                         goto _l2;
804                 if (i->max > list[k]) {
805                         i->max = list[k];
806                         i->openmax = 0;
807                         changed = 1;
808                         goto _l2;
809                 }
810         }
811         i->empty = 1;
812         return -EINVAL;
813  _l2:
814         if (snd_interval_checkempty(i)) {
815                 i->empty = 1;
816                 return -EINVAL;
817         }
818         return changed;
819 }
820
821 EXPORT_SYMBOL(snd_interval_list);
822
823 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
824 {
825         unsigned int n;
826         int changed = 0;
827         n = (i->min - min) % step;
828         if (n != 0 || i->openmin) {
829                 i->min += step - n;
830                 changed = 1;
831         }
832         n = (i->max - min) % step;
833         if (n != 0 || i->openmax) {
834                 i->max -= n;
835                 changed = 1;
836         }
837         if (snd_interval_checkempty(i)) {
838                 i->empty = 1;
839                 return -EINVAL;
840         }
841         return changed;
842 }
843
844 /* Info constraints helpers */
845
846 /**
847  * snd_pcm_hw_rule_add - add the hw-constraint rule
848  * @runtime: the pcm runtime instance
849  * @cond: condition bits
850  * @var: the variable to evaluate
851  * @func: the evaluation function
852  * @private: the private data pointer passed to function
853  * @dep: the dependent variables
854  *
855  * Returns zero if successful, or a negative error code on failure.
856  */
857 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
858                         int var,
859                         snd_pcm_hw_rule_func_t func, void *private,
860                         int dep, ...)
861 {
862         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
863         struct snd_pcm_hw_rule *c;
864         unsigned int k;
865         va_list args;
866         va_start(args, dep);
867         if (constrs->rules_num >= constrs->rules_all) {
868                 struct snd_pcm_hw_rule *new;
869                 unsigned int new_rules = constrs->rules_all + 16;
870                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
871                 if (!new)
872                         return -ENOMEM;
873                 if (constrs->rules) {
874                         memcpy(new, constrs->rules,
875                                constrs->rules_num * sizeof(*c));
876                         kfree(constrs->rules);
877                 }
878                 constrs->rules = new;
879                 constrs->rules_all = new_rules;
880         }
881         c = &constrs->rules[constrs->rules_num];
882         c->cond = cond;
883         c->func = func;
884         c->var = var;
885         c->private = private;
886         k = 0;
887         while (1) {
888                 snd_assert(k < ARRAY_SIZE(c->deps), return -EINVAL);
889                 c->deps[k++] = dep;
890                 if (dep < 0)
891                         break;
892                 dep = va_arg(args, int);
893         }
894         constrs->rules_num++;
895         va_end(args);
896         return 0;
897 }                                   
898
899 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
900
901 /**
902  * snd_pcm_hw_constraint_mask
903  * @runtime: PCM runtime instance
904  * @var: hw_params variable to apply the mask
905  * @mask: the bitmap mask
906  *
907  * Apply the constraint of the given bitmap mask to a mask parameter.
908  */
909 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
910                                u_int32_t mask)
911 {
912         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
913         struct snd_mask *maskp = constrs_mask(constrs, var);
914         *maskp->bits &= mask;
915         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
916         if (*maskp->bits == 0)
917                 return -EINVAL;
918         return 0;
919 }
920
921 /**
922  * snd_pcm_hw_constraint_mask64
923  * @runtime: PCM runtime instance
924  * @var: hw_params variable to apply the mask
925  * @mask: the 64bit bitmap mask
926  *
927  * Apply the constraint of the given bitmap mask to a mask parameter.
928  */
929 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
930                                  u_int64_t mask)
931 {
932         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
933         struct snd_mask *maskp = constrs_mask(constrs, var);
934         maskp->bits[0] &= (u_int32_t)mask;
935         maskp->bits[1] &= (u_int32_t)(mask >> 32);
936         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
937         if (! maskp->bits[0] && ! maskp->bits[1])
938                 return -EINVAL;
939         return 0;
940 }
941
942 /**
943  * snd_pcm_hw_constraint_integer
944  * @runtime: PCM runtime instance
945  * @var: hw_params variable to apply the integer constraint
946  *
947  * Apply the constraint of integer to an interval parameter.
948  */
949 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
950 {
951         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
952         return snd_interval_setinteger(constrs_interval(constrs, var));
953 }
954
955 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
956
957 /**
958  * snd_pcm_hw_constraint_minmax
959  * @runtime: PCM runtime instance
960  * @var: hw_params variable to apply the range
961  * @min: the minimal value
962  * @max: the maximal value
963  * 
964  * Apply the min/max range constraint to an interval parameter.
965  */
966 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
967                                  unsigned int min, unsigned int max)
968 {
969         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
970         struct snd_interval t;
971         t.min = min;
972         t.max = max;
973         t.openmin = t.openmax = 0;
974         t.integer = 0;
975         return snd_interval_refine(constrs_interval(constrs, var), &t);
976 }
977
978 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
979
980 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
981                                 struct snd_pcm_hw_rule *rule)
982 {
983         struct snd_pcm_hw_constraint_list *list = rule->private;
984         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
985 }               
986
987
988 /**
989  * snd_pcm_hw_constraint_list
990  * @runtime: PCM runtime instance
991  * @cond: condition bits
992  * @var: hw_params variable to apply the list constraint
993  * @l: list
994  * 
995  * Apply the list of constraints to an interval parameter.
996  */
997 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
998                                unsigned int cond,
999                                snd_pcm_hw_param_t var,
1000                                struct snd_pcm_hw_constraint_list *l)
1001 {
1002         return snd_pcm_hw_rule_add(runtime, cond, var,
1003                                    snd_pcm_hw_rule_list, l,
1004                                    var, -1);
1005 }
1006
1007 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1008
1009 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1010                                    struct snd_pcm_hw_rule *rule)
1011 {
1012         struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1013         unsigned int num = 0, den = 0;
1014         int err;
1015         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1016                                   r->nrats, r->rats, &num, &den);
1017         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1018                 params->rate_num = num;
1019                 params->rate_den = den;
1020         }
1021         return err;
1022 }
1023
1024 /**
1025  * snd_pcm_hw_constraint_ratnums
1026  * @runtime: PCM runtime instance
1027  * @cond: condition bits
1028  * @var: hw_params variable to apply the ratnums constraint
1029  * @r: struct snd_ratnums constriants
1030  */
1031 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1032                                   unsigned int cond,
1033                                   snd_pcm_hw_param_t var,
1034                                   struct snd_pcm_hw_constraint_ratnums *r)
1035 {
1036         return snd_pcm_hw_rule_add(runtime, cond, var,
1037                                    snd_pcm_hw_rule_ratnums, r,
1038                                    var, -1);
1039 }
1040
1041 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1042
1043 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1044                                    struct snd_pcm_hw_rule *rule)
1045 {
1046         struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1047         unsigned int num = 0, den = 0;
1048         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1049                                   r->nrats, r->rats, &num, &den);
1050         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1051                 params->rate_num = num;
1052                 params->rate_den = den;
1053         }
1054         return err;
1055 }
1056
1057 /**
1058  * snd_pcm_hw_constraint_ratdens
1059  * @runtime: PCM runtime instance
1060  * @cond: condition bits
1061  * @var: hw_params variable to apply the ratdens constraint
1062  * @r: struct snd_ratdens constriants
1063  */
1064 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1065                                   unsigned int cond,
1066                                   snd_pcm_hw_param_t var,
1067                                   struct snd_pcm_hw_constraint_ratdens *r)
1068 {
1069         return snd_pcm_hw_rule_add(runtime, cond, var,
1070                                    snd_pcm_hw_rule_ratdens, r,
1071                                    var, -1);
1072 }
1073
1074 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1075
1076 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1077                                   struct snd_pcm_hw_rule *rule)
1078 {
1079         unsigned int l = (unsigned long) rule->private;
1080         int width = l & 0xffff;
1081         unsigned int msbits = l >> 16;
1082         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1083         if (snd_interval_single(i) && snd_interval_value(i) == width)
1084                 params->msbits = msbits;
1085         return 0;
1086 }
1087
1088 /**
1089  * snd_pcm_hw_constraint_msbits
1090  * @runtime: PCM runtime instance
1091  * @cond: condition bits
1092  * @width: sample bits width
1093  * @msbits: msbits width
1094  */
1095 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1096                                  unsigned int cond,
1097                                  unsigned int width,
1098                                  unsigned int msbits)
1099 {
1100         unsigned long l = (msbits << 16) | width;
1101         return snd_pcm_hw_rule_add(runtime, cond, -1,
1102                                     snd_pcm_hw_rule_msbits,
1103                                     (void*) l,
1104                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1105 }
1106
1107 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1108
1109 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1110                                 struct snd_pcm_hw_rule *rule)
1111 {
1112         unsigned long step = (unsigned long) rule->private;
1113         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1114 }
1115
1116 /**
1117  * snd_pcm_hw_constraint_step
1118  * @runtime: PCM runtime instance
1119  * @cond: condition bits
1120  * @var: hw_params variable to apply the step constraint
1121  * @step: step size
1122  */
1123 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1124                                unsigned int cond,
1125                                snd_pcm_hw_param_t var,
1126                                unsigned long step)
1127 {
1128         return snd_pcm_hw_rule_add(runtime, cond, var, 
1129                                    snd_pcm_hw_rule_step, (void *) step,
1130                                    var, -1);
1131 }
1132
1133 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1134
1135 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1136 {
1137         static int pow2_sizes[] = {
1138                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1139                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1140                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1141                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1142         };
1143         return snd_interval_list(hw_param_interval(params, rule->var),
1144                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1145 }               
1146
1147 /**
1148  * snd_pcm_hw_constraint_pow2
1149  * @runtime: PCM runtime instance
1150  * @cond: condition bits
1151  * @var: hw_params variable to apply the power-of-2 constraint
1152  */
1153 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1154                                unsigned int cond,
1155                                snd_pcm_hw_param_t var)
1156 {
1157         return snd_pcm_hw_rule_add(runtime, cond, var, 
1158                                    snd_pcm_hw_rule_pow2, NULL,
1159                                    var, -1);
1160 }
1161
1162 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1163
1164 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1165                                   snd_pcm_hw_param_t var)
1166 {
1167         if (hw_is_mask(var)) {
1168                 snd_mask_any(hw_param_mask(params, var));
1169                 params->cmask |= 1 << var;
1170                 params->rmask |= 1 << var;
1171                 return;
1172         }
1173         if (hw_is_interval(var)) {
1174                 snd_interval_any(hw_param_interval(params, var));
1175                 params->cmask |= 1 << var;
1176                 params->rmask |= 1 << var;
1177                 return;
1178         }
1179         snd_BUG();
1180 }
1181
1182 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1183 {
1184         unsigned int k;
1185         memset(params, 0, sizeof(*params));
1186         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1187                 _snd_pcm_hw_param_any(params, k);
1188         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1189                 _snd_pcm_hw_param_any(params, k);
1190         params->info = ~0U;
1191 }
1192
1193 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1194
1195 /**
1196  * snd_pcm_hw_param_value
1197  * @params: the hw_params instance
1198  * @var: parameter to retrieve
1199  * @dir: pointer to the direction (-1,0,1) or NULL
1200  *
1201  * Return the value for field PAR if it's fixed in configuration space 
1202  *  defined by PARAMS. Return -EINVAL otherwise
1203  */
1204 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1205                            snd_pcm_hw_param_t var, int *dir)
1206 {
1207         if (hw_is_mask(var)) {
1208                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1209                 if (!snd_mask_single(mask))
1210                         return -EINVAL;
1211                 if (dir)
1212                         *dir = 0;
1213                 return snd_mask_value(mask);
1214         }
1215         if (hw_is_interval(var)) {
1216                 const struct snd_interval *i = hw_param_interval_c(params, var);
1217                 if (!snd_interval_single(i))
1218                         return -EINVAL;
1219                 if (dir)
1220                         *dir = i->openmin;
1221                 return snd_interval_value(i);
1222         }
1223         return -EINVAL;
1224 }
1225
1226 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1227
1228 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1229                                 snd_pcm_hw_param_t var)
1230 {
1231         if (hw_is_mask(var)) {
1232                 snd_mask_none(hw_param_mask(params, var));
1233                 params->cmask |= 1 << var;
1234                 params->rmask |= 1 << var;
1235         } else if (hw_is_interval(var)) {
1236                 snd_interval_none(hw_param_interval(params, var));
1237                 params->cmask |= 1 << var;
1238                 params->rmask |= 1 << var;
1239         } else {
1240                 snd_BUG();
1241         }
1242 }
1243
1244 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1245
1246 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1247                                    snd_pcm_hw_param_t var)
1248 {
1249         int changed;
1250         if (hw_is_mask(var))
1251                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1252         else if (hw_is_interval(var))
1253                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1254         else
1255                 return -EINVAL;
1256         if (changed) {
1257                 params->cmask |= 1 << var;
1258                 params->rmask |= 1 << var;
1259         }
1260         return changed;
1261 }
1262
1263
1264 /**
1265  * snd_pcm_hw_param_first
1266  * @pcm: PCM instance
1267  * @params: the hw_params instance
1268  * @var: parameter to retrieve
1269  * @dir: pointer to the direction (-1,0,1) or NULL
1270  *
1271  * Inside configuration space defined by PARAMS remove from PAR all 
1272  * values > minimum. Reduce configuration space accordingly.
1273  * Return the minimum.
1274  */
1275 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1276                            struct snd_pcm_hw_params *params, 
1277                            snd_pcm_hw_param_t var, int *dir)
1278 {
1279         int changed = _snd_pcm_hw_param_first(params, var);
1280         if (changed < 0)
1281                 return changed;
1282         if (params->rmask) {
1283                 int err = snd_pcm_hw_refine(pcm, params);
1284                 snd_assert(err >= 0, return err);
1285         }
1286         return snd_pcm_hw_param_value(params, var, dir);
1287 }
1288
1289 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1290
1291 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1292                                   snd_pcm_hw_param_t var)
1293 {
1294         int changed;
1295         if (hw_is_mask(var))
1296                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1297         else if (hw_is_interval(var))
1298                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1299         else
1300                 return -EINVAL;
1301         if (changed) {
1302                 params->cmask |= 1 << var;
1303                 params->rmask |= 1 << var;
1304         }
1305         return changed;
1306 }
1307
1308
1309 /**
1310  * snd_pcm_hw_param_last
1311  * @pcm: PCM instance
1312  * @params: the hw_params instance
1313  * @var: parameter to retrieve
1314  * @dir: pointer to the direction (-1,0,1) or NULL
1315  *
1316  * Inside configuration space defined by PARAMS remove from PAR all 
1317  * values < maximum. Reduce configuration space accordingly.
1318  * Return the maximum.
1319  */
1320 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1321                           struct snd_pcm_hw_params *params,
1322                           snd_pcm_hw_param_t var, int *dir)
1323 {
1324         int changed = _snd_pcm_hw_param_last(params, var);
1325         if (changed < 0)
1326                 return changed;
1327         if (params->rmask) {
1328                 int err = snd_pcm_hw_refine(pcm, params);
1329                 snd_assert(err >= 0, return err);
1330         }
1331         return snd_pcm_hw_param_value(params, var, dir);
1332 }
1333
1334 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1335
1336 /**
1337  * snd_pcm_hw_param_choose
1338  * @pcm: PCM instance
1339  * @params: the hw_params instance
1340  *
1341  * Choose one configuration from configuration space defined by PARAMS
1342  * The configuration chosen is that obtained fixing in this order:
1343  * first access, first format, first subformat, min channels,
1344  * min rate, min period time, max buffer size, min tick time
1345  */
1346 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1347                              struct snd_pcm_hw_params *params)
1348 {
1349         static int vars[] = {
1350                 SNDRV_PCM_HW_PARAM_ACCESS,
1351                 SNDRV_PCM_HW_PARAM_FORMAT,
1352                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1353                 SNDRV_PCM_HW_PARAM_CHANNELS,
1354                 SNDRV_PCM_HW_PARAM_RATE,
1355                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1356                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1357                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1358                 -1
1359         };
1360         int err, *v;
1361
1362         for (v = vars; *v != -1; v++) {
1363                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1364                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1365                 else
1366                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1367                 snd_assert(err >= 0, return err);
1368         }
1369         return 0;
1370 }
1371
1372 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1373                                    void *arg)
1374 {
1375         struct snd_pcm_runtime *runtime = substream->runtime;
1376         unsigned long flags;
1377         snd_pcm_stream_lock_irqsave(substream, flags);
1378         if (snd_pcm_running(substream) &&
1379             snd_pcm_update_hw_ptr(substream) >= 0)
1380                 runtime->status->hw_ptr %= runtime->buffer_size;
1381         else
1382                 runtime->status->hw_ptr = 0;
1383         snd_pcm_stream_unlock_irqrestore(substream, flags);
1384         return 0;
1385 }
1386
1387 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1388                                           void *arg)
1389 {
1390         struct snd_pcm_channel_info *info = arg;
1391         struct snd_pcm_runtime *runtime = substream->runtime;
1392         int width;
1393         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1394                 info->offset = -1;
1395                 return 0;
1396         }
1397         width = snd_pcm_format_physical_width(runtime->format);
1398         if (width < 0)
1399                 return width;
1400         info->offset = 0;
1401         switch (runtime->access) {
1402         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1403         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1404                 info->first = info->channel * width;
1405                 info->step = runtime->channels * width;
1406                 break;
1407         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1408         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1409         {
1410                 size_t size = runtime->dma_bytes / runtime->channels;
1411                 info->first = info->channel * size * 8;
1412                 info->step = width;
1413                 break;
1414         }
1415         default:
1416                 snd_BUG();
1417                 break;
1418         }
1419         return 0;
1420 }
1421
1422 /**
1423  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1424  * @substream: the pcm substream instance
1425  * @cmd: ioctl command
1426  * @arg: ioctl argument
1427  *
1428  * Processes the generic ioctl commands for PCM.
1429  * Can be passed as the ioctl callback for PCM ops.
1430  *
1431  * Returns zero if successful, or a negative error code on failure.
1432  */
1433 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1434                       unsigned int cmd, void *arg)
1435 {
1436         switch (cmd) {
1437         case SNDRV_PCM_IOCTL1_INFO:
1438                 return 0;
1439         case SNDRV_PCM_IOCTL1_RESET:
1440                 return snd_pcm_lib_ioctl_reset(substream, arg);
1441         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1442                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1443         }
1444         return -ENXIO;
1445 }
1446
1447 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1448
1449 /*
1450  *  Conditions
1451  */
1452
1453 static void snd_pcm_system_tick_set(struct snd_pcm_substream *substream, 
1454                                     unsigned long ticks)
1455 {
1456         struct snd_pcm_runtime *runtime = substream->runtime;
1457         if (ticks == 0)
1458                 del_timer(&runtime->tick_timer);
1459         else {
1460                 ticks += (1000000 / HZ) - 1;
1461                 ticks /= (1000000 / HZ);
1462                 mod_timer(&runtime->tick_timer, jiffies + ticks);
1463         }
1464 }
1465
1466 /* Temporary alias */
1467 void snd_pcm_tick_set(struct snd_pcm_substream *substream, unsigned long ticks)
1468 {
1469         snd_pcm_system_tick_set(substream, ticks);
1470 }
1471
1472 void snd_pcm_tick_prepare(struct snd_pcm_substream *substream)
1473 {
1474         struct snd_pcm_runtime *runtime = substream->runtime;
1475         snd_pcm_uframes_t frames = ULONG_MAX;
1476         snd_pcm_uframes_t avail, dist;
1477         unsigned int ticks;
1478         u_int64_t n;
1479         u_int32_t r;
1480         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
1481                 if (runtime->silence_size >= runtime->boundary) {
1482                         frames = 1;
1483                 } else if (runtime->silence_size > 0 &&
1484                            runtime->silence_filled < runtime->buffer_size) {
1485                         snd_pcm_sframes_t noise_dist;
1486                         noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
1487                         if (noise_dist > (snd_pcm_sframes_t)runtime->silence_threshold)
1488                                 frames = noise_dist - runtime->silence_threshold;
1489                 }
1490                 avail = snd_pcm_playback_avail(runtime);
1491         } else {
1492                 avail = snd_pcm_capture_avail(runtime);
1493         }
1494         if (avail < runtime->control->avail_min) {
1495                 snd_pcm_sframes_t n = runtime->control->avail_min - avail;
1496                 if (n > 0 && frames > (snd_pcm_uframes_t)n)
1497                         frames = n;
1498         }
1499         if (avail < runtime->buffer_size) {
1500                 snd_pcm_sframes_t n = runtime->buffer_size - avail;
1501                 if (n > 0 && frames > (snd_pcm_uframes_t)n)
1502                         frames = n;
1503         }
1504         if (frames == ULONG_MAX) {
1505                 snd_pcm_tick_set(substream, 0);
1506                 return;
1507         }
1508         dist = runtime->status->hw_ptr - runtime->hw_ptr_base;
1509         /* Distance to next interrupt */
1510         dist = runtime->period_size - dist % runtime->period_size;
1511         if (dist <= frames) {
1512                 snd_pcm_tick_set(substream, 0);
1513                 return;
1514         }
1515         /* the base time is us */
1516         n = frames;
1517         n *= 1000000;
1518         div64_32(&n, runtime->tick_time * runtime->rate, &r);
1519         ticks = n + (r > 0 ? 1 : 0);
1520         if (ticks < runtime->sleep_min)
1521                 ticks = runtime->sleep_min;
1522         snd_pcm_tick_set(substream, (unsigned long) ticks);
1523 }
1524
1525 void snd_pcm_tick_elapsed(struct snd_pcm_substream *substream)
1526 {
1527         struct snd_pcm_runtime *runtime;
1528         unsigned long flags;
1529         
1530         snd_assert(substream != NULL, return);
1531         runtime = substream->runtime;
1532         snd_assert(runtime != NULL, return);
1533
1534         snd_pcm_stream_lock_irqsave(substream, flags);
1535         if (!snd_pcm_running(substream) ||
1536             snd_pcm_update_hw_ptr(substream) < 0)
1537                 goto _end;
1538         if (runtime->sleep_min)
1539                 snd_pcm_tick_prepare(substream);
1540  _end:
1541         snd_pcm_stream_unlock_irqrestore(substream, flags);
1542 }
1543
1544 /**
1545  * snd_pcm_period_elapsed - update the pcm status for the next period
1546  * @substream: the pcm substream instance
1547  *
1548  * This function is called from the interrupt handler when the
1549  * PCM has processed the period size.  It will update the current
1550  * pointer, set up the tick, wake up sleepers, etc.
1551  *
1552  * Even if more than one periods have elapsed since the last call, you
1553  * have to call this only once.
1554  */
1555 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1556 {
1557         struct snd_pcm_runtime *runtime;
1558         unsigned long flags;
1559
1560         snd_assert(substream != NULL, return);
1561         runtime = substream->runtime;
1562         snd_assert(runtime != NULL, return);
1563
1564         if (runtime->transfer_ack_begin)
1565                 runtime->transfer_ack_begin(substream);
1566
1567         snd_pcm_stream_lock_irqsave(substream, flags);
1568         if (!snd_pcm_running(substream) ||
1569             snd_pcm_update_hw_ptr_interrupt(substream) < 0)
1570                 goto _end;
1571
1572         if (substream->timer_running)
1573                 snd_timer_interrupt(substream->timer, 1);
1574         if (runtime->sleep_min)
1575                 snd_pcm_tick_prepare(substream);
1576  _end:
1577         snd_pcm_stream_unlock_irqrestore(substream, flags);
1578         if (runtime->transfer_ack_end)
1579                 runtime->transfer_ack_end(substream);
1580         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1581 }
1582
1583 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1584
1585 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1586                                       unsigned int hwoff,
1587                                       unsigned long data, unsigned int off,
1588                                       snd_pcm_uframes_t frames)
1589 {
1590         struct snd_pcm_runtime *runtime = substream->runtime;
1591         int err;
1592         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1593         if (substream->ops->copy) {
1594                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1595                         return err;
1596         } else {
1597                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1598                 snd_assert(runtime->dma_area, return -EFAULT);
1599                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1600                         return -EFAULT;
1601         }
1602         return 0;
1603 }
1604  
1605 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1606                           unsigned long data, unsigned int off,
1607                           snd_pcm_uframes_t size);
1608
1609 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1610                                             unsigned long data,
1611                                             snd_pcm_uframes_t size,
1612                                             int nonblock,
1613                                             transfer_f transfer)
1614 {
1615         struct snd_pcm_runtime *runtime = substream->runtime;
1616         snd_pcm_uframes_t xfer = 0;
1617         snd_pcm_uframes_t offset = 0;
1618         int err = 0;
1619
1620         if (size == 0)
1621                 return 0;
1622         if (size > runtime->xfer_align)
1623                 size -= size % runtime->xfer_align;
1624
1625         snd_pcm_stream_lock_irq(substream);
1626         switch (runtime->status->state) {
1627         case SNDRV_PCM_STATE_PREPARED:
1628         case SNDRV_PCM_STATE_RUNNING:
1629         case SNDRV_PCM_STATE_PAUSED:
1630                 break;
1631         case SNDRV_PCM_STATE_XRUN:
1632                 err = -EPIPE;
1633                 goto _end_unlock;
1634         case SNDRV_PCM_STATE_SUSPENDED:
1635                 err = -ESTRPIPE;
1636                 goto _end_unlock;
1637         default:
1638                 err = -EBADFD;
1639                 goto _end_unlock;
1640         }
1641
1642         while (size > 0) {
1643                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1644                 snd_pcm_uframes_t avail;
1645                 snd_pcm_uframes_t cont;
1646                 if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1647                         snd_pcm_update_hw_ptr(substream);
1648                 avail = snd_pcm_playback_avail(runtime);
1649                 if (((avail < runtime->control->avail_min && size > avail) ||
1650                    (size >= runtime->xfer_align && avail < runtime->xfer_align))) {
1651                         wait_queue_t wait;
1652                         enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state;
1653                         long tout;
1654
1655                         if (nonblock) {
1656                                 err = -EAGAIN;
1657                                 goto _end_unlock;
1658                         }
1659
1660                         init_waitqueue_entry(&wait, current);
1661                         add_wait_queue(&runtime->sleep, &wait);
1662                         while (1) {
1663                                 if (signal_pending(current)) {
1664                                         state = SIGNALED;
1665                                         break;
1666                                 }
1667                                 set_current_state(TASK_INTERRUPTIBLE);
1668                                 snd_pcm_stream_unlock_irq(substream);
1669                                 tout = schedule_timeout(10 * HZ);
1670                                 snd_pcm_stream_lock_irq(substream);
1671                                 if (tout == 0) {
1672                                         if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
1673                                             runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
1674                                                 state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
1675                                                 break;
1676                                         }
1677                                 }
1678                                 switch (runtime->status->state) {
1679                                 case SNDRV_PCM_STATE_XRUN:
1680                                 case SNDRV_PCM_STATE_DRAINING:
1681                                         state = ERROR;
1682                                         goto _end_loop;
1683                                 case SNDRV_PCM_STATE_SUSPENDED:
1684                                         state = SUSPENDED;
1685                                         goto _end_loop;
1686                                 case SNDRV_PCM_STATE_SETUP:
1687                                         state = DROPPED;
1688                                         goto _end_loop;
1689                                 default:
1690                                         break;
1691                                 }
1692                                 avail = snd_pcm_playback_avail(runtime);
1693                                 if (avail >= runtime->control->avail_min) {
1694                                         state = READY;
1695                                         break;
1696                                 }
1697                         }
1698                        _end_loop:
1699                         remove_wait_queue(&runtime->sleep, &wait);
1700
1701                         switch (state) {
1702                         case ERROR:
1703                                 err = -EPIPE;
1704                                 goto _end_unlock;
1705                         case SUSPENDED:
1706                                 err = -ESTRPIPE;
1707                                 goto _end_unlock;
1708                         case SIGNALED:
1709                                 err = -ERESTARTSYS;
1710                                 goto _end_unlock;
1711                         case EXPIRED:
1712                                 snd_printd("playback write error (DMA or IRQ trouble?)\n");
1713                                 err = -EIO;
1714                                 goto _end_unlock;
1715                         case DROPPED:
1716                                 err = -EBADFD;
1717                                 goto _end_unlock;
1718                         default:
1719                                 break;
1720                         }
1721                 }
1722                 if (avail > runtime->xfer_align)
1723                         avail -= avail % runtime->xfer_align;
1724                 frames = size > avail ? avail : size;
1725                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1726                 if (frames > cont)
1727                         frames = cont;
1728                 snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
1729                 appl_ptr = runtime->control->appl_ptr;
1730                 appl_ofs = appl_ptr % runtime->buffer_size;
1731                 snd_pcm_stream_unlock_irq(substream);
1732                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
1733                         goto _end;
1734                 snd_pcm_stream_lock_irq(substream);
1735                 switch (runtime->status->state) {
1736                 case SNDRV_PCM_STATE_XRUN:
1737                         err = -EPIPE;
1738                         goto _end_unlock;
1739                 case SNDRV_PCM_STATE_SUSPENDED:
1740                         err = -ESTRPIPE;
1741                         goto _end_unlock;
1742                 default:
1743                         break;
1744                 }
1745                 appl_ptr += frames;
1746                 if (appl_ptr >= runtime->boundary)
1747                         appl_ptr -= runtime->boundary;
1748                 runtime->control->appl_ptr = appl_ptr;
1749                 if (substream->ops->ack)
1750                         substream->ops->ack(substream);
1751
1752                 offset += frames;
1753                 size -= frames;
1754                 xfer += frames;
1755                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1756                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1757                         err = snd_pcm_start(substream);
1758                         if (err < 0)
1759                                 goto _end_unlock;
1760                 }
1761                 if (runtime->sleep_min &&
1762                     runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1763                         snd_pcm_tick_prepare(substream);
1764         }
1765  _end_unlock:
1766         snd_pcm_stream_unlock_irq(substream);
1767  _end:
1768         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1769 }
1770
1771 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1772 {
1773         struct snd_pcm_runtime *runtime;
1774         int nonblock;
1775
1776         snd_assert(substream != NULL, return -ENXIO);
1777         runtime = substream->runtime;
1778         snd_assert(runtime != NULL, return -ENXIO);
1779         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
1780         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1781                 return -EBADFD;
1782
1783         nonblock = !!(substream->f_flags & O_NONBLOCK);
1784
1785         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1786             runtime->channels > 1)
1787                 return -EINVAL;
1788         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1789                                   snd_pcm_lib_write_transfer);
1790 }
1791
1792 EXPORT_SYMBOL(snd_pcm_lib_write);
1793
1794 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1795                                        unsigned int hwoff,
1796                                        unsigned long data, unsigned int off,
1797                                        snd_pcm_uframes_t frames)
1798 {
1799         struct snd_pcm_runtime *runtime = substream->runtime;
1800         int err;
1801         void __user **bufs = (void __user **)data;
1802         int channels = runtime->channels;
1803         int c;
1804         if (substream->ops->copy) {
1805                 snd_assert(substream->ops->silence != NULL, return -EINVAL);
1806                 for (c = 0; c < channels; ++c, ++bufs) {
1807                         if (*bufs == NULL) {
1808                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
1809                                         return err;
1810                         } else {
1811                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1812                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
1813                                         return err;
1814                         }
1815                 }
1816         } else {
1817                 /* default transfer behaviour */
1818                 size_t dma_csize = runtime->dma_bytes / channels;
1819                 snd_assert(runtime->dma_area, return -EFAULT);
1820                 for (c = 0; c < channels; ++c, ++bufs) {
1821                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
1822                         if (*bufs == NULL) {
1823                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
1824                         } else {
1825                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1826                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
1827                                         return -EFAULT;
1828                         }
1829                 }
1830         }
1831         return 0;
1832 }
1833  
1834 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
1835                                      void __user **bufs,
1836                                      snd_pcm_uframes_t frames)
1837 {
1838         struct snd_pcm_runtime *runtime;
1839         int nonblock;
1840
1841         snd_assert(substream != NULL, return -ENXIO);
1842         runtime = substream->runtime;
1843         snd_assert(runtime != NULL, return -ENXIO);
1844         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
1845         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1846                 return -EBADFD;
1847
1848         nonblock = !!(substream->f_flags & O_NONBLOCK);
1849
1850         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
1851                 return -EINVAL;
1852         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
1853                                   nonblock, snd_pcm_lib_writev_transfer);
1854 }
1855
1856 EXPORT_SYMBOL(snd_pcm_lib_writev);
1857
1858 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
1859                                      unsigned int hwoff,
1860                                      unsigned long data, unsigned int off,
1861                                      snd_pcm_uframes_t frames)
1862 {
1863         struct snd_pcm_runtime *runtime = substream->runtime;
1864         int err;
1865         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1866         if (substream->ops->copy) {
1867                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1868                         return err;
1869         } else {
1870                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1871                 snd_assert(runtime->dma_area, return -EFAULT);
1872                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
1873                         return -EFAULT;
1874         }
1875         return 0;
1876 }
1877
1878 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
1879                                            unsigned long data,
1880                                            snd_pcm_uframes_t size,
1881                                            int nonblock,
1882                                            transfer_f transfer)
1883 {
1884         struct snd_pcm_runtime *runtime = substream->runtime;
1885         snd_pcm_uframes_t xfer = 0;
1886         snd_pcm_uframes_t offset = 0;
1887         int err = 0;
1888
1889         if (size == 0)
1890                 return 0;
1891         if (size > runtime->xfer_align)
1892                 size -= size % runtime->xfer_align;
1893
1894         snd_pcm_stream_lock_irq(substream);
1895         switch (runtime->status->state) {
1896         case SNDRV_PCM_STATE_PREPARED:
1897                 if (size >= runtime->start_threshold) {
1898                         err = snd_pcm_start(substream);
1899                         if (err < 0)
1900                                 goto _end_unlock;
1901                 }
1902                 break;
1903         case SNDRV_PCM_STATE_DRAINING:
1904         case SNDRV_PCM_STATE_RUNNING:
1905         case SNDRV_PCM_STATE_PAUSED:
1906                 break;
1907         case SNDRV_PCM_STATE_XRUN:
1908                 err = -EPIPE;
1909                 goto _end_unlock;
1910         case SNDRV_PCM_STATE_SUSPENDED:
1911                 err = -ESTRPIPE;
1912                 goto _end_unlock;
1913         default:
1914                 err = -EBADFD;
1915                 goto _end_unlock;
1916         }
1917
1918         while (size > 0) {
1919                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1920                 snd_pcm_uframes_t avail;
1921                 snd_pcm_uframes_t cont;
1922                 if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1923                         snd_pcm_update_hw_ptr(substream);
1924               __draining:
1925                 avail = snd_pcm_capture_avail(runtime);
1926                 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
1927                         if (avail < runtime->xfer_align) {
1928                                 err = -EPIPE;
1929                                 goto _end_unlock;
1930                         }
1931                 } else if ((avail < runtime->control->avail_min && size > avail) ||
1932                            (size >= runtime->xfer_align && avail < runtime->xfer_align)) {
1933                         wait_queue_t wait;
1934                         enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state;
1935                         long tout;
1936
1937                         if (nonblock) {
1938                                 err = -EAGAIN;
1939                                 goto _end_unlock;
1940                         }
1941
1942                         init_waitqueue_entry(&wait, current);
1943                         add_wait_queue(&runtime->sleep, &wait);
1944                         while (1) {
1945                                 if (signal_pending(current)) {
1946                                         state = SIGNALED;
1947                                         break;
1948                                 }
1949                                 set_current_state(TASK_INTERRUPTIBLE);
1950                                 snd_pcm_stream_unlock_irq(substream);
1951                                 tout = schedule_timeout(10 * HZ);
1952                                 snd_pcm_stream_lock_irq(substream);
1953                                 if (tout == 0) {
1954                                         if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
1955                                             runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
1956                                                 state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
1957                                                 break;
1958                                         }
1959                                 }
1960                                 switch (runtime->status->state) {
1961                                 case SNDRV_PCM_STATE_XRUN:
1962                                         state = ERROR;
1963                                         goto _end_loop;
1964                                 case SNDRV_PCM_STATE_SUSPENDED:
1965                                         state = SUSPENDED;
1966                                         goto _end_loop;
1967                                 case SNDRV_PCM_STATE_DRAINING:
1968                                         goto __draining;
1969                                 case SNDRV_PCM_STATE_SETUP:
1970                                         state = DROPPED;
1971                                         goto _end_loop;
1972                                 default:
1973                                         break;
1974                                 }
1975                                 avail = snd_pcm_capture_avail(runtime);
1976                                 if (avail >= runtime->control->avail_min) {
1977                                         state = READY;
1978                                         break;
1979                                 }
1980                         }
1981                        _end_loop:
1982                         remove_wait_queue(&runtime->sleep, &wait);
1983
1984                         switch (state) {
1985                         case ERROR:
1986                                 err = -EPIPE;
1987                                 goto _end_unlock;
1988                         case SUSPENDED:
1989                                 err = -ESTRPIPE;
1990                                 goto _end_unlock;
1991                         case SIGNALED:
1992                                 err = -ERESTARTSYS;
1993                                 goto _end_unlock;
1994                         case EXPIRED:
1995                                 snd_printd("capture read error (DMA or IRQ trouble?)\n");
1996                                 err = -EIO;
1997                                 goto _end_unlock;
1998                         case DROPPED:
1999                                 err = -EBADFD;
2000                                 goto _end_unlock;
2001                         default:
2002                                 break;
2003                         }
2004                 }
2005                 if (avail > runtime->xfer_align)
2006                         avail -= avail % runtime->xfer_align;
2007                 frames = size > avail ? avail : size;
2008                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2009                 if (frames > cont)
2010                         frames = cont;
2011                 snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
2012                 appl_ptr = runtime->control->appl_ptr;
2013                 appl_ofs = appl_ptr % runtime->buffer_size;
2014                 snd_pcm_stream_unlock_irq(substream);
2015                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
2016                         goto _end;
2017                 snd_pcm_stream_lock_irq(substream);
2018                 switch (runtime->status->state) {
2019                 case SNDRV_PCM_STATE_XRUN:
2020                         err = -EPIPE;
2021                         goto _end_unlock;
2022                 case SNDRV_PCM_STATE_SUSPENDED:
2023                         err = -ESTRPIPE;
2024                         goto _end_unlock;
2025                 default:
2026                         break;
2027                 }
2028                 appl_ptr += frames;
2029                 if (appl_ptr >= runtime->boundary)
2030                         appl_ptr -= runtime->boundary;
2031                 runtime->control->appl_ptr = appl_ptr;
2032                 if (substream->ops->ack)
2033                         substream->ops->ack(substream);
2034
2035                 offset += frames;
2036                 size -= frames;
2037                 xfer += frames;
2038                 if (runtime->sleep_min &&
2039                     runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2040                         snd_pcm_tick_prepare(substream);
2041         }
2042  _end_unlock:
2043         snd_pcm_stream_unlock_irq(substream);
2044  _end:
2045         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2046 }
2047
2048 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2049 {
2050         struct snd_pcm_runtime *runtime;
2051         int nonblock;
2052         
2053         snd_assert(substream != NULL, return -ENXIO);
2054         runtime = substream->runtime;
2055         snd_assert(runtime != NULL, return -ENXIO);
2056         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2057         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2058                 return -EBADFD;
2059
2060         nonblock = !!(substream->f_flags & O_NONBLOCK);
2061         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2062                 return -EINVAL;
2063         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2064 }
2065
2066 EXPORT_SYMBOL(snd_pcm_lib_read);
2067
2068 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2069                                       unsigned int hwoff,
2070                                       unsigned long data, unsigned int off,
2071                                       snd_pcm_uframes_t frames)
2072 {
2073         struct snd_pcm_runtime *runtime = substream->runtime;
2074         int err;
2075         void __user **bufs = (void __user **)data;
2076         int channels = runtime->channels;
2077         int c;
2078         if (substream->ops->copy) {
2079                 for (c = 0; c < channels; ++c, ++bufs) {
2080                         char __user *buf;
2081                         if (*bufs == NULL)
2082                                 continue;
2083                         buf = *bufs + samples_to_bytes(runtime, off);
2084                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2085                                 return err;
2086                 }
2087         } else {
2088                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2089                 snd_assert(runtime->dma_area, return -EFAULT);
2090                 for (c = 0; c < channels; ++c, ++bufs) {
2091                         char *hwbuf;
2092                         char __user *buf;
2093                         if (*bufs == NULL)
2094                                 continue;
2095
2096                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2097                         buf = *bufs + samples_to_bytes(runtime, off);
2098                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2099                                 return -EFAULT;
2100                 }
2101         }
2102         return 0;
2103 }
2104  
2105 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2106                                     void __user **bufs,
2107                                     snd_pcm_uframes_t frames)
2108 {
2109         struct snd_pcm_runtime *runtime;
2110         int nonblock;
2111
2112         snd_assert(substream != NULL, return -ENXIO);
2113         runtime = substream->runtime;
2114         snd_assert(runtime != NULL, return -ENXIO);
2115         snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2116         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2117                 return -EBADFD;
2118
2119         nonblock = !!(substream->f_flags & O_NONBLOCK);
2120         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2121                 return -EINVAL;
2122         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2123 }
2124
2125 EXPORT_SYMBOL(snd_pcm_lib_readv);