2391761ae42248806d92b2d2e220f5b1dd7ae6ea
[linux-2.6.git] / security / selinux / ss / policydb.c
1 /*
2  * Implementation of the policy database.
3  *
4  * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
5  */
6
7 /*
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *      Support for enhanced MLS infrastructure.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *      Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul.moore@hp.com>
17  *
18  *      Added support for the policy capability bitmap
19  *
20  * Copyright (C) 2007 Hewlett-Packard Development Company, L.P.
21  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
22  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
23  *      This program is free software; you can redistribute it and/or modify
24  *      it under the terms of the GNU General Public License as published by
25  *      the Free Software Foundation, version 2.
26  */
27
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/string.h>
32 #include <linux/errno.h>
33 #include "security.h"
34
35 #include "policydb.h"
36 #include "conditional.h"
37 #include "mls.h"
38
39 #define _DEBUG_HASHES
40
41 #ifdef DEBUG_HASHES
42 static char *symtab_name[SYM_NUM] = {
43         "common prefixes",
44         "classes",
45         "roles",
46         "types",
47         "users",
48         "bools",
49         "levels",
50         "categories",
51 };
52 #endif
53
54 int selinux_mls_enabled;
55
56 static unsigned int symtab_sizes[SYM_NUM] = {
57         2,
58         32,
59         16,
60         512,
61         128,
62         16,
63         16,
64         16,
65 };
66
67 struct policydb_compat_info {
68         int version;
69         int sym_num;
70         int ocon_num;
71 };
72
73 /* These need to be updated if SYM_NUM or OCON_NUM changes */
74 static struct policydb_compat_info policydb_compat[] = {
75         {
76                 .version        = POLICYDB_VERSION_BASE,
77                 .sym_num        = SYM_NUM - 3,
78                 .ocon_num       = OCON_NUM - 1,
79         },
80         {
81                 .version        = POLICYDB_VERSION_BOOL,
82                 .sym_num        = SYM_NUM - 2,
83                 .ocon_num       = OCON_NUM - 1,
84         },
85         {
86                 .version        = POLICYDB_VERSION_IPV6,
87                 .sym_num        = SYM_NUM - 2,
88                 .ocon_num       = OCON_NUM,
89         },
90         {
91                 .version        = POLICYDB_VERSION_NLCLASS,
92                 .sym_num        = SYM_NUM - 2,
93                 .ocon_num       = OCON_NUM,
94         },
95         {
96                 .version        = POLICYDB_VERSION_MLS,
97                 .sym_num        = SYM_NUM,
98                 .ocon_num       = OCON_NUM,
99         },
100         {
101                 .version        = POLICYDB_VERSION_AVTAB,
102                 .sym_num        = SYM_NUM,
103                 .ocon_num       = OCON_NUM,
104         },
105         {
106                 .version        = POLICYDB_VERSION_RANGETRANS,
107                 .sym_num        = SYM_NUM,
108                 .ocon_num       = OCON_NUM,
109         },
110         {
111                 .version        = POLICYDB_VERSION_POLCAP,
112                 .sym_num        = SYM_NUM,
113                 .ocon_num       = OCON_NUM,
114         },
115         {
116                 .version        = POLICYDB_VERSION_PERMISSIVE,
117                 .sym_num        = SYM_NUM,
118                 .ocon_num       = OCON_NUM,
119         }
120 };
121
122 static struct policydb_compat_info *policydb_lookup_compat(int version)
123 {
124         int i;
125         struct policydb_compat_info *info = NULL;
126
127         for (i = 0; i < ARRAY_SIZE(policydb_compat); i++) {
128                 if (policydb_compat[i].version == version) {
129                         info = &policydb_compat[i];
130                         break;
131                 }
132         }
133         return info;
134 }
135
136 /*
137  * Initialize the role table.
138  */
139 static int roles_init(struct policydb *p)
140 {
141         char *key = NULL;
142         int rc;
143         struct role_datum *role;
144
145         role = kzalloc(sizeof(*role), GFP_KERNEL);
146         if (!role) {
147                 rc = -ENOMEM;
148                 goto out;
149         }
150         role->value = ++p->p_roles.nprim;
151         if (role->value != OBJECT_R_VAL) {
152                 rc = -EINVAL;
153                 goto out_free_role;
154         }
155         key = kmalloc(strlen(OBJECT_R)+1, GFP_KERNEL);
156         if (!key) {
157                 rc = -ENOMEM;
158                 goto out_free_role;
159         }
160         strcpy(key, OBJECT_R);
161         rc = hashtab_insert(p->p_roles.table, key, role);
162         if (rc)
163                 goto out_free_key;
164 out:
165         return rc;
166
167 out_free_key:
168         kfree(key);
169 out_free_role:
170         kfree(role);
171         goto out;
172 }
173
174 /*
175  * Initialize a policy database structure.
176  */
177 static int policydb_init(struct policydb *p)
178 {
179         int i, rc;
180
181         memset(p, 0, sizeof(*p));
182
183         for (i = 0; i < SYM_NUM; i++) {
184                 rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
185                 if (rc)
186                         goto out_free_symtab;
187         }
188
189         rc = avtab_init(&p->te_avtab);
190         if (rc)
191                 goto out_free_symtab;
192
193         rc = roles_init(p);
194         if (rc)
195                 goto out_free_symtab;
196
197         rc = cond_policydb_init(p);
198         if (rc)
199                 goto out_free_symtab;
200
201         ebitmap_init(&p->policycaps);
202         ebitmap_init(&p->permissive_map);
203
204 out:
205         return rc;
206
207 out_free_symtab:
208         for (i = 0; i < SYM_NUM; i++)
209                 hashtab_destroy(p->symtab[i].table);
210         goto out;
211 }
212
213 /*
214  * The following *_index functions are used to
215  * define the val_to_name and val_to_struct arrays
216  * in a policy database structure.  The val_to_name
217  * arrays are used when converting security context
218  * structures into string representations.  The
219  * val_to_struct arrays are used when the attributes
220  * of a class, role, or user are needed.
221  */
222
223 static int common_index(void *key, void *datum, void *datap)
224 {
225         struct policydb *p;
226         struct common_datum *comdatum;
227
228         comdatum = datum;
229         p = datap;
230         if (!comdatum->value || comdatum->value > p->p_commons.nprim)
231                 return -EINVAL;
232         p->p_common_val_to_name[comdatum->value - 1] = key;
233         return 0;
234 }
235
236 static int class_index(void *key, void *datum, void *datap)
237 {
238         struct policydb *p;
239         struct class_datum *cladatum;
240
241         cladatum = datum;
242         p = datap;
243         if (!cladatum->value || cladatum->value > p->p_classes.nprim)
244                 return -EINVAL;
245         p->p_class_val_to_name[cladatum->value - 1] = key;
246         p->class_val_to_struct[cladatum->value - 1] = cladatum;
247         return 0;
248 }
249
250 static int role_index(void *key, void *datum, void *datap)
251 {
252         struct policydb *p;
253         struct role_datum *role;
254
255         role = datum;
256         p = datap;
257         if (!role->value || role->value > p->p_roles.nprim)
258                 return -EINVAL;
259         p->p_role_val_to_name[role->value - 1] = key;
260         p->role_val_to_struct[role->value - 1] = role;
261         return 0;
262 }
263
264 static int type_index(void *key, void *datum, void *datap)
265 {
266         struct policydb *p;
267         struct type_datum *typdatum;
268
269         typdatum = datum;
270         p = datap;
271
272         if (typdatum->primary) {
273                 if (!typdatum->value || typdatum->value > p->p_types.nprim)
274                         return -EINVAL;
275                 p->p_type_val_to_name[typdatum->value - 1] = key;
276         }
277
278         return 0;
279 }
280
281 static int user_index(void *key, void *datum, void *datap)
282 {
283         struct policydb *p;
284         struct user_datum *usrdatum;
285
286         usrdatum = datum;
287         p = datap;
288         if (!usrdatum->value || usrdatum->value > p->p_users.nprim)
289                 return -EINVAL;
290         p->p_user_val_to_name[usrdatum->value - 1] = key;
291         p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
292         return 0;
293 }
294
295 static int sens_index(void *key, void *datum, void *datap)
296 {
297         struct policydb *p;
298         struct level_datum *levdatum;
299
300         levdatum = datum;
301         p = datap;
302
303         if (!levdatum->isalias) {
304                 if (!levdatum->level->sens ||
305                     levdatum->level->sens > p->p_levels.nprim)
306                         return -EINVAL;
307                 p->p_sens_val_to_name[levdatum->level->sens - 1] = key;
308         }
309
310         return 0;
311 }
312
313 static int cat_index(void *key, void *datum, void *datap)
314 {
315         struct policydb *p;
316         struct cat_datum *catdatum;
317
318         catdatum = datum;
319         p = datap;
320
321         if (!catdatum->isalias) {
322                 if (!catdatum->value || catdatum->value > p->p_cats.nprim)
323                         return -EINVAL;
324                 p->p_cat_val_to_name[catdatum->value - 1] = key;
325         }
326
327         return 0;
328 }
329
330 static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
331 {
332         common_index,
333         class_index,
334         role_index,
335         type_index,
336         user_index,
337         cond_index_bool,
338         sens_index,
339         cat_index,
340 };
341
342 /*
343  * Define the common val_to_name array and the class
344  * val_to_name and val_to_struct arrays in a policy
345  * database structure.
346  *
347  * Caller must clean up upon failure.
348  */
349 static int policydb_index_classes(struct policydb *p)
350 {
351         int rc;
352
353         p->p_common_val_to_name =
354                 kmalloc(p->p_commons.nprim * sizeof(char *), GFP_KERNEL);
355         if (!p->p_common_val_to_name) {
356                 rc = -ENOMEM;
357                 goto out;
358         }
359
360         rc = hashtab_map(p->p_commons.table, common_index, p);
361         if (rc)
362                 goto out;
363
364         p->class_val_to_struct =
365                 kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)), GFP_KERNEL);
366         if (!p->class_val_to_struct) {
367                 rc = -ENOMEM;
368                 goto out;
369         }
370
371         p->p_class_val_to_name =
372                 kmalloc(p->p_classes.nprim * sizeof(char *), GFP_KERNEL);
373         if (!p->p_class_val_to_name) {
374                 rc = -ENOMEM;
375                 goto out;
376         }
377
378         rc = hashtab_map(p->p_classes.table, class_index, p);
379 out:
380         return rc;
381 }
382
383 #ifdef DEBUG_HASHES
384 static void symtab_hash_eval(struct symtab *s)
385 {
386         int i;
387
388         for (i = 0; i < SYM_NUM; i++) {
389                 struct hashtab *h = s[i].table;
390                 struct hashtab_info info;
391
392                 hashtab_stat(h, &info);
393                 printk(KERN_DEBUG "SELinux: %s:  %d entries and %d/%d buckets used, "
394                        "longest chain length %d\n", symtab_name[i], h->nel,
395                        info.slots_used, h->size, info.max_chain_len);
396         }
397 }
398 #endif
399
400 /*
401  * Define the other val_to_name and val_to_struct arrays
402  * in a policy database structure.
403  *
404  * Caller must clean up on failure.
405  */
406 static int policydb_index_others(struct policydb *p)
407 {
408         int i, rc = 0;
409
410         printk(KERN_DEBUG "SELinux:  %d users, %d roles, %d types, %d bools",
411                p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
412         if (selinux_mls_enabled)
413                 printk(", %d sens, %d cats", p->p_levels.nprim,
414                        p->p_cats.nprim);
415         printk("\n");
416
417         printk(KERN_DEBUG "SELinux:  %d classes, %d rules\n",
418                p->p_classes.nprim, p->te_avtab.nel);
419
420 #ifdef DEBUG_HASHES
421         avtab_hash_eval(&p->te_avtab, "rules");
422         symtab_hash_eval(p->symtab);
423 #endif
424
425         p->role_val_to_struct =
426                 kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
427                         GFP_KERNEL);
428         if (!p->role_val_to_struct) {
429                 rc = -ENOMEM;
430                 goto out;
431         }
432
433         p->user_val_to_struct =
434                 kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
435                         GFP_KERNEL);
436         if (!p->user_val_to_struct) {
437                 rc = -ENOMEM;
438                 goto out;
439         }
440
441         if (cond_init_bool_indexes(p)) {
442                 rc = -ENOMEM;
443                 goto out;
444         }
445
446         for (i = SYM_ROLES; i < SYM_NUM; i++) {
447                 p->sym_val_to_name[i] =
448                         kmalloc(p->symtab[i].nprim * sizeof(char *), GFP_KERNEL);
449                 if (!p->sym_val_to_name[i]) {
450                         rc = -ENOMEM;
451                         goto out;
452                 }
453                 rc = hashtab_map(p->symtab[i].table, index_f[i], p);
454                 if (rc)
455                         goto out;
456         }
457
458 out:
459         return rc;
460 }
461
462 /*
463  * The following *_destroy functions are used to
464  * free any memory allocated for each kind of
465  * symbol data in the policy database.
466  */
467
468 static int perm_destroy(void *key, void *datum, void *p)
469 {
470         kfree(key);
471         kfree(datum);
472         return 0;
473 }
474
475 static int common_destroy(void *key, void *datum, void *p)
476 {
477         struct common_datum *comdatum;
478
479         kfree(key);
480         comdatum = datum;
481         hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
482         hashtab_destroy(comdatum->permissions.table);
483         kfree(datum);
484         return 0;
485 }
486
487 static int cls_destroy(void *key, void *datum, void *p)
488 {
489         struct class_datum *cladatum;
490         struct constraint_node *constraint, *ctemp;
491         struct constraint_expr *e, *etmp;
492
493         kfree(key);
494         cladatum = datum;
495         hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
496         hashtab_destroy(cladatum->permissions.table);
497         constraint = cladatum->constraints;
498         while (constraint) {
499                 e = constraint->expr;
500                 while (e) {
501                         ebitmap_destroy(&e->names);
502                         etmp = e;
503                         e = e->next;
504                         kfree(etmp);
505                 }
506                 ctemp = constraint;
507                 constraint = constraint->next;
508                 kfree(ctemp);
509         }
510
511         constraint = cladatum->validatetrans;
512         while (constraint) {
513                 e = constraint->expr;
514                 while (e) {
515                         ebitmap_destroy(&e->names);
516                         etmp = e;
517                         e = e->next;
518                         kfree(etmp);
519                 }
520                 ctemp = constraint;
521                 constraint = constraint->next;
522                 kfree(ctemp);
523         }
524
525         kfree(cladatum->comkey);
526         kfree(datum);
527         return 0;
528 }
529
530 static int role_destroy(void *key, void *datum, void *p)
531 {
532         struct role_datum *role;
533
534         kfree(key);
535         role = datum;
536         ebitmap_destroy(&role->dominates);
537         ebitmap_destroy(&role->types);
538         kfree(datum);
539         return 0;
540 }
541
542 static int type_destroy(void *key, void *datum, void *p)
543 {
544         kfree(key);
545         kfree(datum);
546         return 0;
547 }
548
549 static int user_destroy(void *key, void *datum, void *p)
550 {
551         struct user_datum *usrdatum;
552
553         kfree(key);
554         usrdatum = datum;
555         ebitmap_destroy(&usrdatum->roles);
556         ebitmap_destroy(&usrdatum->range.level[0].cat);
557         ebitmap_destroy(&usrdatum->range.level[1].cat);
558         ebitmap_destroy(&usrdatum->dfltlevel.cat);
559         kfree(datum);
560         return 0;
561 }
562
563 static int sens_destroy(void *key, void *datum, void *p)
564 {
565         struct level_datum *levdatum;
566
567         kfree(key);
568         levdatum = datum;
569         ebitmap_destroy(&levdatum->level->cat);
570         kfree(levdatum->level);
571         kfree(datum);
572         return 0;
573 }
574
575 static int cat_destroy(void *key, void *datum, void *p)
576 {
577         kfree(key);
578         kfree(datum);
579         return 0;
580 }
581
582 static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
583 {
584         common_destroy,
585         cls_destroy,
586         role_destroy,
587         type_destroy,
588         user_destroy,
589         cond_destroy_bool,
590         sens_destroy,
591         cat_destroy,
592 };
593
594 static void ocontext_destroy(struct ocontext *c, int i)
595 {
596         context_destroy(&c->context[0]);
597         context_destroy(&c->context[1]);
598         if (i == OCON_ISID || i == OCON_FS ||
599             i == OCON_NETIF || i == OCON_FSUSE)
600                 kfree(c->u.name);
601         kfree(c);
602 }
603
604 /*
605  * Free any memory allocated by a policy database structure.
606  */
607 void policydb_destroy(struct policydb *p)
608 {
609         struct ocontext *c, *ctmp;
610         struct genfs *g, *gtmp;
611         int i;
612         struct role_allow *ra, *lra = NULL;
613         struct role_trans *tr, *ltr = NULL;
614         struct range_trans *rt, *lrt = NULL;
615
616         for (i = 0; i < SYM_NUM; i++) {
617                 cond_resched();
618                 hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
619                 hashtab_destroy(p->symtab[i].table);
620         }
621
622         for (i = 0; i < SYM_NUM; i++)
623                 kfree(p->sym_val_to_name[i]);
624
625         kfree(p->class_val_to_struct);
626         kfree(p->role_val_to_struct);
627         kfree(p->user_val_to_struct);
628
629         avtab_destroy(&p->te_avtab);
630
631         for (i = 0; i < OCON_NUM; i++) {
632                 cond_resched();
633                 c = p->ocontexts[i];
634                 while (c) {
635                         ctmp = c;
636                         c = c->next;
637                         ocontext_destroy(ctmp, i);
638                 }
639                 p->ocontexts[i] = NULL;
640         }
641
642         g = p->genfs;
643         while (g) {
644                 cond_resched();
645                 kfree(g->fstype);
646                 c = g->head;
647                 while (c) {
648                         ctmp = c;
649                         c = c->next;
650                         ocontext_destroy(ctmp, OCON_FSUSE);
651                 }
652                 gtmp = g;
653                 g = g->next;
654                 kfree(gtmp);
655         }
656         p->genfs = NULL;
657
658         cond_policydb_destroy(p);
659
660         for (tr = p->role_tr; tr; tr = tr->next) {
661                 cond_resched();
662                 kfree(ltr);
663                 ltr = tr;
664         }
665         kfree(ltr);
666
667         for (ra = p->role_allow; ra; ra = ra->next) {
668                 cond_resched();
669                 kfree(lra);
670                 lra = ra;
671         }
672         kfree(lra);
673
674         for (rt = p->range_tr; rt; rt = rt->next) {
675                 cond_resched();
676                 if (lrt) {
677                         ebitmap_destroy(&lrt->target_range.level[0].cat);
678                         ebitmap_destroy(&lrt->target_range.level[1].cat);
679                         kfree(lrt);
680                 }
681                 lrt = rt;
682         }
683         if (lrt) {
684                 ebitmap_destroy(&lrt->target_range.level[0].cat);
685                 ebitmap_destroy(&lrt->target_range.level[1].cat);
686                 kfree(lrt);
687         }
688
689         if (p->type_attr_map) {
690                 for (i = 0; i < p->p_types.nprim; i++)
691                         ebitmap_destroy(&p->type_attr_map[i]);
692         }
693         kfree(p->type_attr_map);
694         kfree(p->undefined_perms);
695         ebitmap_destroy(&p->policycaps);
696         ebitmap_destroy(&p->permissive_map);
697
698         return;
699 }
700
701 /*
702  * Load the initial SIDs specified in a policy database
703  * structure into a SID table.
704  */
705 int policydb_load_isids(struct policydb *p, struct sidtab *s)
706 {
707         struct ocontext *head, *c;
708         int rc;
709
710         rc = sidtab_init(s);
711         if (rc) {
712                 printk(KERN_ERR "SELinux:  out of memory on SID table init\n");
713                 goto out;
714         }
715
716         head = p->ocontexts[OCON_ISID];
717         for (c = head; c; c = c->next) {
718                 if (!c->context[0].user) {
719                         printk(KERN_ERR "SELinux:  SID %s was never "
720                                "defined.\n", c->u.name);
721                         rc = -EINVAL;
722                         goto out;
723                 }
724                 if (sidtab_insert(s, c->sid[0], &c->context[0])) {
725                         printk(KERN_ERR "SELinux:  unable to load initial "
726                                "SID %s.\n", c->u.name);
727                         rc = -EINVAL;
728                         goto out;
729                 }
730         }
731 out:
732         return rc;
733 }
734
735 int policydb_class_isvalid(struct policydb *p, unsigned int class)
736 {
737         if (!class || class > p->p_classes.nprim)
738                 return 0;
739         return 1;
740 }
741
742 int policydb_role_isvalid(struct policydb *p, unsigned int role)
743 {
744         if (!role || role > p->p_roles.nprim)
745                 return 0;
746         return 1;
747 }
748
749 int policydb_type_isvalid(struct policydb *p, unsigned int type)
750 {
751         if (!type || type > p->p_types.nprim)
752                 return 0;
753         return 1;
754 }
755
756 /*
757  * Return 1 if the fields in the security context
758  * structure `c' are valid.  Return 0 otherwise.
759  */
760 int policydb_context_isvalid(struct policydb *p, struct context *c)
761 {
762         struct role_datum *role;
763         struct user_datum *usrdatum;
764
765         if (!c->role || c->role > p->p_roles.nprim)
766                 return 0;
767
768         if (!c->user || c->user > p->p_users.nprim)
769                 return 0;
770
771         if (!c->type || c->type > p->p_types.nprim)
772                 return 0;
773
774         if (c->role != OBJECT_R_VAL) {
775                 /*
776                  * Role must be authorized for the type.
777                  */
778                 role = p->role_val_to_struct[c->role - 1];
779                 if (!ebitmap_get_bit(&role->types,
780                                      c->type - 1))
781                         /* role may not be associated with type */
782                         return 0;
783
784                 /*
785                  * User must be authorized for the role.
786                  */
787                 usrdatum = p->user_val_to_struct[c->user - 1];
788                 if (!usrdatum)
789                         return 0;
790
791                 if (!ebitmap_get_bit(&usrdatum->roles,
792                                      c->role - 1))
793                         /* user may not be associated with role */
794                         return 0;
795         }
796
797         if (!mls_context_isvalid(p, c))
798                 return 0;
799
800         return 1;
801 }
802
803 /*
804  * Read a MLS range structure from a policydb binary
805  * representation file.
806  */
807 static int mls_read_range_helper(struct mls_range *r, void *fp)
808 {
809         __le32 buf[2];
810         u32 items;
811         int rc;
812
813         rc = next_entry(buf, fp, sizeof(u32));
814         if (rc < 0)
815                 goto out;
816
817         items = le32_to_cpu(buf[0]);
818         if (items > ARRAY_SIZE(buf)) {
819                 printk(KERN_ERR "SELinux: mls:  range overflow\n");
820                 rc = -EINVAL;
821                 goto out;
822         }
823         rc = next_entry(buf, fp, sizeof(u32) * items);
824         if (rc < 0) {
825                 printk(KERN_ERR "SELinux: mls:  truncated range\n");
826                 goto out;
827         }
828         r->level[0].sens = le32_to_cpu(buf[0]);
829         if (items > 1)
830                 r->level[1].sens = le32_to_cpu(buf[1]);
831         else
832                 r->level[1].sens = r->level[0].sens;
833
834         rc = ebitmap_read(&r->level[0].cat, fp);
835         if (rc) {
836                 printk(KERN_ERR "SELinux: mls:  error reading low "
837                        "categories\n");
838                 goto out;
839         }
840         if (items > 1) {
841                 rc = ebitmap_read(&r->level[1].cat, fp);
842                 if (rc) {
843                         printk(KERN_ERR "SELinux: mls:  error reading high "
844                                "categories\n");
845                         goto bad_high;
846                 }
847         } else {
848                 rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
849                 if (rc) {
850                         printk(KERN_ERR "SELinux: mls:  out of memory\n");
851                         goto bad_high;
852                 }
853         }
854
855         rc = 0;
856 out:
857         return rc;
858 bad_high:
859         ebitmap_destroy(&r->level[0].cat);
860         goto out;
861 }
862
863 /*
864  * Read and validate a security context structure
865  * from a policydb binary representation file.
866  */
867 static int context_read_and_validate(struct context *c,
868                                      struct policydb *p,
869                                      void *fp)
870 {
871         __le32 buf[3];
872         int rc;
873
874         rc = next_entry(buf, fp, sizeof buf);
875         if (rc < 0) {
876                 printk(KERN_ERR "SELinux: context truncated\n");
877                 goto out;
878         }
879         c->user = le32_to_cpu(buf[0]);
880         c->role = le32_to_cpu(buf[1]);
881         c->type = le32_to_cpu(buf[2]);
882         if (p->policyvers >= POLICYDB_VERSION_MLS) {
883                 if (mls_read_range_helper(&c->range, fp)) {
884                         printk(KERN_ERR "SELinux: error reading MLS range of "
885                                "context\n");
886                         rc = -EINVAL;
887                         goto out;
888                 }
889         }
890
891         if (!policydb_context_isvalid(p, c)) {
892                 printk(KERN_ERR "SELinux:  invalid security context\n");
893                 context_destroy(c);
894                 rc = -EINVAL;
895         }
896 out:
897         return rc;
898 }
899
900 /*
901  * The following *_read functions are used to
902  * read the symbol data from a policy database
903  * binary representation file.
904  */
905
906 static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
907 {
908         char *key = NULL;
909         struct perm_datum *perdatum;
910         int rc;
911         __le32 buf[2];
912         u32 len;
913
914         perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL);
915         if (!perdatum) {
916                 rc = -ENOMEM;
917                 goto out;
918         }
919
920         rc = next_entry(buf, fp, sizeof buf);
921         if (rc < 0)
922                 goto bad;
923
924         len = le32_to_cpu(buf[0]);
925         perdatum->value = le32_to_cpu(buf[1]);
926
927         key = kmalloc(len + 1, GFP_KERNEL);
928         if (!key) {
929                 rc = -ENOMEM;
930                 goto bad;
931         }
932         rc = next_entry(key, fp, len);
933         if (rc < 0)
934                 goto bad;
935         key[len] = 0;
936
937         rc = hashtab_insert(h, key, perdatum);
938         if (rc)
939                 goto bad;
940 out:
941         return rc;
942 bad:
943         perm_destroy(key, perdatum, NULL);
944         goto out;
945 }
946
947 static int common_read(struct policydb *p, struct hashtab *h, void *fp)
948 {
949         char *key = NULL;
950         struct common_datum *comdatum;
951         __le32 buf[4];
952         u32 len, nel;
953         int i, rc;
954
955         comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL);
956         if (!comdatum) {
957                 rc = -ENOMEM;
958                 goto out;
959         }
960
961         rc = next_entry(buf, fp, sizeof buf);
962         if (rc < 0)
963                 goto bad;
964
965         len = le32_to_cpu(buf[0]);
966         comdatum->value = le32_to_cpu(buf[1]);
967
968         rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
969         if (rc)
970                 goto bad;
971         comdatum->permissions.nprim = le32_to_cpu(buf[2]);
972         nel = le32_to_cpu(buf[3]);
973
974         key = kmalloc(len + 1, GFP_KERNEL);
975         if (!key) {
976                 rc = -ENOMEM;
977                 goto bad;
978         }
979         rc = next_entry(key, fp, len);
980         if (rc < 0)
981                 goto bad;
982         key[len] = 0;
983
984         for (i = 0; i < nel; i++) {
985                 rc = perm_read(p, comdatum->permissions.table, fp);
986                 if (rc)
987                         goto bad;
988         }
989
990         rc = hashtab_insert(h, key, comdatum);
991         if (rc)
992                 goto bad;
993 out:
994         return rc;
995 bad:
996         common_destroy(key, comdatum, NULL);
997         goto out;
998 }
999
1000 static int read_cons_helper(struct constraint_node **nodep, int ncons,
1001                             int allowxtarget, void *fp)
1002 {
1003         struct constraint_node *c, *lc;
1004         struct constraint_expr *e, *le;
1005         __le32 buf[3];
1006         u32 nexpr;
1007         int rc, i, j, depth;
1008
1009         lc = NULL;
1010         for (i = 0; i < ncons; i++) {
1011                 c = kzalloc(sizeof(*c), GFP_KERNEL);
1012                 if (!c)
1013                         return -ENOMEM;
1014
1015                 if (lc)
1016                         lc->next = c;
1017                 else
1018                         *nodep = c;
1019
1020                 rc = next_entry(buf, fp, (sizeof(u32) * 2));
1021                 if (rc < 0)
1022                         return rc;
1023                 c->permissions = le32_to_cpu(buf[0]);
1024                 nexpr = le32_to_cpu(buf[1]);
1025                 le = NULL;
1026                 depth = -1;
1027                 for (j = 0; j < nexpr; j++) {
1028                         e = kzalloc(sizeof(*e), GFP_KERNEL);
1029                         if (!e)
1030                                 return -ENOMEM;
1031
1032                         if (le)
1033                                 le->next = e;
1034                         else
1035                                 c->expr = e;
1036
1037                         rc = next_entry(buf, fp, (sizeof(u32) * 3));
1038                         if (rc < 0)
1039                                 return rc;
1040                         e->expr_type = le32_to_cpu(buf[0]);
1041                         e->attr = le32_to_cpu(buf[1]);
1042                         e->op = le32_to_cpu(buf[2]);
1043
1044                         switch (e->expr_type) {
1045                         case CEXPR_NOT:
1046                                 if (depth < 0)
1047                                         return -EINVAL;
1048                                 break;
1049                         case CEXPR_AND:
1050                         case CEXPR_OR:
1051                                 if (depth < 1)
1052                                         return -EINVAL;
1053                                 depth--;
1054                                 break;
1055                         case CEXPR_ATTR:
1056                                 if (depth == (CEXPR_MAXDEPTH - 1))
1057                                         return -EINVAL;
1058                                 depth++;
1059                                 break;
1060                         case CEXPR_NAMES:
1061                                 if (!allowxtarget && (e->attr & CEXPR_XTARGET))
1062                                         return -EINVAL;
1063                                 if (depth == (CEXPR_MAXDEPTH - 1))
1064                                         return -EINVAL;
1065                                 depth++;
1066                                 if (ebitmap_read(&e->names, fp))
1067                                         return -EINVAL;
1068                                 break;
1069                         default:
1070                                 return -EINVAL;
1071                         }
1072                         le = e;
1073                 }
1074                 if (depth != 0)
1075                         return -EINVAL;
1076                 lc = c;
1077         }
1078
1079         return 0;
1080 }
1081
1082 static int class_read(struct policydb *p, struct hashtab *h, void *fp)
1083 {
1084         char *key = NULL;
1085         struct class_datum *cladatum;
1086         __le32 buf[6];
1087         u32 len, len2, ncons, nel;
1088         int i, rc;
1089
1090         cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL);
1091         if (!cladatum) {
1092                 rc = -ENOMEM;
1093                 goto out;
1094         }
1095
1096         rc = next_entry(buf, fp, sizeof(u32)*6);
1097         if (rc < 0)
1098                 goto bad;
1099
1100         len = le32_to_cpu(buf[0]);
1101         len2 = le32_to_cpu(buf[1]);
1102         cladatum->value = le32_to_cpu(buf[2]);
1103
1104         rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
1105         if (rc)
1106                 goto bad;
1107         cladatum->permissions.nprim = le32_to_cpu(buf[3]);
1108         nel = le32_to_cpu(buf[4]);
1109
1110         ncons = le32_to_cpu(buf[5]);
1111
1112         key = kmalloc(len + 1, GFP_KERNEL);
1113         if (!key) {
1114                 rc = -ENOMEM;
1115                 goto bad;
1116         }
1117         rc = next_entry(key, fp, len);
1118         if (rc < 0)
1119                 goto bad;
1120         key[len] = 0;
1121
1122         if (len2) {
1123                 cladatum->comkey = kmalloc(len2 + 1, GFP_KERNEL);
1124                 if (!cladatum->comkey) {
1125                         rc = -ENOMEM;
1126                         goto bad;
1127                 }
1128                 rc = next_entry(cladatum->comkey, fp, len2);
1129                 if (rc < 0)
1130                         goto bad;
1131                 cladatum->comkey[len2] = 0;
1132
1133                 cladatum->comdatum = hashtab_search(p->p_commons.table,
1134                                                     cladatum->comkey);
1135                 if (!cladatum->comdatum) {
1136                         printk(KERN_ERR "SELinux:  unknown common %s\n",
1137                                cladatum->comkey);
1138                         rc = -EINVAL;
1139                         goto bad;
1140                 }
1141         }
1142         for (i = 0; i < nel; i++) {
1143                 rc = perm_read(p, cladatum->permissions.table, fp);
1144                 if (rc)
1145                         goto bad;
1146         }
1147
1148         rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
1149         if (rc)
1150                 goto bad;
1151
1152         if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
1153                 /* grab the validatetrans rules */
1154                 rc = next_entry(buf, fp, sizeof(u32));
1155                 if (rc < 0)
1156                         goto bad;
1157                 ncons = le32_to_cpu(buf[0]);
1158                 rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
1159                 if (rc)
1160                         goto bad;
1161         }
1162
1163         rc = hashtab_insert(h, key, cladatum);
1164         if (rc)
1165                 goto bad;
1166
1167         rc = 0;
1168 out:
1169         return rc;
1170 bad:
1171         cls_destroy(key, cladatum, NULL);
1172         goto out;
1173 }
1174
1175 static int role_read(struct policydb *p, struct hashtab *h, void *fp)
1176 {
1177         char *key = NULL;
1178         struct role_datum *role;
1179         int rc;
1180         __le32 buf[2];
1181         u32 len;
1182
1183         role = kzalloc(sizeof(*role), GFP_KERNEL);
1184         if (!role) {
1185                 rc = -ENOMEM;
1186                 goto out;
1187         }
1188
1189         rc = next_entry(buf, fp, sizeof buf);
1190         if (rc < 0)
1191                 goto bad;
1192
1193         len = le32_to_cpu(buf[0]);
1194         role->value = le32_to_cpu(buf[1]);
1195
1196         key = kmalloc(len + 1, GFP_KERNEL);
1197         if (!key) {
1198                 rc = -ENOMEM;
1199                 goto bad;
1200         }
1201         rc = next_entry(key, fp, len);
1202         if (rc < 0)
1203                 goto bad;
1204         key[len] = 0;
1205
1206         rc = ebitmap_read(&role->dominates, fp);
1207         if (rc)
1208                 goto bad;
1209
1210         rc = ebitmap_read(&role->types, fp);
1211         if (rc)
1212                 goto bad;
1213
1214         if (strcmp(key, OBJECT_R) == 0) {
1215                 if (role->value != OBJECT_R_VAL) {
1216                         printk(KERN_ERR "SELinux: Role %s has wrong value %d\n",
1217                                OBJECT_R, role->value);
1218                         rc = -EINVAL;
1219                         goto bad;
1220                 }
1221                 rc = 0;
1222                 goto bad;
1223         }
1224
1225         rc = hashtab_insert(h, key, role);
1226         if (rc)
1227                 goto bad;
1228 out:
1229         return rc;
1230 bad:
1231         role_destroy(key, role, NULL);
1232         goto out;
1233 }
1234
1235 static int type_read(struct policydb *p, struct hashtab *h, void *fp)
1236 {
1237         char *key = NULL;
1238         struct type_datum *typdatum;
1239         int rc;
1240         __le32 buf[3];
1241         u32 len;
1242
1243         typdatum = kzalloc(sizeof(*typdatum), GFP_KERNEL);
1244         if (!typdatum) {
1245                 rc = -ENOMEM;
1246                 return rc;
1247         }
1248
1249         rc = next_entry(buf, fp, sizeof buf);
1250         if (rc < 0)
1251                 goto bad;
1252
1253         len = le32_to_cpu(buf[0]);
1254         typdatum->value = le32_to_cpu(buf[1]);
1255         typdatum->primary = le32_to_cpu(buf[2]);
1256
1257         key = kmalloc(len + 1, GFP_KERNEL);
1258         if (!key) {
1259                 rc = -ENOMEM;
1260                 goto bad;
1261         }
1262         rc = next_entry(key, fp, len);
1263         if (rc < 0)
1264                 goto bad;
1265         key[len] = 0;
1266
1267         rc = hashtab_insert(h, key, typdatum);
1268         if (rc)
1269                 goto bad;
1270 out:
1271         return rc;
1272 bad:
1273         type_destroy(key, typdatum, NULL);
1274         goto out;
1275 }
1276
1277
1278 /*
1279  * Read a MLS level structure from a policydb binary
1280  * representation file.
1281  */
1282 static int mls_read_level(struct mls_level *lp, void *fp)
1283 {
1284         __le32 buf[1];
1285         int rc;
1286
1287         memset(lp, 0, sizeof(*lp));
1288
1289         rc = next_entry(buf, fp, sizeof buf);
1290         if (rc < 0) {
1291                 printk(KERN_ERR "SELinux: mls: truncated level\n");
1292                 goto bad;
1293         }
1294         lp->sens = le32_to_cpu(buf[0]);
1295
1296         if (ebitmap_read(&lp->cat, fp)) {
1297                 printk(KERN_ERR "SELinux: mls:  error reading level "
1298                        "categories\n");
1299                 goto bad;
1300         }
1301
1302         return 0;
1303
1304 bad:
1305         return -EINVAL;
1306 }
1307
1308 static int user_read(struct policydb *p, struct hashtab *h, void *fp)
1309 {
1310         char *key = NULL;
1311         struct user_datum *usrdatum;
1312         int rc;
1313         __le32 buf[2];
1314         u32 len;
1315
1316         usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL);
1317         if (!usrdatum) {
1318                 rc = -ENOMEM;
1319                 goto out;
1320         }
1321
1322         rc = next_entry(buf, fp, sizeof buf);
1323         if (rc < 0)
1324                 goto bad;
1325
1326         len = le32_to_cpu(buf[0]);
1327         usrdatum->value = le32_to_cpu(buf[1]);
1328
1329         key = kmalloc(len + 1, GFP_KERNEL);
1330         if (!key) {
1331                 rc = -ENOMEM;
1332                 goto bad;
1333         }
1334         rc = next_entry(key, fp, len);
1335         if (rc < 0)
1336                 goto bad;
1337         key[len] = 0;
1338
1339         rc = ebitmap_read(&usrdatum->roles, fp);
1340         if (rc)
1341                 goto bad;
1342
1343         if (p->policyvers >= POLICYDB_VERSION_MLS) {
1344                 rc = mls_read_range_helper(&usrdatum->range, fp);
1345                 if (rc)
1346                         goto bad;
1347                 rc = mls_read_level(&usrdatum->dfltlevel, fp);
1348                 if (rc)
1349                         goto bad;
1350         }
1351
1352         rc = hashtab_insert(h, key, usrdatum);
1353         if (rc)
1354                 goto bad;
1355 out:
1356         return rc;
1357 bad:
1358         user_destroy(key, usrdatum, NULL);
1359         goto out;
1360 }
1361
1362 static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
1363 {
1364         char *key = NULL;
1365         struct level_datum *levdatum;
1366         int rc;
1367         __le32 buf[2];
1368         u32 len;
1369
1370         levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC);
1371         if (!levdatum) {
1372                 rc = -ENOMEM;
1373                 goto out;
1374         }
1375
1376         rc = next_entry(buf, fp, sizeof buf);
1377         if (rc < 0)
1378                 goto bad;
1379
1380         len = le32_to_cpu(buf[0]);
1381         levdatum->isalias = le32_to_cpu(buf[1]);
1382
1383         key = kmalloc(len + 1, GFP_ATOMIC);
1384         if (!key) {
1385                 rc = -ENOMEM;
1386                 goto bad;
1387         }
1388         rc = next_entry(key, fp, len);
1389         if (rc < 0)
1390                 goto bad;
1391         key[len] = 0;
1392
1393         levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
1394         if (!levdatum->level) {
1395                 rc = -ENOMEM;
1396                 goto bad;
1397         }
1398         if (mls_read_level(levdatum->level, fp)) {
1399                 rc = -EINVAL;
1400                 goto bad;
1401         }
1402
1403         rc = hashtab_insert(h, key, levdatum);
1404         if (rc)
1405                 goto bad;
1406 out:
1407         return rc;
1408 bad:
1409         sens_destroy(key, levdatum, NULL);
1410         goto out;
1411 }
1412
1413 static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
1414 {
1415         char *key = NULL;
1416         struct cat_datum *catdatum;
1417         int rc;
1418         __le32 buf[3];
1419         u32 len;
1420
1421         catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC);
1422         if (!catdatum) {
1423                 rc = -ENOMEM;
1424                 goto out;
1425         }
1426
1427         rc = next_entry(buf, fp, sizeof buf);
1428         if (rc < 0)
1429                 goto bad;
1430
1431         len = le32_to_cpu(buf[0]);
1432         catdatum->value = le32_to_cpu(buf[1]);
1433         catdatum->isalias = le32_to_cpu(buf[2]);
1434
1435         key = kmalloc(len + 1, GFP_ATOMIC);
1436         if (!key) {
1437                 rc = -ENOMEM;
1438                 goto bad;
1439         }
1440         rc = next_entry(key, fp, len);
1441         if (rc < 0)
1442                 goto bad;
1443         key[len] = 0;
1444
1445         rc = hashtab_insert(h, key, catdatum);
1446         if (rc)
1447                 goto bad;
1448 out:
1449         return rc;
1450
1451 bad:
1452         cat_destroy(key, catdatum, NULL);
1453         goto out;
1454 }
1455
1456 static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
1457 {
1458         common_read,
1459         class_read,
1460         role_read,
1461         type_read,
1462         user_read,
1463         cond_read_bool,
1464         sens_read,
1465         cat_read,
1466 };
1467
1468 extern int ss_initialized;
1469
1470 /*
1471  * Read the configuration data from a policy database binary
1472  * representation file into a policy database structure.
1473  */
1474 int policydb_read(struct policydb *p, void *fp)
1475 {
1476         struct role_allow *ra, *lra;
1477         struct role_trans *tr, *ltr;
1478         struct ocontext *l, *c, *newc;
1479         struct genfs *genfs_p, *genfs, *newgenfs;
1480         int i, j, rc;
1481         __le32 buf[4];
1482         u32 nodebuf[8];
1483         u32 len, len2, config, nprim, nel, nel2;
1484         char *policydb_str;
1485         struct policydb_compat_info *info;
1486         struct range_trans *rt, *lrt;
1487
1488         config = 0;
1489
1490         rc = policydb_init(p);
1491         if (rc)
1492                 goto out;
1493
1494         /* Read the magic number and string length. */
1495         rc = next_entry(buf, fp, sizeof(u32) * 2);
1496         if (rc < 0)
1497                 goto bad;
1498
1499         if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) {
1500                 printk(KERN_ERR "SELinux:  policydb magic number 0x%x does "
1501                        "not match expected magic number 0x%x\n",
1502                        le32_to_cpu(buf[0]), POLICYDB_MAGIC);
1503                 goto bad;
1504         }
1505
1506         len = le32_to_cpu(buf[1]);
1507         if (len != strlen(POLICYDB_STRING)) {
1508                 printk(KERN_ERR "SELinux:  policydb string length %d does not "
1509                        "match expected length %Zu\n",
1510                        len, strlen(POLICYDB_STRING));
1511                 goto bad;
1512         }
1513         policydb_str = kmalloc(len + 1, GFP_KERNEL);
1514         if (!policydb_str) {
1515                 printk(KERN_ERR "SELinux:  unable to allocate memory for policydb "
1516                        "string of length %d\n", len);
1517                 rc = -ENOMEM;
1518                 goto bad;
1519         }
1520         rc = next_entry(policydb_str, fp, len);
1521         if (rc < 0) {
1522                 printk(KERN_ERR "SELinux:  truncated policydb string identifier\n");
1523                 kfree(policydb_str);
1524                 goto bad;
1525         }
1526         policydb_str[len] = 0;
1527         if (strcmp(policydb_str, POLICYDB_STRING)) {
1528                 printk(KERN_ERR "SELinux:  policydb string %s does not match "
1529                        "my string %s\n", policydb_str, POLICYDB_STRING);
1530                 kfree(policydb_str);
1531                 goto bad;
1532         }
1533         /* Done with policydb_str. */
1534         kfree(policydb_str);
1535         policydb_str = NULL;
1536
1537         /* Read the version, config, and table sizes. */
1538         rc = next_entry(buf, fp, sizeof(u32)*4);
1539         if (rc < 0)
1540                 goto bad;
1541
1542         p->policyvers = le32_to_cpu(buf[0]);
1543         if (p->policyvers < POLICYDB_VERSION_MIN ||
1544             p->policyvers > POLICYDB_VERSION_MAX) {
1545                 printk(KERN_ERR "SELinux:  policydb version %d does not match "
1546                        "my version range %d-%d\n",
1547                        le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
1548                 goto bad;
1549         }
1550
1551         if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) {
1552                 if (ss_initialized && !selinux_mls_enabled) {
1553                         printk(KERN_ERR "SELinux: Cannot switch between non-MLS"
1554                                 " and MLS policies\n");
1555                         goto bad;
1556                 }
1557                 selinux_mls_enabled = 1;
1558                 config |= POLICYDB_CONFIG_MLS;
1559
1560                 if (p->policyvers < POLICYDB_VERSION_MLS) {
1561                         printk(KERN_ERR "SELinux: security policydb version %d "
1562                                 "(MLS) not backwards compatible\n",
1563                                 p->policyvers);
1564                         goto bad;
1565                 }
1566         } else {
1567                 if (ss_initialized && selinux_mls_enabled) {
1568                         printk(KERN_ERR "SELinux: Cannot switch between MLS and"
1569                                 " non-MLS policies\n");
1570                         goto bad;
1571                 }
1572         }
1573         p->reject_unknown = !!(le32_to_cpu(buf[1]) & REJECT_UNKNOWN);
1574         p->allow_unknown = !!(le32_to_cpu(buf[1]) & ALLOW_UNKNOWN);
1575
1576         if (p->policyvers >= POLICYDB_VERSION_POLCAP &&
1577             ebitmap_read(&p->policycaps, fp) != 0)
1578                 goto bad;
1579
1580         if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE &&
1581             ebitmap_read(&p->permissive_map, fp) != 0)
1582                 goto bad;
1583
1584         info = policydb_lookup_compat(p->policyvers);
1585         if (!info) {
1586                 printk(KERN_ERR "SELinux:  unable to find policy compat info "
1587                        "for version %d\n", p->policyvers);
1588                 goto bad;
1589         }
1590
1591         if (le32_to_cpu(buf[2]) != info->sym_num ||
1592                 le32_to_cpu(buf[3]) != info->ocon_num) {
1593                 printk(KERN_ERR "SELinux:  policydb table sizes (%d,%d) do "
1594                        "not match mine (%d,%d)\n", le32_to_cpu(buf[2]),
1595                         le32_to_cpu(buf[3]),
1596                        info->sym_num, info->ocon_num);
1597                 goto bad;
1598         }
1599
1600         for (i = 0; i < info->sym_num; i++) {
1601                 rc = next_entry(buf, fp, sizeof(u32)*2);
1602                 if (rc < 0)
1603                         goto bad;
1604                 nprim = le32_to_cpu(buf[0]);
1605                 nel = le32_to_cpu(buf[1]);
1606                 for (j = 0; j < nel; j++) {
1607                         rc = read_f[i](p, p->symtab[i].table, fp);
1608                         if (rc)
1609                                 goto bad;
1610                 }
1611
1612                 p->symtab[i].nprim = nprim;
1613         }
1614
1615         rc = avtab_read(&p->te_avtab, fp, p);
1616         if (rc)
1617                 goto bad;
1618
1619         if (p->policyvers >= POLICYDB_VERSION_BOOL) {
1620                 rc = cond_read_list(p, fp);
1621                 if (rc)
1622                         goto bad;
1623         }
1624
1625         rc = next_entry(buf, fp, sizeof(u32));
1626         if (rc < 0)
1627                 goto bad;
1628         nel = le32_to_cpu(buf[0]);
1629         ltr = NULL;
1630         for (i = 0; i < nel; i++) {
1631                 tr = kzalloc(sizeof(*tr), GFP_KERNEL);
1632                 if (!tr) {
1633                         rc = -ENOMEM;
1634                         goto bad;
1635                 }
1636                 if (ltr)
1637                         ltr->next = tr;
1638                 else
1639                         p->role_tr = tr;
1640                 rc = next_entry(buf, fp, sizeof(u32)*3);
1641                 if (rc < 0)
1642                         goto bad;
1643                 tr->role = le32_to_cpu(buf[0]);
1644                 tr->type = le32_to_cpu(buf[1]);
1645                 tr->new_role = le32_to_cpu(buf[2]);
1646                 if (!policydb_role_isvalid(p, tr->role) ||
1647                     !policydb_type_isvalid(p, tr->type) ||
1648                     !policydb_role_isvalid(p, tr->new_role)) {
1649                         rc = -EINVAL;
1650                         goto bad;
1651                 }
1652                 ltr = tr;
1653         }
1654
1655         rc = next_entry(buf, fp, sizeof(u32));
1656         if (rc < 0)
1657                 goto bad;
1658         nel = le32_to_cpu(buf[0]);
1659         lra = NULL;
1660         for (i = 0; i < nel; i++) {
1661                 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1662                 if (!ra) {
1663                         rc = -ENOMEM;
1664                         goto bad;
1665                 }
1666                 if (lra)
1667                         lra->next = ra;
1668                 else
1669                         p->role_allow = ra;
1670                 rc = next_entry(buf, fp, sizeof(u32)*2);
1671                 if (rc < 0)
1672                         goto bad;
1673                 ra->role = le32_to_cpu(buf[0]);
1674                 ra->new_role = le32_to_cpu(buf[1]);
1675                 if (!policydb_role_isvalid(p, ra->role) ||
1676                     !policydb_role_isvalid(p, ra->new_role)) {
1677                         rc = -EINVAL;
1678                         goto bad;
1679                 }
1680                 lra = ra;
1681         }
1682
1683         rc = policydb_index_classes(p);
1684         if (rc)
1685                 goto bad;
1686
1687         rc = policydb_index_others(p);
1688         if (rc)
1689                 goto bad;
1690
1691         for (i = 0; i < info->ocon_num; i++) {
1692                 rc = next_entry(buf, fp, sizeof(u32));
1693                 if (rc < 0)
1694                         goto bad;
1695                 nel = le32_to_cpu(buf[0]);
1696                 l = NULL;
1697                 for (j = 0; j < nel; j++) {
1698                         c = kzalloc(sizeof(*c), GFP_KERNEL);
1699                         if (!c) {
1700                                 rc = -ENOMEM;
1701                                 goto bad;
1702                         }
1703                         if (l)
1704                                 l->next = c;
1705                         else
1706                                 p->ocontexts[i] = c;
1707                         l = c;
1708                         rc = -EINVAL;
1709                         switch (i) {
1710                         case OCON_ISID:
1711                                 rc = next_entry(buf, fp, sizeof(u32));
1712                                 if (rc < 0)
1713                                         goto bad;
1714                                 c->sid[0] = le32_to_cpu(buf[0]);
1715                                 rc = context_read_and_validate(&c->context[0], p, fp);
1716                                 if (rc)
1717                                         goto bad;
1718                                 break;
1719                         case OCON_FS:
1720                         case OCON_NETIF:
1721                                 rc = next_entry(buf, fp, sizeof(u32));
1722                                 if (rc < 0)
1723                                         goto bad;
1724                                 len = le32_to_cpu(buf[0]);
1725                                 c->u.name = kmalloc(len + 1, GFP_KERNEL);
1726                                 if (!c->u.name) {
1727                                         rc = -ENOMEM;
1728                                         goto bad;
1729                                 }
1730                                 rc = next_entry(c->u.name, fp, len);
1731                                 if (rc < 0)
1732                                         goto bad;
1733                                 c->u.name[len] = 0;
1734                                 rc = context_read_and_validate(&c->context[0], p, fp);
1735                                 if (rc)
1736                                         goto bad;
1737                                 rc = context_read_and_validate(&c->context[1], p, fp);
1738                                 if (rc)
1739                                         goto bad;
1740                                 break;
1741                         case OCON_PORT:
1742                                 rc = next_entry(buf, fp, sizeof(u32)*3);
1743                                 if (rc < 0)
1744                                         goto bad;
1745                                 c->u.port.protocol = le32_to_cpu(buf[0]);
1746                                 c->u.port.low_port = le32_to_cpu(buf[1]);
1747                                 c->u.port.high_port = le32_to_cpu(buf[2]);
1748                                 rc = context_read_and_validate(&c->context[0], p, fp);
1749                                 if (rc)
1750                                         goto bad;
1751                                 break;
1752                         case OCON_NODE:
1753                                 rc = next_entry(nodebuf, fp, sizeof(u32) * 2);
1754                                 if (rc < 0)
1755                                         goto bad;
1756                                 c->u.node.addr = nodebuf[0]; /* network order */
1757                                 c->u.node.mask = nodebuf[1]; /* network order */
1758                                 rc = context_read_and_validate(&c->context[0], p, fp);
1759                                 if (rc)
1760                                         goto bad;
1761                                 break;
1762                         case OCON_FSUSE:
1763                                 rc = next_entry(buf, fp, sizeof(u32)*2);
1764                                 if (rc < 0)
1765                                         goto bad;
1766                                 c->v.behavior = le32_to_cpu(buf[0]);
1767                                 if (c->v.behavior > SECURITY_FS_USE_NONE)
1768                                         goto bad;
1769                                 len = le32_to_cpu(buf[1]);
1770                                 c->u.name = kmalloc(len + 1, GFP_KERNEL);
1771                                 if (!c->u.name) {
1772                                         rc = -ENOMEM;
1773                                         goto bad;
1774                                 }
1775                                 rc = next_entry(c->u.name, fp, len);
1776                                 if (rc < 0)
1777                                         goto bad;
1778                                 c->u.name[len] = 0;
1779                                 rc = context_read_and_validate(&c->context[0], p, fp);
1780                                 if (rc)
1781                                         goto bad;
1782                                 break;
1783                         case OCON_NODE6: {
1784                                 int k;
1785
1786                                 rc = next_entry(nodebuf, fp, sizeof(u32) * 8);
1787                                 if (rc < 0)
1788                                         goto bad;
1789                                 for (k = 0; k < 4; k++)
1790                                         c->u.node6.addr[k] = nodebuf[k];
1791                                 for (k = 0; k < 4; k++)
1792                                         c->u.node6.mask[k] = nodebuf[k+4];
1793                                 if (context_read_and_validate(&c->context[0], p, fp))
1794                                         goto bad;
1795                                 break;
1796                         }
1797                         }
1798                 }
1799         }
1800
1801         rc = next_entry(buf, fp, sizeof(u32));
1802         if (rc < 0)
1803                 goto bad;
1804         nel = le32_to_cpu(buf[0]);
1805         genfs_p = NULL;
1806         rc = -EINVAL;
1807         for (i = 0; i < nel; i++) {
1808                 rc = next_entry(buf, fp, sizeof(u32));
1809                 if (rc < 0)
1810                         goto bad;
1811                 len = le32_to_cpu(buf[0]);
1812                 newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL);
1813                 if (!newgenfs) {
1814                         rc = -ENOMEM;
1815                         goto bad;
1816                 }
1817
1818                 newgenfs->fstype = kmalloc(len + 1, GFP_KERNEL);
1819                 if (!newgenfs->fstype) {
1820                         rc = -ENOMEM;
1821                         kfree(newgenfs);
1822                         goto bad;
1823                 }
1824                 rc = next_entry(newgenfs->fstype, fp, len);
1825                 if (rc < 0) {
1826                         kfree(newgenfs->fstype);
1827                         kfree(newgenfs);
1828                         goto bad;
1829                 }
1830                 newgenfs->fstype[len] = 0;
1831                 for (genfs_p = NULL, genfs = p->genfs; genfs;
1832                      genfs_p = genfs, genfs = genfs->next) {
1833                         if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
1834                                 printk(KERN_ERR "SELinux:  dup genfs "
1835                                        "fstype %s\n", newgenfs->fstype);
1836                                 kfree(newgenfs->fstype);
1837                                 kfree(newgenfs);
1838                                 goto bad;
1839                         }
1840                         if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
1841                                 break;
1842                 }
1843                 newgenfs->next = genfs;
1844                 if (genfs_p)
1845                         genfs_p->next = newgenfs;
1846                 else
1847                         p->genfs = newgenfs;
1848                 rc = next_entry(buf, fp, sizeof(u32));
1849                 if (rc < 0)
1850                         goto bad;
1851                 nel2 = le32_to_cpu(buf[0]);
1852                 for (j = 0; j < nel2; j++) {
1853                         rc = next_entry(buf, fp, sizeof(u32));
1854                         if (rc < 0)
1855                                 goto bad;
1856                         len = le32_to_cpu(buf[0]);
1857
1858                         newc = kzalloc(sizeof(*newc), GFP_KERNEL);
1859                         if (!newc) {
1860                                 rc = -ENOMEM;
1861                                 goto bad;
1862                         }
1863
1864                         newc->u.name = kmalloc(len + 1, GFP_KERNEL);
1865                         if (!newc->u.name) {
1866                                 rc = -ENOMEM;
1867                                 goto bad_newc;
1868                         }
1869                         rc = next_entry(newc->u.name, fp, len);
1870                         if (rc < 0)
1871                                 goto bad_newc;
1872                         newc->u.name[len] = 0;
1873                         rc = next_entry(buf, fp, sizeof(u32));
1874                         if (rc < 0)
1875                                 goto bad_newc;
1876                         newc->v.sclass = le32_to_cpu(buf[0]);
1877                         if (context_read_and_validate(&newc->context[0], p, fp))
1878                                 goto bad_newc;
1879                         for (l = NULL, c = newgenfs->head; c;
1880                              l = c, c = c->next) {
1881                                 if (!strcmp(newc->u.name, c->u.name) &&
1882                                     (!c->v.sclass || !newc->v.sclass ||
1883                                      newc->v.sclass == c->v.sclass)) {
1884                                         printk(KERN_ERR "SELinux:  dup genfs "
1885                                                "entry (%s,%s)\n",
1886                                                newgenfs->fstype, c->u.name);
1887                                         goto bad_newc;
1888                                 }
1889                                 len = strlen(newc->u.name);
1890                                 len2 = strlen(c->u.name);
1891                                 if (len > len2)
1892                                         break;
1893                         }
1894
1895                         newc->next = c;
1896                         if (l)
1897                                 l->next = newc;
1898                         else
1899                                 newgenfs->head = newc;
1900                 }
1901         }
1902
1903         if (p->policyvers >= POLICYDB_VERSION_MLS) {
1904                 int new_rangetr = p->policyvers >= POLICYDB_VERSION_RANGETRANS;
1905                 rc = next_entry(buf, fp, sizeof(u32));
1906                 if (rc < 0)
1907                         goto bad;
1908                 nel = le32_to_cpu(buf[0]);
1909                 lrt = NULL;
1910                 for (i = 0; i < nel; i++) {
1911                         rt = kzalloc(sizeof(*rt), GFP_KERNEL);
1912                         if (!rt) {
1913                                 rc = -ENOMEM;
1914                                 goto bad;
1915                         }
1916                         if (lrt)
1917                                 lrt->next = rt;
1918                         else
1919                                 p->range_tr = rt;
1920                         rc = next_entry(buf, fp, (sizeof(u32) * 2));
1921                         if (rc < 0)
1922                                 goto bad;
1923                         rt->source_type = le32_to_cpu(buf[0]);
1924                         rt->target_type = le32_to_cpu(buf[1]);
1925                         if (new_rangetr) {
1926                                 rc = next_entry(buf, fp, sizeof(u32));
1927                                 if (rc < 0)
1928                                         goto bad;
1929                                 rt->target_class = le32_to_cpu(buf[0]);
1930                         } else
1931                                 rt->target_class = SECCLASS_PROCESS;
1932                         if (!policydb_type_isvalid(p, rt->source_type) ||
1933                             !policydb_type_isvalid(p, rt->target_type) ||
1934                             !policydb_class_isvalid(p, rt->target_class)) {
1935                                 rc = -EINVAL;
1936                                 goto bad;
1937                         }
1938                         rc = mls_read_range_helper(&rt->target_range, fp);
1939                         if (rc)
1940                                 goto bad;
1941                         if (!mls_range_isvalid(p, &rt->target_range)) {
1942                                 printk(KERN_WARNING "SELinux:  rangetrans:  invalid range\n");
1943                                 goto bad;
1944                         }
1945                         lrt = rt;
1946                 }
1947         }
1948
1949         p->type_attr_map = kmalloc(p->p_types.nprim*sizeof(struct ebitmap), GFP_KERNEL);
1950         if (!p->type_attr_map)
1951                 goto bad;
1952
1953         for (i = 0; i < p->p_types.nprim; i++) {
1954                 ebitmap_init(&p->type_attr_map[i]);
1955                 if (p->policyvers >= POLICYDB_VERSION_AVTAB) {
1956                         if (ebitmap_read(&p->type_attr_map[i], fp))
1957                                 goto bad;
1958                 }
1959                 /* add the type itself as the degenerate case */
1960                 if (ebitmap_set_bit(&p->type_attr_map[i], i, 1))
1961                                 goto bad;
1962         }
1963
1964         rc = 0;
1965 out:
1966         return rc;
1967 bad_newc:
1968         ocontext_destroy(newc, OCON_FSUSE);
1969 bad:
1970         if (!rc)
1971                 rc = -EINVAL;
1972         policydb_destroy(p);
1973         goto out;
1974 }