549120c56edd4c7fa4df2928a83008ec422576f9
[linux-2.6.git] / security / selinux / ss / policydb.c
1 /*
2  * Implementation of the policy database.
3  *
4  * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
5  */
6
7 /*
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *      Support for enhanced MLS infrastructure.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *      Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul.moore@hp.com>
17  *
18  *      Added support for the policy capability bitmap
19  *
20  * Copyright (C) 2007 Hewlett-Packard Development Company, L.P.
21  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
22  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
23  *      This program is free software; you can redistribute it and/or modify
24  *      it under the terms of the GNU General Public License as published by
25  *      the Free Software Foundation, version 2.
26  */
27
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/string.h>
32 #include <linux/errno.h>
33 #include <linux/audit.h>
34 #include <linux/flex_array.h>
35 #include "security.h"
36
37 #include "policydb.h"
38 #include "conditional.h"
39 #include "mls.h"
40 #include "services.h"
41
42 #define _DEBUG_HASHES
43
44 #ifdef DEBUG_HASHES
45 static const char *symtab_name[SYM_NUM] = {
46         "common prefixes",
47         "classes",
48         "roles",
49         "types",
50         "users",
51         "bools",
52         "levels",
53         "categories",
54 };
55 #endif
56
57 static unsigned int symtab_sizes[SYM_NUM] = {
58         2,
59         32,
60         16,
61         512,
62         128,
63         16,
64         16,
65         16,
66 };
67
68 struct policydb_compat_info {
69         int version;
70         int sym_num;
71         int ocon_num;
72 };
73
74 /* These need to be updated if SYM_NUM or OCON_NUM changes */
75 static struct policydb_compat_info policydb_compat[] = {
76         {
77                 .version        = POLICYDB_VERSION_BASE,
78                 .sym_num        = SYM_NUM - 3,
79                 .ocon_num       = OCON_NUM - 1,
80         },
81         {
82                 .version        = POLICYDB_VERSION_BOOL,
83                 .sym_num        = SYM_NUM - 2,
84                 .ocon_num       = OCON_NUM - 1,
85         },
86         {
87                 .version        = POLICYDB_VERSION_IPV6,
88                 .sym_num        = SYM_NUM - 2,
89                 .ocon_num       = OCON_NUM,
90         },
91         {
92                 .version        = POLICYDB_VERSION_NLCLASS,
93                 .sym_num        = SYM_NUM - 2,
94                 .ocon_num       = OCON_NUM,
95         },
96         {
97                 .version        = POLICYDB_VERSION_MLS,
98                 .sym_num        = SYM_NUM,
99                 .ocon_num       = OCON_NUM,
100         },
101         {
102                 .version        = POLICYDB_VERSION_AVTAB,
103                 .sym_num        = SYM_NUM,
104                 .ocon_num       = OCON_NUM,
105         },
106         {
107                 .version        = POLICYDB_VERSION_RANGETRANS,
108                 .sym_num        = SYM_NUM,
109                 .ocon_num       = OCON_NUM,
110         },
111         {
112                 .version        = POLICYDB_VERSION_POLCAP,
113                 .sym_num        = SYM_NUM,
114                 .ocon_num       = OCON_NUM,
115         },
116         {
117                 .version        = POLICYDB_VERSION_PERMISSIVE,
118                 .sym_num        = SYM_NUM,
119                 .ocon_num       = OCON_NUM,
120         },
121         {
122                 .version        = POLICYDB_VERSION_BOUNDARY,
123                 .sym_num        = SYM_NUM,
124                 .ocon_num       = OCON_NUM,
125         },
126         {
127                 .version        = POLICYDB_VERSION_FILENAME_TRANS,
128                 .sym_num        = SYM_NUM,
129                 .ocon_num       = OCON_NUM,
130         },
131         {
132                 .version        = POLICYDB_VERSION_ROLETRANS,
133                 .sym_num        = SYM_NUM,
134                 .ocon_num       = OCON_NUM,
135         },
136 };
137
138 static struct policydb_compat_info *policydb_lookup_compat(int version)
139 {
140         int i;
141         struct policydb_compat_info *info = NULL;
142
143         for (i = 0; i < ARRAY_SIZE(policydb_compat); i++) {
144                 if (policydb_compat[i].version == version) {
145                         info = &policydb_compat[i];
146                         break;
147                 }
148         }
149         return info;
150 }
151
152 /*
153  * Initialize the role table.
154  */
155 static int roles_init(struct policydb *p)
156 {
157         char *key = NULL;
158         int rc;
159         struct role_datum *role;
160
161         rc = -ENOMEM;
162         role = kzalloc(sizeof(*role), GFP_KERNEL);
163         if (!role)
164                 goto out;
165
166         rc = -EINVAL;
167         role->value = ++p->p_roles.nprim;
168         if (role->value != OBJECT_R_VAL)
169                 goto out;
170
171         rc = -ENOMEM;
172         key = kstrdup(OBJECT_R, GFP_KERNEL);
173         if (!key)
174                 goto out;
175
176         rc = hashtab_insert(p->p_roles.table, key, role);
177         if (rc)
178                 goto out;
179
180         return 0;
181 out:
182         kfree(key);
183         kfree(role);
184         return rc;
185 }
186
187 static u32 filenametr_hash(struct hashtab *h, const void *k)
188 {
189         const struct filename_trans *ft = k;
190         unsigned long hash;
191         unsigned int byte_num;
192         unsigned char focus;
193
194         hash = ft->stype ^ ft->ttype ^ ft->tclass;
195
196         byte_num = 0;
197         while ((focus = ft->name[byte_num++]))
198                 hash = partial_name_hash(focus, hash);
199         return hash & (h->size - 1);
200 }
201
202 static int filenametr_cmp(struct hashtab *h, const void *k1, const void *k2)
203 {
204         const struct filename_trans *ft1 = k1;
205         const struct filename_trans *ft2 = k2;
206         int v;
207
208         v = ft1->stype - ft2->stype;
209         if (v)
210                 return v;
211
212         v = ft1->ttype - ft2->ttype;
213         if (v)
214                 return v;
215
216         v = ft1->tclass - ft2->tclass;
217         if (v)
218                 return v;
219
220         return strcmp(ft1->name, ft2->name);
221
222 }
223
224 static u32 rangetr_hash(struct hashtab *h, const void *k)
225 {
226         const struct range_trans *key = k;
227         return (key->source_type + (key->target_type << 3) +
228                 (key->target_class << 5)) & (h->size - 1);
229 }
230
231 static int rangetr_cmp(struct hashtab *h, const void *k1, const void *k2)
232 {
233         const struct range_trans *key1 = k1, *key2 = k2;
234         int v;
235
236         v = key1->source_type - key2->source_type;
237         if (v)
238                 return v;
239
240         v = key1->target_type - key2->target_type;
241         if (v)
242                 return v;
243
244         v = key1->target_class - key2->target_class;
245
246         return v;
247 }
248
249 /*
250  * Initialize a policy database structure.
251  */
252 static int policydb_init(struct policydb *p)
253 {
254         int i, rc;
255
256         memset(p, 0, sizeof(*p));
257
258         for (i = 0; i < SYM_NUM; i++) {
259                 rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
260                 if (rc)
261                         goto out;
262         }
263
264         rc = avtab_init(&p->te_avtab);
265         if (rc)
266                 goto out;
267
268         rc = roles_init(p);
269         if (rc)
270                 goto out;
271
272         rc = cond_policydb_init(p);
273         if (rc)
274                 goto out;
275
276         p->filename_trans = hashtab_create(filenametr_hash, filenametr_cmp, (1 << 10));
277         if (!p->filename_trans)
278                 goto out;
279
280         p->range_tr = hashtab_create(rangetr_hash, rangetr_cmp, 256);
281         if (!p->range_tr)
282                 goto out;
283
284         ebitmap_init(&p->filename_trans_ttypes);
285         ebitmap_init(&p->policycaps);
286         ebitmap_init(&p->permissive_map);
287
288         return 0;
289 out:
290         hashtab_destroy(p->filename_trans);
291         hashtab_destroy(p->range_tr);
292         for (i = 0; i < SYM_NUM; i++)
293                 hashtab_destroy(p->symtab[i].table);
294         return rc;
295 }
296
297 /*
298  * The following *_index functions are used to
299  * define the val_to_name and val_to_struct arrays
300  * in a policy database structure.  The val_to_name
301  * arrays are used when converting security context
302  * structures into string representations.  The
303  * val_to_struct arrays are used when the attributes
304  * of a class, role, or user are needed.
305  */
306
307 static int common_index(void *key, void *datum, void *datap)
308 {
309         struct policydb *p;
310         struct common_datum *comdatum;
311         struct flex_array *fa;
312
313         comdatum = datum;
314         p = datap;
315         if (!comdatum->value || comdatum->value > p->p_commons.nprim)
316                 return -EINVAL;
317
318         fa = p->sym_val_to_name[SYM_COMMONS];
319         if (flex_array_put_ptr(fa, comdatum->value - 1, key,
320                                GFP_KERNEL | __GFP_ZERO))
321                 BUG();
322         return 0;
323 }
324
325 static int class_index(void *key, void *datum, void *datap)
326 {
327         struct policydb *p;
328         struct class_datum *cladatum;
329         struct flex_array *fa;
330
331         cladatum = datum;
332         p = datap;
333         if (!cladatum->value || cladatum->value > p->p_classes.nprim)
334                 return -EINVAL;
335         fa = p->sym_val_to_name[SYM_CLASSES];
336         if (flex_array_put_ptr(fa, cladatum->value - 1, key,
337                                GFP_KERNEL | __GFP_ZERO))
338                 BUG();
339         p->class_val_to_struct[cladatum->value - 1] = cladatum;
340         return 0;
341 }
342
343 static int role_index(void *key, void *datum, void *datap)
344 {
345         struct policydb *p;
346         struct role_datum *role;
347         struct flex_array *fa;
348
349         role = datum;
350         p = datap;
351         if (!role->value
352             || role->value > p->p_roles.nprim
353             || role->bounds > p->p_roles.nprim)
354                 return -EINVAL;
355
356         fa = p->sym_val_to_name[SYM_ROLES];
357         if (flex_array_put_ptr(fa, role->value - 1, key,
358                                GFP_KERNEL | __GFP_ZERO))
359                 BUG();
360         p->role_val_to_struct[role->value - 1] = role;
361         return 0;
362 }
363
364 static int type_index(void *key, void *datum, void *datap)
365 {
366         struct policydb *p;
367         struct type_datum *typdatum;
368         struct flex_array *fa;
369
370         typdatum = datum;
371         p = datap;
372
373         if (typdatum->primary) {
374                 if (!typdatum->value
375                     || typdatum->value > p->p_types.nprim
376                     || typdatum->bounds > p->p_types.nprim)
377                         return -EINVAL;
378                 fa = p->sym_val_to_name[SYM_TYPES];
379                 if (flex_array_put_ptr(fa, typdatum->value - 1, key,
380                                        GFP_KERNEL | __GFP_ZERO))
381                         BUG();
382
383                 fa = p->type_val_to_struct_array;
384                 if (flex_array_put_ptr(fa, typdatum->value - 1, typdatum,
385                                        GFP_KERNEL | __GFP_ZERO))
386                         BUG();
387         }
388
389         return 0;
390 }
391
392 static int user_index(void *key, void *datum, void *datap)
393 {
394         struct policydb *p;
395         struct user_datum *usrdatum;
396         struct flex_array *fa;
397
398         usrdatum = datum;
399         p = datap;
400         if (!usrdatum->value
401             || usrdatum->value > p->p_users.nprim
402             || usrdatum->bounds > p->p_users.nprim)
403                 return -EINVAL;
404
405         fa = p->sym_val_to_name[SYM_USERS];
406         if (flex_array_put_ptr(fa, usrdatum->value - 1, key,
407                                GFP_KERNEL | __GFP_ZERO))
408                 BUG();
409         p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
410         return 0;
411 }
412
413 static int sens_index(void *key, void *datum, void *datap)
414 {
415         struct policydb *p;
416         struct level_datum *levdatum;
417         struct flex_array *fa;
418
419         levdatum = datum;
420         p = datap;
421
422         if (!levdatum->isalias) {
423                 if (!levdatum->level->sens ||
424                     levdatum->level->sens > p->p_levels.nprim)
425                         return -EINVAL;
426                 fa = p->sym_val_to_name[SYM_LEVELS];
427                 if (flex_array_put_ptr(fa, levdatum->level->sens - 1, key,
428                                        GFP_KERNEL | __GFP_ZERO))
429                         BUG();
430         }
431
432         return 0;
433 }
434
435 static int cat_index(void *key, void *datum, void *datap)
436 {
437         struct policydb *p;
438         struct cat_datum *catdatum;
439         struct flex_array *fa;
440
441         catdatum = datum;
442         p = datap;
443
444         if (!catdatum->isalias) {
445                 if (!catdatum->value || catdatum->value > p->p_cats.nprim)
446                         return -EINVAL;
447                 fa = p->sym_val_to_name[SYM_CATS];
448                 if (flex_array_put_ptr(fa, catdatum->value - 1, key,
449                                        GFP_KERNEL | __GFP_ZERO))
450                         BUG();
451         }
452
453         return 0;
454 }
455
456 static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
457 {
458         common_index,
459         class_index,
460         role_index,
461         type_index,
462         user_index,
463         cond_index_bool,
464         sens_index,
465         cat_index,
466 };
467
468 #ifdef DEBUG_HASHES
469 static void hash_eval(struct hashtab *h, const char *hash_name)
470 {
471         struct hashtab_info info;
472
473         hashtab_stat(h, &info);
474         printk(KERN_DEBUG "SELinux: %s:  %d entries and %d/%d buckets used, "
475                "longest chain length %d\n", hash_name, h->nel,
476                info.slots_used, h->size, info.max_chain_len);
477 }
478
479 static void symtab_hash_eval(struct symtab *s)
480 {
481         int i;
482
483         for (i = 0; i < SYM_NUM; i++)
484                 hash_eval(s[i].table, symtab_name[i]);
485 }
486
487 #else
488 static inline void hash_eval(struct hashtab *h, char *hash_name)
489 {
490 }
491 #endif
492
493 /*
494  * Define the other val_to_name and val_to_struct arrays
495  * in a policy database structure.
496  *
497  * Caller must clean up on failure.
498  */
499 static int policydb_index(struct policydb *p)
500 {
501         int i, rc;
502
503         printk(KERN_DEBUG "SELinux:  %d users, %d roles, %d types, %d bools",
504                p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
505         if (p->mls_enabled)
506                 printk(", %d sens, %d cats", p->p_levels.nprim,
507                        p->p_cats.nprim);
508         printk("\n");
509
510         printk(KERN_DEBUG "SELinux:  %d classes, %d rules\n",
511                p->p_classes.nprim, p->te_avtab.nel);
512
513 #ifdef DEBUG_HASHES
514         avtab_hash_eval(&p->te_avtab, "rules");
515         symtab_hash_eval(p->symtab);
516 #endif
517
518         rc = -ENOMEM;
519         p->class_val_to_struct =
520                 kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)),
521                         GFP_KERNEL);
522         if (!p->class_val_to_struct)
523                 goto out;
524
525         rc = -ENOMEM;
526         p->role_val_to_struct =
527                 kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
528                         GFP_KERNEL);
529         if (!p->role_val_to_struct)
530                 goto out;
531
532         rc = -ENOMEM;
533         p->user_val_to_struct =
534                 kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
535                         GFP_KERNEL);
536         if (!p->user_val_to_struct)
537                 goto out;
538
539         /* Yes, I want the sizeof the pointer, not the structure */
540         rc = -ENOMEM;
541         p->type_val_to_struct_array = flex_array_alloc(sizeof(struct type_datum *),
542                                                        p->p_types.nprim,
543                                                        GFP_KERNEL | __GFP_ZERO);
544         if (!p->type_val_to_struct_array)
545                 goto out;
546
547         rc = flex_array_prealloc(p->type_val_to_struct_array, 0,
548                                  p->p_types.nprim - 1, GFP_KERNEL | __GFP_ZERO);
549         if (rc)
550                 goto out;
551
552         rc = cond_init_bool_indexes(p);
553         if (rc)
554                 goto out;
555
556         for (i = 0; i < SYM_NUM; i++) {
557                 rc = -ENOMEM;
558                 p->sym_val_to_name[i] = flex_array_alloc(sizeof(char *),
559                                                          p->symtab[i].nprim,
560                                                          GFP_KERNEL | __GFP_ZERO);
561                 if (!p->sym_val_to_name[i])
562                         goto out;
563
564                 rc = flex_array_prealloc(p->sym_val_to_name[i],
565                                          0, p->symtab[i].nprim - 1,
566                                          GFP_KERNEL | __GFP_ZERO);
567                 if (rc)
568                         goto out;
569
570                 rc = hashtab_map(p->symtab[i].table, index_f[i], p);
571                 if (rc)
572                         goto out;
573         }
574         rc = 0;
575 out:
576         return rc;
577 }
578
579 /*
580  * The following *_destroy functions are used to
581  * free any memory allocated for each kind of
582  * symbol data in the policy database.
583  */
584
585 static int perm_destroy(void *key, void *datum, void *p)
586 {
587         kfree(key);
588         kfree(datum);
589         return 0;
590 }
591
592 static int common_destroy(void *key, void *datum, void *p)
593 {
594         struct common_datum *comdatum;
595
596         kfree(key);
597         if (datum) {
598                 comdatum = datum;
599                 hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
600                 hashtab_destroy(comdatum->permissions.table);
601         }
602         kfree(datum);
603         return 0;
604 }
605
606 static int cls_destroy(void *key, void *datum, void *p)
607 {
608         struct class_datum *cladatum;
609         struct constraint_node *constraint, *ctemp;
610         struct constraint_expr *e, *etmp;
611
612         kfree(key);
613         if (datum) {
614                 cladatum = datum;
615                 hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
616                 hashtab_destroy(cladatum->permissions.table);
617                 constraint = cladatum->constraints;
618                 while (constraint) {
619                         e = constraint->expr;
620                         while (e) {
621                                 ebitmap_destroy(&e->names);
622                                 etmp = e;
623                                 e = e->next;
624                                 kfree(etmp);
625                         }
626                         ctemp = constraint;
627                         constraint = constraint->next;
628                         kfree(ctemp);
629                 }
630
631                 constraint = cladatum->validatetrans;
632                 while (constraint) {
633                         e = constraint->expr;
634                         while (e) {
635                                 ebitmap_destroy(&e->names);
636                                 etmp = e;
637                                 e = e->next;
638                                 kfree(etmp);
639                         }
640                         ctemp = constraint;
641                         constraint = constraint->next;
642                         kfree(ctemp);
643                 }
644
645                 kfree(cladatum->comkey);
646         }
647         kfree(datum);
648         return 0;
649 }
650
651 static int role_destroy(void *key, void *datum, void *p)
652 {
653         struct role_datum *role;
654
655         kfree(key);
656         if (datum) {
657                 role = datum;
658                 ebitmap_destroy(&role->dominates);
659                 ebitmap_destroy(&role->types);
660         }
661         kfree(datum);
662         return 0;
663 }
664
665 static int type_destroy(void *key, void *datum, void *p)
666 {
667         kfree(key);
668         kfree(datum);
669         return 0;
670 }
671
672 static int user_destroy(void *key, void *datum, void *p)
673 {
674         struct user_datum *usrdatum;
675
676         kfree(key);
677         if (datum) {
678                 usrdatum = datum;
679                 ebitmap_destroy(&usrdatum->roles);
680                 ebitmap_destroy(&usrdatum->range.level[0].cat);
681                 ebitmap_destroy(&usrdatum->range.level[1].cat);
682                 ebitmap_destroy(&usrdatum->dfltlevel.cat);
683         }
684         kfree(datum);
685         return 0;
686 }
687
688 static int sens_destroy(void *key, void *datum, void *p)
689 {
690         struct level_datum *levdatum;
691
692         kfree(key);
693         if (datum) {
694                 levdatum = datum;
695                 ebitmap_destroy(&levdatum->level->cat);
696                 kfree(levdatum->level);
697         }
698         kfree(datum);
699         return 0;
700 }
701
702 static int cat_destroy(void *key, void *datum, void *p)
703 {
704         kfree(key);
705         kfree(datum);
706         return 0;
707 }
708
709 static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
710 {
711         common_destroy,
712         cls_destroy,
713         role_destroy,
714         type_destroy,
715         user_destroy,
716         cond_destroy_bool,
717         sens_destroy,
718         cat_destroy,
719 };
720
721 static int filenametr_destroy(void *key, void *datum, void *p)
722 {
723         struct filename_trans *ft = key;
724         kfree(ft->name);
725         kfree(key);
726         kfree(datum);
727         cond_resched();
728         return 0;
729 }
730
731 static int range_tr_destroy(void *key, void *datum, void *p)
732 {
733         struct mls_range *rt = datum;
734         kfree(key);
735         ebitmap_destroy(&rt->level[0].cat);
736         ebitmap_destroy(&rt->level[1].cat);
737         kfree(datum);
738         cond_resched();
739         return 0;
740 }
741
742 static void ocontext_destroy(struct ocontext *c, int i)
743 {
744         if (!c)
745                 return;
746
747         context_destroy(&c->context[0]);
748         context_destroy(&c->context[1]);
749         if (i == OCON_ISID || i == OCON_FS ||
750             i == OCON_NETIF || i == OCON_FSUSE)
751                 kfree(c->u.name);
752         kfree(c);
753 }
754
755 /*
756  * Free any memory allocated by a policy database structure.
757  */
758 void policydb_destroy(struct policydb *p)
759 {
760         struct ocontext *c, *ctmp;
761         struct genfs *g, *gtmp;
762         int i;
763         struct role_allow *ra, *lra = NULL;
764         struct role_trans *tr, *ltr = NULL;
765
766         for (i = 0; i < SYM_NUM; i++) {
767                 cond_resched();
768                 hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
769                 hashtab_destroy(p->symtab[i].table);
770         }
771
772         for (i = 0; i < SYM_NUM; i++) {
773                 if (p->sym_val_to_name[i])
774                         flex_array_free(p->sym_val_to_name[i]);
775         }
776
777         kfree(p->class_val_to_struct);
778         kfree(p->role_val_to_struct);
779         kfree(p->user_val_to_struct);
780         if (p->type_val_to_struct_array)
781                 flex_array_free(p->type_val_to_struct_array);
782
783         avtab_destroy(&p->te_avtab);
784
785         for (i = 0; i < OCON_NUM; i++) {
786                 cond_resched();
787                 c = p->ocontexts[i];
788                 while (c) {
789                         ctmp = c;
790                         c = c->next;
791                         ocontext_destroy(ctmp, i);
792                 }
793                 p->ocontexts[i] = NULL;
794         }
795
796         g = p->genfs;
797         while (g) {
798                 cond_resched();
799                 kfree(g->fstype);
800                 c = g->head;
801                 while (c) {
802                         ctmp = c;
803                         c = c->next;
804                         ocontext_destroy(ctmp, OCON_FSUSE);
805                 }
806                 gtmp = g;
807                 g = g->next;
808                 kfree(gtmp);
809         }
810         p->genfs = NULL;
811
812         cond_policydb_destroy(p);
813
814         for (tr = p->role_tr; tr; tr = tr->next) {
815                 cond_resched();
816                 kfree(ltr);
817                 ltr = tr;
818         }
819         kfree(ltr);
820
821         for (ra = p->role_allow; ra; ra = ra->next) {
822                 cond_resched();
823                 kfree(lra);
824                 lra = ra;
825         }
826         kfree(lra);
827
828         hashtab_map(p->filename_trans, filenametr_destroy, NULL);
829         hashtab_destroy(p->filename_trans);
830
831         hashtab_map(p->range_tr, range_tr_destroy, NULL);
832         hashtab_destroy(p->range_tr);
833
834         if (p->type_attr_map_array) {
835                 for (i = 0; i < p->p_types.nprim; i++) {
836                         struct ebitmap *e;
837
838                         e = flex_array_get(p->type_attr_map_array, i);
839                         if (!e)
840                                 continue;
841                         ebitmap_destroy(e);
842                 }
843                 flex_array_free(p->type_attr_map_array);
844         }
845
846         ebitmap_destroy(&p->filename_trans_ttypes);
847         ebitmap_destroy(&p->policycaps);
848         ebitmap_destroy(&p->permissive_map);
849
850         return;
851 }
852
853 /*
854  * Load the initial SIDs specified in a policy database
855  * structure into a SID table.
856  */
857 int policydb_load_isids(struct policydb *p, struct sidtab *s)
858 {
859         struct ocontext *head, *c;
860         int rc;
861
862         rc = sidtab_init(s);
863         if (rc) {
864                 printk(KERN_ERR "SELinux:  out of memory on SID table init\n");
865                 goto out;
866         }
867
868         head = p->ocontexts[OCON_ISID];
869         for (c = head; c; c = c->next) {
870                 rc = -EINVAL;
871                 if (!c->context[0].user) {
872                         printk(KERN_ERR "SELinux:  SID %s was never defined.\n",
873                                 c->u.name);
874                         goto out;
875                 }
876
877                 rc = sidtab_insert(s, c->sid[0], &c->context[0]);
878                 if (rc) {
879                         printk(KERN_ERR "SELinux:  unable to load initial SID %s.\n",
880                                 c->u.name);
881                         goto out;
882                 }
883         }
884         rc = 0;
885 out:
886         return rc;
887 }
888
889 int policydb_class_isvalid(struct policydb *p, unsigned int class)
890 {
891         if (!class || class > p->p_classes.nprim)
892                 return 0;
893         return 1;
894 }
895
896 int policydb_role_isvalid(struct policydb *p, unsigned int role)
897 {
898         if (!role || role > p->p_roles.nprim)
899                 return 0;
900         return 1;
901 }
902
903 int policydb_type_isvalid(struct policydb *p, unsigned int type)
904 {
905         if (!type || type > p->p_types.nprim)
906                 return 0;
907         return 1;
908 }
909
910 /*
911  * Return 1 if the fields in the security context
912  * structure `c' are valid.  Return 0 otherwise.
913  */
914 int policydb_context_isvalid(struct policydb *p, struct context *c)
915 {
916         struct role_datum *role;
917         struct user_datum *usrdatum;
918
919         if (!c->role || c->role > p->p_roles.nprim)
920                 return 0;
921
922         if (!c->user || c->user > p->p_users.nprim)
923                 return 0;
924
925         if (!c->type || c->type > p->p_types.nprim)
926                 return 0;
927
928         if (c->role != OBJECT_R_VAL) {
929                 /*
930                  * Role must be authorized for the type.
931                  */
932                 role = p->role_val_to_struct[c->role - 1];
933                 if (!ebitmap_get_bit(&role->types, c->type - 1))
934                         /* role may not be associated with type */
935                         return 0;
936
937                 /*
938                  * User must be authorized for the role.
939                  */
940                 usrdatum = p->user_val_to_struct[c->user - 1];
941                 if (!usrdatum)
942                         return 0;
943
944                 if (!ebitmap_get_bit(&usrdatum->roles, c->role - 1))
945                         /* user may not be associated with role */
946                         return 0;
947         }
948
949         if (!mls_context_isvalid(p, c))
950                 return 0;
951
952         return 1;
953 }
954
955 /*
956  * Read a MLS range structure from a policydb binary
957  * representation file.
958  */
959 static int mls_read_range_helper(struct mls_range *r, void *fp)
960 {
961         __le32 buf[2];
962         u32 items;
963         int rc;
964
965         rc = next_entry(buf, fp, sizeof(u32));
966         if (rc)
967                 goto out;
968
969         rc = -EINVAL;
970         items = le32_to_cpu(buf[0]);
971         if (items > ARRAY_SIZE(buf)) {
972                 printk(KERN_ERR "SELinux: mls:  range overflow\n");
973                 goto out;
974         }
975
976         rc = next_entry(buf, fp, sizeof(u32) * items);
977         if (rc) {
978                 printk(KERN_ERR "SELinux: mls:  truncated range\n");
979                 goto out;
980         }
981
982         r->level[0].sens = le32_to_cpu(buf[0]);
983         if (items > 1)
984                 r->level[1].sens = le32_to_cpu(buf[1]);
985         else
986                 r->level[1].sens = r->level[0].sens;
987
988         rc = ebitmap_read(&r->level[0].cat, fp);
989         if (rc) {
990                 printk(KERN_ERR "SELinux: mls:  error reading low categories\n");
991                 goto out;
992         }
993         if (items > 1) {
994                 rc = ebitmap_read(&r->level[1].cat, fp);
995                 if (rc) {
996                         printk(KERN_ERR "SELinux: mls:  error reading high categories\n");
997                         goto bad_high;
998                 }
999         } else {
1000                 rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
1001                 if (rc) {
1002                         printk(KERN_ERR "SELinux: mls:  out of memory\n");
1003                         goto bad_high;
1004                 }
1005         }
1006
1007         return 0;
1008 bad_high:
1009         ebitmap_destroy(&r->level[0].cat);
1010 out:
1011         return rc;
1012 }
1013
1014 /*
1015  * Read and validate a security context structure
1016  * from a policydb binary representation file.
1017  */
1018 static int context_read_and_validate(struct context *c,
1019                                      struct policydb *p,
1020                                      void *fp)
1021 {
1022         __le32 buf[3];
1023         int rc;
1024
1025         rc = next_entry(buf, fp, sizeof buf);
1026         if (rc) {
1027                 printk(KERN_ERR "SELinux: context truncated\n");
1028                 goto out;
1029         }
1030         c->user = le32_to_cpu(buf[0]);
1031         c->role = le32_to_cpu(buf[1]);
1032         c->type = le32_to_cpu(buf[2]);
1033         if (p->policyvers >= POLICYDB_VERSION_MLS) {
1034                 rc = mls_read_range_helper(&c->range, fp);
1035                 if (rc) {
1036                         printk(KERN_ERR "SELinux: error reading MLS range of context\n");
1037                         goto out;
1038                 }
1039         }
1040
1041         rc = -EINVAL;
1042         if (!policydb_context_isvalid(p, c)) {
1043                 printk(KERN_ERR "SELinux:  invalid security context\n");
1044                 context_destroy(c);
1045                 goto out;
1046         }
1047         rc = 0;
1048 out:
1049         return rc;
1050 }
1051
1052 /*
1053  * The following *_read functions are used to
1054  * read the symbol data from a policy database
1055  * binary representation file.
1056  */
1057
1058 static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
1059 {
1060         char *key = NULL;
1061         struct perm_datum *perdatum;
1062         int rc;
1063         __le32 buf[2];
1064         u32 len;
1065
1066         rc = -ENOMEM;
1067         perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL);
1068         if (!perdatum)
1069                 goto bad;
1070
1071         rc = next_entry(buf, fp, sizeof buf);
1072         if (rc)
1073                 goto bad;
1074
1075         len = le32_to_cpu(buf[0]);
1076         perdatum->value = le32_to_cpu(buf[1]);
1077
1078         rc = -ENOMEM;
1079         key = kmalloc(len + 1, GFP_KERNEL);
1080         if (!key)
1081                 goto bad;
1082
1083         rc = next_entry(key, fp, len);
1084         if (rc)
1085                 goto bad;
1086         key[len] = '\0';
1087
1088         rc = hashtab_insert(h, key, perdatum);
1089         if (rc)
1090                 goto bad;
1091
1092         return 0;
1093 bad:
1094         perm_destroy(key, perdatum, NULL);
1095         return rc;
1096 }
1097
1098 static int common_read(struct policydb *p, struct hashtab *h, void *fp)
1099 {
1100         char *key = NULL;
1101         struct common_datum *comdatum;
1102         __le32 buf[4];
1103         u32 len, nel;
1104         int i, rc;
1105
1106         rc = -ENOMEM;
1107         comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL);
1108         if (!comdatum)
1109                 goto bad;
1110
1111         rc = next_entry(buf, fp, sizeof buf);
1112         if (rc)
1113                 goto bad;
1114
1115         len = le32_to_cpu(buf[0]);
1116         comdatum->value = le32_to_cpu(buf[1]);
1117
1118         rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
1119         if (rc)
1120                 goto bad;
1121         comdatum->permissions.nprim = le32_to_cpu(buf[2]);
1122         nel = le32_to_cpu(buf[3]);
1123
1124         rc = -ENOMEM;
1125         key = kmalloc(len + 1, GFP_KERNEL);
1126         if (!key)
1127                 goto bad;
1128
1129         rc = next_entry(key, fp, len);
1130         if (rc)
1131                 goto bad;
1132         key[len] = '\0';
1133
1134         for (i = 0; i < nel; i++) {
1135                 rc = perm_read(p, comdatum->permissions.table, fp);
1136                 if (rc)
1137                         goto bad;
1138         }
1139
1140         rc = hashtab_insert(h, key, comdatum);
1141         if (rc)
1142                 goto bad;
1143         return 0;
1144 bad:
1145         common_destroy(key, comdatum, NULL);
1146         return rc;
1147 }
1148
1149 static int read_cons_helper(struct constraint_node **nodep, int ncons,
1150                             int allowxtarget, void *fp)
1151 {
1152         struct constraint_node *c, *lc;
1153         struct constraint_expr *e, *le;
1154         __le32 buf[3];
1155         u32 nexpr;
1156         int rc, i, j, depth;
1157
1158         lc = NULL;
1159         for (i = 0; i < ncons; i++) {
1160                 c = kzalloc(sizeof(*c), GFP_KERNEL);
1161                 if (!c)
1162                         return -ENOMEM;
1163
1164                 if (lc)
1165                         lc->next = c;
1166                 else
1167                         *nodep = c;
1168
1169                 rc = next_entry(buf, fp, (sizeof(u32) * 2));
1170                 if (rc)
1171                         return rc;
1172                 c->permissions = le32_to_cpu(buf[0]);
1173                 nexpr = le32_to_cpu(buf[1]);
1174                 le = NULL;
1175                 depth = -1;
1176                 for (j = 0; j < nexpr; j++) {
1177                         e = kzalloc(sizeof(*e), GFP_KERNEL);
1178                         if (!e)
1179                                 return -ENOMEM;
1180
1181                         if (le)
1182                                 le->next = e;
1183                         else
1184                                 c->expr = e;
1185
1186                         rc = next_entry(buf, fp, (sizeof(u32) * 3));
1187                         if (rc)
1188                                 return rc;
1189                         e->expr_type = le32_to_cpu(buf[0]);
1190                         e->attr = le32_to_cpu(buf[1]);
1191                         e->op = le32_to_cpu(buf[2]);
1192
1193                         switch (e->expr_type) {
1194                         case CEXPR_NOT:
1195                                 if (depth < 0)
1196                                         return -EINVAL;
1197                                 break;
1198                         case CEXPR_AND:
1199                         case CEXPR_OR:
1200                                 if (depth < 1)
1201                                         return -EINVAL;
1202                                 depth--;
1203                                 break;
1204                         case CEXPR_ATTR:
1205                                 if (depth == (CEXPR_MAXDEPTH - 1))
1206                                         return -EINVAL;
1207                                 depth++;
1208                                 break;
1209                         case CEXPR_NAMES:
1210                                 if (!allowxtarget && (e->attr & CEXPR_XTARGET))
1211                                         return -EINVAL;
1212                                 if (depth == (CEXPR_MAXDEPTH - 1))
1213                                         return -EINVAL;
1214                                 depth++;
1215                                 rc = ebitmap_read(&e->names, fp);
1216                                 if (rc)
1217                                         return rc;
1218                                 break;
1219                         default:
1220                                 return -EINVAL;
1221                         }
1222                         le = e;
1223                 }
1224                 if (depth != 0)
1225                         return -EINVAL;
1226                 lc = c;
1227         }
1228
1229         return 0;
1230 }
1231
1232 static int class_read(struct policydb *p, struct hashtab *h, void *fp)
1233 {
1234         char *key = NULL;
1235         struct class_datum *cladatum;
1236         __le32 buf[6];
1237         u32 len, len2, ncons, nel;
1238         int i, rc;
1239
1240         rc = -ENOMEM;
1241         cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL);
1242         if (!cladatum)
1243                 goto bad;
1244
1245         rc = next_entry(buf, fp, sizeof(u32)*6);
1246         if (rc)
1247                 goto bad;
1248
1249         len = le32_to_cpu(buf[0]);
1250         len2 = le32_to_cpu(buf[1]);
1251         cladatum->value = le32_to_cpu(buf[2]);
1252
1253         rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
1254         if (rc)
1255                 goto bad;
1256         cladatum->permissions.nprim = le32_to_cpu(buf[3]);
1257         nel = le32_to_cpu(buf[4]);
1258
1259         ncons = le32_to_cpu(buf[5]);
1260
1261         rc = -ENOMEM;
1262         key = kmalloc(len + 1, GFP_KERNEL);
1263         if (!key)
1264                 goto bad;
1265
1266         rc = next_entry(key, fp, len);
1267         if (rc)
1268                 goto bad;
1269         key[len] = '\0';
1270
1271         if (len2) {
1272                 rc = -ENOMEM;
1273                 cladatum->comkey = kmalloc(len2 + 1, GFP_KERNEL);
1274                 if (!cladatum->comkey)
1275                         goto bad;
1276                 rc = next_entry(cladatum->comkey, fp, len2);
1277                 if (rc)
1278                         goto bad;
1279                 cladatum->comkey[len2] = '\0';
1280
1281                 rc = -EINVAL;
1282                 cladatum->comdatum = hashtab_search(p->p_commons.table, cladatum->comkey);
1283                 if (!cladatum->comdatum) {
1284                         printk(KERN_ERR "SELinux:  unknown common %s\n", cladatum->comkey);
1285                         goto bad;
1286                 }
1287         }
1288         for (i = 0; i < nel; i++) {
1289                 rc = perm_read(p, cladatum->permissions.table, fp);
1290                 if (rc)
1291                         goto bad;
1292         }
1293
1294         rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
1295         if (rc)
1296                 goto bad;
1297
1298         if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
1299                 /* grab the validatetrans rules */
1300                 rc = next_entry(buf, fp, sizeof(u32));
1301                 if (rc)
1302                         goto bad;
1303                 ncons = le32_to_cpu(buf[0]);
1304                 rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
1305                 if (rc)
1306                         goto bad;
1307         }
1308
1309         rc = hashtab_insert(h, key, cladatum);
1310         if (rc)
1311                 goto bad;
1312
1313         return 0;
1314 bad:
1315         cls_destroy(key, cladatum, NULL);
1316         return rc;
1317 }
1318
1319 static int role_read(struct policydb *p, struct hashtab *h, void *fp)
1320 {
1321         char *key = NULL;
1322         struct role_datum *role;
1323         int rc, to_read = 2;
1324         __le32 buf[3];
1325         u32 len;
1326
1327         rc = -ENOMEM;
1328         role = kzalloc(sizeof(*role), GFP_KERNEL);
1329         if (!role)
1330                 goto bad;
1331
1332         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1333                 to_read = 3;
1334
1335         rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
1336         if (rc)
1337                 goto bad;
1338
1339         len = le32_to_cpu(buf[0]);
1340         role->value = le32_to_cpu(buf[1]);
1341         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1342                 role->bounds = le32_to_cpu(buf[2]);
1343
1344         rc = -ENOMEM;
1345         key = kmalloc(len + 1, GFP_KERNEL);
1346         if (!key)
1347                 goto bad;
1348
1349         rc = next_entry(key, fp, len);
1350         if (rc)
1351                 goto bad;
1352         key[len] = '\0';
1353
1354         rc = ebitmap_read(&role->dominates, fp);
1355         if (rc)
1356                 goto bad;
1357
1358         rc = ebitmap_read(&role->types, fp);
1359         if (rc)
1360                 goto bad;
1361
1362         if (strcmp(key, OBJECT_R) == 0) {
1363                 rc = -EINVAL;
1364                 if (role->value != OBJECT_R_VAL) {
1365                         printk(KERN_ERR "SELinux: Role %s has wrong value %d\n",
1366                                OBJECT_R, role->value);
1367                         goto bad;
1368                 }
1369                 rc = 0;
1370                 goto bad;
1371         }
1372
1373         rc = hashtab_insert(h, key, role);
1374         if (rc)
1375                 goto bad;
1376         return 0;
1377 bad:
1378         role_destroy(key, role, NULL);
1379         return rc;
1380 }
1381
1382 static int type_read(struct policydb *p, struct hashtab *h, void *fp)
1383 {
1384         char *key = NULL;
1385         struct type_datum *typdatum;
1386         int rc, to_read = 3;
1387         __le32 buf[4];
1388         u32 len;
1389
1390         rc = -ENOMEM;
1391         typdatum = kzalloc(sizeof(*typdatum), GFP_KERNEL);
1392         if (!typdatum)
1393                 goto bad;
1394
1395         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1396                 to_read = 4;
1397
1398         rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
1399         if (rc)
1400                 goto bad;
1401
1402         len = le32_to_cpu(buf[0]);
1403         typdatum->value = le32_to_cpu(buf[1]);
1404         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) {
1405                 u32 prop = le32_to_cpu(buf[2]);
1406
1407                 if (prop & TYPEDATUM_PROPERTY_PRIMARY)
1408                         typdatum->primary = 1;
1409                 if (prop & TYPEDATUM_PROPERTY_ATTRIBUTE)
1410                         typdatum->attribute = 1;
1411
1412                 typdatum->bounds = le32_to_cpu(buf[3]);
1413         } else {
1414                 typdatum->primary = le32_to_cpu(buf[2]);
1415         }
1416
1417         rc = -ENOMEM;
1418         key = kmalloc(len + 1, GFP_KERNEL);
1419         if (!key)
1420                 goto bad;
1421         rc = next_entry(key, fp, len);
1422         if (rc)
1423                 goto bad;
1424         key[len] = '\0';
1425
1426         rc = hashtab_insert(h, key, typdatum);
1427         if (rc)
1428                 goto bad;
1429         return 0;
1430 bad:
1431         type_destroy(key, typdatum, NULL);
1432         return rc;
1433 }
1434
1435
1436 /*
1437  * Read a MLS level structure from a policydb binary
1438  * representation file.
1439  */
1440 static int mls_read_level(struct mls_level *lp, void *fp)
1441 {
1442         __le32 buf[1];
1443         int rc;
1444
1445         memset(lp, 0, sizeof(*lp));
1446
1447         rc = next_entry(buf, fp, sizeof buf);
1448         if (rc) {
1449                 printk(KERN_ERR "SELinux: mls: truncated level\n");
1450                 return rc;
1451         }
1452         lp->sens = le32_to_cpu(buf[0]);
1453
1454         rc = ebitmap_read(&lp->cat, fp);
1455         if (rc) {
1456                 printk(KERN_ERR "SELinux: mls:  error reading level categories\n");
1457                 return rc;
1458         }
1459         return 0;
1460 }
1461
1462 static int user_read(struct policydb *p, struct hashtab *h, void *fp)
1463 {
1464         char *key = NULL;
1465         struct user_datum *usrdatum;
1466         int rc, to_read = 2;
1467         __le32 buf[3];
1468         u32 len;
1469
1470         rc = -ENOMEM;
1471         usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL);
1472         if (!usrdatum)
1473                 goto bad;
1474
1475         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1476                 to_read = 3;
1477
1478         rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
1479         if (rc)
1480                 goto bad;
1481
1482         len = le32_to_cpu(buf[0]);
1483         usrdatum->value = le32_to_cpu(buf[1]);
1484         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
1485                 usrdatum->bounds = le32_to_cpu(buf[2]);
1486
1487         rc = -ENOMEM;
1488         key = kmalloc(len + 1, GFP_KERNEL);
1489         if (!key)
1490                 goto bad;
1491         rc = next_entry(key, fp, len);
1492         if (rc)
1493                 goto bad;
1494         key[len] = '\0';
1495
1496         rc = ebitmap_read(&usrdatum->roles, fp);
1497         if (rc)
1498                 goto bad;
1499
1500         if (p->policyvers >= POLICYDB_VERSION_MLS) {
1501                 rc = mls_read_range_helper(&usrdatum->range, fp);
1502                 if (rc)
1503                         goto bad;
1504                 rc = mls_read_level(&usrdatum->dfltlevel, fp);
1505                 if (rc)
1506                         goto bad;
1507         }
1508
1509         rc = hashtab_insert(h, key, usrdatum);
1510         if (rc)
1511                 goto bad;
1512         return 0;
1513 bad:
1514         user_destroy(key, usrdatum, NULL);
1515         return rc;
1516 }
1517
1518 static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
1519 {
1520         char *key = NULL;
1521         struct level_datum *levdatum;
1522         int rc;
1523         __le32 buf[2];
1524         u32 len;
1525
1526         rc = -ENOMEM;
1527         levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC);
1528         if (!levdatum)
1529                 goto bad;
1530
1531         rc = next_entry(buf, fp, sizeof buf);
1532         if (rc)
1533                 goto bad;
1534
1535         len = le32_to_cpu(buf[0]);
1536         levdatum->isalias = le32_to_cpu(buf[1]);
1537
1538         rc = -ENOMEM;
1539         key = kmalloc(len + 1, GFP_ATOMIC);
1540         if (!key)
1541                 goto bad;
1542         rc = next_entry(key, fp, len);
1543         if (rc)
1544                 goto bad;
1545         key[len] = '\0';
1546
1547         rc = -ENOMEM;
1548         levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
1549         if (!levdatum->level)
1550                 goto bad;
1551
1552         rc = mls_read_level(levdatum->level, fp);
1553         if (rc)
1554                 goto bad;
1555
1556         rc = hashtab_insert(h, key, levdatum);
1557         if (rc)
1558                 goto bad;
1559         return 0;
1560 bad:
1561         sens_destroy(key, levdatum, NULL);
1562         return rc;
1563 }
1564
1565 static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
1566 {
1567         char *key = NULL;
1568         struct cat_datum *catdatum;
1569         int rc;
1570         __le32 buf[3];
1571         u32 len;
1572
1573         rc = -ENOMEM;
1574         catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC);
1575         if (!catdatum)
1576                 goto bad;
1577
1578         rc = next_entry(buf, fp, sizeof buf);
1579         if (rc)
1580                 goto bad;
1581
1582         len = le32_to_cpu(buf[0]);
1583         catdatum->value = le32_to_cpu(buf[1]);
1584         catdatum->isalias = le32_to_cpu(buf[2]);
1585
1586         rc = -ENOMEM;
1587         key = kmalloc(len + 1, GFP_ATOMIC);
1588         if (!key)
1589                 goto bad;
1590         rc = next_entry(key, fp, len);
1591         if (rc)
1592                 goto bad;
1593         key[len] = '\0';
1594
1595         rc = hashtab_insert(h, key, catdatum);
1596         if (rc)
1597                 goto bad;
1598         return 0;
1599 bad:
1600         cat_destroy(key, catdatum, NULL);
1601         return rc;
1602 }
1603
1604 static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
1605 {
1606         common_read,
1607         class_read,
1608         role_read,
1609         type_read,
1610         user_read,
1611         cond_read_bool,
1612         sens_read,
1613         cat_read,
1614 };
1615
1616 static int user_bounds_sanity_check(void *key, void *datum, void *datap)
1617 {
1618         struct user_datum *upper, *user;
1619         struct policydb *p = datap;
1620         int depth = 0;
1621
1622         upper = user = datum;
1623         while (upper->bounds) {
1624                 struct ebitmap_node *node;
1625                 unsigned long bit;
1626
1627                 if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
1628                         printk(KERN_ERR "SELinux: user %s: "
1629                                "too deep or looped boundary",
1630                                (char *) key);
1631                         return -EINVAL;
1632                 }
1633
1634                 upper = p->user_val_to_struct[upper->bounds - 1];
1635                 ebitmap_for_each_positive_bit(&user->roles, node, bit) {
1636                         if (ebitmap_get_bit(&upper->roles, bit))
1637                                 continue;
1638
1639                         printk(KERN_ERR
1640                                "SELinux: boundary violated policy: "
1641                                "user=%s role=%s bounds=%s\n",
1642                                sym_name(p, SYM_USERS, user->value - 1),
1643                                sym_name(p, SYM_ROLES, bit),
1644                                sym_name(p, SYM_USERS, upper->value - 1));
1645
1646                         return -EINVAL;
1647                 }
1648         }
1649
1650         return 0;
1651 }
1652
1653 static int role_bounds_sanity_check(void *key, void *datum, void *datap)
1654 {
1655         struct role_datum *upper, *role;
1656         struct policydb *p = datap;
1657         int depth = 0;
1658
1659         upper = role = datum;
1660         while (upper->bounds) {
1661                 struct ebitmap_node *node;
1662                 unsigned long bit;
1663
1664                 if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
1665                         printk(KERN_ERR "SELinux: role %s: "
1666                                "too deep or looped bounds\n",
1667                                (char *) key);
1668                         return -EINVAL;
1669                 }
1670
1671                 upper = p->role_val_to_struct[upper->bounds - 1];
1672                 ebitmap_for_each_positive_bit(&role->types, node, bit) {
1673                         if (ebitmap_get_bit(&upper->types, bit))
1674                                 continue;
1675
1676                         printk(KERN_ERR
1677                                "SELinux: boundary violated policy: "
1678                                "role=%s type=%s bounds=%s\n",
1679                                sym_name(p, SYM_ROLES, role->value - 1),
1680                                sym_name(p, SYM_TYPES, bit),
1681                                sym_name(p, SYM_ROLES, upper->value - 1));
1682
1683                         return -EINVAL;
1684                 }
1685         }
1686
1687         return 0;
1688 }
1689
1690 static int type_bounds_sanity_check(void *key, void *datum, void *datap)
1691 {
1692         struct type_datum *upper;
1693         struct policydb *p = datap;
1694         int depth = 0;
1695
1696         upper = datum;
1697         while (upper->bounds) {
1698                 if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
1699                         printk(KERN_ERR "SELinux: type %s: "
1700                                "too deep or looped boundary\n",
1701                                (char *) key);
1702                         return -EINVAL;
1703                 }
1704
1705                 upper = flex_array_get_ptr(p->type_val_to_struct_array,
1706                                            upper->bounds - 1);
1707                 BUG_ON(!upper);
1708
1709                 if (upper->attribute) {
1710                         printk(KERN_ERR "SELinux: type %s: "
1711                                "bounded by attribute %s",
1712                                (char *) key,
1713                                sym_name(p, SYM_TYPES, upper->value - 1));
1714                         return -EINVAL;
1715                 }
1716         }
1717
1718         return 0;
1719 }
1720
1721 static int policydb_bounds_sanity_check(struct policydb *p)
1722 {
1723         int rc;
1724
1725         if (p->policyvers < POLICYDB_VERSION_BOUNDARY)
1726                 return 0;
1727
1728         rc = hashtab_map(p->p_users.table,
1729                          user_bounds_sanity_check, p);
1730         if (rc)
1731                 return rc;
1732
1733         rc = hashtab_map(p->p_roles.table,
1734                          role_bounds_sanity_check, p);
1735         if (rc)
1736                 return rc;
1737
1738         rc = hashtab_map(p->p_types.table,
1739                          type_bounds_sanity_check, p);
1740         if (rc)
1741                 return rc;
1742
1743         return 0;
1744 }
1745
1746 extern int ss_initialized;
1747
1748 u16 string_to_security_class(struct policydb *p, const char *name)
1749 {
1750         struct class_datum *cladatum;
1751
1752         cladatum = hashtab_search(p->p_classes.table, name);
1753         if (!cladatum)
1754                 return 0;
1755
1756         return cladatum->value;
1757 }
1758
1759 u32 string_to_av_perm(struct policydb *p, u16 tclass, const char *name)
1760 {
1761         struct class_datum *cladatum;
1762         struct perm_datum *perdatum = NULL;
1763         struct common_datum *comdatum;
1764
1765         if (!tclass || tclass > p->p_classes.nprim)
1766                 return 0;
1767
1768         cladatum = p->class_val_to_struct[tclass-1];
1769         comdatum = cladatum->comdatum;
1770         if (comdatum)
1771                 perdatum = hashtab_search(comdatum->permissions.table,
1772                                           name);
1773         if (!perdatum)
1774                 perdatum = hashtab_search(cladatum->permissions.table,
1775                                           name);
1776         if (!perdatum)
1777                 return 0;
1778
1779         return 1U << (perdatum->value-1);
1780 }
1781
1782 static int range_read(struct policydb *p, void *fp)
1783 {
1784         struct range_trans *rt = NULL;
1785         struct mls_range *r = NULL;
1786         int i, rc;
1787         __le32 buf[2];
1788         u32 nel;
1789
1790         if (p->policyvers < POLICYDB_VERSION_MLS)
1791                 return 0;
1792
1793         rc = next_entry(buf, fp, sizeof(u32));
1794         if (rc)
1795                 goto out;
1796
1797         nel = le32_to_cpu(buf[0]);
1798         for (i = 0; i < nel; i++) {
1799                 rc = -ENOMEM;
1800                 rt = kzalloc(sizeof(*rt), GFP_KERNEL);
1801                 if (!rt)
1802                         goto out;
1803
1804                 rc = next_entry(buf, fp, (sizeof(u32) * 2));
1805                 if (rc)
1806                         goto out;
1807
1808                 rt->source_type = le32_to_cpu(buf[0]);
1809                 rt->target_type = le32_to_cpu(buf[1]);
1810                 if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) {
1811                         rc = next_entry(buf, fp, sizeof(u32));
1812                         if (rc)
1813                                 goto out;
1814                         rt->target_class = le32_to_cpu(buf[0]);
1815                 } else
1816                         rt->target_class = p->process_class;
1817
1818                 rc = -EINVAL;
1819                 if (!policydb_type_isvalid(p, rt->source_type) ||
1820                     !policydb_type_isvalid(p, rt->target_type) ||
1821                     !policydb_class_isvalid(p, rt->target_class))
1822                         goto out;
1823
1824                 rc = -ENOMEM;
1825                 r = kzalloc(sizeof(*r), GFP_KERNEL);
1826                 if (!r)
1827                         goto out;
1828
1829                 rc = mls_read_range_helper(r, fp);
1830                 if (rc)
1831                         goto out;
1832
1833                 rc = -EINVAL;
1834                 if (!mls_range_isvalid(p, r)) {
1835                         printk(KERN_WARNING "SELinux:  rangetrans:  invalid range\n");
1836                         goto out;
1837                 }
1838
1839                 rc = hashtab_insert(p->range_tr, rt, r);
1840                 if (rc)
1841                         goto out;
1842
1843                 rt = NULL;
1844                 r = NULL;
1845         }
1846         hash_eval(p->range_tr, "rangetr");
1847         rc = 0;
1848 out:
1849         kfree(rt);
1850         kfree(r);
1851         return rc;
1852 }
1853
1854 static int filename_trans_read(struct policydb *p, void *fp)
1855 {
1856         struct filename_trans *ft;
1857         struct filename_trans_datum *otype;
1858         char *name;
1859         u32 nel, len;
1860         __le32 buf[4];
1861         int rc, i;
1862
1863         if (p->policyvers < POLICYDB_VERSION_FILENAME_TRANS)
1864                 return 0;
1865
1866         rc = next_entry(buf, fp, sizeof(u32));
1867         if (rc)
1868                 return rc;
1869         nel = le32_to_cpu(buf[0]);
1870
1871         for (i = 0; i < nel; i++) {
1872                 ft = NULL;
1873                 otype = NULL;
1874                 name = NULL;
1875
1876                 rc = -ENOMEM;
1877                 ft = kzalloc(sizeof(*ft), GFP_KERNEL);
1878                 if (!ft)
1879                         goto out;
1880
1881                 rc = -ENOMEM;
1882                 otype = kmalloc(sizeof(*otype), GFP_KERNEL);
1883                 if (!otype)
1884                         goto out;
1885
1886                 /* length of the path component string */
1887                 rc = next_entry(buf, fp, sizeof(u32));
1888                 if (rc)
1889                         goto out;
1890                 len = le32_to_cpu(buf[0]);
1891
1892                 rc = -ENOMEM;
1893                 name = kmalloc(len + 1, GFP_KERNEL);
1894                 if (!name)
1895                         goto out;
1896
1897                 ft->name = name;
1898
1899                 /* path component string */
1900                 rc = next_entry(name, fp, len);
1901                 if (rc)
1902                         goto out;
1903                 name[len] = 0;
1904
1905                 rc = next_entry(buf, fp, sizeof(u32) * 4);
1906                 if (rc)
1907                         goto out;
1908
1909                 ft->stype = le32_to_cpu(buf[0]);
1910                 ft->ttype = le32_to_cpu(buf[1]);
1911                 ft->tclass = le32_to_cpu(buf[2]);
1912
1913                 otype->otype = le32_to_cpu(buf[3]);
1914
1915                 rc = ebitmap_set_bit(&p->filename_trans_ttypes, ft->ttype, 1);
1916                 if (rc)
1917                         goto out;
1918
1919                 hashtab_insert(p->filename_trans, ft, otype);
1920         }
1921         hash_eval(p->filename_trans, "filenametr");
1922         return 0;
1923 out:
1924         kfree(ft);
1925         kfree(name);
1926         kfree(otype);
1927
1928         return rc;
1929 }
1930
1931 static int genfs_read(struct policydb *p, void *fp)
1932 {
1933         int i, j, rc;
1934         u32 nel, nel2, len, len2;
1935         __le32 buf[1];
1936         struct ocontext *l, *c;
1937         struct ocontext *newc = NULL;
1938         struct genfs *genfs_p, *genfs;
1939         struct genfs *newgenfs = NULL;
1940
1941         rc = next_entry(buf, fp, sizeof(u32));
1942         if (rc)
1943                 goto out;
1944         nel = le32_to_cpu(buf[0]);
1945
1946         for (i = 0; i < nel; i++) {
1947                 rc = next_entry(buf, fp, sizeof(u32));
1948                 if (rc)
1949                         goto out;
1950                 len = le32_to_cpu(buf[0]);
1951
1952                 rc = -ENOMEM;
1953                 newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL);
1954                 if (!newgenfs)
1955                         goto out;
1956
1957                 rc = -ENOMEM;
1958                 newgenfs->fstype = kmalloc(len + 1, GFP_KERNEL);
1959                 if (!newgenfs->fstype)
1960                         goto out;
1961
1962                 rc = next_entry(newgenfs->fstype, fp, len);
1963                 if (rc)
1964                         goto out;
1965
1966                 newgenfs->fstype[len] = 0;
1967
1968                 for (genfs_p = NULL, genfs = p->genfs; genfs;
1969                      genfs_p = genfs, genfs = genfs->next) {
1970                         rc = -EINVAL;
1971                         if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
1972                                 printk(KERN_ERR "SELinux:  dup genfs fstype %s\n",
1973                                        newgenfs->fstype);
1974                                 goto out;
1975                         }
1976                         if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
1977                                 break;
1978                 }
1979                 newgenfs->next = genfs;
1980                 if (genfs_p)
1981                         genfs_p->next = newgenfs;
1982                 else
1983                         p->genfs = newgenfs;
1984                 genfs = newgenfs;
1985                 newgenfs = NULL;
1986
1987                 rc = next_entry(buf, fp, sizeof(u32));
1988                 if (rc)
1989                         goto out;
1990
1991                 nel2 = le32_to_cpu(buf[0]);
1992                 for (j = 0; j < nel2; j++) {
1993                         rc = next_entry(buf, fp, sizeof(u32));
1994                         if (rc)
1995                                 goto out;
1996                         len = le32_to_cpu(buf[0]);
1997
1998                         rc = -ENOMEM;
1999                         newc = kzalloc(sizeof(*newc), GFP_KERNEL);
2000                         if (!newc)
2001                                 goto out;
2002
2003                         rc = -ENOMEM;
2004                         newc->u.name = kmalloc(len + 1, GFP_KERNEL);
2005                         if (!newc->u.name)
2006                                 goto out;
2007
2008                         rc = next_entry(newc->u.name, fp, len);
2009                         if (rc)
2010                                 goto out;
2011                         newc->u.name[len] = 0;
2012
2013                         rc = next_entry(buf, fp, sizeof(u32));
2014                         if (rc)
2015                                 goto out;
2016
2017                         newc->v.sclass = le32_to_cpu(buf[0]);
2018                         rc = context_read_and_validate(&newc->context[0], p, fp);
2019                         if (rc)
2020                                 goto out;
2021
2022                         for (l = NULL, c = genfs->head; c;
2023                              l = c, c = c->next) {
2024                                 rc = -EINVAL;
2025                                 if (!strcmp(newc->u.name, c->u.name) &&
2026                                     (!c->v.sclass || !newc->v.sclass ||
2027                                      newc->v.sclass == c->v.sclass)) {
2028                                         printk(KERN_ERR "SELinux:  dup genfs entry (%s,%s)\n",
2029                                                genfs->fstype, c->u.name);
2030                                         goto out;
2031                                 }
2032                                 len = strlen(newc->u.name);
2033                                 len2 = strlen(c->u.name);
2034                                 if (len > len2)
2035                                         break;
2036                         }
2037
2038                         newc->next = c;
2039                         if (l)
2040                                 l->next = newc;
2041                         else
2042                                 genfs->head = newc;
2043                         newc = NULL;
2044                 }
2045         }
2046         rc = 0;
2047 out:
2048         if (newgenfs)
2049                 kfree(newgenfs->fstype);
2050         kfree(newgenfs);
2051         ocontext_destroy(newc, OCON_FSUSE);
2052
2053         return rc;
2054 }
2055
2056 static int ocontext_read(struct policydb *p, struct policydb_compat_info *info,
2057                          void *fp)
2058 {
2059         int i, j, rc;
2060         u32 nel, len;
2061         __le32 buf[3];
2062         struct ocontext *l, *c;
2063         u32 nodebuf[8];
2064
2065         for (i = 0; i < info->ocon_num; i++) {
2066                 rc = next_entry(buf, fp, sizeof(u32));
2067                 if (rc)
2068                         goto out;
2069                 nel = le32_to_cpu(buf[0]);
2070
2071                 l = NULL;
2072                 for (j = 0; j < nel; j++) {
2073                         rc = -ENOMEM;
2074                         c = kzalloc(sizeof(*c), GFP_KERNEL);
2075                         if (!c)
2076                                 goto out;
2077                         if (l)
2078                                 l->next = c;
2079                         else
2080                                 p->ocontexts[i] = c;
2081                         l = c;
2082
2083                         switch (i) {
2084                         case OCON_ISID:
2085                                 rc = next_entry(buf, fp, sizeof(u32));
2086                                 if (rc)
2087                                         goto out;
2088
2089                                 c->sid[0] = le32_to_cpu(buf[0]);
2090                                 rc = context_read_and_validate(&c->context[0], p, fp);
2091                                 if (rc)
2092                                         goto out;
2093                                 break;
2094                         case OCON_FS:
2095                         case OCON_NETIF:
2096                                 rc = next_entry(buf, fp, sizeof(u32));
2097                                 if (rc)
2098                                         goto out;
2099                                 len = le32_to_cpu(buf[0]);
2100
2101                                 rc = -ENOMEM;
2102                                 c->u.name = kmalloc(len + 1, GFP_KERNEL);
2103                                 if (!c->u.name)
2104                                         goto out;
2105
2106                                 rc = next_entry(c->u.name, fp, len);
2107                                 if (rc)
2108                                         goto out;
2109
2110                                 c->u.name[len] = 0;
2111                                 rc = context_read_and_validate(&c->context[0], p, fp);
2112                                 if (rc)
2113                                         goto out;
2114                                 rc = context_read_and_validate(&c->context[1], p, fp);
2115                                 if (rc)
2116                                         goto out;
2117                                 break;
2118                         case OCON_PORT:
2119                                 rc = next_entry(buf, fp, sizeof(u32)*3);
2120                                 if (rc)
2121                                         goto out;
2122                                 c->u.port.protocol = le32_to_cpu(buf[0]);
2123                                 c->u.port.low_port = le32_to_cpu(buf[1]);
2124                                 c->u.port.high_port = le32_to_cpu(buf[2]);
2125                                 rc = context_read_and_validate(&c->context[0], p, fp);
2126                                 if (rc)
2127                                         goto out;
2128                                 break;
2129                         case OCON_NODE:
2130                                 rc = next_entry(nodebuf, fp, sizeof(u32) * 2);
2131                                 if (rc)
2132                                         goto out;
2133                                 c->u.node.addr = nodebuf[0]; /* network order */
2134                                 c->u.node.mask = nodebuf[1]; /* network order */
2135                                 rc = context_read_and_validate(&c->context[0], p, fp);
2136                                 if (rc)
2137                                         goto out;
2138                                 break;
2139                         case OCON_FSUSE:
2140                                 rc = next_entry(buf, fp, sizeof(u32)*2);
2141                                 if (rc)
2142                                         goto out;
2143
2144                                 rc = -EINVAL;
2145                                 c->v.behavior = le32_to_cpu(buf[0]);
2146                                 if (c->v.behavior > SECURITY_FS_USE_NONE)
2147                                         goto out;
2148
2149                                 rc = -ENOMEM;
2150                                 len = le32_to_cpu(buf[1]);
2151                                 c->u.name = kmalloc(len + 1, GFP_KERNEL);
2152                                 if (!c->u.name)
2153                                         goto out;
2154
2155                                 rc = next_entry(c->u.name, fp, len);
2156                                 if (rc)
2157                                         goto out;
2158                                 c->u.name[len] = 0;
2159                                 rc = context_read_and_validate(&c->context[0], p, fp);
2160                                 if (rc)
2161                                         goto out;
2162                                 break;
2163                         case OCON_NODE6: {
2164                                 int k;
2165
2166                                 rc = next_entry(nodebuf, fp, sizeof(u32) * 8);
2167                                 if (rc)
2168                                         goto out;
2169                                 for (k = 0; k < 4; k++)
2170                                         c->u.node6.addr[k] = nodebuf[k];
2171                                 for (k = 0; k < 4; k++)
2172                                         c->u.node6.mask[k] = nodebuf[k+4];
2173                                 rc = context_read_and_validate(&c->context[0], p, fp);
2174                                 if (rc)
2175                                         goto out;
2176                                 break;
2177                         }
2178                         }
2179                 }
2180         }
2181         rc = 0;
2182 out:
2183         return rc;
2184 }
2185
2186 /*
2187  * Read the configuration data from a policy database binary
2188  * representation file into a policy database structure.
2189  */
2190 int policydb_read(struct policydb *p, void *fp)
2191 {
2192         struct role_allow *ra, *lra;
2193         struct role_trans *tr, *ltr;
2194         int i, j, rc;
2195         __le32 buf[4];
2196         u32 len, nprim, nel;
2197
2198         char *policydb_str;
2199         struct policydb_compat_info *info;
2200
2201         rc = policydb_init(p);
2202         if (rc)
2203                 return rc;
2204
2205         /* Read the magic number and string length. */
2206         rc = next_entry(buf, fp, sizeof(u32) * 2);
2207         if (rc)
2208                 goto bad;
2209
2210         rc = -EINVAL;
2211         if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) {
2212                 printk(KERN_ERR "SELinux:  policydb magic number 0x%x does "
2213                        "not match expected magic number 0x%x\n",
2214                        le32_to_cpu(buf[0]), POLICYDB_MAGIC);
2215                 goto bad;
2216         }
2217
2218         rc = -EINVAL;
2219         len = le32_to_cpu(buf[1]);
2220         if (len != strlen(POLICYDB_STRING)) {
2221                 printk(KERN_ERR "SELinux:  policydb string length %d does not "
2222                        "match expected length %Zu\n",
2223                        len, strlen(POLICYDB_STRING));
2224                 goto bad;
2225         }
2226
2227         rc = -ENOMEM;
2228         policydb_str = kmalloc(len + 1, GFP_KERNEL);
2229         if (!policydb_str) {
2230                 printk(KERN_ERR "SELinux:  unable to allocate memory for policydb "
2231                        "string of length %d\n", len);
2232                 goto bad;
2233         }
2234
2235         rc = next_entry(policydb_str, fp, len);
2236         if (rc) {
2237                 printk(KERN_ERR "SELinux:  truncated policydb string identifier\n");
2238                 kfree(policydb_str);
2239                 goto bad;
2240         }
2241
2242         rc = -EINVAL;
2243         policydb_str[len] = '\0';
2244         if (strcmp(policydb_str, POLICYDB_STRING)) {
2245                 printk(KERN_ERR "SELinux:  policydb string %s does not match "
2246                        "my string %s\n", policydb_str, POLICYDB_STRING);
2247                 kfree(policydb_str);
2248                 goto bad;
2249         }
2250         /* Done with policydb_str. */
2251         kfree(policydb_str);
2252         policydb_str = NULL;
2253
2254         /* Read the version and table sizes. */
2255         rc = next_entry(buf, fp, sizeof(u32)*4);
2256         if (rc)
2257                 goto bad;
2258
2259         rc = -EINVAL;
2260         p->policyvers = le32_to_cpu(buf[0]);
2261         if (p->policyvers < POLICYDB_VERSION_MIN ||
2262             p->policyvers > POLICYDB_VERSION_MAX) {
2263                 printk(KERN_ERR "SELinux:  policydb version %d does not match "
2264                        "my version range %d-%d\n",
2265                        le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
2266                 goto bad;
2267         }
2268
2269         if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) {
2270                 p->mls_enabled = 1;
2271
2272                 rc = -EINVAL;
2273                 if (p->policyvers < POLICYDB_VERSION_MLS) {
2274                         printk(KERN_ERR "SELinux: security policydb version %d "
2275                                 "(MLS) not backwards compatible\n",
2276                                 p->policyvers);
2277                         goto bad;
2278                 }
2279         }
2280         p->reject_unknown = !!(le32_to_cpu(buf[1]) & REJECT_UNKNOWN);
2281         p->allow_unknown = !!(le32_to_cpu(buf[1]) & ALLOW_UNKNOWN);
2282
2283         if (p->policyvers >= POLICYDB_VERSION_POLCAP) {
2284                 rc = ebitmap_read(&p->policycaps, fp);
2285                 if (rc)
2286                         goto bad;
2287         }
2288
2289         if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE) {
2290                 rc = ebitmap_read(&p->permissive_map, fp);
2291                 if (rc)
2292                         goto bad;
2293         }
2294
2295         rc = -EINVAL;
2296         info = policydb_lookup_compat(p->policyvers);
2297         if (!info) {
2298                 printk(KERN_ERR "SELinux:  unable to find policy compat info "
2299                        "for version %d\n", p->policyvers);
2300                 goto bad;
2301         }
2302
2303         rc = -EINVAL;
2304         if (le32_to_cpu(buf[2]) != info->sym_num ||
2305                 le32_to_cpu(buf[3]) != info->ocon_num) {
2306                 printk(KERN_ERR "SELinux:  policydb table sizes (%d,%d) do "
2307                        "not match mine (%d,%d)\n", le32_to_cpu(buf[2]),
2308                         le32_to_cpu(buf[3]),
2309                        info->sym_num, info->ocon_num);
2310                 goto bad;
2311         }
2312
2313         for (i = 0; i < info->sym_num; i++) {
2314                 rc = next_entry(buf, fp, sizeof(u32)*2);
2315                 if (rc)
2316                         goto bad;
2317                 nprim = le32_to_cpu(buf[0]);
2318                 nel = le32_to_cpu(buf[1]);
2319                 for (j = 0; j < nel; j++) {
2320                         rc = read_f[i](p, p->symtab[i].table, fp);
2321                         if (rc)
2322                                 goto bad;
2323                 }
2324
2325                 p->symtab[i].nprim = nprim;
2326         }
2327
2328         rc = -EINVAL;
2329         p->process_class = string_to_security_class(p, "process");
2330         if (!p->process_class)
2331                 goto bad;
2332
2333         rc = avtab_read(&p->te_avtab, fp, p);
2334         if (rc)
2335                 goto bad;
2336
2337         if (p->policyvers >= POLICYDB_VERSION_BOOL) {
2338                 rc = cond_read_list(p, fp);
2339                 if (rc)
2340                         goto bad;
2341         }
2342
2343         rc = next_entry(buf, fp, sizeof(u32));
2344         if (rc)
2345                 goto bad;
2346         nel = le32_to_cpu(buf[0]);
2347         ltr = NULL;
2348         for (i = 0; i < nel; i++) {
2349                 rc = -ENOMEM;
2350                 tr = kzalloc(sizeof(*tr), GFP_KERNEL);
2351                 if (!tr)
2352                         goto bad;
2353                 if (ltr)
2354                         ltr->next = tr;
2355                 else
2356                         p->role_tr = tr;
2357                 rc = next_entry(buf, fp, sizeof(u32)*3);
2358                 if (rc)
2359                         goto bad;
2360
2361                 rc = -EINVAL;
2362                 tr->role = le32_to_cpu(buf[0]);
2363                 tr->type = le32_to_cpu(buf[1]);
2364                 tr->new_role = le32_to_cpu(buf[2]);
2365                 if (p->policyvers >= POLICYDB_VERSION_ROLETRANS) {
2366                         rc = next_entry(buf, fp, sizeof(u32));
2367                         if (rc)
2368                                 goto bad;
2369                         tr->tclass = le32_to_cpu(buf[0]);
2370                 } else
2371                         tr->tclass = p->process_class;
2372
2373                 if (!policydb_role_isvalid(p, tr->role) ||
2374                     !policydb_type_isvalid(p, tr->type) ||
2375                     !policydb_class_isvalid(p, tr->tclass) ||
2376                     !policydb_role_isvalid(p, tr->new_role))
2377                         goto bad;
2378                 ltr = tr;
2379         }
2380
2381         rc = next_entry(buf, fp, sizeof(u32));
2382         if (rc)
2383                 goto bad;
2384         nel = le32_to_cpu(buf[0]);
2385         lra = NULL;
2386         for (i = 0; i < nel; i++) {
2387                 rc = -ENOMEM;
2388                 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
2389                 if (!ra)
2390                         goto bad;
2391                 if (lra)
2392                         lra->next = ra;
2393                 else
2394                         p->role_allow = ra;
2395                 rc = next_entry(buf, fp, sizeof(u32)*2);
2396                 if (rc)
2397                         goto bad;
2398
2399                 rc = -EINVAL;
2400                 ra->role = le32_to_cpu(buf[0]);
2401                 ra->new_role = le32_to_cpu(buf[1]);
2402                 if (!policydb_role_isvalid(p, ra->role) ||
2403                     !policydb_role_isvalid(p, ra->new_role))
2404                         goto bad;
2405                 lra = ra;
2406         }
2407
2408         rc = filename_trans_read(p, fp);
2409         if (rc)
2410                 goto bad;
2411
2412         rc = policydb_index(p);
2413         if (rc)
2414                 goto bad;
2415
2416         rc = -EINVAL;
2417         p->process_trans_perms = string_to_av_perm(p, p->process_class, "transition");
2418         p->process_trans_perms |= string_to_av_perm(p, p->process_class, "dyntransition");
2419         if (!p->process_trans_perms)
2420                 goto bad;
2421
2422         rc = ocontext_read(p, info, fp);
2423         if (rc)
2424                 goto bad;
2425
2426         rc = genfs_read(p, fp);
2427         if (rc)
2428                 goto bad;
2429
2430         rc = range_read(p, fp);
2431         if (rc)
2432                 goto bad;
2433
2434         rc = -ENOMEM;
2435         p->type_attr_map_array = flex_array_alloc(sizeof(struct ebitmap),
2436                                                   p->p_types.nprim,
2437                                                   GFP_KERNEL | __GFP_ZERO);
2438         if (!p->type_attr_map_array)
2439                 goto bad;
2440
2441         /* preallocate so we don't have to worry about the put ever failing */
2442         rc = flex_array_prealloc(p->type_attr_map_array, 0, p->p_types.nprim - 1,
2443                                  GFP_KERNEL | __GFP_ZERO);
2444         if (rc)
2445                 goto bad;
2446
2447         for (i = 0; i < p->p_types.nprim; i++) {
2448                 struct ebitmap *e = flex_array_get(p->type_attr_map_array, i);
2449
2450                 BUG_ON(!e);
2451                 ebitmap_init(e);
2452                 if (p->policyvers >= POLICYDB_VERSION_AVTAB) {
2453                         rc = ebitmap_read(e, fp);
2454                         if (rc)
2455                                 goto bad;
2456                 }
2457                 /* add the type itself as the degenerate case */
2458                 rc = ebitmap_set_bit(e, i, 1);
2459                 if (rc)
2460                         goto bad;
2461         }
2462
2463         rc = policydb_bounds_sanity_check(p);
2464         if (rc)
2465                 goto bad;
2466
2467         rc = 0;
2468 out:
2469         return rc;
2470 bad:
2471         policydb_destroy(p);
2472         goto out;
2473 }
2474
2475 /*
2476  * Write a MLS level structure to a policydb binary
2477  * representation file.
2478  */
2479 static int mls_write_level(struct mls_level *l, void *fp)
2480 {
2481         __le32 buf[1];
2482         int rc;
2483
2484         buf[0] = cpu_to_le32(l->sens);
2485         rc = put_entry(buf, sizeof(u32), 1, fp);
2486         if (rc)
2487                 return rc;
2488
2489         rc = ebitmap_write(&l->cat, fp);
2490         if (rc)
2491                 return rc;
2492
2493         return 0;
2494 }
2495
2496 /*
2497  * Write a MLS range structure to a policydb binary
2498  * representation file.
2499  */
2500 static int mls_write_range_helper(struct mls_range *r, void *fp)
2501 {
2502         __le32 buf[3];
2503         size_t items;
2504         int rc, eq;
2505
2506         eq = mls_level_eq(&r->level[1], &r->level[0]);
2507
2508         if (eq)
2509                 items = 2;
2510         else
2511                 items = 3;
2512         buf[0] = cpu_to_le32(items-1);
2513         buf[1] = cpu_to_le32(r->level[0].sens);
2514         if (!eq)
2515                 buf[2] = cpu_to_le32(r->level[1].sens);
2516
2517         BUG_ON(items > (sizeof(buf)/sizeof(buf[0])));
2518
2519         rc = put_entry(buf, sizeof(u32), items, fp);
2520         if (rc)
2521                 return rc;
2522
2523         rc = ebitmap_write(&r->level[0].cat, fp);
2524         if (rc)
2525                 return rc;
2526         if (!eq) {
2527                 rc = ebitmap_write(&r->level[1].cat, fp);
2528                 if (rc)
2529                         return rc;
2530         }
2531
2532         return 0;
2533 }
2534
2535 static int sens_write(void *vkey, void *datum, void *ptr)
2536 {
2537         char *key = vkey;
2538         struct level_datum *levdatum = datum;
2539         struct policy_data *pd = ptr;
2540         void *fp = pd->fp;
2541         __le32 buf[2];
2542         size_t len;
2543         int rc;
2544
2545         len = strlen(key);
2546         buf[0] = cpu_to_le32(len);
2547         buf[1] = cpu_to_le32(levdatum->isalias);
2548         rc = put_entry(buf, sizeof(u32), 2, fp);
2549         if (rc)
2550                 return rc;
2551
2552         rc = put_entry(key, 1, len, fp);
2553         if (rc)
2554                 return rc;
2555
2556         rc = mls_write_level(levdatum->level, fp);
2557         if (rc)
2558                 return rc;
2559
2560         return 0;
2561 }
2562
2563 static int cat_write(void *vkey, void *datum, void *ptr)
2564 {
2565         char *key = vkey;
2566         struct cat_datum *catdatum = datum;
2567         struct policy_data *pd = ptr;
2568         void *fp = pd->fp;
2569         __le32 buf[3];
2570         size_t len;
2571         int rc;
2572
2573         len = strlen(key);
2574         buf[0] = cpu_to_le32(len);
2575         buf[1] = cpu_to_le32(catdatum->value);
2576         buf[2] = cpu_to_le32(catdatum->isalias);
2577         rc = put_entry(buf, sizeof(u32), 3, fp);
2578         if (rc)
2579                 return rc;
2580
2581         rc = put_entry(key, 1, len, fp);
2582         if (rc)
2583                 return rc;
2584
2585         return 0;
2586 }
2587
2588 static int role_trans_write(struct policydb *p, void *fp)
2589 {
2590         struct role_trans *r = p->role_tr;
2591         struct role_trans *tr;
2592         u32 buf[3];
2593         size_t nel;
2594         int rc;
2595
2596         nel = 0;
2597         for (tr = r; tr; tr = tr->next)
2598                 nel++;
2599         buf[0] = cpu_to_le32(nel);
2600         rc = put_entry(buf, sizeof(u32), 1, fp);
2601         if (rc)
2602                 return rc;
2603         for (tr = r; tr; tr = tr->next) {
2604                 buf[0] = cpu_to_le32(tr->role);
2605                 buf[1] = cpu_to_le32(tr->type);
2606                 buf[2] = cpu_to_le32(tr->new_role);
2607                 rc = put_entry(buf, sizeof(u32), 3, fp);
2608                 if (rc)
2609                         return rc;
2610                 if (p->policyvers >= POLICYDB_VERSION_ROLETRANS) {
2611                         buf[0] = cpu_to_le32(tr->tclass);
2612                         rc = put_entry(buf, sizeof(u32), 1, fp);
2613                         if (rc)
2614                                 return rc;
2615                 }
2616         }
2617
2618         return 0;
2619 }
2620
2621 static int role_allow_write(struct role_allow *r, void *fp)
2622 {
2623         struct role_allow *ra;
2624         u32 buf[2];
2625         size_t nel;
2626         int rc;
2627
2628         nel = 0;
2629         for (ra = r; ra; ra = ra->next)
2630                 nel++;
2631         buf[0] = cpu_to_le32(nel);
2632         rc = put_entry(buf, sizeof(u32), 1, fp);
2633         if (rc)
2634                 return rc;
2635         for (ra = r; ra; ra = ra->next) {
2636                 buf[0] = cpu_to_le32(ra->role);
2637                 buf[1] = cpu_to_le32(ra->new_role);
2638                 rc = put_entry(buf, sizeof(u32), 2, fp);
2639                 if (rc)
2640                         return rc;
2641         }
2642         return 0;
2643 }
2644
2645 /*
2646  * Write a security context structure
2647  * to a policydb binary representation file.
2648  */
2649 static int context_write(struct policydb *p, struct context *c,
2650                          void *fp)
2651 {
2652         int rc;
2653         __le32 buf[3];
2654
2655         buf[0] = cpu_to_le32(c->user);
2656         buf[1] = cpu_to_le32(c->role);
2657         buf[2] = cpu_to_le32(c->type);
2658
2659         rc = put_entry(buf, sizeof(u32), 3, fp);
2660         if (rc)
2661                 return rc;
2662
2663         rc = mls_write_range_helper(&c->range, fp);
2664         if (rc)
2665                 return rc;
2666
2667         return 0;
2668 }
2669
2670 /*
2671  * The following *_write functions are used to
2672  * write the symbol data to a policy database
2673  * binary representation file.
2674  */
2675
2676 static int perm_write(void *vkey, void *datum, void *fp)
2677 {
2678         char *key = vkey;
2679         struct perm_datum *perdatum = datum;
2680         __le32 buf[2];
2681         size_t len;
2682         int rc;
2683
2684         len = strlen(key);
2685         buf[0] = cpu_to_le32(len);
2686         buf[1] = cpu_to_le32(perdatum->value);
2687         rc = put_entry(buf, sizeof(u32), 2, fp);
2688         if (rc)
2689                 return rc;
2690
2691         rc = put_entry(key, 1, len, fp);
2692         if (rc)
2693                 return rc;
2694
2695         return 0;
2696 }
2697
2698 static int common_write(void *vkey, void *datum, void *ptr)
2699 {
2700         char *key = vkey;
2701         struct common_datum *comdatum = datum;
2702         struct policy_data *pd = ptr;
2703         void *fp = pd->fp;
2704         __le32 buf[4];
2705         size_t len;
2706         int rc;
2707
2708         len = strlen(key);
2709         buf[0] = cpu_to_le32(len);
2710         buf[1] = cpu_to_le32(comdatum->value);
2711         buf[2] = cpu_to_le32(comdatum->permissions.nprim);
2712         buf[3] = cpu_to_le32(comdatum->permissions.table->nel);
2713         rc = put_entry(buf, sizeof(u32), 4, fp);
2714         if (rc)
2715                 return rc;
2716
2717         rc = put_entry(key, 1, len, fp);
2718         if (rc)
2719                 return rc;
2720
2721         rc = hashtab_map(comdatum->permissions.table, perm_write, fp);
2722         if (rc)
2723                 return rc;
2724
2725         return 0;
2726 }
2727
2728 static int write_cons_helper(struct policydb *p, struct constraint_node *node,
2729                              void *fp)
2730 {
2731         struct constraint_node *c;
2732         struct constraint_expr *e;
2733         __le32 buf[3];
2734         u32 nel;
2735         int rc;
2736
2737         for (c = node; c; c = c->next) {
2738                 nel = 0;
2739                 for (e = c->expr; e; e = e->next)
2740                         nel++;
2741                 buf[0] = cpu_to_le32(c->permissions);
2742                 buf[1] = cpu_to_le32(nel);
2743                 rc = put_entry(buf, sizeof(u32), 2, fp);
2744                 if (rc)
2745                         return rc;
2746                 for (e = c->expr; e; e = e->next) {
2747                         buf[0] = cpu_to_le32(e->expr_type);
2748                         buf[1] = cpu_to_le32(e->attr);
2749                         buf[2] = cpu_to_le32(e->op);
2750                         rc = put_entry(buf, sizeof(u32), 3, fp);
2751                         if (rc)
2752                                 return rc;
2753
2754                         switch (e->expr_type) {
2755                         case CEXPR_NAMES:
2756                                 rc = ebitmap_write(&e->names, fp);
2757                                 if (rc)
2758                                         return rc;
2759                                 break;
2760                         default:
2761                                 break;
2762                         }
2763                 }
2764         }
2765
2766         return 0;
2767 }
2768
2769 static int class_write(void *vkey, void *datum, void *ptr)
2770 {
2771         char *key = vkey;
2772         struct class_datum *cladatum = datum;
2773         struct policy_data *pd = ptr;
2774         void *fp = pd->fp;
2775         struct policydb *p = pd->p;
2776         struct constraint_node *c;
2777         __le32 buf[6];
2778         u32 ncons;
2779         size_t len, len2;
2780         int rc;
2781
2782         len = strlen(key);
2783         if (cladatum->comkey)
2784                 len2 = strlen(cladatum->comkey);
2785         else
2786                 len2 = 0;
2787
2788         ncons = 0;
2789         for (c = cladatum->constraints; c; c = c->next)
2790                 ncons++;
2791
2792         buf[0] = cpu_to_le32(len);
2793         buf[1] = cpu_to_le32(len2);
2794         buf[2] = cpu_to_le32(cladatum->value);
2795         buf[3] = cpu_to_le32(cladatum->permissions.nprim);
2796         if (cladatum->permissions.table)
2797                 buf[4] = cpu_to_le32(cladatum->permissions.table->nel);
2798         else
2799                 buf[4] = 0;
2800         buf[5] = cpu_to_le32(ncons);
2801         rc = put_entry(buf, sizeof(u32), 6, fp);
2802         if (rc)
2803                 return rc;
2804
2805         rc = put_entry(key, 1, len, fp);
2806         if (rc)
2807                 return rc;
2808
2809         if (cladatum->comkey) {
2810                 rc = put_entry(cladatum->comkey, 1, len2, fp);
2811                 if (rc)
2812                         return rc;
2813         }
2814
2815         rc = hashtab_map(cladatum->permissions.table, perm_write, fp);
2816         if (rc)
2817                 return rc;
2818
2819         rc = write_cons_helper(p, cladatum->constraints, fp);
2820         if (rc)
2821                 return rc;
2822
2823         /* write out the validatetrans rule */
2824         ncons = 0;
2825         for (c = cladatum->validatetrans; c; c = c->next)
2826                 ncons++;
2827
2828         buf[0] = cpu_to_le32(ncons);
2829         rc = put_entry(buf, sizeof(u32), 1, fp);
2830         if (rc)
2831                 return rc;
2832
2833         rc = write_cons_helper(p, cladatum->validatetrans, fp);
2834         if (rc)
2835                 return rc;
2836
2837         return 0;
2838 }
2839
2840 static int role_write(void *vkey, void *datum, void *ptr)
2841 {
2842         char *key = vkey;
2843         struct role_datum *role = datum;
2844         struct policy_data *pd = ptr;
2845         void *fp = pd->fp;
2846         struct policydb *p = pd->p;
2847         __le32 buf[3];
2848         size_t items, len;
2849         int rc;
2850
2851         len = strlen(key);
2852         items = 0;
2853         buf[items++] = cpu_to_le32(len);
2854         buf[items++] = cpu_to_le32(role->value);
2855         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
2856                 buf[items++] = cpu_to_le32(role->bounds);
2857
2858         BUG_ON(items > (sizeof(buf)/sizeof(buf[0])));
2859
2860         rc = put_entry(buf, sizeof(u32), items, fp);
2861         if (rc)
2862                 return rc;
2863
2864         rc = put_entry(key, 1, len, fp);
2865         if (rc)
2866                 return rc;
2867
2868         rc = ebitmap_write(&role->dominates, fp);
2869         if (rc)
2870                 return rc;
2871
2872         rc = ebitmap_write(&role->types, fp);
2873         if (rc)
2874                 return rc;
2875
2876         return 0;
2877 }
2878
2879 static int type_write(void *vkey, void *datum, void *ptr)
2880 {
2881         char *key = vkey;
2882         struct type_datum *typdatum = datum;
2883         struct policy_data *pd = ptr;
2884         struct policydb *p = pd->p;
2885         void *fp = pd->fp;
2886         __le32 buf[4];
2887         int rc;
2888         size_t items, len;
2889
2890         len = strlen(key);
2891         items = 0;
2892         buf[items++] = cpu_to_le32(len);
2893         buf[items++] = cpu_to_le32(typdatum->value);
2894         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) {
2895                 u32 properties = 0;
2896
2897                 if (typdatum->primary)
2898                         properties |= TYPEDATUM_PROPERTY_PRIMARY;
2899
2900                 if (typdatum->attribute)
2901                         properties |= TYPEDATUM_PROPERTY_ATTRIBUTE;
2902
2903                 buf[items++] = cpu_to_le32(properties);
2904                 buf[items++] = cpu_to_le32(typdatum->bounds);
2905         } else {
2906                 buf[items++] = cpu_to_le32(typdatum->primary);
2907         }
2908         BUG_ON(items > (sizeof(buf) / sizeof(buf[0])));
2909         rc = put_entry(buf, sizeof(u32), items, fp);
2910         if (rc)
2911                 return rc;
2912
2913         rc = put_entry(key, 1, len, fp);
2914         if (rc)
2915                 return rc;
2916
2917         return 0;
2918 }
2919
2920 static int user_write(void *vkey, void *datum, void *ptr)
2921 {
2922         char *key = vkey;
2923         struct user_datum *usrdatum = datum;
2924         struct policy_data *pd = ptr;
2925         struct policydb *p = pd->p;
2926         void *fp = pd->fp;
2927         __le32 buf[3];
2928         size_t items, len;
2929         int rc;
2930
2931         len = strlen(key);
2932         items = 0;
2933         buf[items++] = cpu_to_le32(len);
2934         buf[items++] = cpu_to_le32(usrdatum->value);
2935         if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
2936                 buf[items++] = cpu_to_le32(usrdatum->bounds);
2937         BUG_ON(items > (sizeof(buf) / sizeof(buf[0])));
2938         rc = put_entry(buf, sizeof(u32), items, fp);
2939         if (rc)
2940                 return rc;
2941
2942         rc = put_entry(key, 1, len, fp);
2943         if (rc)
2944                 return rc;
2945
2946         rc = ebitmap_write(&usrdatum->roles, fp);
2947         if (rc)
2948                 return rc;
2949
2950         rc = mls_write_range_helper(&usrdatum->range, fp);
2951         if (rc)
2952                 return rc;
2953
2954         rc = mls_write_level(&usrdatum->dfltlevel, fp);
2955         if (rc)
2956                 return rc;
2957
2958         return 0;
2959 }
2960
2961 static int (*write_f[SYM_NUM]) (void *key, void *datum,
2962                                 void *datap) =
2963 {
2964         common_write,
2965         class_write,
2966         role_write,
2967         type_write,
2968         user_write,
2969         cond_write_bool,
2970         sens_write,
2971         cat_write,
2972 };
2973
2974 static int ocontext_write(struct policydb *p, struct policydb_compat_info *info,
2975                           void *fp)
2976 {
2977         unsigned int i, j, rc;
2978         size_t nel, len;
2979         __le32 buf[3];
2980         u32 nodebuf[8];
2981         struct ocontext *c;
2982         for (i = 0; i < info->ocon_num; i++) {
2983                 nel = 0;
2984                 for (c = p->ocontexts[i]; c; c = c->next)
2985                         nel++;
2986                 buf[0] = cpu_to_le32(nel);
2987                 rc = put_entry(buf, sizeof(u32), 1, fp);
2988                 if (rc)
2989                         return rc;
2990                 for (c = p->ocontexts[i]; c; c = c->next) {
2991                         switch (i) {
2992                         case OCON_ISID:
2993                                 buf[0] = cpu_to_le32(c->sid[0]);
2994                                 rc = put_entry(buf, sizeof(u32), 1, fp);
2995                                 if (rc)
2996                                         return rc;
2997                                 rc = context_write(p, &c->context[0], fp);
2998                                 if (rc)
2999                                         return rc;
3000                                 break;
3001                         case OCON_FS:
3002                         case OCON_NETIF:
3003                                 len = strlen(c->u.name);
3004                                 buf[0] = cpu_to_le32(len);
3005                                 rc = put_entry(buf, sizeof(u32), 1, fp);
3006                                 if (rc)
3007                                         return rc;
3008                                 rc = put_entry(c->u.name, 1, len, fp);
3009                                 if (rc)
3010                                         return rc;
3011                                 rc = context_write(p, &c->context[0], fp);
3012                                 if (rc)
3013                                         return rc;
3014                                 rc = context_write(p, &c->context[1], fp);
3015                                 if (rc)
3016                                         return rc;
3017                                 break;
3018                         case OCON_PORT:
3019                                 buf[0] = cpu_to_le32(c->u.port.protocol);
3020                                 buf[1] = cpu_to_le32(c->u.port.low_port);
3021                                 buf[2] = cpu_to_le32(c->u.port.high_port);
3022                                 rc = put_entry(buf, sizeof(u32), 3, fp);
3023                                 if (rc)
3024                                         return rc;
3025                                 rc = context_write(p, &c->context[0], fp);
3026                                 if (rc)
3027                                         return rc;
3028                                 break;
3029                         case OCON_NODE:
3030                                 nodebuf[0] = c->u.node.addr; /* network order */
3031                                 nodebuf[1] = c->u.node.mask; /* network order */
3032                                 rc = put_entry(nodebuf, sizeof(u32), 2, fp);
3033                                 if (rc)
3034                                         return rc;
3035                                 rc = context_write(p, &c->context[0], fp);
3036                                 if (rc)
3037                                         return rc;
3038                                 break;
3039                         case OCON_FSUSE:
3040                                 buf[0] = cpu_to_le32(c->v.behavior);
3041                                 len = strlen(c->u.name);
3042                                 buf[1] = cpu_to_le32(len);
3043                                 rc = put_entry(buf, sizeof(u32), 2, fp);
3044                                 if (rc)
3045                                         return rc;
3046                                 rc = put_entry(c->u.name, 1, len, fp);
3047                                 if (rc)
3048                                         return rc;
3049                                 rc = context_write(p, &c->context[0], fp);
3050                                 if (rc)
3051                                         return rc;
3052                                 break;
3053                         case OCON_NODE6:
3054                                 for (j = 0; j < 4; j++)
3055                                         nodebuf[j] = c->u.node6.addr[j]; /* network order */
3056                                 for (j = 0; j < 4; j++)
3057                                         nodebuf[j + 4] = c->u.node6.mask[j]; /* network order */
3058                                 rc = put_entry(nodebuf, sizeof(u32), 8, fp);
3059                                 if (rc)
3060                                         return rc;
3061                                 rc = context_write(p, &c->context[0], fp);
3062                                 if (rc)
3063                                         return rc;
3064                                 break;
3065                         }
3066                 }
3067         }
3068         return 0;
3069 }
3070
3071 static int genfs_write(struct policydb *p, void *fp)
3072 {
3073         struct genfs *genfs;
3074         struct ocontext *c;
3075         size_t len;
3076         __le32 buf[1];
3077         int rc;
3078
3079         len = 0;
3080         for (genfs = p->genfs; genfs; genfs = genfs->next)
3081                 len++;
3082         buf[0] = cpu_to_le32(len);
3083         rc = put_entry(buf, sizeof(u32), 1, fp);
3084         if (rc)
3085                 return rc;
3086         for (genfs = p->genfs; genfs; genfs = genfs->next) {
3087                 len = strlen(genfs->fstype);
3088                 buf[0] = cpu_to_le32(len);
3089                 rc = put_entry(buf, sizeof(u32), 1, fp);
3090                 if (rc)
3091                         return rc;
3092                 rc = put_entry(genfs->fstype, 1, len, fp);
3093                 if (rc)
3094                         return rc;
3095                 len = 0;
3096                 for (c = genfs->head; c; c = c->next)
3097                         len++;
3098                 buf[0] = cpu_to_le32(len);
3099                 rc = put_entry(buf, sizeof(u32), 1, fp);
3100                 if (rc)
3101                         return rc;
3102                 for (c = genfs->head; c; c = c->next) {
3103                         len = strlen(c->u.name);
3104                         buf[0] = cpu_to_le32(len);
3105                         rc = put_entry(buf, sizeof(u32), 1, fp);
3106                         if (rc)
3107                                 return rc;
3108                         rc = put_entry(c->u.name, 1, len, fp);
3109                         if (rc)
3110                                 return rc;
3111                         buf[0] = cpu_to_le32(c->v.sclass);
3112                         rc = put_entry(buf, sizeof(u32), 1, fp);
3113                         if (rc)
3114                                 return rc;
3115                         rc = context_write(p, &c->context[0], fp);
3116                         if (rc)
3117                                 return rc;
3118                 }
3119         }
3120         return 0;
3121 }
3122
3123 static int hashtab_cnt(void *key, void *data, void *ptr)
3124 {
3125         int *cnt = ptr;
3126         *cnt = *cnt + 1;
3127
3128         return 0;
3129 }
3130
3131 static int range_write_helper(void *key, void *data, void *ptr)
3132 {
3133         __le32 buf[2];
3134         struct range_trans *rt = key;
3135         struct mls_range *r = data;
3136         struct policy_data *pd = ptr;
3137         void *fp = pd->fp;
3138         struct policydb *p = pd->p;
3139         int rc;
3140
3141         buf[0] = cpu_to_le32(rt->source_type);
3142         buf[1] = cpu_to_le32(rt->target_type);
3143         rc = put_entry(buf, sizeof(u32), 2, fp);
3144         if (rc)
3145                 return rc;
3146         if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) {
3147                 buf[0] = cpu_to_le32(rt->target_class);
3148                 rc = put_entry(buf, sizeof(u32), 1, fp);
3149                 if (rc)
3150                         return rc;
3151         }
3152         rc = mls_write_range_helper(r, fp);
3153         if (rc)
3154                 return rc;
3155
3156         return 0;
3157 }
3158
3159 static int range_write(struct policydb *p, void *fp)
3160 {
3161         size_t nel;
3162         __le32 buf[1];
3163         int rc;
3164         struct policy_data pd;
3165
3166         pd.p = p;
3167         pd.fp = fp;
3168
3169         /* count the number of entries in the hashtab */
3170         nel = 0;
3171         rc = hashtab_map(p->range_tr, hashtab_cnt, &nel);
3172         if (rc)
3173                 return rc;
3174
3175         buf[0] = cpu_to_le32(nel);
3176         rc = put_entry(buf, sizeof(u32), 1, fp);
3177         if (rc)
3178                 return rc;
3179
3180         /* actually write all of the entries */
3181         rc = hashtab_map(p->range_tr, range_write_helper, &pd);
3182         if (rc)
3183                 return rc;
3184
3185         return 0;
3186 }
3187
3188 static int filename_write_helper(void *key, void *data, void *ptr)
3189 {
3190         __le32 buf[4];
3191         struct filename_trans *ft = key;
3192         struct filename_trans_datum *otype = data;
3193         void *fp = ptr;
3194         int rc;
3195         u32 len;
3196
3197         len = strlen(ft->name);
3198         buf[0] = cpu_to_le32(len);
3199         rc = put_entry(buf, sizeof(u32), 1, fp);
3200         if (rc)
3201                 return rc;
3202
3203         rc = put_entry(ft->name, sizeof(char), len, fp);
3204         if (rc)
3205                 return rc;
3206
3207         buf[0] = ft->stype;
3208         buf[1] = ft->ttype;
3209         buf[2] = ft->tclass;
3210         buf[3] = otype->otype;
3211
3212         rc = put_entry(buf, sizeof(u32), 4, fp);
3213         if (rc)
3214                 return rc;
3215
3216         return 0;
3217 }
3218
3219 static int filename_trans_write(struct policydb *p, void *fp)
3220 {
3221         u32 nel;
3222         __le32 buf[1];
3223         int rc;
3224
3225         nel = 0;
3226         rc = hashtab_map(p->filename_trans, hashtab_cnt, &nel);
3227         if (rc)
3228                 return rc;
3229
3230         buf[0] = cpu_to_le32(nel);
3231         rc = put_entry(buf, sizeof(u32), 1, fp);
3232         if (rc)
3233                 return rc;
3234
3235         rc = hashtab_map(p->filename_trans, filename_write_helper, fp);
3236         if (rc)
3237                 return rc;
3238
3239         return 0;
3240 }
3241
3242 /*
3243  * Write the configuration data in a policy database
3244  * structure to a policy database binary representation
3245  * file.
3246  */
3247 int policydb_write(struct policydb *p, void *fp)
3248 {
3249         unsigned int i, num_syms;
3250         int rc;
3251         __le32 buf[4];
3252         u32 config;
3253         size_t len;
3254         struct policydb_compat_info *info;
3255
3256         /*
3257          * refuse to write policy older than compressed avtab
3258          * to simplify the writer.  There are other tests dropped
3259          * since we assume this throughout the writer code.  Be
3260          * careful if you ever try to remove this restriction
3261          */
3262         if (p->policyvers < POLICYDB_VERSION_AVTAB) {
3263                 printk(KERN_ERR "SELinux: refusing to write policy version %d."
3264                        "  Because it is less than version %d\n", p->policyvers,
3265                        POLICYDB_VERSION_AVTAB);
3266                 return -EINVAL;
3267         }
3268
3269         config = 0;
3270         if (p->mls_enabled)
3271                 config |= POLICYDB_CONFIG_MLS;
3272
3273         if (p->reject_unknown)
3274                 config |= REJECT_UNKNOWN;
3275         if (p->allow_unknown)
3276                 config |= ALLOW_UNKNOWN;
3277
3278         /* Write the magic number and string identifiers. */
3279         buf[0] = cpu_to_le32(POLICYDB_MAGIC);
3280         len = strlen(POLICYDB_STRING);
3281         buf[1] = cpu_to_le32(len);
3282         rc = put_entry(buf, sizeof(u32), 2, fp);
3283         if (rc)
3284                 return rc;
3285         rc = put_entry(POLICYDB_STRING, 1, len, fp);
3286         if (rc)
3287                 return rc;
3288
3289         /* Write the version, config, and table sizes. */
3290         info = policydb_lookup_compat(p->policyvers);
3291         if (!info) {
3292                 printk(KERN_ERR "SELinux: compatibility lookup failed for policy "
3293                     "version %d", p->policyvers);
3294                 return -EINVAL;
3295         }
3296
3297         buf[0] = cpu_to_le32(p->policyvers);
3298         buf[1] = cpu_to_le32(config);
3299         buf[2] = cpu_to_le32(info->sym_num);
3300         buf[3] = cpu_to_le32(info->ocon_num);
3301
3302         rc = put_entry(buf, sizeof(u32), 4, fp);
3303         if (rc)
3304                 return rc;
3305
3306         if (p->policyvers >= POLICYDB_VERSION_POLCAP) {
3307                 rc = ebitmap_write(&p->policycaps, fp);
3308                 if (rc)
3309                         return rc;
3310         }
3311
3312         if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE) {
3313                 rc = ebitmap_write(&p->permissive_map, fp);
3314                 if (rc)
3315                         return rc;
3316         }
3317
3318         num_syms = info->sym_num;
3319         for (i = 0; i < num_syms; i++) {
3320                 struct policy_data pd;
3321
3322                 pd.fp = fp;
3323                 pd.p = p;
3324
3325                 buf[0] = cpu_to_le32(p->symtab[i].nprim);
3326                 buf[1] = cpu_to_le32(p->symtab[i].table->nel);
3327
3328                 rc = put_entry(buf, sizeof(u32), 2, fp);
3329                 if (rc)
3330                         return rc;
3331                 rc = hashtab_map(p->symtab[i].table, write_f[i], &pd);
3332                 if (rc)
3333                         return rc;
3334         }
3335
3336         rc = avtab_write(p, &p->te_avtab, fp);
3337         if (rc)
3338                 return rc;
3339
3340         rc = cond_write_list(p, p->cond_list, fp);
3341         if (rc)
3342                 return rc;
3343
3344         rc = role_trans_write(p, fp);
3345         if (rc)
3346                 return rc;
3347
3348         rc = role_allow_write(p->role_allow, fp);
3349         if (rc)
3350                 return rc;
3351
3352         rc = filename_trans_write(p, fp);
3353         if (rc)
3354                 return rc;
3355
3356         rc = ocontext_write(p, info, fp);
3357         if (rc)
3358                 return rc;
3359
3360         rc = genfs_write(p, fp);
3361         if (rc)
3362                 return rc;
3363
3364         rc = range_write(p, fp);
3365         if (rc)
3366                 return rc;
3367
3368         for (i = 0; i < p->p_types.nprim; i++) {
3369                 struct ebitmap *e = flex_array_get(p->type_attr_map_array, i);
3370
3371                 BUG_ON(!e);
3372                 rc = ebitmap_write(e, fp);
3373                 if (rc)
3374                         return rc;
3375         }
3376
3377         return 0;
3378 }