selinux: introduce permissive types
[linux-2.6.git] / security / selinux / ss / policydb.c
1 /*
2  * Implementation of the policy database.
3  *
4  * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
5  */
6
7 /*
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *      Support for enhanced MLS infrastructure.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *      Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul.moore@hp.com>
17  *
18  *      Added support for the policy capability bitmap
19  *
20  * Copyright (C) 2007 Hewlett-Packard Development Company, L.P.
21  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
22  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
23  *      This program is free software; you can redistribute it and/or modify
24  *      it under the terms of the GNU General Public License as published by
25  *      the Free Software Foundation, version 2.
26  */
27
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/string.h>
32 #include <linux/errno.h>
33 #include "security.h"
34
35 #include "policydb.h"
36 #include "conditional.h"
37 #include "mls.h"
38
39 #define _DEBUG_HASHES
40
41 #ifdef DEBUG_HASHES
42 static char *symtab_name[SYM_NUM] = {
43         "common prefixes",
44         "classes",
45         "roles",
46         "types",
47         "users",
48         "bools",
49         "levels",
50         "categories",
51 };
52 #endif
53
54 int selinux_mls_enabled = 0;
55
56 static unsigned int symtab_sizes[SYM_NUM] = {
57         2,
58         32,
59         16,
60         512,
61         128,
62         16,
63         16,
64         16,
65 };
66
67 struct policydb_compat_info {
68         int version;
69         int sym_num;
70         int ocon_num;
71 };
72
73 /* These need to be updated if SYM_NUM or OCON_NUM changes */
74 static struct policydb_compat_info policydb_compat[] = {
75         {
76                 .version        = POLICYDB_VERSION_BASE,
77                 .sym_num        = SYM_NUM - 3,
78                 .ocon_num       = OCON_NUM - 1,
79         },
80         {
81                 .version        = POLICYDB_VERSION_BOOL,
82                 .sym_num        = SYM_NUM - 2,
83                 .ocon_num       = OCON_NUM - 1,
84         },
85         {
86                 .version        = POLICYDB_VERSION_IPV6,
87                 .sym_num        = SYM_NUM - 2,
88                 .ocon_num       = OCON_NUM,
89         },
90         {
91                 .version        = POLICYDB_VERSION_NLCLASS,
92                 .sym_num        = SYM_NUM - 2,
93                 .ocon_num       = OCON_NUM,
94         },
95         {
96                 .version        = POLICYDB_VERSION_MLS,
97                 .sym_num        = SYM_NUM,
98                 .ocon_num       = OCON_NUM,
99         },
100         {
101                 .version        = POLICYDB_VERSION_AVTAB,
102                 .sym_num        = SYM_NUM,
103                 .ocon_num       = OCON_NUM,
104         },
105         {
106                 .version        = POLICYDB_VERSION_RANGETRANS,
107                 .sym_num        = SYM_NUM,
108                 .ocon_num       = OCON_NUM,
109         },
110         {
111                 .version        = POLICYDB_VERSION_POLCAP,
112                 .sym_num        = SYM_NUM,
113                 .ocon_num       = OCON_NUM,
114         },
115         {
116                 .version        = POLICYDB_VERSION_PERMISSIVE,
117                 .sym_num        = SYM_NUM,
118                 .ocon_num       = OCON_NUM,
119         }
120 };
121
122 static struct policydb_compat_info *policydb_lookup_compat(int version)
123 {
124         int i;
125         struct policydb_compat_info *info = NULL;
126
127         for (i = 0; i < ARRAY_SIZE(policydb_compat); i++) {
128                 if (policydb_compat[i].version == version) {
129                         info = &policydb_compat[i];
130                         break;
131                 }
132         }
133         return info;
134 }
135
136 /*
137  * Initialize the role table.
138  */
139 static int roles_init(struct policydb *p)
140 {
141         char *key = NULL;
142         int rc;
143         struct role_datum *role;
144
145         role = kzalloc(sizeof(*role), GFP_KERNEL);
146         if (!role) {
147                 rc = -ENOMEM;
148                 goto out;
149         }
150         role->value = ++p->p_roles.nprim;
151         if (role->value != OBJECT_R_VAL) {
152                 rc = -EINVAL;
153                 goto out_free_role;
154         }
155         key = kmalloc(strlen(OBJECT_R)+1,GFP_KERNEL);
156         if (!key) {
157                 rc = -ENOMEM;
158                 goto out_free_role;
159         }
160         strcpy(key, OBJECT_R);
161         rc = hashtab_insert(p->p_roles.table, key, role);
162         if (rc)
163                 goto out_free_key;
164 out:
165         return rc;
166
167 out_free_key:
168         kfree(key);
169 out_free_role:
170         kfree(role);
171         goto out;
172 }
173
174 /*
175  * Initialize a policy database structure.
176  */
177 static int policydb_init(struct policydb *p)
178 {
179         int i, rc;
180
181         memset(p, 0, sizeof(*p));
182
183         for (i = 0; i < SYM_NUM; i++) {
184                 rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
185                 if (rc)
186                         goto out_free_symtab;
187         }
188
189         rc = avtab_init(&p->te_avtab);
190         if (rc)
191                 goto out_free_symtab;
192
193         rc = roles_init(p);
194         if (rc)
195                 goto out_free_symtab;
196
197         rc = cond_policydb_init(p);
198         if (rc)
199                 goto out_free_symtab;
200
201         ebitmap_init(&p->policycaps);
202         ebitmap_init(&p->permissive_map);
203
204 out:
205         return rc;
206
207 out_free_symtab:
208         for (i = 0; i < SYM_NUM; i++)
209                 hashtab_destroy(p->symtab[i].table);
210         goto out;
211 }
212
213 /*
214  * The following *_index functions are used to
215  * define the val_to_name and val_to_struct arrays
216  * in a policy database structure.  The val_to_name
217  * arrays are used when converting security context
218  * structures into string representations.  The
219  * val_to_struct arrays are used when the attributes
220  * of a class, role, or user are needed.
221  */
222
223 static int common_index(void *key, void *datum, void *datap)
224 {
225         struct policydb *p;
226         struct common_datum *comdatum;
227
228         comdatum = datum;
229         p = datap;
230         if (!comdatum->value || comdatum->value > p->p_commons.nprim)
231                 return -EINVAL;
232         p->p_common_val_to_name[comdatum->value - 1] = key;
233         return 0;
234 }
235
236 static int class_index(void *key, void *datum, void *datap)
237 {
238         struct policydb *p;
239         struct class_datum *cladatum;
240
241         cladatum = datum;
242         p = datap;
243         if (!cladatum->value || cladatum->value > p->p_classes.nprim)
244                 return -EINVAL;
245         p->p_class_val_to_name[cladatum->value - 1] = key;
246         p->class_val_to_struct[cladatum->value - 1] = cladatum;
247         return 0;
248 }
249
250 static int role_index(void *key, void *datum, void *datap)
251 {
252         struct policydb *p;
253         struct role_datum *role;
254
255         role = datum;
256         p = datap;
257         if (!role->value || role->value > p->p_roles.nprim)
258                 return -EINVAL;
259         p->p_role_val_to_name[role->value - 1] = key;
260         p->role_val_to_struct[role->value - 1] = role;
261         return 0;
262 }
263
264 static int type_index(void *key, void *datum, void *datap)
265 {
266         struct policydb *p;
267         struct type_datum *typdatum;
268
269         typdatum = datum;
270         p = datap;
271
272         if (typdatum->primary) {
273                 if (!typdatum->value || typdatum->value > p->p_types.nprim)
274                         return -EINVAL;
275                 p->p_type_val_to_name[typdatum->value - 1] = key;
276         }
277
278         return 0;
279 }
280
281 static int user_index(void *key, void *datum, void *datap)
282 {
283         struct policydb *p;
284         struct user_datum *usrdatum;
285
286         usrdatum = datum;
287         p = datap;
288         if (!usrdatum->value || usrdatum->value > p->p_users.nprim)
289                 return -EINVAL;
290         p->p_user_val_to_name[usrdatum->value - 1] = key;
291         p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
292         return 0;
293 }
294
295 static int sens_index(void *key, void *datum, void *datap)
296 {
297         struct policydb *p;
298         struct level_datum *levdatum;
299
300         levdatum = datum;
301         p = datap;
302
303         if (!levdatum->isalias) {
304                 if (!levdatum->level->sens ||
305                     levdatum->level->sens > p->p_levels.nprim)
306                         return -EINVAL;
307                 p->p_sens_val_to_name[levdatum->level->sens - 1] = key;
308         }
309
310         return 0;
311 }
312
313 static int cat_index(void *key, void *datum, void *datap)
314 {
315         struct policydb *p;
316         struct cat_datum *catdatum;
317
318         catdatum = datum;
319         p = datap;
320
321         if (!catdatum->isalias) {
322                 if (!catdatum->value || catdatum->value > p->p_cats.nprim)
323                         return -EINVAL;
324                 p->p_cat_val_to_name[catdatum->value - 1] = key;
325         }
326
327         return 0;
328 }
329
330 static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
331 {
332         common_index,
333         class_index,
334         role_index,
335         type_index,
336         user_index,
337         cond_index_bool,
338         sens_index,
339         cat_index,
340 };
341
342 /*
343  * Define the common val_to_name array and the class
344  * val_to_name and val_to_struct arrays in a policy
345  * database structure.
346  *
347  * Caller must clean up upon failure.
348  */
349 static int policydb_index_classes(struct policydb *p)
350 {
351         int rc;
352
353         p->p_common_val_to_name =
354                 kmalloc(p->p_commons.nprim * sizeof(char *), GFP_KERNEL);
355         if (!p->p_common_val_to_name) {
356                 rc = -ENOMEM;
357                 goto out;
358         }
359
360         rc = hashtab_map(p->p_commons.table, common_index, p);
361         if (rc)
362                 goto out;
363
364         p->class_val_to_struct =
365                 kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)), GFP_KERNEL);
366         if (!p->class_val_to_struct) {
367                 rc = -ENOMEM;
368                 goto out;
369         }
370
371         p->p_class_val_to_name =
372                 kmalloc(p->p_classes.nprim * sizeof(char *), GFP_KERNEL);
373         if (!p->p_class_val_to_name) {
374                 rc = -ENOMEM;
375                 goto out;
376         }
377
378         rc = hashtab_map(p->p_classes.table, class_index, p);
379 out:
380         return rc;
381 }
382
383 #ifdef DEBUG_HASHES
384 static void symtab_hash_eval(struct symtab *s)
385 {
386         int i;
387
388         for (i = 0; i < SYM_NUM; i++) {
389                 struct hashtab *h = s[i].table;
390                 struct hashtab_info info;
391
392                 hashtab_stat(h, &info);
393                 printk(KERN_DEBUG "%s:  %d entries and %d/%d buckets used, "
394                        "longest chain length %d\n", symtab_name[i], h->nel,
395                        info.slots_used, h->size, info.max_chain_len);
396         }
397 }
398 #endif
399
400 /*
401  * Define the other val_to_name and val_to_struct arrays
402  * in a policy database structure.
403  *
404  * Caller must clean up on failure.
405  */
406 static int policydb_index_others(struct policydb *p)
407 {
408         int i, rc = 0;
409
410         printk(KERN_DEBUG "SELinux:  %d users, %d roles, %d types, %d bools",
411                p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
412         if (selinux_mls_enabled)
413                 printk(", %d sens, %d cats", p->p_levels.nprim,
414                        p->p_cats.nprim);
415         printk("\n");
416
417         printk(KERN_DEBUG "SELinux:  %d classes, %d rules\n",
418                p->p_classes.nprim, p->te_avtab.nel);
419
420 #ifdef DEBUG_HASHES
421         avtab_hash_eval(&p->te_avtab, "rules");
422         symtab_hash_eval(p->symtab);
423 #endif
424
425         p->role_val_to_struct =
426                 kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
427                         GFP_KERNEL);
428         if (!p->role_val_to_struct) {
429                 rc = -ENOMEM;
430                 goto out;
431         }
432
433         p->user_val_to_struct =
434                 kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
435                         GFP_KERNEL);
436         if (!p->user_val_to_struct) {
437                 rc = -ENOMEM;
438                 goto out;
439         }
440
441         if (cond_init_bool_indexes(p)) {
442                 rc = -ENOMEM;
443                 goto out;
444         }
445
446         for (i = SYM_ROLES; i < SYM_NUM; i++) {
447                 p->sym_val_to_name[i] =
448                         kmalloc(p->symtab[i].nprim * sizeof(char *), GFP_KERNEL);
449                 if (!p->sym_val_to_name[i]) {
450                         rc = -ENOMEM;
451                         goto out;
452                 }
453                 rc = hashtab_map(p->symtab[i].table, index_f[i], p);
454                 if (rc)
455                         goto out;
456         }
457
458 out:
459         return rc;
460 }
461
462 /*
463  * The following *_destroy functions are used to
464  * free any memory allocated for each kind of
465  * symbol data in the policy database.
466  */
467
468 static int perm_destroy(void *key, void *datum, void *p)
469 {
470         kfree(key);
471         kfree(datum);
472         return 0;
473 }
474
475 static int common_destroy(void *key, void *datum, void *p)
476 {
477         struct common_datum *comdatum;
478
479         kfree(key);
480         comdatum = datum;
481         hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
482         hashtab_destroy(comdatum->permissions.table);
483         kfree(datum);
484         return 0;
485 }
486
487 static int cls_destroy(void *key, void *datum, void *p)
488 {
489         struct class_datum *cladatum;
490         struct constraint_node *constraint, *ctemp;
491         struct constraint_expr *e, *etmp;
492
493         kfree(key);
494         cladatum = datum;
495         hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
496         hashtab_destroy(cladatum->permissions.table);
497         constraint = cladatum->constraints;
498         while (constraint) {
499                 e = constraint->expr;
500                 while (e) {
501                         ebitmap_destroy(&e->names);
502                         etmp = e;
503                         e = e->next;
504                         kfree(etmp);
505                 }
506                 ctemp = constraint;
507                 constraint = constraint->next;
508                 kfree(ctemp);
509         }
510
511         constraint = cladatum->validatetrans;
512         while (constraint) {
513                 e = constraint->expr;
514                 while (e) {
515                         ebitmap_destroy(&e->names);
516                         etmp = e;
517                         e = e->next;
518                         kfree(etmp);
519                 }
520                 ctemp = constraint;
521                 constraint = constraint->next;
522                 kfree(ctemp);
523         }
524
525         kfree(cladatum->comkey);
526         kfree(datum);
527         return 0;
528 }
529
530 static int role_destroy(void *key, void *datum, void *p)
531 {
532         struct role_datum *role;
533
534         kfree(key);
535         role = datum;
536         ebitmap_destroy(&role->dominates);
537         ebitmap_destroy(&role->types);
538         kfree(datum);
539         return 0;
540 }
541
542 static int type_destroy(void *key, void *datum, void *p)
543 {
544         kfree(key);
545         kfree(datum);
546         return 0;
547 }
548
549 static int user_destroy(void *key, void *datum, void *p)
550 {
551         struct user_datum *usrdatum;
552
553         kfree(key);
554         usrdatum = datum;
555         ebitmap_destroy(&usrdatum->roles);
556         ebitmap_destroy(&usrdatum->range.level[0].cat);
557         ebitmap_destroy(&usrdatum->range.level[1].cat);
558         ebitmap_destroy(&usrdatum->dfltlevel.cat);
559         kfree(datum);
560         return 0;
561 }
562
563 static int sens_destroy(void *key, void *datum, void *p)
564 {
565         struct level_datum *levdatum;
566
567         kfree(key);
568         levdatum = datum;
569         ebitmap_destroy(&levdatum->level->cat);
570         kfree(levdatum->level);
571         kfree(datum);
572         return 0;
573 }
574
575 static int cat_destroy(void *key, void *datum, void *p)
576 {
577         kfree(key);
578         kfree(datum);
579         return 0;
580 }
581
582 static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
583 {
584         common_destroy,
585         cls_destroy,
586         role_destroy,
587         type_destroy,
588         user_destroy,
589         cond_destroy_bool,
590         sens_destroy,
591         cat_destroy,
592 };
593
594 static void ocontext_destroy(struct ocontext *c, int i)
595 {
596         context_destroy(&c->context[0]);
597         context_destroy(&c->context[1]);
598         if (i == OCON_ISID || i == OCON_FS ||
599             i == OCON_NETIF || i == OCON_FSUSE)
600                 kfree(c->u.name);
601         kfree(c);
602 }
603
604 /*
605  * Free any memory allocated by a policy database structure.
606  */
607 void policydb_destroy(struct policydb *p)
608 {
609         struct ocontext *c, *ctmp;
610         struct genfs *g, *gtmp;
611         int i;
612         struct role_allow *ra, *lra = NULL;
613         struct role_trans *tr, *ltr = NULL;
614         struct range_trans *rt, *lrt = NULL;
615
616         for (i = 0; i < SYM_NUM; i++) {
617                 cond_resched();
618                 hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
619                 hashtab_destroy(p->symtab[i].table);
620         }
621
622         for (i = 0; i < SYM_NUM; i++)
623                 kfree(p->sym_val_to_name[i]);
624
625         kfree(p->class_val_to_struct);
626         kfree(p->role_val_to_struct);
627         kfree(p->user_val_to_struct);
628
629         avtab_destroy(&p->te_avtab);
630
631         for (i = 0; i < OCON_NUM; i++) {
632                 cond_resched();
633                 c = p->ocontexts[i];
634                 while (c) {
635                         ctmp = c;
636                         c = c->next;
637                         ocontext_destroy(ctmp,i);
638                 }
639                 p->ocontexts[i] = NULL;
640         }
641
642         g = p->genfs;
643         while (g) {
644                 cond_resched();
645                 kfree(g->fstype);
646                 c = g->head;
647                 while (c) {
648                         ctmp = c;
649                         c = c->next;
650                         ocontext_destroy(ctmp,OCON_FSUSE);
651                 }
652                 gtmp = g;
653                 g = g->next;
654                 kfree(gtmp);
655         }
656         p->genfs = NULL;
657
658         cond_policydb_destroy(p);
659
660         for (tr = p->role_tr; tr; tr = tr->next) {
661                 cond_resched();
662                 kfree(ltr);
663                 ltr = tr;
664         }
665         kfree(ltr);
666
667         for (ra = p->role_allow; ra; ra = ra -> next) {
668                 cond_resched();
669                 kfree(lra);
670                 lra = ra;
671         }
672         kfree(lra);
673
674         for (rt = p->range_tr; rt; rt = rt -> next) {
675                 cond_resched();
676                 if (lrt) {
677                         ebitmap_destroy(&lrt->target_range.level[0].cat);
678                         ebitmap_destroy(&lrt->target_range.level[1].cat);
679                         kfree(lrt);
680                 }
681                 lrt = rt;
682         }
683         if (lrt) {
684                 ebitmap_destroy(&lrt->target_range.level[0].cat);
685                 ebitmap_destroy(&lrt->target_range.level[1].cat);
686                 kfree(lrt);
687         }
688
689         if (p->type_attr_map) {
690                 for (i = 0; i < p->p_types.nprim; i++)
691                         ebitmap_destroy(&p->type_attr_map[i]);
692         }
693         kfree(p->type_attr_map);
694         kfree(p->undefined_perms);
695         ebitmap_destroy(&p->policycaps);
696         ebitmap_destroy(&p->permissive_map);
697
698         return;
699 }
700
701 /*
702  * Load the initial SIDs specified in a policy database
703  * structure into a SID table.
704  */
705 int policydb_load_isids(struct policydb *p, struct sidtab *s)
706 {
707         struct ocontext *head, *c;
708         int rc;
709
710         rc = sidtab_init(s);
711         if (rc) {
712                 printk(KERN_ERR "SELinux:  out of memory on SID table init\n");
713                 goto out;
714         }
715
716         head = p->ocontexts[OCON_ISID];
717         for (c = head; c; c = c->next) {
718                 if (!c->context[0].user) {
719                         printk(KERN_ERR "SELinux:  SID %s was never "
720                                "defined.\n", c->u.name);
721                         rc = -EINVAL;
722                         goto out;
723                 }
724                 if (sidtab_insert(s, c->sid[0], &c->context[0])) {
725                         printk(KERN_ERR "SELinux:  unable to load initial "
726                                "SID %s.\n", c->u.name);
727                         rc = -EINVAL;
728                         goto out;
729                 }
730         }
731 out:
732         return rc;
733 }
734
735 int policydb_class_isvalid(struct policydb *p, unsigned int class)
736 {
737         if (!class || class > p->p_classes.nprim)
738                 return 0;
739         return 1;
740 }
741
742 int policydb_role_isvalid(struct policydb *p, unsigned int role)
743 {
744         if (!role || role > p->p_roles.nprim)
745                 return 0;
746         return 1;
747 }
748
749 int policydb_type_isvalid(struct policydb *p, unsigned int type)
750 {
751         if (!type || type > p->p_types.nprim)
752                 return 0;
753         return 1;
754 }
755
756 /*
757  * Return 1 if the fields in the security context
758  * structure `c' are valid.  Return 0 otherwise.
759  */
760 int policydb_context_isvalid(struct policydb *p, struct context *c)
761 {
762         struct role_datum *role;
763         struct user_datum *usrdatum;
764
765         if (!c->role || c->role > p->p_roles.nprim)
766                 return 0;
767
768         if (!c->user || c->user > p->p_users.nprim)
769                 return 0;
770
771         if (!c->type || c->type > p->p_types.nprim)
772                 return 0;
773
774         if (c->role != OBJECT_R_VAL) {
775                 /*
776                  * Role must be authorized for the type.
777                  */
778                 role = p->role_val_to_struct[c->role - 1];
779                 if (!ebitmap_get_bit(&role->types,
780                                      c->type - 1))
781                         /* role may not be associated with type */
782                         return 0;
783
784                 /*
785                  * User must be authorized for the role.
786                  */
787                 usrdatum = p->user_val_to_struct[c->user - 1];
788                 if (!usrdatum)
789                         return 0;
790
791                 if (!ebitmap_get_bit(&usrdatum->roles,
792                                      c->role - 1))
793                         /* user may not be associated with role */
794                         return 0;
795         }
796
797         if (!mls_context_isvalid(p, c))
798                 return 0;
799
800         return 1;
801 }
802
803 /*
804  * Read a MLS range structure from a policydb binary
805  * representation file.
806  */
807 static int mls_read_range_helper(struct mls_range *r, void *fp)
808 {
809         __le32 buf[2];
810         u32 items;
811         int rc;
812
813         rc = next_entry(buf, fp, sizeof(u32));
814         if (rc < 0)
815                 goto out;
816
817         items = le32_to_cpu(buf[0]);
818         if (items > ARRAY_SIZE(buf)) {
819                 printk(KERN_ERR "SELinux: mls:  range overflow\n");
820                 rc = -EINVAL;
821                 goto out;
822         }
823         rc = next_entry(buf, fp, sizeof(u32) * items);
824         if (rc < 0) {
825                 printk(KERN_ERR "SELinux: mls:  truncated range\n");
826                 goto out;
827         }
828         r->level[0].sens = le32_to_cpu(buf[0]);
829         if (items > 1)
830                 r->level[1].sens = le32_to_cpu(buf[1]);
831         else
832                 r->level[1].sens = r->level[0].sens;
833
834         rc = ebitmap_read(&r->level[0].cat, fp);
835         if (rc) {
836                 printk(KERN_ERR "SELinux: mls:  error reading low "
837                        "categories\n");
838                 goto out;
839         }
840         if (items > 1) {
841                 rc = ebitmap_read(&r->level[1].cat, fp);
842                 if (rc) {
843                         printk(KERN_ERR "SELinux: mls:  error reading high "
844                                "categories\n");
845                         goto bad_high;
846                 }
847         } else {
848                 rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
849                 if (rc) {
850                         printk(KERN_ERR "SELinux: mls:  out of memory\n");
851                         goto bad_high;
852                 }
853         }
854
855         rc = 0;
856 out:
857         return rc;
858 bad_high:
859         ebitmap_destroy(&r->level[0].cat);
860         goto out;
861 }
862
863 /*
864  * Read and validate a security context structure
865  * from a policydb binary representation file.
866  */
867 static int context_read_and_validate(struct context *c,
868                                      struct policydb *p,
869                                      void *fp)
870 {
871         __le32 buf[3];
872         int rc;
873
874         rc = next_entry(buf, fp, sizeof buf);
875         if (rc < 0) {
876                 printk(KERN_ERR "SELinux: context truncated\n");
877                 goto out;
878         }
879         c->user = le32_to_cpu(buf[0]);
880         c->role = le32_to_cpu(buf[1]);
881         c->type = le32_to_cpu(buf[2]);
882         if (p->policyvers >= POLICYDB_VERSION_MLS) {
883                 if (mls_read_range_helper(&c->range, fp)) {
884                         printk(KERN_ERR "SELinux: error reading MLS range of "
885                                "context\n");
886                         rc = -EINVAL;
887                         goto out;
888                 }
889         }
890
891         if (!policydb_context_isvalid(p, c)) {
892                 printk(KERN_ERR "SELinux:  invalid security context\n");
893                 context_destroy(c);
894                 rc = -EINVAL;
895         }
896 out:
897         return rc;
898 }
899
900 /*
901  * The following *_read functions are used to
902  * read the symbol data from a policy database
903  * binary representation file.
904  */
905
906 static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
907 {
908         char *key = NULL;
909         struct perm_datum *perdatum;
910         int rc;
911         __le32 buf[2];
912         u32 len;
913
914         perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL);
915         if (!perdatum) {
916                 rc = -ENOMEM;
917                 goto out;
918         }
919
920         rc = next_entry(buf, fp, sizeof buf);
921         if (rc < 0)
922                 goto bad;
923
924         len = le32_to_cpu(buf[0]);
925         perdatum->value = le32_to_cpu(buf[1]);
926
927         key = kmalloc(len + 1,GFP_KERNEL);
928         if (!key) {
929                 rc = -ENOMEM;
930                 goto bad;
931         }
932         rc = next_entry(key, fp, len);
933         if (rc < 0)
934                 goto bad;
935         key[len] = 0;
936
937         rc = hashtab_insert(h, key, perdatum);
938         if (rc)
939                 goto bad;
940 out:
941         return rc;
942 bad:
943         perm_destroy(key, perdatum, NULL);
944         goto out;
945 }
946
947 static int common_read(struct policydb *p, struct hashtab *h, void *fp)
948 {
949         char *key = NULL;
950         struct common_datum *comdatum;
951         __le32 buf[4];
952         u32 len, nel;
953         int i, rc;
954
955         comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL);
956         if (!comdatum) {
957                 rc = -ENOMEM;
958                 goto out;
959         }
960
961         rc = next_entry(buf, fp, sizeof buf);
962         if (rc < 0)
963                 goto bad;
964
965         len = le32_to_cpu(buf[0]);
966         comdatum->value = le32_to_cpu(buf[1]);
967
968         rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
969         if (rc)
970                 goto bad;
971         comdatum->permissions.nprim = le32_to_cpu(buf[2]);
972         nel = le32_to_cpu(buf[3]);
973
974         key = kmalloc(len + 1,GFP_KERNEL);
975         if (!key) {
976                 rc = -ENOMEM;
977                 goto bad;
978         }
979         rc = next_entry(key, fp, len);
980         if (rc < 0)
981                 goto bad;
982         key[len] = 0;
983
984         for (i = 0; i < nel; i++) {
985                 rc = perm_read(p, comdatum->permissions.table, fp);
986                 if (rc)
987                         goto bad;
988         }
989
990         rc = hashtab_insert(h, key, comdatum);
991         if (rc)
992                 goto bad;
993 out:
994         return rc;
995 bad:
996         common_destroy(key, comdatum, NULL);
997         goto out;
998 }
999
1000 static int read_cons_helper(struct constraint_node **nodep, int ncons,
1001                             int allowxtarget, void *fp)
1002 {
1003         struct constraint_node *c, *lc;
1004         struct constraint_expr *e, *le;
1005         __le32 buf[3];
1006         u32 nexpr;
1007         int rc, i, j, depth;
1008
1009         lc = NULL;
1010         for (i = 0; i < ncons; i++) {
1011                 c = kzalloc(sizeof(*c), GFP_KERNEL);
1012                 if (!c)
1013                         return -ENOMEM;
1014
1015                 if (lc) {
1016                         lc->next = c;
1017                 } else {
1018                         *nodep = c;
1019                 }
1020
1021                 rc = next_entry(buf, fp, (sizeof(u32) * 2));
1022                 if (rc < 0)
1023                         return rc;
1024                 c->permissions = le32_to_cpu(buf[0]);
1025                 nexpr = le32_to_cpu(buf[1]);
1026                 le = NULL;
1027                 depth = -1;
1028                 for (j = 0; j < nexpr; j++) {
1029                         e = kzalloc(sizeof(*e), GFP_KERNEL);
1030                         if (!e)
1031                                 return -ENOMEM;
1032
1033                         if (le) {
1034                                 le->next = e;
1035                         } else {
1036                                 c->expr = e;
1037                         }
1038
1039                         rc = next_entry(buf, fp, (sizeof(u32) * 3));
1040                         if (rc < 0)
1041                                 return rc;
1042                         e->expr_type = le32_to_cpu(buf[0]);
1043                         e->attr = le32_to_cpu(buf[1]);
1044                         e->op = le32_to_cpu(buf[2]);
1045
1046                         switch (e->expr_type) {
1047                         case CEXPR_NOT:
1048                                 if (depth < 0)
1049                                         return -EINVAL;
1050                                 break;
1051                         case CEXPR_AND:
1052                         case CEXPR_OR:
1053                                 if (depth < 1)
1054                                         return -EINVAL;
1055                                 depth--;
1056                                 break;
1057                         case CEXPR_ATTR:
1058                                 if (depth == (CEXPR_MAXDEPTH - 1))
1059                                         return -EINVAL;
1060                                 depth++;
1061                                 break;
1062                         case CEXPR_NAMES:
1063                                 if (!allowxtarget && (e->attr & CEXPR_XTARGET))
1064                                         return -EINVAL;
1065                                 if (depth == (CEXPR_MAXDEPTH - 1))
1066                                         return -EINVAL;
1067                                 depth++;
1068                                 if (ebitmap_read(&e->names, fp))
1069                                         return -EINVAL;
1070                                 break;
1071                         default:
1072                                 return -EINVAL;
1073                         }
1074                         le = e;
1075                 }
1076                 if (depth != 0)
1077                         return -EINVAL;
1078                 lc = c;
1079         }
1080
1081         return 0;
1082 }
1083
1084 static int class_read(struct policydb *p, struct hashtab *h, void *fp)
1085 {
1086         char *key = NULL;
1087         struct class_datum *cladatum;
1088         __le32 buf[6];
1089         u32 len, len2, ncons, nel;
1090         int i, rc;
1091
1092         cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL);
1093         if (!cladatum) {
1094                 rc = -ENOMEM;
1095                 goto out;
1096         }
1097
1098         rc = next_entry(buf, fp, sizeof(u32)*6);
1099         if (rc < 0)
1100                 goto bad;
1101
1102         len = le32_to_cpu(buf[0]);
1103         len2 = le32_to_cpu(buf[1]);
1104         cladatum->value = le32_to_cpu(buf[2]);
1105
1106         rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
1107         if (rc)
1108                 goto bad;
1109         cladatum->permissions.nprim = le32_to_cpu(buf[3]);
1110         nel = le32_to_cpu(buf[4]);
1111
1112         ncons = le32_to_cpu(buf[5]);
1113
1114         key = kmalloc(len + 1,GFP_KERNEL);
1115         if (!key) {
1116                 rc = -ENOMEM;
1117                 goto bad;
1118         }
1119         rc = next_entry(key, fp, len);
1120         if (rc < 0)
1121                 goto bad;
1122         key[len] = 0;
1123
1124         if (len2) {
1125                 cladatum->comkey = kmalloc(len2 + 1,GFP_KERNEL);
1126                 if (!cladatum->comkey) {
1127                         rc = -ENOMEM;
1128                         goto bad;
1129                 }
1130                 rc = next_entry(cladatum->comkey, fp, len2);
1131                 if (rc < 0)
1132                         goto bad;
1133                 cladatum->comkey[len2] = 0;
1134
1135                 cladatum->comdatum = hashtab_search(p->p_commons.table,
1136                                                     cladatum->comkey);
1137                 if (!cladatum->comdatum) {
1138                         printk(KERN_ERR "SELinux:  unknown common %s\n",
1139                                cladatum->comkey);
1140                         rc = -EINVAL;
1141                         goto bad;
1142                 }
1143         }
1144         for (i = 0; i < nel; i++) {
1145                 rc = perm_read(p, cladatum->permissions.table, fp);
1146                 if (rc)
1147                         goto bad;
1148         }
1149
1150         rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
1151         if (rc)
1152                 goto bad;
1153
1154         if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
1155                 /* grab the validatetrans rules */
1156                 rc = next_entry(buf, fp, sizeof(u32));
1157                 if (rc < 0)
1158                         goto bad;
1159                 ncons = le32_to_cpu(buf[0]);
1160                 rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
1161                 if (rc)
1162                         goto bad;
1163         }
1164
1165         rc = hashtab_insert(h, key, cladatum);
1166         if (rc)
1167                 goto bad;
1168
1169         rc = 0;
1170 out:
1171         return rc;
1172 bad:
1173         cls_destroy(key, cladatum, NULL);
1174         goto out;
1175 }
1176
1177 static int role_read(struct policydb *p, struct hashtab *h, void *fp)
1178 {
1179         char *key = NULL;
1180         struct role_datum *role;
1181         int rc;
1182         __le32 buf[2];
1183         u32 len;
1184
1185         role = kzalloc(sizeof(*role), GFP_KERNEL);
1186         if (!role) {
1187                 rc = -ENOMEM;
1188                 goto out;
1189         }
1190
1191         rc = next_entry(buf, fp, sizeof buf);
1192         if (rc < 0)
1193                 goto bad;
1194
1195         len = le32_to_cpu(buf[0]);
1196         role->value = le32_to_cpu(buf[1]);
1197
1198         key = kmalloc(len + 1,GFP_KERNEL);
1199         if (!key) {
1200                 rc = -ENOMEM;
1201                 goto bad;
1202         }
1203         rc = next_entry(key, fp, len);
1204         if (rc < 0)
1205                 goto bad;
1206         key[len] = 0;
1207
1208         rc = ebitmap_read(&role->dominates, fp);
1209         if (rc)
1210                 goto bad;
1211
1212         rc = ebitmap_read(&role->types, fp);
1213         if (rc)
1214                 goto bad;
1215
1216         if (strcmp(key, OBJECT_R) == 0) {
1217                 if (role->value != OBJECT_R_VAL) {
1218                         printk(KERN_ERR "Role %s has wrong value %d\n",
1219                                OBJECT_R, role->value);
1220                         rc = -EINVAL;
1221                         goto bad;
1222                 }
1223                 rc = 0;
1224                 goto bad;
1225         }
1226
1227         rc = hashtab_insert(h, key, role);
1228         if (rc)
1229                 goto bad;
1230 out:
1231         return rc;
1232 bad:
1233         role_destroy(key, role, NULL);
1234         goto out;
1235 }
1236
1237 static int type_read(struct policydb *p, struct hashtab *h, void *fp)
1238 {
1239         char *key = NULL;
1240         struct type_datum *typdatum;
1241         int rc;
1242         __le32 buf[3];
1243         u32 len;
1244
1245         typdatum = kzalloc(sizeof(*typdatum),GFP_KERNEL);
1246         if (!typdatum) {
1247                 rc = -ENOMEM;
1248                 return rc;
1249         }
1250
1251         rc = next_entry(buf, fp, sizeof buf);
1252         if (rc < 0)
1253                 goto bad;
1254
1255         len = le32_to_cpu(buf[0]);
1256         typdatum->value = le32_to_cpu(buf[1]);
1257         typdatum->primary = le32_to_cpu(buf[2]);
1258
1259         key = kmalloc(len + 1,GFP_KERNEL);
1260         if (!key) {
1261                 rc = -ENOMEM;
1262                 goto bad;
1263         }
1264         rc = next_entry(key, fp, len);
1265         if (rc < 0)
1266                 goto bad;
1267         key[len] = 0;
1268
1269         rc = hashtab_insert(h, key, typdatum);
1270         if (rc)
1271                 goto bad;
1272 out:
1273         return rc;
1274 bad:
1275         type_destroy(key, typdatum, NULL);
1276         goto out;
1277 }
1278
1279
1280 /*
1281  * Read a MLS level structure from a policydb binary
1282  * representation file.
1283  */
1284 static int mls_read_level(struct mls_level *lp, void *fp)
1285 {
1286         __le32 buf[1];
1287         int rc;
1288
1289         memset(lp, 0, sizeof(*lp));
1290
1291         rc = next_entry(buf, fp, sizeof buf);
1292         if (rc < 0) {
1293                 printk(KERN_ERR "SELinux: mls: truncated level\n");
1294                 goto bad;
1295         }
1296         lp->sens = le32_to_cpu(buf[0]);
1297
1298         if (ebitmap_read(&lp->cat, fp)) {
1299                 printk(KERN_ERR "SELinux: mls:  error reading level "
1300                        "categories\n");
1301                 goto bad;
1302         }
1303
1304         return 0;
1305
1306 bad:
1307         return -EINVAL;
1308 }
1309
1310 static int user_read(struct policydb *p, struct hashtab *h, void *fp)
1311 {
1312         char *key = NULL;
1313         struct user_datum *usrdatum;
1314         int rc;
1315         __le32 buf[2];
1316         u32 len;
1317
1318         usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL);
1319         if (!usrdatum) {
1320                 rc = -ENOMEM;
1321                 goto out;
1322         }
1323
1324         rc = next_entry(buf, fp, sizeof buf);
1325         if (rc < 0)
1326                 goto bad;
1327
1328         len = le32_to_cpu(buf[0]);
1329         usrdatum->value = le32_to_cpu(buf[1]);
1330
1331         key = kmalloc(len + 1,GFP_KERNEL);
1332         if (!key) {
1333                 rc = -ENOMEM;
1334                 goto bad;
1335         }
1336         rc = next_entry(key, fp, len);
1337         if (rc < 0)
1338                 goto bad;
1339         key[len] = 0;
1340
1341         rc = ebitmap_read(&usrdatum->roles, fp);
1342         if (rc)
1343                 goto bad;
1344
1345         if (p->policyvers >= POLICYDB_VERSION_MLS) {
1346                 rc = mls_read_range_helper(&usrdatum->range, fp);
1347                 if (rc)
1348                         goto bad;
1349                 rc = mls_read_level(&usrdatum->dfltlevel, fp);
1350                 if (rc)
1351                         goto bad;
1352         }
1353
1354         rc = hashtab_insert(h, key, usrdatum);
1355         if (rc)
1356                 goto bad;
1357 out:
1358         return rc;
1359 bad:
1360         user_destroy(key, usrdatum, NULL);
1361         goto out;
1362 }
1363
1364 static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
1365 {
1366         char *key = NULL;
1367         struct level_datum *levdatum;
1368         int rc;
1369         __le32 buf[2];
1370         u32 len;
1371
1372         levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC);
1373         if (!levdatum) {
1374                 rc = -ENOMEM;
1375                 goto out;
1376         }
1377
1378         rc = next_entry(buf, fp, sizeof buf);
1379         if (rc < 0)
1380                 goto bad;
1381
1382         len = le32_to_cpu(buf[0]);
1383         levdatum->isalias = le32_to_cpu(buf[1]);
1384
1385         key = kmalloc(len + 1,GFP_ATOMIC);
1386         if (!key) {
1387                 rc = -ENOMEM;
1388                 goto bad;
1389         }
1390         rc = next_entry(key, fp, len);
1391         if (rc < 0)
1392                 goto bad;
1393         key[len] = 0;
1394
1395         levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
1396         if (!levdatum->level) {
1397                 rc = -ENOMEM;
1398                 goto bad;
1399         }
1400         if (mls_read_level(levdatum->level, fp)) {
1401                 rc = -EINVAL;
1402                 goto bad;
1403         }
1404
1405         rc = hashtab_insert(h, key, levdatum);
1406         if (rc)
1407                 goto bad;
1408 out:
1409         return rc;
1410 bad:
1411         sens_destroy(key, levdatum, NULL);
1412         goto out;
1413 }
1414
1415 static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
1416 {
1417         char *key = NULL;
1418         struct cat_datum *catdatum;
1419         int rc;
1420         __le32 buf[3];
1421         u32 len;
1422
1423         catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC);
1424         if (!catdatum) {
1425                 rc = -ENOMEM;
1426                 goto out;
1427         }
1428
1429         rc = next_entry(buf, fp, sizeof buf);
1430         if (rc < 0)
1431                 goto bad;
1432
1433         len = le32_to_cpu(buf[0]);
1434         catdatum->value = le32_to_cpu(buf[1]);
1435         catdatum->isalias = le32_to_cpu(buf[2]);
1436
1437         key = kmalloc(len + 1,GFP_ATOMIC);
1438         if (!key) {
1439                 rc = -ENOMEM;
1440                 goto bad;
1441         }
1442         rc = next_entry(key, fp, len);
1443         if (rc < 0)
1444                 goto bad;
1445         key[len] = 0;
1446
1447         rc = hashtab_insert(h, key, catdatum);
1448         if (rc)
1449                 goto bad;
1450 out:
1451         return rc;
1452
1453 bad:
1454         cat_destroy(key, catdatum, NULL);
1455         goto out;
1456 }
1457
1458 static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
1459 {
1460         common_read,
1461         class_read,
1462         role_read,
1463         type_read,
1464         user_read,
1465         cond_read_bool,
1466         sens_read,
1467         cat_read,
1468 };
1469
1470 extern int ss_initialized;
1471
1472 /*
1473  * Read the configuration data from a policy database binary
1474  * representation file into a policy database structure.
1475  */
1476 int policydb_read(struct policydb *p, void *fp)
1477 {
1478         struct role_allow *ra, *lra;
1479         struct role_trans *tr, *ltr;
1480         struct ocontext *l, *c, *newc;
1481         struct genfs *genfs_p, *genfs, *newgenfs;
1482         int i, j, rc;
1483         __le32 buf[8];
1484         u32 len, len2, config, nprim, nel, nel2;
1485         char *policydb_str;
1486         struct policydb_compat_info *info;
1487         struct range_trans *rt, *lrt;
1488
1489         config = 0;
1490
1491         rc = policydb_init(p);
1492         if (rc)
1493                 goto out;
1494
1495         /* Read the magic number and string length. */
1496         rc = next_entry(buf, fp, sizeof(u32)* 2);
1497         if (rc < 0)
1498                 goto bad;
1499
1500         if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) {
1501                 printk(KERN_ERR "SELinux:  policydb magic number 0x%x does "
1502                        "not match expected magic number 0x%x\n",
1503                        le32_to_cpu(buf[0]), POLICYDB_MAGIC);
1504                 goto bad;
1505         }
1506
1507         len = le32_to_cpu(buf[1]);
1508         if (len != strlen(POLICYDB_STRING)) {
1509                 printk(KERN_ERR "SELinux:  policydb string length %d does not "
1510                        "match expected length %Zu\n",
1511                        len, strlen(POLICYDB_STRING));
1512                 goto bad;
1513         }
1514         policydb_str = kmalloc(len + 1,GFP_KERNEL);
1515         if (!policydb_str) {
1516                 printk(KERN_ERR "SELinux:  unable to allocate memory for policydb "
1517                        "string of length %d\n", len);
1518                 rc = -ENOMEM;
1519                 goto bad;
1520         }
1521         rc = next_entry(policydb_str, fp, len);
1522         if (rc < 0) {
1523                 printk(KERN_ERR "SELinux:  truncated policydb string identifier\n");
1524                 kfree(policydb_str);
1525                 goto bad;
1526         }
1527         policydb_str[len] = 0;
1528         if (strcmp(policydb_str, POLICYDB_STRING)) {
1529                 printk(KERN_ERR "SELinux:  policydb string %s does not match "
1530                        "my string %s\n", policydb_str, POLICYDB_STRING);
1531                 kfree(policydb_str);
1532                 goto bad;
1533         }
1534         /* Done with policydb_str. */
1535         kfree(policydb_str);
1536         policydb_str = NULL;
1537
1538         /* Read the version, config, and table sizes. */
1539         rc = next_entry(buf, fp, sizeof(u32)*4);
1540         if (rc < 0)
1541                 goto bad;
1542
1543         p->policyvers = le32_to_cpu(buf[0]);
1544         if (p->policyvers < POLICYDB_VERSION_MIN ||
1545             p->policyvers > POLICYDB_VERSION_MAX) {
1546                 printk(KERN_ERR "SELinux:  policydb version %d does not match "
1547                        "my version range %d-%d\n",
1548                        le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
1549                 goto bad;
1550         }
1551
1552         if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) {
1553                 if (ss_initialized && !selinux_mls_enabled) {
1554                         printk(KERN_ERR "Cannot switch between non-MLS and MLS "
1555                                "policies\n");
1556                         goto bad;
1557                 }
1558                 selinux_mls_enabled = 1;
1559                 config |= POLICYDB_CONFIG_MLS;
1560
1561                 if (p->policyvers < POLICYDB_VERSION_MLS) {
1562                         printk(KERN_ERR "security policydb version %d (MLS) "
1563                                "not backwards compatible\n", p->policyvers);
1564                         goto bad;
1565                 }
1566         } else {
1567                 if (ss_initialized && selinux_mls_enabled) {
1568                         printk(KERN_ERR "Cannot switch between MLS and non-MLS "
1569                                "policies\n");
1570                         goto bad;
1571                 }
1572         }
1573         p->reject_unknown = !!(le32_to_cpu(buf[1]) & REJECT_UNKNOWN);
1574         p->allow_unknown = !!(le32_to_cpu(buf[1]) & ALLOW_UNKNOWN);
1575
1576         if (p->policyvers >= POLICYDB_VERSION_POLCAP &&
1577             ebitmap_read(&p->policycaps, fp) != 0)
1578                 goto bad;
1579
1580         if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE &&
1581             ebitmap_read(&p->permissive_map, fp) != 0)
1582                 goto bad;
1583
1584         info = policydb_lookup_compat(p->policyvers);
1585         if (!info) {
1586                 printk(KERN_ERR "SELinux:  unable to find policy compat info "
1587                        "for version %d\n", p->policyvers);
1588                 goto bad;
1589         }
1590
1591         if (le32_to_cpu(buf[2]) != info->sym_num ||
1592                 le32_to_cpu(buf[3]) != info->ocon_num) {
1593                 printk(KERN_ERR "SELinux:  policydb table sizes (%d,%d) do "
1594                        "not match mine (%d,%d)\n", le32_to_cpu(buf[2]),
1595                         le32_to_cpu(buf[3]),
1596                        info->sym_num, info->ocon_num);
1597                 goto bad;
1598         }
1599
1600         for (i = 0; i < info->sym_num; i++) {
1601                 rc = next_entry(buf, fp, sizeof(u32)*2);
1602                 if (rc < 0)
1603                         goto bad;
1604                 nprim = le32_to_cpu(buf[0]);
1605                 nel = le32_to_cpu(buf[1]);
1606                 for (j = 0; j < nel; j++) {
1607                         rc = read_f[i](p, p->symtab[i].table, fp);
1608                         if (rc)
1609                                 goto bad;
1610                 }
1611
1612                 p->symtab[i].nprim = nprim;
1613         }
1614
1615         rc = avtab_read(&p->te_avtab, fp, p);
1616         if (rc)
1617                 goto bad;
1618
1619         if (p->policyvers >= POLICYDB_VERSION_BOOL) {
1620                 rc = cond_read_list(p, fp);
1621                 if (rc)
1622                         goto bad;
1623         }
1624
1625         rc = next_entry(buf, fp, sizeof(u32));
1626         if (rc < 0)
1627                 goto bad;
1628         nel = le32_to_cpu(buf[0]);
1629         ltr = NULL;
1630         for (i = 0; i < nel; i++) {
1631                 tr = kzalloc(sizeof(*tr), GFP_KERNEL);
1632                 if (!tr) {
1633                         rc = -ENOMEM;
1634                         goto bad;
1635                 }
1636                 if (ltr) {
1637                         ltr->next = tr;
1638                 } else {
1639                         p->role_tr = tr;
1640                 }
1641                 rc = next_entry(buf, fp, sizeof(u32)*3);
1642                 if (rc < 0)
1643                         goto bad;
1644                 tr->role = le32_to_cpu(buf[0]);
1645                 tr->type = le32_to_cpu(buf[1]);
1646                 tr->new_role = le32_to_cpu(buf[2]);
1647                 if (!policydb_role_isvalid(p, tr->role) ||
1648                     !policydb_type_isvalid(p, tr->type) ||
1649                     !policydb_role_isvalid(p, tr->new_role)) {
1650                         rc = -EINVAL;
1651                         goto bad;
1652                 }
1653                 ltr = tr;
1654         }
1655
1656         rc = next_entry(buf, fp, sizeof(u32));
1657         if (rc < 0)
1658                 goto bad;
1659         nel = le32_to_cpu(buf[0]);
1660         lra = NULL;
1661         for (i = 0; i < nel; i++) {
1662                 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1663                 if (!ra) {
1664                         rc = -ENOMEM;
1665                         goto bad;
1666                 }
1667                 if (lra) {
1668                         lra->next = ra;
1669                 } else {
1670                         p->role_allow = ra;
1671                 }
1672                 rc = next_entry(buf, fp, sizeof(u32)*2);
1673                 if (rc < 0)
1674                         goto bad;
1675                 ra->role = le32_to_cpu(buf[0]);
1676                 ra->new_role = le32_to_cpu(buf[1]);
1677                 if (!policydb_role_isvalid(p, ra->role) ||
1678                     !policydb_role_isvalid(p, ra->new_role)) {
1679                         rc = -EINVAL;
1680                         goto bad;
1681                 }
1682                 lra = ra;
1683         }
1684
1685         rc = policydb_index_classes(p);
1686         if (rc)
1687                 goto bad;
1688
1689         rc = policydb_index_others(p);
1690         if (rc)
1691                 goto bad;
1692
1693         for (i = 0; i < info->ocon_num; i++) {
1694                 rc = next_entry(buf, fp, sizeof(u32));
1695                 if (rc < 0)
1696                         goto bad;
1697                 nel = le32_to_cpu(buf[0]);
1698                 l = NULL;
1699                 for (j = 0; j < nel; j++) {
1700                         c = kzalloc(sizeof(*c), GFP_KERNEL);
1701                         if (!c) {
1702                                 rc = -ENOMEM;
1703                                 goto bad;
1704                         }
1705                         if (l) {
1706                                 l->next = c;
1707                         } else {
1708                                 p->ocontexts[i] = c;
1709                         }
1710                         l = c;
1711                         rc = -EINVAL;
1712                         switch (i) {
1713                         case OCON_ISID:
1714                                 rc = next_entry(buf, fp, sizeof(u32));
1715                                 if (rc < 0)
1716                                         goto bad;
1717                                 c->sid[0] = le32_to_cpu(buf[0]);
1718                                 rc = context_read_and_validate(&c->context[0], p, fp);
1719                                 if (rc)
1720                                         goto bad;
1721                                 break;
1722                         case OCON_FS:
1723                         case OCON_NETIF:
1724                                 rc = next_entry(buf, fp, sizeof(u32));
1725                                 if (rc < 0)
1726                                         goto bad;
1727                                 len = le32_to_cpu(buf[0]);
1728                                 c->u.name = kmalloc(len + 1,GFP_KERNEL);
1729                                 if (!c->u.name) {
1730                                         rc = -ENOMEM;
1731                                         goto bad;
1732                                 }
1733                                 rc = next_entry(c->u.name, fp, len);
1734                                 if (rc < 0)
1735                                         goto bad;
1736                                 c->u.name[len] = 0;
1737                                 rc = context_read_and_validate(&c->context[0], p, fp);
1738                                 if (rc)
1739                                         goto bad;
1740                                 rc = context_read_and_validate(&c->context[1], p, fp);
1741                                 if (rc)
1742                                         goto bad;
1743                                 break;
1744                         case OCON_PORT:
1745                                 rc = next_entry(buf, fp, sizeof(u32)*3);
1746                                 if (rc < 0)
1747                                         goto bad;
1748                                 c->u.port.protocol = le32_to_cpu(buf[0]);
1749                                 c->u.port.low_port = le32_to_cpu(buf[1]);
1750                                 c->u.port.high_port = le32_to_cpu(buf[2]);
1751                                 rc = context_read_and_validate(&c->context[0], p, fp);
1752                                 if (rc)
1753                                         goto bad;
1754                                 break;
1755                         case OCON_NODE:
1756                                 rc = next_entry(buf, fp, sizeof(u32)* 2);
1757                                 if (rc < 0)
1758                                         goto bad;
1759                                 c->u.node.addr = le32_to_cpu(buf[0]);
1760                                 c->u.node.mask = le32_to_cpu(buf[1]);
1761                                 rc = context_read_and_validate(&c->context[0], p, fp);
1762                                 if (rc)
1763                                         goto bad;
1764                                 break;
1765                         case OCON_FSUSE:
1766                                 rc = next_entry(buf, fp, sizeof(u32)*2);
1767                                 if (rc < 0)
1768                                         goto bad;
1769                                 c->v.behavior = le32_to_cpu(buf[0]);
1770                                 if (c->v.behavior > SECURITY_FS_USE_NONE)
1771                                         goto bad;
1772                                 len = le32_to_cpu(buf[1]);
1773                                 c->u.name = kmalloc(len + 1,GFP_KERNEL);
1774                                 if (!c->u.name) {
1775                                         rc = -ENOMEM;
1776                                         goto bad;
1777                                 }
1778                                 rc = next_entry(c->u.name, fp, len);
1779                                 if (rc < 0)
1780                                         goto bad;
1781                                 c->u.name[len] = 0;
1782                                 rc = context_read_and_validate(&c->context[0], p, fp);
1783                                 if (rc)
1784                                         goto bad;
1785                                 break;
1786                         case OCON_NODE6: {
1787                                 int k;
1788
1789                                 rc = next_entry(buf, fp, sizeof(u32) * 8);
1790                                 if (rc < 0)
1791                                         goto bad;
1792                                 for (k = 0; k < 4; k++)
1793                                         c->u.node6.addr[k] = le32_to_cpu(buf[k]);
1794                                 for (k = 0; k < 4; k++)
1795                                         c->u.node6.mask[k] = le32_to_cpu(buf[k+4]);
1796                                 if (context_read_and_validate(&c->context[0], p, fp))
1797                                         goto bad;
1798                                 break;
1799                         }
1800                         }
1801                 }
1802         }
1803
1804         rc = next_entry(buf, fp, sizeof(u32));
1805         if (rc < 0)
1806                 goto bad;
1807         nel = le32_to_cpu(buf[0]);
1808         genfs_p = NULL;
1809         rc = -EINVAL;
1810         for (i = 0; i < nel; i++) {
1811                 rc = next_entry(buf, fp, sizeof(u32));
1812                 if (rc < 0)
1813                         goto bad;
1814                 len = le32_to_cpu(buf[0]);
1815                 newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL);
1816                 if (!newgenfs) {
1817                         rc = -ENOMEM;
1818                         goto bad;
1819                 }
1820
1821                 newgenfs->fstype = kmalloc(len + 1,GFP_KERNEL);
1822                 if (!newgenfs->fstype) {
1823                         rc = -ENOMEM;
1824                         kfree(newgenfs);
1825                         goto bad;
1826                 }
1827                 rc = next_entry(newgenfs->fstype, fp, len);
1828                 if (rc < 0) {
1829                         kfree(newgenfs->fstype);
1830                         kfree(newgenfs);
1831                         goto bad;
1832                 }
1833                 newgenfs->fstype[len] = 0;
1834                 for (genfs_p = NULL, genfs = p->genfs; genfs;
1835                      genfs_p = genfs, genfs = genfs->next) {
1836                         if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
1837                                 printk(KERN_ERR "SELinux:  dup genfs "
1838                                        "fstype %s\n", newgenfs->fstype);
1839                                 kfree(newgenfs->fstype);
1840                                 kfree(newgenfs);
1841                                 goto bad;
1842                         }
1843                         if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
1844                                 break;
1845                 }
1846                 newgenfs->next = genfs;
1847                 if (genfs_p)
1848                         genfs_p->next = newgenfs;
1849                 else
1850                         p->genfs = newgenfs;
1851                 rc = next_entry(buf, fp, sizeof(u32));
1852                 if (rc < 0)
1853                         goto bad;
1854                 nel2 = le32_to_cpu(buf[0]);
1855                 for (j = 0; j < nel2; j++) {
1856                         rc = next_entry(buf, fp, sizeof(u32));
1857                         if (rc < 0)
1858                                 goto bad;
1859                         len = le32_to_cpu(buf[0]);
1860
1861                         newc = kzalloc(sizeof(*newc), GFP_KERNEL);
1862                         if (!newc) {
1863                                 rc = -ENOMEM;
1864                                 goto bad;
1865                         }
1866
1867                         newc->u.name = kmalloc(len + 1,GFP_KERNEL);
1868                         if (!newc->u.name) {
1869                                 rc = -ENOMEM;
1870                                 goto bad_newc;
1871                         }
1872                         rc = next_entry(newc->u.name, fp, len);
1873                         if (rc < 0)
1874                                 goto bad_newc;
1875                         newc->u.name[len] = 0;
1876                         rc = next_entry(buf, fp, sizeof(u32));
1877                         if (rc < 0)
1878                                 goto bad_newc;
1879                         newc->v.sclass = le32_to_cpu(buf[0]);
1880                         if (context_read_and_validate(&newc->context[0], p, fp))
1881                                 goto bad_newc;
1882                         for (l = NULL, c = newgenfs->head; c;
1883                              l = c, c = c->next) {
1884                                 if (!strcmp(newc->u.name, c->u.name) &&
1885                                     (!c->v.sclass || !newc->v.sclass ||
1886                                      newc->v.sclass == c->v.sclass)) {
1887                                         printk(KERN_ERR "SELinux:  dup genfs "
1888                                                "entry (%s,%s)\n",
1889                                                newgenfs->fstype, c->u.name);
1890                                         goto bad_newc;
1891                                 }
1892                                 len = strlen(newc->u.name);
1893                                 len2 = strlen(c->u.name);
1894                                 if (len > len2)
1895                                         break;
1896                         }
1897
1898                         newc->next = c;
1899                         if (l)
1900                                 l->next = newc;
1901                         else
1902                                 newgenfs->head = newc;
1903                 }
1904         }
1905
1906         if (p->policyvers >= POLICYDB_VERSION_MLS) {
1907                 int new_rangetr = p->policyvers >= POLICYDB_VERSION_RANGETRANS;
1908                 rc = next_entry(buf, fp, sizeof(u32));
1909                 if (rc < 0)
1910                         goto bad;
1911                 nel = le32_to_cpu(buf[0]);
1912                 lrt = NULL;
1913                 for (i = 0; i < nel; i++) {
1914                         rt = kzalloc(sizeof(*rt), GFP_KERNEL);
1915                         if (!rt) {
1916                                 rc = -ENOMEM;
1917                                 goto bad;
1918                         }
1919                         if (lrt)
1920                                 lrt->next = rt;
1921                         else
1922                                 p->range_tr = rt;
1923                         rc = next_entry(buf, fp, (sizeof(u32) * 2));
1924                         if (rc < 0)
1925                                 goto bad;
1926                         rt->source_type = le32_to_cpu(buf[0]);
1927                         rt->target_type = le32_to_cpu(buf[1]);
1928                         if (new_rangetr) {
1929                                 rc = next_entry(buf, fp, sizeof(u32));
1930                                 if (rc < 0)
1931                                         goto bad;
1932                                 rt->target_class = le32_to_cpu(buf[0]);
1933                         } else
1934                                 rt->target_class = SECCLASS_PROCESS;
1935                         if (!policydb_type_isvalid(p, rt->source_type) ||
1936                             !policydb_type_isvalid(p, rt->target_type) ||
1937                             !policydb_class_isvalid(p, rt->target_class)) {
1938                                 rc = -EINVAL;
1939                                 goto bad;
1940                         }
1941                         rc = mls_read_range_helper(&rt->target_range, fp);
1942                         if (rc)
1943                                 goto bad;
1944                         if (!mls_range_isvalid(p, &rt->target_range)) {
1945                                 printk(KERN_WARNING "SELinux:  rangetrans:  invalid range\n");
1946                                 goto bad;
1947                         }
1948                         lrt = rt;
1949                 }
1950         }
1951
1952         p->type_attr_map = kmalloc(p->p_types.nprim*sizeof(struct ebitmap), GFP_KERNEL);
1953         if (!p->type_attr_map)
1954                 goto bad;
1955
1956         for (i = 0; i < p->p_types.nprim; i++) {
1957                 ebitmap_init(&p->type_attr_map[i]);
1958                 if (p->policyvers >= POLICYDB_VERSION_AVTAB) {
1959                         if (ebitmap_read(&p->type_attr_map[i], fp))
1960                                 goto bad;
1961                 }
1962                 /* add the type itself as the degenerate case */
1963                 if (ebitmap_set_bit(&p->type_attr_map[i], i, 1))
1964                                 goto bad;
1965         }
1966
1967         rc = 0;
1968 out:
1969         return rc;
1970 bad_newc:
1971         ocontext_destroy(newc,OCON_FSUSE);
1972 bad:
1973         if (!rc)
1974                 rc = -EINVAL;
1975         policydb_destroy(p);
1976         goto out;
1977 }