30f410832a25991c44e2f71efcebb63abdb2b232
[linux-2.6.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <sound/core.h>
27 #include <sound/control.h>
28 #include <sound/info.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/timer.h>
32
33 /*
34  * fill ring buffer with silence
35  * runtime->silence_start: starting pointer to silence area
36  * runtime->silence_filled: size filled with silence
37  * runtime->silence_threshold: threshold from application
38  * runtime->silence_size: maximal size from application
39  *
40  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41  */
42 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
43 {
44         struct snd_pcm_runtime *runtime = substream->runtime;
45         snd_pcm_uframes_t frames, ofs, transfer;
46
47         if (runtime->silence_size < runtime->boundary) {
48                 snd_pcm_sframes_t noise_dist, n;
49                 if (runtime->silence_start != runtime->control->appl_ptr) {
50                         n = runtime->control->appl_ptr - runtime->silence_start;
51                         if (n < 0)
52                                 n += runtime->boundary;
53                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54                                 runtime->silence_filled -= n;
55                         else
56                                 runtime->silence_filled = 0;
57                         runtime->silence_start = runtime->control->appl_ptr;
58                 }
59                 if (runtime->silence_filled >= runtime->buffer_size)
60                         return;
61                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
62                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
63                         return;
64                 frames = runtime->silence_threshold - noise_dist;
65                 if (frames > runtime->silence_size)
66                         frames = runtime->silence_size;
67         } else {
68                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
69                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
70                         runtime->silence_filled = avail > 0 ? avail : 0;
71                         runtime->silence_start = (runtime->status->hw_ptr +
72                                                   runtime->silence_filled) %
73                                                  runtime->boundary;
74                 } else {
75                         ofs = runtime->status->hw_ptr;
76                         frames = new_hw_ptr - ofs;
77                         if ((snd_pcm_sframes_t)frames < 0)
78                                 frames += runtime->boundary;
79                         runtime->silence_filled -= frames;
80                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
81                                 runtime->silence_filled = 0;
82                                 runtime->silence_start = new_hw_ptr;
83                         } else {
84                                 runtime->silence_start = ofs;
85                         }
86                 }
87                 frames = runtime->buffer_size - runtime->silence_filled;
88         }
89         if (snd_BUG_ON(frames > runtime->buffer_size))
90                 return;
91         if (frames == 0)
92                 return;
93         ofs = runtime->silence_start % runtime->buffer_size;
94         while (frames > 0) {
95                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
96                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
97                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
98                         if (substream->ops->silence) {
99                                 int err;
100                                 err = substream->ops->silence(substream, -1, ofs, transfer);
101                                 snd_BUG_ON(err < 0);
102                         } else {
103                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
104                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
105                         }
106                 } else {
107                         unsigned int c;
108                         unsigned int channels = runtime->channels;
109                         if (substream->ops->silence) {
110                                 for (c = 0; c < channels; ++c) {
111                                         int err;
112                                         err = substream->ops->silence(substream, c, ofs, transfer);
113                                         snd_BUG_ON(err < 0);
114                                 }
115                         } else {
116                                 size_t dma_csize = runtime->dma_bytes / channels;
117                                 for (c = 0; c < channels; ++c) {
118                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
119                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
120                                 }
121                         }
122                 }
123                 runtime->silence_filled += transfer;
124                 frames -= transfer;
125                 ofs = 0;
126         }
127 }
128
129 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
130 #define xrun_debug(substream, mask)     ((substream)->pstr->xrun_debug & (mask))
131 #else
132 #define xrun_debug(substream, mask)     0
133 #endif
134
135 #define dump_stack_on_xrun(substream) do {              \
136                 if (xrun_debug(substream, 2))           \
137                         dump_stack();                   \
138         } while (0)
139
140 static void pcm_debug_name(struct snd_pcm_substream *substream,
141                            char *name, size_t len)
142 {
143         snprintf(name, len, "pcmC%dD%d%c:%d",
144                  substream->pcm->card->number,
145                  substream->pcm->device,
146                  substream->stream ? 'c' : 'p',
147                  substream->number);
148 }
149
150 static void xrun(struct snd_pcm_substream *substream)
151 {
152         struct snd_pcm_runtime *runtime = substream->runtime;
153
154         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
155                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
156         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
157         if (xrun_debug(substream, 1)) {
158                 char name[16];
159                 pcm_debug_name(substream, name, sizeof(name));
160                 snd_printd(KERN_DEBUG "XRUN: %s\n", name);
161                 dump_stack_on_xrun(substream);
162         }
163 }
164
165 static snd_pcm_uframes_t
166 snd_pcm_update_hw_ptr_pos(struct snd_pcm_substream *substream,
167                           struct snd_pcm_runtime *runtime)
168 {
169         snd_pcm_uframes_t pos;
170
171         pos = substream->ops->pointer(substream);
172         if (pos == SNDRV_PCM_POS_XRUN)
173                 return pos; /* XRUN */
174         if (pos >= runtime->buffer_size) {
175                 if (printk_ratelimit()) {
176                         char name[16];
177                         pcm_debug_name(substream, name, sizeof(name));
178                         snd_printd(KERN_ERR  "BUG: %s, pos = 0x%lx, "
179                                    "buffer size = 0x%lx, period size = 0x%lx\n",
180                                    name, pos, runtime->buffer_size,
181                                    runtime->period_size);
182                 }
183                 pos = 0;
184         }
185         pos -= pos % runtime->min_align;
186         return pos;
187 }
188
189 static int snd_pcm_update_hw_ptr_post(struct snd_pcm_substream *substream,
190                                       struct snd_pcm_runtime *runtime)
191 {
192         snd_pcm_uframes_t avail;
193
194         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
195                 avail = snd_pcm_playback_avail(runtime);
196         else
197                 avail = snd_pcm_capture_avail(runtime);
198         if (avail > runtime->avail_max)
199                 runtime->avail_max = avail;
200         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
201                 if (avail >= runtime->buffer_size) {
202                         snd_pcm_drain_done(substream);
203                         return -EPIPE;
204                 }
205         } else {
206                 if (avail >= runtime->stop_threshold) {
207                         xrun(substream);
208                         return -EPIPE;
209                 }
210         }
211         if (avail >= runtime->control->avail_min)
212                 wake_up(&runtime->sleep);
213         return 0;
214 }
215
216 #define hw_ptr_error(substream, fmt, args...)                           \
217         do {                                                            \
218                 if (xrun_debug(substream, 1)) {                         \
219                         if (printk_ratelimit()) {                       \
220                                 snd_printd("PCM: " fmt, ##args);        \
221                         }                                               \
222                         dump_stack_on_xrun(substream);                  \
223                 }                                                       \
224         } while (0)
225
226 static int snd_pcm_update_hw_ptr_interrupt(struct snd_pcm_substream *substream)
227 {
228         struct snd_pcm_runtime *runtime = substream->runtime;
229         snd_pcm_uframes_t pos;
230         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_ptr_interrupt, hw_base;
231         snd_pcm_sframes_t hdelta, delta;
232         unsigned long jdelta;
233
234         old_hw_ptr = runtime->status->hw_ptr;
235         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
236         if (pos == SNDRV_PCM_POS_XRUN) {
237                 xrun(substream);
238                 return -EPIPE;
239         }
240         if (xrun_debug(substream, 8)) {
241                 char name[16];
242                 pcm_debug_name(substream, name, sizeof(name));
243                 snd_printd("period_update: %s: pos=0x%x/0x%x/0x%x, "
244                            "hwptr=0x%lx, hw_base=0x%lx, hw_intr=0x%lx\n",
245                            name, (unsigned int)pos,
246                            (unsigned int)runtime->period_size,
247                            (unsigned int)runtime->buffer_size,
248                            (unsigned long)old_hw_ptr,
249                            (unsigned long)runtime->hw_ptr_base,
250                            (unsigned long)runtime->hw_ptr_interrupt);
251         }
252         hw_base = runtime->hw_ptr_base;
253         new_hw_ptr = hw_base + pos;
254         hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size;
255         delta = new_hw_ptr - hw_ptr_interrupt;
256         if (hw_ptr_interrupt >= runtime->boundary) {
257                 hw_ptr_interrupt -= runtime->boundary;
258                 if (hw_base < runtime->boundary / 2)
259                         /* hw_base was already lapped; recalc delta */
260                         delta = new_hw_ptr - hw_ptr_interrupt;
261         }
262         if (delta < 0) {
263                 if (runtime->periods == 1 || new_hw_ptr < old_hw_ptr)
264                         delta += runtime->buffer_size;
265                 if (delta < 0) {
266                         hw_ptr_error(substream, 
267                                      "Unexpected hw_pointer value "
268                                      "(stream=%i, pos=%ld, intr_ptr=%ld)\n",
269                                      substream->stream, (long)pos,
270                                      (long)hw_ptr_interrupt);
271 #if 1
272                         /* simply skipping the hwptr update seems more
273                          * robust in some cases, e.g. on VMware with
274                          * inaccurate timer source
275                          */
276                         return 0; /* skip this update */
277 #else
278                         /* rebase to interrupt position */
279                         hw_base = new_hw_ptr = hw_ptr_interrupt;
280                         /* align hw_base to buffer_size */
281                         hw_base -= hw_base % runtime->buffer_size;
282                         delta = 0;
283 #endif
284                 } else {
285                         hw_base += runtime->buffer_size;
286                         if (hw_base >= runtime->boundary)
287                                 hw_base = 0;
288                         new_hw_ptr = hw_base + pos;
289                 }
290         }
291
292         /* Do jiffies check only in xrun_debug mode */
293         if (!xrun_debug(substream, 4))
294                 goto no_jiffies_check;
295
296         /* Skip the jiffies check for hardwares with BATCH flag.
297          * Such hardware usually just increases the position at each IRQ,
298          * thus it can't give any strange position.
299          */
300         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
301                 goto no_jiffies_check;
302         hdelta = new_hw_ptr - old_hw_ptr;
303         if (hdelta < runtime->delay)
304                 goto no_jiffies_check;
305         hdelta -= runtime->delay;
306         jdelta = jiffies - runtime->hw_ptr_jiffies;
307         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
308                 delta = jdelta /
309                         (((runtime->period_size * HZ) / runtime->rate)
310                                                                 + HZ/100);
311                 hw_ptr_error(substream,
312                              "hw_ptr skipping! [Q] "
313                              "(pos=%ld, delta=%ld, period=%ld, "
314                              "jdelta=%lu/%lu/%lu)\n",
315                              (long)pos, (long)hdelta,
316                              (long)runtime->period_size, jdelta,
317                              ((hdelta * HZ) / runtime->rate), delta);
318                 hw_ptr_interrupt = runtime->hw_ptr_interrupt +
319                                    runtime->period_size * delta;
320                 if (hw_ptr_interrupt >= runtime->boundary)
321                         hw_ptr_interrupt -= runtime->boundary;
322                 /* rebase to interrupt position */
323                 hw_base = new_hw_ptr = hw_ptr_interrupt;
324                 /* align hw_base to buffer_size */
325                 hw_base -= hw_base % runtime->buffer_size;
326                 delta = 0;
327         }
328  no_jiffies_check:
329         if (delta > runtime->period_size + runtime->period_size / 2) {
330                 hw_ptr_error(substream,
331                              "Lost interrupts? "
332                              "(stream=%i, delta=%ld, intr_ptr=%ld)\n",
333                              substream->stream, (long)delta,
334                              (long)hw_ptr_interrupt);
335                 /* rebase hw_ptr_interrupt */
336                 hw_ptr_interrupt =
337                         new_hw_ptr - new_hw_ptr % runtime->period_size;
338         }
339         runtime->hw_ptr_interrupt = hw_ptr_interrupt;
340
341         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
342             runtime->silence_size > 0)
343                 snd_pcm_playback_silence(substream, new_hw_ptr);
344
345         if (runtime->status->hw_ptr == new_hw_ptr)
346                 return 0;
347
348         runtime->hw_ptr_base = hw_base;
349         runtime->status->hw_ptr = new_hw_ptr;
350         runtime->hw_ptr_jiffies = jiffies;
351         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
352                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
353
354         return snd_pcm_update_hw_ptr_post(substream, runtime);
355 }
356
357 /* CAUTION: call it with irq disabled */
358 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
359 {
360         struct snd_pcm_runtime *runtime = substream->runtime;
361         snd_pcm_uframes_t pos;
362         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
363         snd_pcm_sframes_t delta;
364         unsigned long jdelta;
365
366         old_hw_ptr = runtime->status->hw_ptr;
367         pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
368         if (pos == SNDRV_PCM_POS_XRUN) {
369                 xrun(substream);
370                 return -EPIPE;
371         }
372         if (xrun_debug(substream, 16)) {
373                 char name[16];
374                 pcm_debug_name(substream, name, sizeof(name));
375                 snd_printd("hw_update: %s: pos=0x%x/0x%x/0x%x, "
376                            "hwptr=0x%lx, hw_base=0x%lx, hw_intr=0x%lx\n",
377                            name, (unsigned int)pos,
378                            (unsigned int)runtime->period_size,
379                            (unsigned int)runtime->buffer_size,
380                            (unsigned long)old_hw_ptr,
381                            (unsigned long)runtime->hw_ptr_base,
382                            (unsigned long)runtime->hw_ptr_interrupt);
383         }
384
385         hw_base = runtime->hw_ptr_base;
386         new_hw_ptr = hw_base + pos;
387
388         delta = new_hw_ptr - old_hw_ptr;
389         jdelta = jiffies - runtime->hw_ptr_jiffies;
390         if (delta < 0) {
391                 delta += runtime->buffer_size;
392                 if (delta < 0) {
393                         hw_ptr_error(substream, 
394                                      "Unexpected hw_pointer value [2] "
395                                      "(stream=%i, pos=%ld, old_ptr=%ld, jdelta=%li)\n",
396                                      substream->stream, (long)pos,
397                                      (long)old_hw_ptr, jdelta);
398                         return 0;
399                 }
400                 hw_base += runtime->buffer_size;
401                 if (hw_base >= runtime->boundary)
402                         hw_base = 0;
403                 new_hw_ptr = hw_base + pos;
404         }
405         /* Do jiffies check only in xrun_debug mode */
406         if (!xrun_debug(substream, 4))
407                 goto no_jiffies_check;
408         if (delta < runtime->delay)
409                 goto no_jiffies_check;
410         delta -= runtime->delay;
411         if (((delta * HZ) / runtime->rate) > jdelta + HZ/100) {
412                 hw_ptr_error(substream,
413                              "hw_ptr skipping! "
414                              "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu)\n",
415                              (long)pos, (long)delta,
416                              (long)runtime->period_size, jdelta,
417                              ((delta * HZ) / runtime->rate));
418                 return 0;
419         }
420  no_jiffies_check:
421         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
422             runtime->silence_size > 0)
423                 snd_pcm_playback_silence(substream, new_hw_ptr);
424
425         if (runtime->status->hw_ptr == new_hw_ptr)
426                 return 0;
427
428         runtime->hw_ptr_base = hw_base;
429         runtime->status->hw_ptr = new_hw_ptr;
430         runtime->hw_ptr_jiffies = jiffies;
431         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
432                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
433
434         return snd_pcm_update_hw_ptr_post(substream, runtime);
435 }
436
437 /**
438  * snd_pcm_set_ops - set the PCM operators
439  * @pcm: the pcm instance
440  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
441  * @ops: the operator table
442  *
443  * Sets the given PCM operators to the pcm instance.
444  */
445 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
446 {
447         struct snd_pcm_str *stream = &pcm->streams[direction];
448         struct snd_pcm_substream *substream;
449         
450         for (substream = stream->substream; substream != NULL; substream = substream->next)
451                 substream->ops = ops;
452 }
453
454 EXPORT_SYMBOL(snd_pcm_set_ops);
455
456 /**
457  * snd_pcm_sync - set the PCM sync id
458  * @substream: the pcm substream
459  *
460  * Sets the PCM sync identifier for the card.
461  */
462 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
463 {
464         struct snd_pcm_runtime *runtime = substream->runtime;
465         
466         runtime->sync.id32[0] = substream->pcm->card->number;
467         runtime->sync.id32[1] = -1;
468         runtime->sync.id32[2] = -1;
469         runtime->sync.id32[3] = -1;
470 }
471
472 EXPORT_SYMBOL(snd_pcm_set_sync);
473
474 /*
475  *  Standard ioctl routine
476  */
477
478 static inline unsigned int div32(unsigned int a, unsigned int b, 
479                                  unsigned int *r)
480 {
481         if (b == 0) {
482                 *r = 0;
483                 return UINT_MAX;
484         }
485         *r = a % b;
486         return a / b;
487 }
488
489 static inline unsigned int div_down(unsigned int a, unsigned int b)
490 {
491         if (b == 0)
492                 return UINT_MAX;
493         return a / b;
494 }
495
496 static inline unsigned int div_up(unsigned int a, unsigned int b)
497 {
498         unsigned int r;
499         unsigned int q;
500         if (b == 0)
501                 return UINT_MAX;
502         q = div32(a, b, &r);
503         if (r)
504                 ++q;
505         return q;
506 }
507
508 static inline unsigned int mul(unsigned int a, unsigned int b)
509 {
510         if (a == 0)
511                 return 0;
512         if (div_down(UINT_MAX, a) < b)
513                 return UINT_MAX;
514         return a * b;
515 }
516
517 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
518                                     unsigned int c, unsigned int *r)
519 {
520         u_int64_t n = (u_int64_t) a * b;
521         if (c == 0) {
522                 snd_BUG_ON(!n);
523                 *r = 0;
524                 return UINT_MAX;
525         }
526         n = div_u64_rem(n, c, r);
527         if (n >= UINT_MAX) {
528                 *r = 0;
529                 return UINT_MAX;
530         }
531         return n;
532 }
533
534 /**
535  * snd_interval_refine - refine the interval value of configurator
536  * @i: the interval value to refine
537  * @v: the interval value to refer to
538  *
539  * Refines the interval value with the reference value.
540  * The interval is changed to the range satisfying both intervals.
541  * The interval status (min, max, integer, etc.) are evaluated.
542  *
543  * Returns non-zero if the value is changed, zero if not changed.
544  */
545 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
546 {
547         int changed = 0;
548         if (snd_BUG_ON(snd_interval_empty(i)))
549                 return -EINVAL;
550         if (i->min < v->min) {
551                 i->min = v->min;
552                 i->openmin = v->openmin;
553                 changed = 1;
554         } else if (i->min == v->min && !i->openmin && v->openmin) {
555                 i->openmin = 1;
556                 changed = 1;
557         }
558         if (i->max > v->max) {
559                 i->max = v->max;
560                 i->openmax = v->openmax;
561                 changed = 1;
562         } else if (i->max == v->max && !i->openmax && v->openmax) {
563                 i->openmax = 1;
564                 changed = 1;
565         }
566         if (!i->integer && v->integer) {
567                 i->integer = 1;
568                 changed = 1;
569         }
570         if (i->integer) {
571                 if (i->openmin) {
572                         i->min++;
573                         i->openmin = 0;
574                 }
575                 if (i->openmax) {
576                         i->max--;
577                         i->openmax = 0;
578                 }
579         } else if (!i->openmin && !i->openmax && i->min == i->max)
580                 i->integer = 1;
581         if (snd_interval_checkempty(i)) {
582                 snd_interval_none(i);
583                 return -EINVAL;
584         }
585         return changed;
586 }
587
588 EXPORT_SYMBOL(snd_interval_refine);
589
590 static int snd_interval_refine_first(struct snd_interval *i)
591 {
592         if (snd_BUG_ON(snd_interval_empty(i)))
593                 return -EINVAL;
594         if (snd_interval_single(i))
595                 return 0;
596         i->max = i->min;
597         i->openmax = i->openmin;
598         if (i->openmax)
599                 i->max++;
600         return 1;
601 }
602
603 static int snd_interval_refine_last(struct snd_interval *i)
604 {
605         if (snd_BUG_ON(snd_interval_empty(i)))
606                 return -EINVAL;
607         if (snd_interval_single(i))
608                 return 0;
609         i->min = i->max;
610         i->openmin = i->openmax;
611         if (i->openmin)
612                 i->min--;
613         return 1;
614 }
615
616 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
617 {
618         if (a->empty || b->empty) {
619                 snd_interval_none(c);
620                 return;
621         }
622         c->empty = 0;
623         c->min = mul(a->min, b->min);
624         c->openmin = (a->openmin || b->openmin);
625         c->max = mul(a->max,  b->max);
626         c->openmax = (a->openmax || b->openmax);
627         c->integer = (a->integer && b->integer);
628 }
629
630 /**
631  * snd_interval_div - refine the interval value with division
632  * @a: dividend
633  * @b: divisor
634  * @c: quotient
635  *
636  * c = a / b
637  *
638  * Returns non-zero if the value is changed, zero if not changed.
639  */
640 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
641 {
642         unsigned int r;
643         if (a->empty || b->empty) {
644                 snd_interval_none(c);
645                 return;
646         }
647         c->empty = 0;
648         c->min = div32(a->min, b->max, &r);
649         c->openmin = (r || a->openmin || b->openmax);
650         if (b->min > 0) {
651                 c->max = div32(a->max, b->min, &r);
652                 if (r) {
653                         c->max++;
654                         c->openmax = 1;
655                 } else
656                         c->openmax = (a->openmax || b->openmin);
657         } else {
658                 c->max = UINT_MAX;
659                 c->openmax = 0;
660         }
661         c->integer = 0;
662 }
663
664 /**
665  * snd_interval_muldivk - refine the interval value
666  * @a: dividend 1
667  * @b: dividend 2
668  * @k: divisor (as integer)
669  * @c: result
670   *
671  * c = a * b / k
672  *
673  * Returns non-zero if the value is changed, zero if not changed.
674  */
675 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
676                       unsigned int k, struct snd_interval *c)
677 {
678         unsigned int r;
679         if (a->empty || b->empty) {
680                 snd_interval_none(c);
681                 return;
682         }
683         c->empty = 0;
684         c->min = muldiv32(a->min, b->min, k, &r);
685         c->openmin = (r || a->openmin || b->openmin);
686         c->max = muldiv32(a->max, b->max, k, &r);
687         if (r) {
688                 c->max++;
689                 c->openmax = 1;
690         } else
691                 c->openmax = (a->openmax || b->openmax);
692         c->integer = 0;
693 }
694
695 /**
696  * snd_interval_mulkdiv - refine the interval value
697  * @a: dividend 1
698  * @k: dividend 2 (as integer)
699  * @b: divisor
700  * @c: result
701  *
702  * c = a * k / b
703  *
704  * Returns non-zero if the value is changed, zero if not changed.
705  */
706 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
707                       const struct snd_interval *b, struct snd_interval *c)
708 {
709         unsigned int r;
710         if (a->empty || b->empty) {
711                 snd_interval_none(c);
712                 return;
713         }
714         c->empty = 0;
715         c->min = muldiv32(a->min, k, b->max, &r);
716         c->openmin = (r || a->openmin || b->openmax);
717         if (b->min > 0) {
718                 c->max = muldiv32(a->max, k, b->min, &r);
719                 if (r) {
720                         c->max++;
721                         c->openmax = 1;
722                 } else
723                         c->openmax = (a->openmax || b->openmin);
724         } else {
725                 c->max = UINT_MAX;
726                 c->openmax = 0;
727         }
728         c->integer = 0;
729 }
730
731 /* ---- */
732
733
734 /**
735  * snd_interval_ratnum - refine the interval value
736  * @i: interval to refine
737  * @rats_count: number of ratnum_t 
738  * @rats: ratnum_t array
739  * @nump: pointer to store the resultant numerator
740  * @denp: pointer to store the resultant denominator
741  *
742  * Returns non-zero if the value is changed, zero if not changed.
743  */
744 int snd_interval_ratnum(struct snd_interval *i,
745                         unsigned int rats_count, struct snd_ratnum *rats,
746                         unsigned int *nump, unsigned int *denp)
747 {
748         unsigned int best_num, best_diff, best_den;
749         unsigned int k;
750         struct snd_interval t;
751         int err;
752
753         best_num = best_den = best_diff = 0;
754         for (k = 0; k < rats_count; ++k) {
755                 unsigned int num = rats[k].num;
756                 unsigned int den;
757                 unsigned int q = i->min;
758                 int diff;
759                 if (q == 0)
760                         q = 1;
761                 den = div_down(num, q);
762                 if (den < rats[k].den_min)
763                         continue;
764                 if (den > rats[k].den_max)
765                         den = rats[k].den_max;
766                 else {
767                         unsigned int r;
768                         r = (den - rats[k].den_min) % rats[k].den_step;
769                         if (r != 0)
770                                 den -= r;
771                 }
772                 diff = num - q * den;
773                 if (best_num == 0 ||
774                     diff * best_den < best_diff * den) {
775                         best_diff = diff;
776                         best_den = den;
777                         best_num = num;
778                 }
779         }
780         if (best_den == 0) {
781                 i->empty = 1;
782                 return -EINVAL;
783         }
784         t.min = div_down(best_num, best_den);
785         t.openmin = !!(best_num % best_den);
786         
787         best_num = best_den = best_diff = 0;
788         for (k = 0; k < rats_count; ++k) {
789                 unsigned int num = rats[k].num;
790                 unsigned int den;
791                 unsigned int q = i->max;
792                 int diff;
793                 if (q == 0) {
794                         i->empty = 1;
795                         return -EINVAL;
796                 }
797                 den = div_up(num, q);
798                 if (den > rats[k].den_max)
799                         continue;
800                 if (den < rats[k].den_min)
801                         den = rats[k].den_min;
802                 else {
803                         unsigned int r;
804                         r = (den - rats[k].den_min) % rats[k].den_step;
805                         if (r != 0)
806                                 den += rats[k].den_step - r;
807                 }
808                 diff = q * den - num;
809                 if (best_num == 0 ||
810                     diff * best_den < best_diff * den) {
811                         best_diff = diff;
812                         best_den = den;
813                         best_num = num;
814                 }
815         }
816         if (best_den == 0) {
817                 i->empty = 1;
818                 return -EINVAL;
819         }
820         t.max = div_up(best_num, best_den);
821         t.openmax = !!(best_num % best_den);
822         t.integer = 0;
823         err = snd_interval_refine(i, &t);
824         if (err < 0)
825                 return err;
826
827         if (snd_interval_single(i)) {
828                 if (nump)
829                         *nump = best_num;
830                 if (denp)
831                         *denp = best_den;
832         }
833         return err;
834 }
835
836 EXPORT_SYMBOL(snd_interval_ratnum);
837
838 /**
839  * snd_interval_ratden - refine the interval value
840  * @i: interval to refine
841  * @rats_count: number of struct ratden
842  * @rats: struct ratden array
843  * @nump: pointer to store the resultant numerator
844  * @denp: pointer to store the resultant denominator
845  *
846  * Returns non-zero if the value is changed, zero if not changed.
847  */
848 static int snd_interval_ratden(struct snd_interval *i,
849                                unsigned int rats_count, struct snd_ratden *rats,
850                                unsigned int *nump, unsigned int *denp)
851 {
852         unsigned int best_num, best_diff, best_den;
853         unsigned int k;
854         struct snd_interval t;
855         int err;
856
857         best_num = best_den = best_diff = 0;
858         for (k = 0; k < rats_count; ++k) {
859                 unsigned int num;
860                 unsigned int den = rats[k].den;
861                 unsigned int q = i->min;
862                 int diff;
863                 num = mul(q, den);
864                 if (num > rats[k].num_max)
865                         continue;
866                 if (num < rats[k].num_min)
867                         num = rats[k].num_max;
868                 else {
869                         unsigned int r;
870                         r = (num - rats[k].num_min) % rats[k].num_step;
871                         if (r != 0)
872                                 num += rats[k].num_step - r;
873                 }
874                 diff = num - q * den;
875                 if (best_num == 0 ||
876                     diff * best_den < best_diff * den) {
877                         best_diff = diff;
878                         best_den = den;
879                         best_num = num;
880                 }
881         }
882         if (best_den == 0) {
883                 i->empty = 1;
884                 return -EINVAL;
885         }
886         t.min = div_down(best_num, best_den);
887         t.openmin = !!(best_num % best_den);
888         
889         best_num = best_den = best_diff = 0;
890         for (k = 0; k < rats_count; ++k) {
891                 unsigned int num;
892                 unsigned int den = rats[k].den;
893                 unsigned int q = i->max;
894                 int diff;
895                 num = mul(q, den);
896                 if (num < rats[k].num_min)
897                         continue;
898                 if (num > rats[k].num_max)
899                         num = rats[k].num_max;
900                 else {
901                         unsigned int r;
902                         r = (num - rats[k].num_min) % rats[k].num_step;
903                         if (r != 0)
904                                 num -= r;
905                 }
906                 diff = q * den - num;
907                 if (best_num == 0 ||
908                     diff * best_den < best_diff * den) {
909                         best_diff = diff;
910                         best_den = den;
911                         best_num = num;
912                 }
913         }
914         if (best_den == 0) {
915                 i->empty = 1;
916                 return -EINVAL;
917         }
918         t.max = div_up(best_num, best_den);
919         t.openmax = !!(best_num % best_den);
920         t.integer = 0;
921         err = snd_interval_refine(i, &t);
922         if (err < 0)
923                 return err;
924
925         if (snd_interval_single(i)) {
926                 if (nump)
927                         *nump = best_num;
928                 if (denp)
929                         *denp = best_den;
930         }
931         return err;
932 }
933
934 /**
935  * snd_interval_list - refine the interval value from the list
936  * @i: the interval value to refine
937  * @count: the number of elements in the list
938  * @list: the value list
939  * @mask: the bit-mask to evaluate
940  *
941  * Refines the interval value from the list.
942  * When mask is non-zero, only the elements corresponding to bit 1 are
943  * evaluated.
944  *
945  * Returns non-zero if the value is changed, zero if not changed.
946  */
947 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
948 {
949         unsigned int k;
950         struct snd_interval list_range;
951
952         if (!count) {
953                 i->empty = 1;
954                 return -EINVAL;
955         }
956         snd_interval_any(&list_range);
957         list_range.min = UINT_MAX;
958         list_range.max = 0;
959         for (k = 0; k < count; k++) {
960                 if (mask && !(mask & (1 << k)))
961                         continue;
962                 if (!snd_interval_test(i, list[k]))
963                         continue;
964                 list_range.min = min(list_range.min, list[k]);
965                 list_range.max = max(list_range.max, list[k]);
966         }
967         return snd_interval_refine(i, &list_range);
968 }
969
970 EXPORT_SYMBOL(snd_interval_list);
971
972 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
973 {
974         unsigned int n;
975         int changed = 0;
976         n = (i->min - min) % step;
977         if (n != 0 || i->openmin) {
978                 i->min += step - n;
979                 changed = 1;
980         }
981         n = (i->max - min) % step;
982         if (n != 0 || i->openmax) {
983                 i->max -= n;
984                 changed = 1;
985         }
986         if (snd_interval_checkempty(i)) {
987                 i->empty = 1;
988                 return -EINVAL;
989         }
990         return changed;
991 }
992
993 /* Info constraints helpers */
994
995 /**
996  * snd_pcm_hw_rule_add - add the hw-constraint rule
997  * @runtime: the pcm runtime instance
998  * @cond: condition bits
999  * @var: the variable to evaluate
1000  * @func: the evaluation function
1001  * @private: the private data pointer passed to function
1002  * @dep: the dependent variables
1003  *
1004  * Returns zero if successful, or a negative error code on failure.
1005  */
1006 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1007                         int var,
1008                         snd_pcm_hw_rule_func_t func, void *private,
1009                         int dep, ...)
1010 {
1011         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1012         struct snd_pcm_hw_rule *c;
1013         unsigned int k;
1014         va_list args;
1015         va_start(args, dep);
1016         if (constrs->rules_num >= constrs->rules_all) {
1017                 struct snd_pcm_hw_rule *new;
1018                 unsigned int new_rules = constrs->rules_all + 16;
1019                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1020                 if (!new)
1021                         return -ENOMEM;
1022                 if (constrs->rules) {
1023                         memcpy(new, constrs->rules,
1024                                constrs->rules_num * sizeof(*c));
1025                         kfree(constrs->rules);
1026                 }
1027                 constrs->rules = new;
1028                 constrs->rules_all = new_rules;
1029         }
1030         c = &constrs->rules[constrs->rules_num];
1031         c->cond = cond;
1032         c->func = func;
1033         c->var = var;
1034         c->private = private;
1035         k = 0;
1036         while (1) {
1037                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps)))
1038                         return -EINVAL;
1039                 c->deps[k++] = dep;
1040                 if (dep < 0)
1041                         break;
1042                 dep = va_arg(args, int);
1043         }
1044         constrs->rules_num++;
1045         va_end(args);
1046         return 0;
1047 }                                   
1048
1049 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1050
1051 /**
1052  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1053  * @runtime: PCM runtime instance
1054  * @var: hw_params variable to apply the mask
1055  * @mask: the bitmap mask
1056  *
1057  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1058  */
1059 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1060                                u_int32_t mask)
1061 {
1062         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1063         struct snd_mask *maskp = constrs_mask(constrs, var);
1064         *maskp->bits &= mask;
1065         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1066         if (*maskp->bits == 0)
1067                 return -EINVAL;
1068         return 0;
1069 }
1070
1071 /**
1072  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1073  * @runtime: PCM runtime instance
1074  * @var: hw_params variable to apply the mask
1075  * @mask: the 64bit bitmap mask
1076  *
1077  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1078  */
1079 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1080                                  u_int64_t mask)
1081 {
1082         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1083         struct snd_mask *maskp = constrs_mask(constrs, var);
1084         maskp->bits[0] &= (u_int32_t)mask;
1085         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1086         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1087         if (! maskp->bits[0] && ! maskp->bits[1])
1088                 return -EINVAL;
1089         return 0;
1090 }
1091
1092 /**
1093  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1094  * @runtime: PCM runtime instance
1095  * @var: hw_params variable to apply the integer constraint
1096  *
1097  * Apply the constraint of integer to an interval parameter.
1098  */
1099 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1100 {
1101         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1102         return snd_interval_setinteger(constrs_interval(constrs, var));
1103 }
1104
1105 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1106
1107 /**
1108  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1109  * @runtime: PCM runtime instance
1110  * @var: hw_params variable to apply the range
1111  * @min: the minimal value
1112  * @max: the maximal value
1113  * 
1114  * Apply the min/max range constraint to an interval parameter.
1115  */
1116 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1117                                  unsigned int min, unsigned int max)
1118 {
1119         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1120         struct snd_interval t;
1121         t.min = min;
1122         t.max = max;
1123         t.openmin = t.openmax = 0;
1124         t.integer = 0;
1125         return snd_interval_refine(constrs_interval(constrs, var), &t);
1126 }
1127
1128 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1129
1130 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1131                                 struct snd_pcm_hw_rule *rule)
1132 {
1133         struct snd_pcm_hw_constraint_list *list = rule->private;
1134         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1135 }               
1136
1137
1138 /**
1139  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1140  * @runtime: PCM runtime instance
1141  * @cond: condition bits
1142  * @var: hw_params variable to apply the list constraint
1143  * @l: list
1144  * 
1145  * Apply the list of constraints to an interval parameter.
1146  */
1147 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1148                                unsigned int cond,
1149                                snd_pcm_hw_param_t var,
1150                                struct snd_pcm_hw_constraint_list *l)
1151 {
1152         return snd_pcm_hw_rule_add(runtime, cond, var,
1153                                    snd_pcm_hw_rule_list, l,
1154                                    var, -1);
1155 }
1156
1157 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1158
1159 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1160                                    struct snd_pcm_hw_rule *rule)
1161 {
1162         struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1163         unsigned int num = 0, den = 0;
1164         int err;
1165         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1166                                   r->nrats, r->rats, &num, &den);
1167         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1168                 params->rate_num = num;
1169                 params->rate_den = den;
1170         }
1171         return err;
1172 }
1173
1174 /**
1175  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1176  * @runtime: PCM runtime instance
1177  * @cond: condition bits
1178  * @var: hw_params variable to apply the ratnums constraint
1179  * @r: struct snd_ratnums constriants
1180  */
1181 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1182                                   unsigned int cond,
1183                                   snd_pcm_hw_param_t var,
1184                                   struct snd_pcm_hw_constraint_ratnums *r)
1185 {
1186         return snd_pcm_hw_rule_add(runtime, cond, var,
1187                                    snd_pcm_hw_rule_ratnums, r,
1188                                    var, -1);
1189 }
1190
1191 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1192
1193 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1194                                    struct snd_pcm_hw_rule *rule)
1195 {
1196         struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1197         unsigned int num = 0, den = 0;
1198         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1199                                   r->nrats, r->rats, &num, &den);
1200         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1201                 params->rate_num = num;
1202                 params->rate_den = den;
1203         }
1204         return err;
1205 }
1206
1207 /**
1208  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1209  * @runtime: PCM runtime instance
1210  * @cond: condition bits
1211  * @var: hw_params variable to apply the ratdens constraint
1212  * @r: struct snd_ratdens constriants
1213  */
1214 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1215                                   unsigned int cond,
1216                                   snd_pcm_hw_param_t var,
1217                                   struct snd_pcm_hw_constraint_ratdens *r)
1218 {
1219         return snd_pcm_hw_rule_add(runtime, cond, var,
1220                                    snd_pcm_hw_rule_ratdens, r,
1221                                    var, -1);
1222 }
1223
1224 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1225
1226 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1227                                   struct snd_pcm_hw_rule *rule)
1228 {
1229         unsigned int l = (unsigned long) rule->private;
1230         int width = l & 0xffff;
1231         unsigned int msbits = l >> 16;
1232         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1233         if (snd_interval_single(i) && snd_interval_value(i) == width)
1234                 params->msbits = msbits;
1235         return 0;
1236 }
1237
1238 /**
1239  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1240  * @runtime: PCM runtime instance
1241  * @cond: condition bits
1242  * @width: sample bits width
1243  * @msbits: msbits width
1244  */
1245 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1246                                  unsigned int cond,
1247                                  unsigned int width,
1248                                  unsigned int msbits)
1249 {
1250         unsigned long l = (msbits << 16) | width;
1251         return snd_pcm_hw_rule_add(runtime, cond, -1,
1252                                     snd_pcm_hw_rule_msbits,
1253                                     (void*) l,
1254                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1255 }
1256
1257 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1258
1259 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1260                                 struct snd_pcm_hw_rule *rule)
1261 {
1262         unsigned long step = (unsigned long) rule->private;
1263         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1264 }
1265
1266 /**
1267  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1268  * @runtime: PCM runtime instance
1269  * @cond: condition bits
1270  * @var: hw_params variable to apply the step constraint
1271  * @step: step size
1272  */
1273 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1274                                unsigned int cond,
1275                                snd_pcm_hw_param_t var,
1276                                unsigned long step)
1277 {
1278         return snd_pcm_hw_rule_add(runtime, cond, var, 
1279                                    snd_pcm_hw_rule_step, (void *) step,
1280                                    var, -1);
1281 }
1282
1283 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1284
1285 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1286 {
1287         static unsigned int pow2_sizes[] = {
1288                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1289                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1290                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1291                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1292         };
1293         return snd_interval_list(hw_param_interval(params, rule->var),
1294                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1295 }               
1296
1297 /**
1298  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1299  * @runtime: PCM runtime instance
1300  * @cond: condition bits
1301  * @var: hw_params variable to apply the power-of-2 constraint
1302  */
1303 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1304                                unsigned int cond,
1305                                snd_pcm_hw_param_t var)
1306 {
1307         return snd_pcm_hw_rule_add(runtime, cond, var, 
1308                                    snd_pcm_hw_rule_pow2, NULL,
1309                                    var, -1);
1310 }
1311
1312 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1313
1314 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1315                                   snd_pcm_hw_param_t var)
1316 {
1317         if (hw_is_mask(var)) {
1318                 snd_mask_any(hw_param_mask(params, var));
1319                 params->cmask |= 1 << var;
1320                 params->rmask |= 1 << var;
1321                 return;
1322         }
1323         if (hw_is_interval(var)) {
1324                 snd_interval_any(hw_param_interval(params, var));
1325                 params->cmask |= 1 << var;
1326                 params->rmask |= 1 << var;
1327                 return;
1328         }
1329         snd_BUG();
1330 }
1331
1332 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1333 {
1334         unsigned int k;
1335         memset(params, 0, sizeof(*params));
1336         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1337                 _snd_pcm_hw_param_any(params, k);
1338         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1339                 _snd_pcm_hw_param_any(params, k);
1340         params->info = ~0U;
1341 }
1342
1343 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1344
1345 /**
1346  * snd_pcm_hw_param_value - return @params field @var value
1347  * @params: the hw_params instance
1348  * @var: parameter to retrieve
1349  * @dir: pointer to the direction (-1,0,1) or %NULL
1350  *
1351  * Return the value for field @var if it's fixed in configuration space
1352  * defined by @params. Return -%EINVAL otherwise.
1353  */
1354 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1355                            snd_pcm_hw_param_t var, int *dir)
1356 {
1357         if (hw_is_mask(var)) {
1358                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1359                 if (!snd_mask_single(mask))
1360                         return -EINVAL;
1361                 if (dir)
1362                         *dir = 0;
1363                 return snd_mask_value(mask);
1364         }
1365         if (hw_is_interval(var)) {
1366                 const struct snd_interval *i = hw_param_interval_c(params, var);
1367                 if (!snd_interval_single(i))
1368                         return -EINVAL;
1369                 if (dir)
1370                         *dir = i->openmin;
1371                 return snd_interval_value(i);
1372         }
1373         return -EINVAL;
1374 }
1375
1376 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1377
1378 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1379                                 snd_pcm_hw_param_t var)
1380 {
1381         if (hw_is_mask(var)) {
1382                 snd_mask_none(hw_param_mask(params, var));
1383                 params->cmask |= 1 << var;
1384                 params->rmask |= 1 << var;
1385         } else if (hw_is_interval(var)) {
1386                 snd_interval_none(hw_param_interval(params, var));
1387                 params->cmask |= 1 << var;
1388                 params->rmask |= 1 << var;
1389         } else {
1390                 snd_BUG();
1391         }
1392 }
1393
1394 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1395
1396 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1397                                    snd_pcm_hw_param_t var)
1398 {
1399         int changed;
1400         if (hw_is_mask(var))
1401                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1402         else if (hw_is_interval(var))
1403                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1404         else
1405                 return -EINVAL;
1406         if (changed) {
1407                 params->cmask |= 1 << var;
1408                 params->rmask |= 1 << var;
1409         }
1410         return changed;
1411 }
1412
1413
1414 /**
1415  * snd_pcm_hw_param_first - refine config space and return minimum value
1416  * @pcm: PCM instance
1417  * @params: the hw_params instance
1418  * @var: parameter to retrieve
1419  * @dir: pointer to the direction (-1,0,1) or %NULL
1420  *
1421  * Inside configuration space defined by @params remove from @var all
1422  * values > minimum. Reduce configuration space accordingly.
1423  * Return the minimum.
1424  */
1425 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1426                            struct snd_pcm_hw_params *params, 
1427                            snd_pcm_hw_param_t var, int *dir)
1428 {
1429         int changed = _snd_pcm_hw_param_first(params, var);
1430         if (changed < 0)
1431                 return changed;
1432         if (params->rmask) {
1433                 int err = snd_pcm_hw_refine(pcm, params);
1434                 if (snd_BUG_ON(err < 0))
1435                         return err;
1436         }
1437         return snd_pcm_hw_param_value(params, var, dir);
1438 }
1439
1440 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1441
1442 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1443                                   snd_pcm_hw_param_t var)
1444 {
1445         int changed;
1446         if (hw_is_mask(var))
1447                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1448         else if (hw_is_interval(var))
1449                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1450         else
1451                 return -EINVAL;
1452         if (changed) {
1453                 params->cmask |= 1 << var;
1454                 params->rmask |= 1 << var;
1455         }
1456         return changed;
1457 }
1458
1459
1460 /**
1461  * snd_pcm_hw_param_last - refine config space and return maximum value
1462  * @pcm: PCM instance
1463  * @params: the hw_params instance
1464  * @var: parameter to retrieve
1465  * @dir: pointer to the direction (-1,0,1) or %NULL
1466  *
1467  * Inside configuration space defined by @params remove from @var all
1468  * values < maximum. Reduce configuration space accordingly.
1469  * Return the maximum.
1470  */
1471 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1472                           struct snd_pcm_hw_params *params,
1473                           snd_pcm_hw_param_t var, int *dir)
1474 {
1475         int changed = _snd_pcm_hw_param_last(params, var);
1476         if (changed < 0)
1477                 return changed;
1478         if (params->rmask) {
1479                 int err = snd_pcm_hw_refine(pcm, params);
1480                 if (snd_BUG_ON(err < 0))
1481                         return err;
1482         }
1483         return snd_pcm_hw_param_value(params, var, dir);
1484 }
1485
1486 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1487
1488 /**
1489  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1490  * @pcm: PCM instance
1491  * @params: the hw_params instance
1492  *
1493  * Choose one configuration from configuration space defined by @params.
1494  * The configuration chosen is that obtained fixing in this order:
1495  * first access, first format, first subformat, min channels,
1496  * min rate, min period time, max buffer size, min tick time
1497  */
1498 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1499                              struct snd_pcm_hw_params *params)
1500 {
1501         static int vars[] = {
1502                 SNDRV_PCM_HW_PARAM_ACCESS,
1503                 SNDRV_PCM_HW_PARAM_FORMAT,
1504                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1505                 SNDRV_PCM_HW_PARAM_CHANNELS,
1506                 SNDRV_PCM_HW_PARAM_RATE,
1507                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1508                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1509                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1510                 -1
1511         };
1512         int err, *v;
1513
1514         for (v = vars; *v != -1; v++) {
1515                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1516                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1517                 else
1518                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1519                 if (snd_BUG_ON(err < 0))
1520                         return err;
1521         }
1522         return 0;
1523 }
1524
1525 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1526                                    void *arg)
1527 {
1528         struct snd_pcm_runtime *runtime = substream->runtime;
1529         unsigned long flags;
1530         snd_pcm_stream_lock_irqsave(substream, flags);
1531         if (snd_pcm_running(substream) &&
1532             snd_pcm_update_hw_ptr(substream) >= 0)
1533                 runtime->status->hw_ptr %= runtime->buffer_size;
1534         else
1535                 runtime->status->hw_ptr = 0;
1536         snd_pcm_stream_unlock_irqrestore(substream, flags);
1537         return 0;
1538 }
1539
1540 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1541                                           void *arg)
1542 {
1543         struct snd_pcm_channel_info *info = arg;
1544         struct snd_pcm_runtime *runtime = substream->runtime;
1545         int width;
1546         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1547                 info->offset = -1;
1548                 return 0;
1549         }
1550         width = snd_pcm_format_physical_width(runtime->format);
1551         if (width < 0)
1552                 return width;
1553         info->offset = 0;
1554         switch (runtime->access) {
1555         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1556         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1557                 info->first = info->channel * width;
1558                 info->step = runtime->channels * width;
1559                 break;
1560         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1561         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1562         {
1563                 size_t size = runtime->dma_bytes / runtime->channels;
1564                 info->first = info->channel * size * 8;
1565                 info->step = width;
1566                 break;
1567         }
1568         default:
1569                 snd_BUG();
1570                 break;
1571         }
1572         return 0;
1573 }
1574
1575 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1576                                        void *arg)
1577 {
1578         struct snd_pcm_hw_params *params = arg;
1579         snd_pcm_format_t format;
1580         int channels, width;
1581
1582         params->fifo_size = substream->runtime->hw.fifo_size;
1583         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1584                 format = params_format(params);
1585                 channels = params_channels(params);
1586                 width = snd_pcm_format_physical_width(format);
1587                 params->fifo_size /= width * channels;
1588         }
1589         return 0;
1590 }
1591
1592 /**
1593  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1594  * @substream: the pcm substream instance
1595  * @cmd: ioctl command
1596  * @arg: ioctl argument
1597  *
1598  * Processes the generic ioctl commands for PCM.
1599  * Can be passed as the ioctl callback for PCM ops.
1600  *
1601  * Returns zero if successful, or a negative error code on failure.
1602  */
1603 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1604                       unsigned int cmd, void *arg)
1605 {
1606         switch (cmd) {
1607         case SNDRV_PCM_IOCTL1_INFO:
1608                 return 0;
1609         case SNDRV_PCM_IOCTL1_RESET:
1610                 return snd_pcm_lib_ioctl_reset(substream, arg);
1611         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1612                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1613         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1614                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1615         }
1616         return -ENXIO;
1617 }
1618
1619 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1620
1621 /**
1622  * snd_pcm_period_elapsed - update the pcm status for the next period
1623  * @substream: the pcm substream instance
1624  *
1625  * This function is called from the interrupt handler when the
1626  * PCM has processed the period size.  It will update the current
1627  * pointer, wake up sleepers, etc.
1628  *
1629  * Even if more than one periods have elapsed since the last call, you
1630  * have to call this only once.
1631  */
1632 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1633 {
1634         struct snd_pcm_runtime *runtime;
1635         unsigned long flags;
1636
1637         if (PCM_RUNTIME_CHECK(substream))
1638                 return;
1639         runtime = substream->runtime;
1640
1641         if (runtime->transfer_ack_begin)
1642                 runtime->transfer_ack_begin(substream);
1643
1644         snd_pcm_stream_lock_irqsave(substream, flags);
1645         if (!snd_pcm_running(substream) ||
1646             snd_pcm_update_hw_ptr_interrupt(substream) < 0)
1647                 goto _end;
1648
1649         if (substream->timer_running)
1650                 snd_timer_interrupt(substream->timer, 1);
1651  _end:
1652         snd_pcm_stream_unlock_irqrestore(substream, flags);
1653         if (runtime->transfer_ack_end)
1654                 runtime->transfer_ack_end(substream);
1655         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1656 }
1657
1658 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1659
1660 /*
1661  * Wait until avail_min data becomes available
1662  * Returns a negative error code if any error occurs during operation.
1663  * The available space is stored on availp.  When err = 0 and avail = 0
1664  * on the capture stream, it indicates the stream is in DRAINING state.
1665  */
1666 static int wait_for_avail_min(struct snd_pcm_substream *substream,
1667                               snd_pcm_uframes_t *availp)
1668 {
1669         struct snd_pcm_runtime *runtime = substream->runtime;
1670         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1671         wait_queue_t wait;
1672         int err = 0;
1673         snd_pcm_uframes_t avail = 0;
1674         long tout;
1675
1676         init_waitqueue_entry(&wait, current);
1677         add_wait_queue(&runtime->sleep, &wait);
1678         for (;;) {
1679                 if (signal_pending(current)) {
1680                         err = -ERESTARTSYS;
1681                         break;
1682                 }
1683                 set_current_state(TASK_INTERRUPTIBLE);
1684                 snd_pcm_stream_unlock_irq(substream);
1685                 tout = schedule_timeout(msecs_to_jiffies(10000));
1686                 snd_pcm_stream_lock_irq(substream);
1687                 switch (runtime->status->state) {
1688                 case SNDRV_PCM_STATE_SUSPENDED:
1689                         err = -ESTRPIPE;
1690                         goto _endloop;
1691                 case SNDRV_PCM_STATE_XRUN:
1692                         err = -EPIPE;
1693                         goto _endloop;
1694                 case SNDRV_PCM_STATE_DRAINING:
1695                         if (is_playback)
1696                                 err = -EPIPE;
1697                         else 
1698                                 avail = 0; /* indicate draining */
1699                         goto _endloop;
1700                 case SNDRV_PCM_STATE_OPEN:
1701                 case SNDRV_PCM_STATE_SETUP:
1702                 case SNDRV_PCM_STATE_DISCONNECTED:
1703                         err = -EBADFD;
1704                         goto _endloop;
1705                 }
1706                 if (!tout) {
1707                         snd_printd("%s write error (DMA or IRQ trouble?)\n",
1708                                    is_playback ? "playback" : "capture");
1709                         err = -EIO;
1710                         break;
1711                 }
1712                 if (is_playback)
1713                         avail = snd_pcm_playback_avail(runtime);
1714                 else
1715                         avail = snd_pcm_capture_avail(runtime);
1716                 if (avail >= runtime->control->avail_min)
1717                         break;
1718         }
1719  _endloop:
1720         remove_wait_queue(&runtime->sleep, &wait);
1721         *availp = avail;
1722         return err;
1723 }
1724         
1725 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1726                                       unsigned int hwoff,
1727                                       unsigned long data, unsigned int off,
1728                                       snd_pcm_uframes_t frames)
1729 {
1730         struct snd_pcm_runtime *runtime = substream->runtime;
1731         int err;
1732         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1733         if (substream->ops->copy) {
1734                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1735                         return err;
1736         } else {
1737                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1738                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1739                         return -EFAULT;
1740         }
1741         return 0;
1742 }
1743  
1744 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1745                           unsigned long data, unsigned int off,
1746                           snd_pcm_uframes_t size);
1747
1748 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1749                                             unsigned long data,
1750                                             snd_pcm_uframes_t size,
1751                                             int nonblock,
1752                                             transfer_f transfer)
1753 {
1754         struct snd_pcm_runtime *runtime = substream->runtime;
1755         snd_pcm_uframes_t xfer = 0;
1756         snd_pcm_uframes_t offset = 0;
1757         int err = 0;
1758
1759         if (size == 0)
1760                 return 0;
1761
1762         snd_pcm_stream_lock_irq(substream);
1763         switch (runtime->status->state) {
1764         case SNDRV_PCM_STATE_PREPARED:
1765         case SNDRV_PCM_STATE_RUNNING:
1766         case SNDRV_PCM_STATE_PAUSED:
1767                 break;
1768         case SNDRV_PCM_STATE_XRUN:
1769                 err = -EPIPE;
1770                 goto _end_unlock;
1771         case SNDRV_PCM_STATE_SUSPENDED:
1772                 err = -ESTRPIPE;
1773                 goto _end_unlock;
1774         default:
1775                 err = -EBADFD;
1776                 goto _end_unlock;
1777         }
1778
1779         while (size > 0) {
1780                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1781                 snd_pcm_uframes_t avail;
1782                 snd_pcm_uframes_t cont;
1783                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1784                         snd_pcm_update_hw_ptr(substream);
1785                 avail = snd_pcm_playback_avail(runtime);
1786                 if (!avail) {
1787                         if (nonblock) {
1788                                 err = -EAGAIN;
1789                                 goto _end_unlock;
1790                         }
1791                         err = wait_for_avail_min(substream, &avail);
1792                         if (err < 0)
1793                                 goto _end_unlock;
1794                 }
1795                 frames = size > avail ? avail : size;
1796                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1797                 if (frames > cont)
1798                         frames = cont;
1799                 if (snd_BUG_ON(!frames)) {
1800                         snd_pcm_stream_unlock_irq(substream);
1801                         return -EINVAL;
1802                 }
1803                 appl_ptr = runtime->control->appl_ptr;
1804                 appl_ofs = appl_ptr % runtime->buffer_size;
1805                 snd_pcm_stream_unlock_irq(substream);
1806                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
1807                         goto _end;
1808                 snd_pcm_stream_lock_irq(substream);
1809                 switch (runtime->status->state) {
1810                 case SNDRV_PCM_STATE_XRUN:
1811                         err = -EPIPE;
1812                         goto _end_unlock;
1813                 case SNDRV_PCM_STATE_SUSPENDED:
1814                         err = -ESTRPIPE;
1815                         goto _end_unlock;
1816                 default:
1817                         break;
1818                 }
1819                 appl_ptr += frames;
1820                 if (appl_ptr >= runtime->boundary)
1821                         appl_ptr -= runtime->boundary;
1822                 runtime->control->appl_ptr = appl_ptr;
1823                 if (substream->ops->ack)
1824                         substream->ops->ack(substream);
1825
1826                 offset += frames;
1827                 size -= frames;
1828                 xfer += frames;
1829                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1830                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1831                         err = snd_pcm_start(substream);
1832                         if (err < 0)
1833                                 goto _end_unlock;
1834                 }
1835         }
1836  _end_unlock:
1837         snd_pcm_stream_unlock_irq(substream);
1838  _end:
1839         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1840 }
1841
1842 /* sanity-check for read/write methods */
1843 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1844 {
1845         struct snd_pcm_runtime *runtime;
1846         if (PCM_RUNTIME_CHECK(substream))
1847                 return -ENXIO;
1848         runtime = substream->runtime;
1849         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1850                 return -EINVAL;
1851         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1852                 return -EBADFD;
1853         return 0;
1854 }
1855
1856 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1857 {
1858         struct snd_pcm_runtime *runtime;
1859         int nonblock;
1860         int err;
1861
1862         err = pcm_sanity_check(substream);
1863         if (err < 0)
1864                 return err;
1865         runtime = substream->runtime;
1866         nonblock = !!(substream->f_flags & O_NONBLOCK);
1867
1868         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1869             runtime->channels > 1)
1870                 return -EINVAL;
1871         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1872                                   snd_pcm_lib_write_transfer);
1873 }
1874
1875 EXPORT_SYMBOL(snd_pcm_lib_write);
1876
1877 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1878                                        unsigned int hwoff,
1879                                        unsigned long data, unsigned int off,
1880                                        snd_pcm_uframes_t frames)
1881 {
1882         struct snd_pcm_runtime *runtime = substream->runtime;
1883         int err;
1884         void __user **bufs = (void __user **)data;
1885         int channels = runtime->channels;
1886         int c;
1887         if (substream->ops->copy) {
1888                 if (snd_BUG_ON(!substream->ops->silence))
1889                         return -EINVAL;
1890                 for (c = 0; c < channels; ++c, ++bufs) {
1891                         if (*bufs == NULL) {
1892                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
1893                                         return err;
1894                         } else {
1895                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1896                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
1897                                         return err;
1898                         }
1899                 }
1900         } else {
1901                 /* default transfer behaviour */
1902                 size_t dma_csize = runtime->dma_bytes / channels;
1903                 for (c = 0; c < channels; ++c, ++bufs) {
1904                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
1905                         if (*bufs == NULL) {
1906                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
1907                         } else {
1908                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1909                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
1910                                         return -EFAULT;
1911                         }
1912                 }
1913         }
1914         return 0;
1915 }
1916  
1917 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
1918                                      void __user **bufs,
1919                                      snd_pcm_uframes_t frames)
1920 {
1921         struct snd_pcm_runtime *runtime;
1922         int nonblock;
1923         int err;
1924
1925         err = pcm_sanity_check(substream);
1926         if (err < 0)
1927                 return err;
1928         runtime = substream->runtime;
1929         nonblock = !!(substream->f_flags & O_NONBLOCK);
1930
1931         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
1932                 return -EINVAL;
1933         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
1934                                   nonblock, snd_pcm_lib_writev_transfer);
1935 }
1936
1937 EXPORT_SYMBOL(snd_pcm_lib_writev);
1938
1939 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
1940                                      unsigned int hwoff,
1941                                      unsigned long data, unsigned int off,
1942                                      snd_pcm_uframes_t frames)
1943 {
1944         struct snd_pcm_runtime *runtime = substream->runtime;
1945         int err;
1946         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1947         if (substream->ops->copy) {
1948                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1949                         return err;
1950         } else {
1951                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1952                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
1953                         return -EFAULT;
1954         }
1955         return 0;
1956 }
1957
1958 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
1959                                            unsigned long data,
1960                                            snd_pcm_uframes_t size,
1961                                            int nonblock,
1962                                            transfer_f transfer)
1963 {
1964         struct snd_pcm_runtime *runtime = substream->runtime;
1965         snd_pcm_uframes_t xfer = 0;
1966         snd_pcm_uframes_t offset = 0;
1967         int err = 0;
1968
1969         if (size == 0)
1970                 return 0;
1971
1972         snd_pcm_stream_lock_irq(substream);
1973         switch (runtime->status->state) {
1974         case SNDRV_PCM_STATE_PREPARED:
1975                 if (size >= runtime->start_threshold) {
1976                         err = snd_pcm_start(substream);
1977                         if (err < 0)
1978                                 goto _end_unlock;
1979                 }
1980                 break;
1981         case SNDRV_PCM_STATE_DRAINING:
1982         case SNDRV_PCM_STATE_RUNNING:
1983         case SNDRV_PCM_STATE_PAUSED:
1984                 break;
1985         case SNDRV_PCM_STATE_XRUN:
1986                 err = -EPIPE;
1987                 goto _end_unlock;
1988         case SNDRV_PCM_STATE_SUSPENDED:
1989                 err = -ESTRPIPE;
1990                 goto _end_unlock;
1991         default:
1992                 err = -EBADFD;
1993                 goto _end_unlock;
1994         }
1995
1996         while (size > 0) {
1997                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1998                 snd_pcm_uframes_t avail;
1999                 snd_pcm_uframes_t cont;
2000                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2001                         snd_pcm_update_hw_ptr(substream);
2002                 avail = snd_pcm_capture_avail(runtime);
2003                 if (!avail) {
2004                         if (runtime->status->state ==
2005                             SNDRV_PCM_STATE_DRAINING) {
2006                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2007                                 goto _end_unlock;
2008                         }
2009                         if (nonblock) {
2010                                 err = -EAGAIN;
2011                                 goto _end_unlock;
2012                         }
2013                         err = wait_for_avail_min(substream, &avail);
2014                         if (err < 0)
2015                                 goto _end_unlock;
2016                         if (!avail)
2017                                 continue; /* draining */
2018                 }
2019                 frames = size > avail ? avail : size;
2020                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2021                 if (frames > cont)
2022                         frames = cont;
2023                 if (snd_BUG_ON(!frames)) {
2024                         snd_pcm_stream_unlock_irq(substream);
2025                         return -EINVAL;
2026                 }
2027                 appl_ptr = runtime->control->appl_ptr;
2028                 appl_ofs = appl_ptr % runtime->buffer_size;
2029                 snd_pcm_stream_unlock_irq(substream);
2030                 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
2031                         goto _end;
2032                 snd_pcm_stream_lock_irq(substream);
2033                 switch (runtime->status->state) {
2034                 case SNDRV_PCM_STATE_XRUN:
2035                         err = -EPIPE;
2036                         goto _end_unlock;
2037                 case SNDRV_PCM_STATE_SUSPENDED:
2038                         err = -ESTRPIPE;
2039                         goto _end_unlock;
2040                 default:
2041                         break;
2042                 }
2043                 appl_ptr += frames;
2044                 if (appl_ptr >= runtime->boundary)
2045                         appl_ptr -= runtime->boundary;
2046                 runtime->control->appl_ptr = appl_ptr;
2047                 if (substream->ops->ack)
2048                         substream->ops->ack(substream);
2049
2050                 offset += frames;
2051                 size -= frames;
2052                 xfer += frames;
2053         }
2054  _end_unlock:
2055         snd_pcm_stream_unlock_irq(substream);
2056  _end:
2057         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2058 }
2059
2060 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2061 {
2062         struct snd_pcm_runtime *runtime;
2063         int nonblock;
2064         int err;
2065         
2066         err = pcm_sanity_check(substream);
2067         if (err < 0)
2068                 return err;
2069         runtime = substream->runtime;
2070         nonblock = !!(substream->f_flags & O_NONBLOCK);
2071         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2072                 return -EINVAL;
2073         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2074 }
2075
2076 EXPORT_SYMBOL(snd_pcm_lib_read);
2077
2078 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2079                                       unsigned int hwoff,
2080                                       unsigned long data, unsigned int off,
2081                                       snd_pcm_uframes_t frames)
2082 {
2083         struct snd_pcm_runtime *runtime = substream->runtime;
2084         int err;
2085         void __user **bufs = (void __user **)data;
2086         int channels = runtime->channels;
2087         int c;
2088         if (substream->ops->copy) {
2089                 for (c = 0; c < channels; ++c, ++bufs) {
2090                         char __user *buf;
2091                         if (*bufs == NULL)
2092                                 continue;
2093                         buf = *bufs + samples_to_bytes(runtime, off);
2094                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2095                                 return err;
2096                 }
2097         } else {
2098                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2099                 for (c = 0; c < channels; ++c, ++bufs) {
2100                         char *hwbuf;
2101                         char __user *buf;
2102                         if (*bufs == NULL)
2103                                 continue;
2104
2105                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2106                         buf = *bufs + samples_to_bytes(runtime, off);
2107                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2108                                 return -EFAULT;
2109                 }
2110         }
2111         return 0;
2112 }
2113  
2114 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2115                                     void __user **bufs,
2116                                     snd_pcm_uframes_t frames)
2117 {
2118         struct snd_pcm_runtime *runtime;
2119         int nonblock;
2120         int err;
2121
2122         err = pcm_sanity_check(substream);
2123         if (err < 0)
2124                 return err;
2125         runtime = substream->runtime;
2126         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2127                 return -EBADFD;
2128
2129         nonblock = !!(substream->f_flags & O_NONBLOCK);
2130         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2131                 return -EINVAL;
2132         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2133 }
2134
2135 EXPORT_SYMBOL(snd_pcm_lib_readv);