sysfs: Add labeling support for sysfs
[linux-2.6.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
88
89 #define XATTR_SELINUX_SUFFIX "selinux"
90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
91
92 #define NUM_SEL_MNT_OPTS 5
93
94 extern unsigned int policydb_loaded_version;
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern struct security_operations *security_ops;
97
98 /* SECMARK reference count */
99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
100
101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102 int selinux_enforcing;
103
104 static int __init enforcing_setup(char *str)
105 {
106         unsigned long enforcing;
107         if (!strict_strtoul(str, 0, &enforcing))
108                 selinux_enforcing = enforcing ? 1 : 0;
109         return 1;
110 }
111 __setup("enforcing=", enforcing_setup);
112 #endif
113
114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
116
117 static int __init selinux_enabled_setup(char *str)
118 {
119         unsigned long enabled;
120         if (!strict_strtoul(str, 0, &enabled))
121                 selinux_enabled = enabled ? 1 : 0;
122         return 1;
123 }
124 __setup("selinux=", selinux_enabled_setup);
125 #else
126 int selinux_enabled = 1;
127 #endif
128
129
130 /*
131  * Minimal support for a secondary security module,
132  * just to allow the use of the capability module.
133  */
134 static struct security_operations *secondary_ops;
135
136 /* Lists of inode and superblock security structures initialized
137    before the policy was loaded. */
138 static LIST_HEAD(superblock_security_head);
139 static DEFINE_SPINLOCK(sb_security_lock);
140
141 static struct kmem_cache *sel_inode_cache;
142
143 /**
144  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
145  *
146  * Description:
147  * This function checks the SECMARK reference counter to see if any SECMARK
148  * targets are currently configured, if the reference counter is greater than
149  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
150  * enabled, false (0) if SECMARK is disabled.
151  *
152  */
153 static int selinux_secmark_enabled(void)
154 {
155         return (atomic_read(&selinux_secmark_refcount) > 0);
156 }
157
158 /*
159  * initialise the security for the init task
160  */
161 static void cred_init_security(void)
162 {
163         struct cred *cred = (struct cred *) current->real_cred;
164         struct task_security_struct *tsec;
165
166         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
167         if (!tsec)
168                 panic("SELinux:  Failed to initialize initial task.\n");
169
170         tsec->osid = tsec->sid = SECINITSID_KERNEL;
171         cred->security = tsec;
172 }
173
174 /*
175  * get the security ID of a set of credentials
176  */
177 static inline u32 cred_sid(const struct cred *cred)
178 {
179         const struct task_security_struct *tsec;
180
181         tsec = cred->security;
182         return tsec->sid;
183 }
184
185 /*
186  * get the objective security ID of a task
187  */
188 static inline u32 task_sid(const struct task_struct *task)
189 {
190         u32 sid;
191
192         rcu_read_lock();
193         sid = cred_sid(__task_cred(task));
194         rcu_read_unlock();
195         return sid;
196 }
197
198 /*
199  * get the subjective security ID of the current task
200  */
201 static inline u32 current_sid(void)
202 {
203         const struct task_security_struct *tsec = current_cred()->security;
204
205         return tsec->sid;
206 }
207
208 /* Allocate and free functions for each kind of security blob. */
209
210 static int inode_alloc_security(struct inode *inode)
211 {
212         struct inode_security_struct *isec;
213         u32 sid = current_sid();
214
215         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
216         if (!isec)
217                 return -ENOMEM;
218
219         mutex_init(&isec->lock);
220         INIT_LIST_HEAD(&isec->list);
221         isec->inode = inode;
222         isec->sid = SECINITSID_UNLABELED;
223         isec->sclass = SECCLASS_FILE;
224         isec->task_sid = sid;
225         inode->i_security = isec;
226
227         return 0;
228 }
229
230 static void inode_free_security(struct inode *inode)
231 {
232         struct inode_security_struct *isec = inode->i_security;
233         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
234
235         spin_lock(&sbsec->isec_lock);
236         if (!list_empty(&isec->list))
237                 list_del_init(&isec->list);
238         spin_unlock(&sbsec->isec_lock);
239
240         inode->i_security = NULL;
241         kmem_cache_free(sel_inode_cache, isec);
242 }
243
244 static int file_alloc_security(struct file *file)
245 {
246         struct file_security_struct *fsec;
247         u32 sid = current_sid();
248
249         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
250         if (!fsec)
251                 return -ENOMEM;
252
253         fsec->sid = sid;
254         fsec->fown_sid = sid;
255         file->f_security = fsec;
256
257         return 0;
258 }
259
260 static void file_free_security(struct file *file)
261 {
262         struct file_security_struct *fsec = file->f_security;
263         file->f_security = NULL;
264         kfree(fsec);
265 }
266
267 static int superblock_alloc_security(struct super_block *sb)
268 {
269         struct superblock_security_struct *sbsec;
270
271         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
272         if (!sbsec)
273                 return -ENOMEM;
274
275         mutex_init(&sbsec->lock);
276         INIT_LIST_HEAD(&sbsec->list);
277         INIT_LIST_HEAD(&sbsec->isec_head);
278         spin_lock_init(&sbsec->isec_lock);
279         sbsec->sb = sb;
280         sbsec->sid = SECINITSID_UNLABELED;
281         sbsec->def_sid = SECINITSID_FILE;
282         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
283         sb->s_security = sbsec;
284
285         return 0;
286 }
287
288 static void superblock_free_security(struct super_block *sb)
289 {
290         struct superblock_security_struct *sbsec = sb->s_security;
291
292         spin_lock(&sb_security_lock);
293         if (!list_empty(&sbsec->list))
294                 list_del_init(&sbsec->list);
295         spin_unlock(&sb_security_lock);
296
297         sb->s_security = NULL;
298         kfree(sbsec);
299 }
300
301 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
302 {
303         struct sk_security_struct *ssec;
304
305         ssec = kzalloc(sizeof(*ssec), priority);
306         if (!ssec)
307                 return -ENOMEM;
308
309         ssec->peer_sid = SECINITSID_UNLABELED;
310         ssec->sid = SECINITSID_UNLABELED;
311         sk->sk_security = ssec;
312
313         selinux_netlbl_sk_security_reset(ssec);
314
315         return 0;
316 }
317
318 static void sk_free_security(struct sock *sk)
319 {
320         struct sk_security_struct *ssec = sk->sk_security;
321
322         sk->sk_security = NULL;
323         selinux_netlbl_sk_security_free(ssec);
324         kfree(ssec);
325 }
326
327 /* The security server must be initialized before
328    any labeling or access decisions can be provided. */
329 extern int ss_initialized;
330
331 /* The file system's label must be initialized prior to use. */
332
333 static char *labeling_behaviors[6] = {
334         "uses xattr",
335         "uses transition SIDs",
336         "uses task SIDs",
337         "uses genfs_contexts",
338         "not configured for labeling",
339         "uses mountpoint labeling",
340 };
341
342 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
343
344 static inline int inode_doinit(struct inode *inode)
345 {
346         return inode_doinit_with_dentry(inode, NULL);
347 }
348
349 enum {
350         Opt_error = -1,
351         Opt_context = 1,
352         Opt_fscontext = 2,
353         Opt_defcontext = 3,
354         Opt_rootcontext = 4,
355         Opt_labelsupport = 5,
356 };
357
358 static const match_table_t tokens = {
359         {Opt_context, CONTEXT_STR "%s"},
360         {Opt_fscontext, FSCONTEXT_STR "%s"},
361         {Opt_defcontext, DEFCONTEXT_STR "%s"},
362         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
363         {Opt_labelsupport, LABELSUPP_STR},
364         {Opt_error, NULL},
365 };
366
367 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
368
369 static int may_context_mount_sb_relabel(u32 sid,
370                         struct superblock_security_struct *sbsec,
371                         const struct cred *cred)
372 {
373         const struct task_security_struct *tsec = cred->security;
374         int rc;
375
376         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
377                           FILESYSTEM__RELABELFROM, NULL);
378         if (rc)
379                 return rc;
380
381         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
382                           FILESYSTEM__RELABELTO, NULL);
383         return rc;
384 }
385
386 static int may_context_mount_inode_relabel(u32 sid,
387                         struct superblock_security_struct *sbsec,
388                         const struct cred *cred)
389 {
390         const struct task_security_struct *tsec = cred->security;
391         int rc;
392         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
393                           FILESYSTEM__RELABELFROM, NULL);
394         if (rc)
395                 return rc;
396
397         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
398                           FILESYSTEM__ASSOCIATE, NULL);
399         return rc;
400 }
401
402 static int sb_finish_set_opts(struct super_block *sb)
403 {
404         struct superblock_security_struct *sbsec = sb->s_security;
405         struct dentry *root = sb->s_root;
406         struct inode *root_inode = root->d_inode;
407         int rc = 0;
408
409         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
410                 /* Make sure that the xattr handler exists and that no
411                    error other than -ENODATA is returned by getxattr on
412                    the root directory.  -ENODATA is ok, as this may be
413                    the first boot of the SELinux kernel before we have
414                    assigned xattr values to the filesystem. */
415                 if (!root_inode->i_op->getxattr) {
416                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
417                                "xattr support\n", sb->s_id, sb->s_type->name);
418                         rc = -EOPNOTSUPP;
419                         goto out;
420                 }
421                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
422                 if (rc < 0 && rc != -ENODATA) {
423                         if (rc == -EOPNOTSUPP)
424                                 printk(KERN_WARNING "SELinux: (dev %s, type "
425                                        "%s) has no security xattr handler\n",
426                                        sb->s_id, sb->s_type->name);
427                         else
428                                 printk(KERN_WARNING "SELinux: (dev %s, type "
429                                        "%s) getxattr errno %d\n", sb->s_id,
430                                        sb->s_type->name, -rc);
431                         goto out;
432                 }
433         }
434
435         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
436
437         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
438                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
439                        sb->s_id, sb->s_type->name);
440         else
441                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
442                        sb->s_id, sb->s_type->name,
443                        labeling_behaviors[sbsec->behavior-1]);
444
445         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
446             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
447             sbsec->behavior == SECURITY_FS_USE_NONE ||
448             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
449                 sbsec->flags &= ~SE_SBLABELSUPP;
450
451         /* Special handling for sysfs. Is genfs but also has setxattr handler*/
452         if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
453                 sbsec->flags |= SE_SBLABELSUPP;
454
455         /* Initialize the root inode. */
456         rc = inode_doinit_with_dentry(root_inode, root);
457
458         /* Initialize any other inodes associated with the superblock, e.g.
459            inodes created prior to initial policy load or inodes created
460            during get_sb by a pseudo filesystem that directly
461            populates itself. */
462         spin_lock(&sbsec->isec_lock);
463 next_inode:
464         if (!list_empty(&sbsec->isec_head)) {
465                 struct inode_security_struct *isec =
466                                 list_entry(sbsec->isec_head.next,
467                                            struct inode_security_struct, list);
468                 struct inode *inode = isec->inode;
469                 spin_unlock(&sbsec->isec_lock);
470                 inode = igrab(inode);
471                 if (inode) {
472                         if (!IS_PRIVATE(inode))
473                                 inode_doinit(inode);
474                         iput(inode);
475                 }
476                 spin_lock(&sbsec->isec_lock);
477                 list_del_init(&isec->list);
478                 goto next_inode;
479         }
480         spin_unlock(&sbsec->isec_lock);
481 out:
482         return rc;
483 }
484
485 /*
486  * This function should allow an FS to ask what it's mount security
487  * options were so it can use those later for submounts, displaying
488  * mount options, or whatever.
489  */
490 static int selinux_get_mnt_opts(const struct super_block *sb,
491                                 struct security_mnt_opts *opts)
492 {
493         int rc = 0, i;
494         struct superblock_security_struct *sbsec = sb->s_security;
495         char *context = NULL;
496         u32 len;
497         char tmp;
498
499         security_init_mnt_opts(opts);
500
501         if (!(sbsec->flags & SE_SBINITIALIZED))
502                 return -EINVAL;
503
504         if (!ss_initialized)
505                 return -EINVAL;
506
507         tmp = sbsec->flags & SE_MNTMASK;
508         /* count the number of mount options for this sb */
509         for (i = 0; i < 8; i++) {
510                 if (tmp & 0x01)
511                         opts->num_mnt_opts++;
512                 tmp >>= 1;
513         }
514         /* Check if the Label support flag is set */
515         if (sbsec->flags & SE_SBLABELSUPP)
516                 opts->num_mnt_opts++;
517
518         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
519         if (!opts->mnt_opts) {
520                 rc = -ENOMEM;
521                 goto out_free;
522         }
523
524         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
525         if (!opts->mnt_opts_flags) {
526                 rc = -ENOMEM;
527                 goto out_free;
528         }
529
530         i = 0;
531         if (sbsec->flags & FSCONTEXT_MNT) {
532                 rc = security_sid_to_context(sbsec->sid, &context, &len);
533                 if (rc)
534                         goto out_free;
535                 opts->mnt_opts[i] = context;
536                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
537         }
538         if (sbsec->flags & CONTEXT_MNT) {
539                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
540                 if (rc)
541                         goto out_free;
542                 opts->mnt_opts[i] = context;
543                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
544         }
545         if (sbsec->flags & DEFCONTEXT_MNT) {
546                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
547                 if (rc)
548                         goto out_free;
549                 opts->mnt_opts[i] = context;
550                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
551         }
552         if (sbsec->flags & ROOTCONTEXT_MNT) {
553                 struct inode *root = sbsec->sb->s_root->d_inode;
554                 struct inode_security_struct *isec = root->i_security;
555
556                 rc = security_sid_to_context(isec->sid, &context, &len);
557                 if (rc)
558                         goto out_free;
559                 opts->mnt_opts[i] = context;
560                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
561         }
562         if (sbsec->flags & SE_SBLABELSUPP) {
563                 opts->mnt_opts[i] = NULL;
564                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
565         }
566
567         BUG_ON(i != opts->num_mnt_opts);
568
569         return 0;
570
571 out_free:
572         security_free_mnt_opts(opts);
573         return rc;
574 }
575
576 static int bad_option(struct superblock_security_struct *sbsec, char flag,
577                       u32 old_sid, u32 new_sid)
578 {
579         char mnt_flags = sbsec->flags & SE_MNTMASK;
580
581         /* check if the old mount command had the same options */
582         if (sbsec->flags & SE_SBINITIALIZED)
583                 if (!(sbsec->flags & flag) ||
584                     (old_sid != new_sid))
585                         return 1;
586
587         /* check if we were passed the same options twice,
588          * aka someone passed context=a,context=b
589          */
590         if (!(sbsec->flags & SE_SBINITIALIZED))
591                 if (mnt_flags & flag)
592                         return 1;
593         return 0;
594 }
595
596 /*
597  * Allow filesystems with binary mount data to explicitly set mount point
598  * labeling information.
599  */
600 static int selinux_set_mnt_opts(struct super_block *sb,
601                                 struct security_mnt_opts *opts)
602 {
603         const struct cred *cred = current_cred();
604         int rc = 0, i;
605         struct superblock_security_struct *sbsec = sb->s_security;
606         const char *name = sb->s_type->name;
607         struct inode *inode = sbsec->sb->s_root->d_inode;
608         struct inode_security_struct *root_isec = inode->i_security;
609         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
610         u32 defcontext_sid = 0;
611         char **mount_options = opts->mnt_opts;
612         int *flags = opts->mnt_opts_flags;
613         int num_opts = opts->num_mnt_opts;
614
615         mutex_lock(&sbsec->lock);
616
617         if (!ss_initialized) {
618                 if (!num_opts) {
619                         /* Defer initialization until selinux_complete_init,
620                            after the initial policy is loaded and the security
621                            server is ready to handle calls. */
622                         spin_lock(&sb_security_lock);
623                         if (list_empty(&sbsec->list))
624                                 list_add(&sbsec->list, &superblock_security_head);
625                         spin_unlock(&sb_security_lock);
626                         goto out;
627                 }
628                 rc = -EINVAL;
629                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
630                         "before the security server is initialized\n");
631                 goto out;
632         }
633
634         /*
635          * Binary mount data FS will come through this function twice.  Once
636          * from an explicit call and once from the generic calls from the vfs.
637          * Since the generic VFS calls will not contain any security mount data
638          * we need to skip the double mount verification.
639          *
640          * This does open a hole in which we will not notice if the first
641          * mount using this sb set explict options and a second mount using
642          * this sb does not set any security options.  (The first options
643          * will be used for both mounts)
644          */
645         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
646             && (num_opts == 0))
647                 goto out;
648
649         /*
650          * parse the mount options, check if they are valid sids.
651          * also check if someone is trying to mount the same sb more
652          * than once with different security options.
653          */
654         for (i = 0; i < num_opts; i++) {
655                 u32 sid;
656
657                 if (flags[i] == SE_SBLABELSUPP)
658                         continue;
659                 rc = security_context_to_sid(mount_options[i],
660                                              strlen(mount_options[i]), &sid);
661                 if (rc) {
662                         printk(KERN_WARNING "SELinux: security_context_to_sid"
663                                "(%s) failed for (dev %s, type %s) errno=%d\n",
664                                mount_options[i], sb->s_id, name, rc);
665                         goto out;
666                 }
667                 switch (flags[i]) {
668                 case FSCONTEXT_MNT:
669                         fscontext_sid = sid;
670
671                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
672                                         fscontext_sid))
673                                 goto out_double_mount;
674
675                         sbsec->flags |= FSCONTEXT_MNT;
676                         break;
677                 case CONTEXT_MNT:
678                         context_sid = sid;
679
680                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
681                                         context_sid))
682                                 goto out_double_mount;
683
684                         sbsec->flags |= CONTEXT_MNT;
685                         break;
686                 case ROOTCONTEXT_MNT:
687                         rootcontext_sid = sid;
688
689                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
690                                         rootcontext_sid))
691                                 goto out_double_mount;
692
693                         sbsec->flags |= ROOTCONTEXT_MNT;
694
695                         break;
696                 case DEFCONTEXT_MNT:
697                         defcontext_sid = sid;
698
699                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
700                                         defcontext_sid))
701                                 goto out_double_mount;
702
703                         sbsec->flags |= DEFCONTEXT_MNT;
704
705                         break;
706                 default:
707                         rc = -EINVAL;
708                         goto out;
709                 }
710         }
711
712         if (sbsec->flags & SE_SBINITIALIZED) {
713                 /* previously mounted with options, but not on this attempt? */
714                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
715                         goto out_double_mount;
716                 rc = 0;
717                 goto out;
718         }
719
720         if (strcmp(sb->s_type->name, "proc") == 0)
721                 sbsec->flags |= SE_SBPROC;
722
723         /* Determine the labeling behavior to use for this filesystem type. */
724         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
725         if (rc) {
726                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
727                        __func__, sb->s_type->name, rc);
728                 goto out;
729         }
730
731         /* sets the context of the superblock for the fs being mounted. */
732         if (fscontext_sid) {
733                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
734                 if (rc)
735                         goto out;
736
737                 sbsec->sid = fscontext_sid;
738         }
739
740         /*
741          * Switch to using mount point labeling behavior.
742          * sets the label used on all file below the mountpoint, and will set
743          * the superblock context if not already set.
744          */
745         if (context_sid) {
746                 if (!fscontext_sid) {
747                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
748                                                           cred);
749                         if (rc)
750                                 goto out;
751                         sbsec->sid = context_sid;
752                 } else {
753                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
754                                                              cred);
755                         if (rc)
756                                 goto out;
757                 }
758                 if (!rootcontext_sid)
759                         rootcontext_sid = context_sid;
760
761                 sbsec->mntpoint_sid = context_sid;
762                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
763         }
764
765         if (rootcontext_sid) {
766                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
767                                                      cred);
768                 if (rc)
769                         goto out;
770
771                 root_isec->sid = rootcontext_sid;
772                 root_isec->initialized = 1;
773         }
774
775         if (defcontext_sid) {
776                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
777                         rc = -EINVAL;
778                         printk(KERN_WARNING "SELinux: defcontext option is "
779                                "invalid for this filesystem type\n");
780                         goto out;
781                 }
782
783                 if (defcontext_sid != sbsec->def_sid) {
784                         rc = may_context_mount_inode_relabel(defcontext_sid,
785                                                              sbsec, cred);
786                         if (rc)
787                                 goto out;
788                 }
789
790                 sbsec->def_sid = defcontext_sid;
791         }
792
793         rc = sb_finish_set_opts(sb);
794 out:
795         mutex_unlock(&sbsec->lock);
796         return rc;
797 out_double_mount:
798         rc = -EINVAL;
799         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
800                "security settings for (dev %s, type %s)\n", sb->s_id, name);
801         goto out;
802 }
803
804 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
805                                         struct super_block *newsb)
806 {
807         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
808         struct superblock_security_struct *newsbsec = newsb->s_security;
809
810         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
811         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
812         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
813
814         /*
815          * if the parent was able to be mounted it clearly had no special lsm
816          * mount options.  thus we can safely put this sb on the list and deal
817          * with it later
818          */
819         if (!ss_initialized) {
820                 spin_lock(&sb_security_lock);
821                 if (list_empty(&newsbsec->list))
822                         list_add(&newsbsec->list, &superblock_security_head);
823                 spin_unlock(&sb_security_lock);
824                 return;
825         }
826
827         /* how can we clone if the old one wasn't set up?? */
828         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
829
830         /* if fs is reusing a sb, just let its options stand... */
831         if (newsbsec->flags & SE_SBINITIALIZED)
832                 return;
833
834         mutex_lock(&newsbsec->lock);
835
836         newsbsec->flags = oldsbsec->flags;
837
838         newsbsec->sid = oldsbsec->sid;
839         newsbsec->def_sid = oldsbsec->def_sid;
840         newsbsec->behavior = oldsbsec->behavior;
841
842         if (set_context) {
843                 u32 sid = oldsbsec->mntpoint_sid;
844
845                 if (!set_fscontext)
846                         newsbsec->sid = sid;
847                 if (!set_rootcontext) {
848                         struct inode *newinode = newsb->s_root->d_inode;
849                         struct inode_security_struct *newisec = newinode->i_security;
850                         newisec->sid = sid;
851                 }
852                 newsbsec->mntpoint_sid = sid;
853         }
854         if (set_rootcontext) {
855                 const struct inode *oldinode = oldsb->s_root->d_inode;
856                 const struct inode_security_struct *oldisec = oldinode->i_security;
857                 struct inode *newinode = newsb->s_root->d_inode;
858                 struct inode_security_struct *newisec = newinode->i_security;
859
860                 newisec->sid = oldisec->sid;
861         }
862
863         sb_finish_set_opts(newsb);
864         mutex_unlock(&newsbsec->lock);
865 }
866
867 static int selinux_parse_opts_str(char *options,
868                                   struct security_mnt_opts *opts)
869 {
870         char *p;
871         char *context = NULL, *defcontext = NULL;
872         char *fscontext = NULL, *rootcontext = NULL;
873         int rc, num_mnt_opts = 0;
874
875         opts->num_mnt_opts = 0;
876
877         /* Standard string-based options. */
878         while ((p = strsep(&options, "|")) != NULL) {
879                 int token;
880                 substring_t args[MAX_OPT_ARGS];
881
882                 if (!*p)
883                         continue;
884
885                 token = match_token(p, tokens, args);
886
887                 switch (token) {
888                 case Opt_context:
889                         if (context || defcontext) {
890                                 rc = -EINVAL;
891                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
892                                 goto out_err;
893                         }
894                         context = match_strdup(&args[0]);
895                         if (!context) {
896                                 rc = -ENOMEM;
897                                 goto out_err;
898                         }
899                         break;
900
901                 case Opt_fscontext:
902                         if (fscontext) {
903                                 rc = -EINVAL;
904                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
905                                 goto out_err;
906                         }
907                         fscontext = match_strdup(&args[0]);
908                         if (!fscontext) {
909                                 rc = -ENOMEM;
910                                 goto out_err;
911                         }
912                         break;
913
914                 case Opt_rootcontext:
915                         if (rootcontext) {
916                                 rc = -EINVAL;
917                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
918                                 goto out_err;
919                         }
920                         rootcontext = match_strdup(&args[0]);
921                         if (!rootcontext) {
922                                 rc = -ENOMEM;
923                                 goto out_err;
924                         }
925                         break;
926
927                 case Opt_defcontext:
928                         if (context || defcontext) {
929                                 rc = -EINVAL;
930                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
931                                 goto out_err;
932                         }
933                         defcontext = match_strdup(&args[0]);
934                         if (!defcontext) {
935                                 rc = -ENOMEM;
936                                 goto out_err;
937                         }
938                         break;
939                 case Opt_labelsupport:
940                         break;
941                 default:
942                         rc = -EINVAL;
943                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
944                         goto out_err;
945
946                 }
947         }
948
949         rc = -ENOMEM;
950         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
951         if (!opts->mnt_opts)
952                 goto out_err;
953
954         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
955         if (!opts->mnt_opts_flags) {
956                 kfree(opts->mnt_opts);
957                 goto out_err;
958         }
959
960         if (fscontext) {
961                 opts->mnt_opts[num_mnt_opts] = fscontext;
962                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
963         }
964         if (context) {
965                 opts->mnt_opts[num_mnt_opts] = context;
966                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
967         }
968         if (rootcontext) {
969                 opts->mnt_opts[num_mnt_opts] = rootcontext;
970                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
971         }
972         if (defcontext) {
973                 opts->mnt_opts[num_mnt_opts] = defcontext;
974                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
975         }
976
977         opts->num_mnt_opts = num_mnt_opts;
978         return 0;
979
980 out_err:
981         kfree(context);
982         kfree(defcontext);
983         kfree(fscontext);
984         kfree(rootcontext);
985         return rc;
986 }
987 /*
988  * string mount options parsing and call set the sbsec
989  */
990 static int superblock_doinit(struct super_block *sb, void *data)
991 {
992         int rc = 0;
993         char *options = data;
994         struct security_mnt_opts opts;
995
996         security_init_mnt_opts(&opts);
997
998         if (!data)
999                 goto out;
1000
1001         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1002
1003         rc = selinux_parse_opts_str(options, &opts);
1004         if (rc)
1005                 goto out_err;
1006
1007 out:
1008         rc = selinux_set_mnt_opts(sb, &opts);
1009
1010 out_err:
1011         security_free_mnt_opts(&opts);
1012         return rc;
1013 }
1014
1015 static void selinux_write_opts(struct seq_file *m,
1016                                struct security_mnt_opts *opts)
1017 {
1018         int i;
1019         char *prefix;
1020
1021         for (i = 0; i < opts->num_mnt_opts; i++) {
1022                 char *has_comma;
1023
1024                 if (opts->mnt_opts[i])
1025                         has_comma = strchr(opts->mnt_opts[i], ',');
1026                 else
1027                         has_comma = NULL;
1028
1029                 switch (opts->mnt_opts_flags[i]) {
1030                 case CONTEXT_MNT:
1031                         prefix = CONTEXT_STR;
1032                         break;
1033                 case FSCONTEXT_MNT:
1034                         prefix = FSCONTEXT_STR;
1035                         break;
1036                 case ROOTCONTEXT_MNT:
1037                         prefix = ROOTCONTEXT_STR;
1038                         break;
1039                 case DEFCONTEXT_MNT:
1040                         prefix = DEFCONTEXT_STR;
1041                         break;
1042                 case SE_SBLABELSUPP:
1043                         seq_putc(m, ',');
1044                         seq_puts(m, LABELSUPP_STR);
1045                         continue;
1046                 default:
1047                         BUG();
1048                 };
1049                 /* we need a comma before each option */
1050                 seq_putc(m, ',');
1051                 seq_puts(m, prefix);
1052                 if (has_comma)
1053                         seq_putc(m, '\"');
1054                 seq_puts(m, opts->mnt_opts[i]);
1055                 if (has_comma)
1056                         seq_putc(m, '\"');
1057         }
1058 }
1059
1060 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1061 {
1062         struct security_mnt_opts opts;
1063         int rc;
1064
1065         rc = selinux_get_mnt_opts(sb, &opts);
1066         if (rc) {
1067                 /* before policy load we may get EINVAL, don't show anything */
1068                 if (rc == -EINVAL)
1069                         rc = 0;
1070                 return rc;
1071         }
1072
1073         selinux_write_opts(m, &opts);
1074
1075         security_free_mnt_opts(&opts);
1076
1077         return rc;
1078 }
1079
1080 static inline u16 inode_mode_to_security_class(umode_t mode)
1081 {
1082         switch (mode & S_IFMT) {
1083         case S_IFSOCK:
1084                 return SECCLASS_SOCK_FILE;
1085         case S_IFLNK:
1086                 return SECCLASS_LNK_FILE;
1087         case S_IFREG:
1088                 return SECCLASS_FILE;
1089         case S_IFBLK:
1090                 return SECCLASS_BLK_FILE;
1091         case S_IFDIR:
1092                 return SECCLASS_DIR;
1093         case S_IFCHR:
1094                 return SECCLASS_CHR_FILE;
1095         case S_IFIFO:
1096                 return SECCLASS_FIFO_FILE;
1097
1098         }
1099
1100         return SECCLASS_FILE;
1101 }
1102
1103 static inline int default_protocol_stream(int protocol)
1104 {
1105         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1106 }
1107
1108 static inline int default_protocol_dgram(int protocol)
1109 {
1110         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1111 }
1112
1113 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1114 {
1115         switch (family) {
1116         case PF_UNIX:
1117                 switch (type) {
1118                 case SOCK_STREAM:
1119                 case SOCK_SEQPACKET:
1120                         return SECCLASS_UNIX_STREAM_SOCKET;
1121                 case SOCK_DGRAM:
1122                         return SECCLASS_UNIX_DGRAM_SOCKET;
1123                 }
1124                 break;
1125         case PF_INET:
1126         case PF_INET6:
1127                 switch (type) {
1128                 case SOCK_STREAM:
1129                         if (default_protocol_stream(protocol))
1130                                 return SECCLASS_TCP_SOCKET;
1131                         else
1132                                 return SECCLASS_RAWIP_SOCKET;
1133                 case SOCK_DGRAM:
1134                         if (default_protocol_dgram(protocol))
1135                                 return SECCLASS_UDP_SOCKET;
1136                         else
1137                                 return SECCLASS_RAWIP_SOCKET;
1138                 case SOCK_DCCP:
1139                         return SECCLASS_DCCP_SOCKET;
1140                 default:
1141                         return SECCLASS_RAWIP_SOCKET;
1142                 }
1143                 break;
1144         case PF_NETLINK:
1145                 switch (protocol) {
1146                 case NETLINK_ROUTE:
1147                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1148                 case NETLINK_FIREWALL:
1149                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1150                 case NETLINK_INET_DIAG:
1151                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1152                 case NETLINK_NFLOG:
1153                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1154                 case NETLINK_XFRM:
1155                         return SECCLASS_NETLINK_XFRM_SOCKET;
1156                 case NETLINK_SELINUX:
1157                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1158                 case NETLINK_AUDIT:
1159                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1160                 case NETLINK_IP6_FW:
1161                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1162                 case NETLINK_DNRTMSG:
1163                         return SECCLASS_NETLINK_DNRT_SOCKET;
1164                 case NETLINK_KOBJECT_UEVENT:
1165                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1166                 default:
1167                         return SECCLASS_NETLINK_SOCKET;
1168                 }
1169         case PF_PACKET:
1170                 return SECCLASS_PACKET_SOCKET;
1171         case PF_KEY:
1172                 return SECCLASS_KEY_SOCKET;
1173         case PF_APPLETALK:
1174                 return SECCLASS_APPLETALK_SOCKET;
1175         }
1176
1177         return SECCLASS_SOCKET;
1178 }
1179
1180 #ifdef CONFIG_PROC_FS
1181 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1182                                 u16 tclass,
1183                                 u32 *sid)
1184 {
1185         int buflen, rc;
1186         char *buffer, *path, *end;
1187
1188         buffer = (char *)__get_free_page(GFP_KERNEL);
1189         if (!buffer)
1190                 return -ENOMEM;
1191
1192         buflen = PAGE_SIZE;
1193         end = buffer+buflen;
1194         *--end = '\0';
1195         buflen--;
1196         path = end-1;
1197         *path = '/';
1198         while (de && de != de->parent) {
1199                 buflen -= de->namelen + 1;
1200                 if (buflen < 0)
1201                         break;
1202                 end -= de->namelen;
1203                 memcpy(end, de->name, de->namelen);
1204                 *--end = '/';
1205                 path = end;
1206                 de = de->parent;
1207         }
1208         rc = security_genfs_sid("proc", path, tclass, sid);
1209         free_page((unsigned long)buffer);
1210         return rc;
1211 }
1212 #else
1213 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1214                                 u16 tclass,
1215                                 u32 *sid)
1216 {
1217         return -EINVAL;
1218 }
1219 #endif
1220
1221 /* The inode's security attributes must be initialized before first use. */
1222 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1223 {
1224         struct superblock_security_struct *sbsec = NULL;
1225         struct inode_security_struct *isec = inode->i_security;
1226         u32 sid;
1227         struct dentry *dentry;
1228 #define INITCONTEXTLEN 255
1229         char *context = NULL;
1230         unsigned len = 0;
1231         int rc = 0;
1232
1233         if (isec->initialized)
1234                 goto out;
1235
1236         mutex_lock(&isec->lock);
1237         if (isec->initialized)
1238                 goto out_unlock;
1239
1240         sbsec = inode->i_sb->s_security;
1241         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1242                 /* Defer initialization until selinux_complete_init,
1243                    after the initial policy is loaded and the security
1244                    server is ready to handle calls. */
1245                 spin_lock(&sbsec->isec_lock);
1246                 if (list_empty(&isec->list))
1247                         list_add(&isec->list, &sbsec->isec_head);
1248                 spin_unlock(&sbsec->isec_lock);
1249                 goto out_unlock;
1250         }
1251
1252         switch (sbsec->behavior) {
1253         case SECURITY_FS_USE_XATTR:
1254                 if (!inode->i_op->getxattr) {
1255                         isec->sid = sbsec->def_sid;
1256                         break;
1257                 }
1258
1259                 /* Need a dentry, since the xattr API requires one.
1260                    Life would be simpler if we could just pass the inode. */
1261                 if (opt_dentry) {
1262                         /* Called from d_instantiate or d_splice_alias. */
1263                         dentry = dget(opt_dentry);
1264                 } else {
1265                         /* Called from selinux_complete_init, try to find a dentry. */
1266                         dentry = d_find_alias(inode);
1267                 }
1268                 if (!dentry) {
1269                         /*
1270                          * this is can be hit on boot when a file is accessed
1271                          * before the policy is loaded.  When we load policy we
1272                          * may find inodes that have no dentry on the
1273                          * sbsec->isec_head list.  No reason to complain as these
1274                          * will get fixed up the next time we go through
1275                          * inode_doinit with a dentry, before these inodes could
1276                          * be used again by userspace.
1277                          */
1278                         goto out_unlock;
1279                 }
1280
1281                 len = INITCONTEXTLEN;
1282                 context = kmalloc(len+1, GFP_NOFS);
1283                 if (!context) {
1284                         rc = -ENOMEM;
1285                         dput(dentry);
1286                         goto out_unlock;
1287                 }
1288                 context[len] = '\0';
1289                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1290                                            context, len);
1291                 if (rc == -ERANGE) {
1292                         kfree(context);
1293
1294                         /* Need a larger buffer.  Query for the right size. */
1295                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1296                                                    NULL, 0);
1297                         if (rc < 0) {
1298                                 dput(dentry);
1299                                 goto out_unlock;
1300                         }
1301                         len = rc;
1302                         context = kmalloc(len+1, GFP_NOFS);
1303                         if (!context) {
1304                                 rc = -ENOMEM;
1305                                 dput(dentry);
1306                                 goto out_unlock;
1307                         }
1308                         context[len] = '\0';
1309                         rc = inode->i_op->getxattr(dentry,
1310                                                    XATTR_NAME_SELINUX,
1311                                                    context, len);
1312                 }
1313                 dput(dentry);
1314                 if (rc < 0) {
1315                         if (rc != -ENODATA) {
1316                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1317                                        "%d for dev=%s ino=%ld\n", __func__,
1318                                        -rc, inode->i_sb->s_id, inode->i_ino);
1319                                 kfree(context);
1320                                 goto out_unlock;
1321                         }
1322                         /* Map ENODATA to the default file SID */
1323                         sid = sbsec->def_sid;
1324                         rc = 0;
1325                 } else {
1326                         rc = security_context_to_sid_default(context, rc, &sid,
1327                                                              sbsec->def_sid,
1328                                                              GFP_NOFS);
1329                         if (rc) {
1330                                 char *dev = inode->i_sb->s_id;
1331                                 unsigned long ino = inode->i_ino;
1332
1333                                 if (rc == -EINVAL) {
1334                                         if (printk_ratelimit())
1335                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1336                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1337                                                         "filesystem in question.\n", ino, dev, context);
1338                                 } else {
1339                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1340                                                "returned %d for dev=%s ino=%ld\n",
1341                                                __func__, context, -rc, dev, ino);
1342                                 }
1343                                 kfree(context);
1344                                 /* Leave with the unlabeled SID */
1345                                 rc = 0;
1346                                 break;
1347                         }
1348                 }
1349                 kfree(context);
1350                 isec->sid = sid;
1351                 break;
1352         case SECURITY_FS_USE_TASK:
1353                 isec->sid = isec->task_sid;
1354                 break;
1355         case SECURITY_FS_USE_TRANS:
1356                 /* Default to the fs SID. */
1357                 isec->sid = sbsec->sid;
1358
1359                 /* Try to obtain a transition SID. */
1360                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1361                 rc = security_transition_sid(isec->task_sid,
1362                                              sbsec->sid,
1363                                              isec->sclass,
1364                                              &sid);
1365                 if (rc)
1366                         goto out_unlock;
1367                 isec->sid = sid;
1368                 break;
1369         case SECURITY_FS_USE_MNTPOINT:
1370                 isec->sid = sbsec->mntpoint_sid;
1371                 break;
1372         default:
1373                 /* Default to the fs superblock SID. */
1374                 isec->sid = sbsec->sid;
1375
1376                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1377                         struct proc_inode *proci = PROC_I(inode);
1378                         if (proci->pde) {
1379                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1380                                 rc = selinux_proc_get_sid(proci->pde,
1381                                                           isec->sclass,
1382                                                           &sid);
1383                                 if (rc)
1384                                         goto out_unlock;
1385                                 isec->sid = sid;
1386                         }
1387                 }
1388                 break;
1389         }
1390
1391         isec->initialized = 1;
1392
1393 out_unlock:
1394         mutex_unlock(&isec->lock);
1395 out:
1396         if (isec->sclass == SECCLASS_FILE)
1397                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1398         return rc;
1399 }
1400
1401 /* Convert a Linux signal to an access vector. */
1402 static inline u32 signal_to_av(int sig)
1403 {
1404         u32 perm = 0;
1405
1406         switch (sig) {
1407         case SIGCHLD:
1408                 /* Commonly granted from child to parent. */
1409                 perm = PROCESS__SIGCHLD;
1410                 break;
1411         case SIGKILL:
1412                 /* Cannot be caught or ignored */
1413                 perm = PROCESS__SIGKILL;
1414                 break;
1415         case SIGSTOP:
1416                 /* Cannot be caught or ignored */
1417                 perm = PROCESS__SIGSTOP;
1418                 break;
1419         default:
1420                 /* All other signals. */
1421                 perm = PROCESS__SIGNAL;
1422                 break;
1423         }
1424
1425         return perm;
1426 }
1427
1428 /*
1429  * Check permission between a pair of credentials
1430  * fork check, ptrace check, etc.
1431  */
1432 static int cred_has_perm(const struct cred *actor,
1433                          const struct cred *target,
1434                          u32 perms)
1435 {
1436         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1437
1438         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1439 }
1440
1441 /*
1442  * Check permission between a pair of tasks, e.g. signal checks,
1443  * fork check, ptrace check, etc.
1444  * tsk1 is the actor and tsk2 is the target
1445  * - this uses the default subjective creds of tsk1
1446  */
1447 static int task_has_perm(const struct task_struct *tsk1,
1448                          const struct task_struct *tsk2,
1449                          u32 perms)
1450 {
1451         const struct task_security_struct *__tsec1, *__tsec2;
1452         u32 sid1, sid2;
1453
1454         rcu_read_lock();
1455         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1456         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1457         rcu_read_unlock();
1458         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1459 }
1460
1461 /*
1462  * Check permission between current and another task, e.g. signal checks,
1463  * fork check, ptrace check, etc.
1464  * current is the actor and tsk2 is the target
1465  * - this uses current's subjective creds
1466  */
1467 static int current_has_perm(const struct task_struct *tsk,
1468                             u32 perms)
1469 {
1470         u32 sid, tsid;
1471
1472         sid = current_sid();
1473         tsid = task_sid(tsk);
1474         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1475 }
1476
1477 #if CAP_LAST_CAP > 63
1478 #error Fix SELinux to handle capabilities > 63.
1479 #endif
1480
1481 /* Check whether a task is allowed to use a capability. */
1482 static int task_has_capability(struct task_struct *tsk,
1483                                const struct cred *cred,
1484                                int cap, int audit)
1485 {
1486         struct common_audit_data ad;
1487         struct av_decision avd;
1488         u16 sclass;
1489         u32 sid = cred_sid(cred);
1490         u32 av = CAP_TO_MASK(cap);
1491         int rc;
1492
1493         COMMON_AUDIT_DATA_INIT(&ad, CAP);
1494         ad.tsk = tsk;
1495         ad.u.cap = cap;
1496
1497         switch (CAP_TO_INDEX(cap)) {
1498         case 0:
1499                 sclass = SECCLASS_CAPABILITY;
1500                 break;
1501         case 1:
1502                 sclass = SECCLASS_CAPABILITY2;
1503                 break;
1504         default:
1505                 printk(KERN_ERR
1506                        "SELinux:  out of range capability %d\n", cap);
1507                 BUG();
1508         }
1509
1510         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1511         if (audit == SECURITY_CAP_AUDIT)
1512                 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1513         return rc;
1514 }
1515
1516 /* Check whether a task is allowed to use a system operation. */
1517 static int task_has_system(struct task_struct *tsk,
1518                            u32 perms)
1519 {
1520         u32 sid = task_sid(tsk);
1521
1522         return avc_has_perm(sid, SECINITSID_KERNEL,
1523                             SECCLASS_SYSTEM, perms, NULL);
1524 }
1525
1526 /* Check whether a task has a particular permission to an inode.
1527    The 'adp' parameter is optional and allows other audit
1528    data to be passed (e.g. the dentry). */
1529 static int inode_has_perm(const struct cred *cred,
1530                           struct inode *inode,
1531                           u32 perms,
1532                           struct common_audit_data *adp)
1533 {
1534         struct inode_security_struct *isec;
1535         struct common_audit_data ad;
1536         u32 sid;
1537
1538         validate_creds(cred);
1539
1540         if (unlikely(IS_PRIVATE(inode)))
1541                 return 0;
1542
1543         sid = cred_sid(cred);
1544         isec = inode->i_security;
1545
1546         if (!adp) {
1547                 adp = &ad;
1548                 COMMON_AUDIT_DATA_INIT(&ad, FS);
1549                 ad.u.fs.inode = inode;
1550         }
1551
1552         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1553 }
1554
1555 /* Same as inode_has_perm, but pass explicit audit data containing
1556    the dentry to help the auditing code to more easily generate the
1557    pathname if needed. */
1558 static inline int dentry_has_perm(const struct cred *cred,
1559                                   struct vfsmount *mnt,
1560                                   struct dentry *dentry,
1561                                   u32 av)
1562 {
1563         struct inode *inode = dentry->d_inode;
1564         struct common_audit_data ad;
1565
1566         COMMON_AUDIT_DATA_INIT(&ad, FS);
1567         ad.u.fs.path.mnt = mnt;
1568         ad.u.fs.path.dentry = dentry;
1569         return inode_has_perm(cred, inode, av, &ad);
1570 }
1571
1572 /* Check whether a task can use an open file descriptor to
1573    access an inode in a given way.  Check access to the
1574    descriptor itself, and then use dentry_has_perm to
1575    check a particular permission to the file.
1576    Access to the descriptor is implicitly granted if it
1577    has the same SID as the process.  If av is zero, then
1578    access to the file is not checked, e.g. for cases
1579    where only the descriptor is affected like seek. */
1580 static int file_has_perm(const struct cred *cred,
1581                          struct file *file,
1582                          u32 av)
1583 {
1584         struct file_security_struct *fsec = file->f_security;
1585         struct inode *inode = file->f_path.dentry->d_inode;
1586         struct common_audit_data ad;
1587         u32 sid = cred_sid(cred);
1588         int rc;
1589
1590         COMMON_AUDIT_DATA_INIT(&ad, FS);
1591         ad.u.fs.path = file->f_path;
1592
1593         if (sid != fsec->sid) {
1594                 rc = avc_has_perm(sid, fsec->sid,
1595                                   SECCLASS_FD,
1596                                   FD__USE,
1597                                   &ad);
1598                 if (rc)
1599                         goto out;
1600         }
1601
1602         /* av is zero if only checking access to the descriptor. */
1603         rc = 0;
1604         if (av)
1605                 rc = inode_has_perm(cred, inode, av, &ad);
1606
1607 out:
1608         return rc;
1609 }
1610
1611 /* Check whether a task can create a file. */
1612 static int may_create(struct inode *dir,
1613                       struct dentry *dentry,
1614                       u16 tclass)
1615 {
1616         const struct cred *cred = current_cred();
1617         const struct task_security_struct *tsec = cred->security;
1618         struct inode_security_struct *dsec;
1619         struct superblock_security_struct *sbsec;
1620         u32 sid, newsid;
1621         struct common_audit_data ad;
1622         int rc;
1623
1624         dsec = dir->i_security;
1625         sbsec = dir->i_sb->s_security;
1626
1627         sid = tsec->sid;
1628         newsid = tsec->create_sid;
1629
1630         COMMON_AUDIT_DATA_INIT(&ad, FS);
1631         ad.u.fs.path.dentry = dentry;
1632
1633         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1634                           DIR__ADD_NAME | DIR__SEARCH,
1635                           &ad);
1636         if (rc)
1637                 return rc;
1638
1639         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1640                 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1641                 if (rc)
1642                         return rc;
1643         }
1644
1645         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1646         if (rc)
1647                 return rc;
1648
1649         return avc_has_perm(newsid, sbsec->sid,
1650                             SECCLASS_FILESYSTEM,
1651                             FILESYSTEM__ASSOCIATE, &ad);
1652 }
1653
1654 /* Check whether a task can create a key. */
1655 static int may_create_key(u32 ksid,
1656                           struct task_struct *ctx)
1657 {
1658         u32 sid = task_sid(ctx);
1659
1660         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1661 }
1662
1663 #define MAY_LINK        0
1664 #define MAY_UNLINK      1
1665 #define MAY_RMDIR       2
1666
1667 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1668 static int may_link(struct inode *dir,
1669                     struct dentry *dentry,
1670                     int kind)
1671
1672 {
1673         struct inode_security_struct *dsec, *isec;
1674         struct common_audit_data ad;
1675         u32 sid = current_sid();
1676         u32 av;
1677         int rc;
1678
1679         dsec = dir->i_security;
1680         isec = dentry->d_inode->i_security;
1681
1682         COMMON_AUDIT_DATA_INIT(&ad, FS);
1683         ad.u.fs.path.dentry = dentry;
1684
1685         av = DIR__SEARCH;
1686         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1687         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1688         if (rc)
1689                 return rc;
1690
1691         switch (kind) {
1692         case MAY_LINK:
1693                 av = FILE__LINK;
1694                 break;
1695         case MAY_UNLINK:
1696                 av = FILE__UNLINK;
1697                 break;
1698         case MAY_RMDIR:
1699                 av = DIR__RMDIR;
1700                 break;
1701         default:
1702                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1703                         __func__, kind);
1704                 return 0;
1705         }
1706
1707         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1708         return rc;
1709 }
1710
1711 static inline int may_rename(struct inode *old_dir,
1712                              struct dentry *old_dentry,
1713                              struct inode *new_dir,
1714                              struct dentry *new_dentry)
1715 {
1716         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1717         struct common_audit_data ad;
1718         u32 sid = current_sid();
1719         u32 av;
1720         int old_is_dir, new_is_dir;
1721         int rc;
1722
1723         old_dsec = old_dir->i_security;
1724         old_isec = old_dentry->d_inode->i_security;
1725         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1726         new_dsec = new_dir->i_security;
1727
1728         COMMON_AUDIT_DATA_INIT(&ad, FS);
1729
1730         ad.u.fs.path.dentry = old_dentry;
1731         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1732                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1733         if (rc)
1734                 return rc;
1735         rc = avc_has_perm(sid, old_isec->sid,
1736                           old_isec->sclass, FILE__RENAME, &ad);
1737         if (rc)
1738                 return rc;
1739         if (old_is_dir && new_dir != old_dir) {
1740                 rc = avc_has_perm(sid, old_isec->sid,
1741                                   old_isec->sclass, DIR__REPARENT, &ad);
1742                 if (rc)
1743                         return rc;
1744         }
1745
1746         ad.u.fs.path.dentry = new_dentry;
1747         av = DIR__ADD_NAME | DIR__SEARCH;
1748         if (new_dentry->d_inode)
1749                 av |= DIR__REMOVE_NAME;
1750         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1751         if (rc)
1752                 return rc;
1753         if (new_dentry->d_inode) {
1754                 new_isec = new_dentry->d_inode->i_security;
1755                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1756                 rc = avc_has_perm(sid, new_isec->sid,
1757                                   new_isec->sclass,
1758                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1759                 if (rc)
1760                         return rc;
1761         }
1762
1763         return 0;
1764 }
1765
1766 /* Check whether a task can perform a filesystem operation. */
1767 static int superblock_has_perm(const struct cred *cred,
1768                                struct super_block *sb,
1769                                u32 perms,
1770                                struct common_audit_data *ad)
1771 {
1772         struct superblock_security_struct *sbsec;
1773         u32 sid = cred_sid(cred);
1774
1775         sbsec = sb->s_security;
1776         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1777 }
1778
1779 /* Convert a Linux mode and permission mask to an access vector. */
1780 static inline u32 file_mask_to_av(int mode, int mask)
1781 {
1782         u32 av = 0;
1783
1784         if ((mode & S_IFMT) != S_IFDIR) {
1785                 if (mask & MAY_EXEC)
1786                         av |= FILE__EXECUTE;
1787                 if (mask & MAY_READ)
1788                         av |= FILE__READ;
1789
1790                 if (mask & MAY_APPEND)
1791                         av |= FILE__APPEND;
1792                 else if (mask & MAY_WRITE)
1793                         av |= FILE__WRITE;
1794
1795         } else {
1796                 if (mask & MAY_EXEC)
1797                         av |= DIR__SEARCH;
1798                 if (mask & MAY_WRITE)
1799                         av |= DIR__WRITE;
1800                 if (mask & MAY_READ)
1801                         av |= DIR__READ;
1802         }
1803
1804         return av;
1805 }
1806
1807 /* Convert a Linux file to an access vector. */
1808 static inline u32 file_to_av(struct file *file)
1809 {
1810         u32 av = 0;
1811
1812         if (file->f_mode & FMODE_READ)
1813                 av |= FILE__READ;
1814         if (file->f_mode & FMODE_WRITE) {
1815                 if (file->f_flags & O_APPEND)
1816                         av |= FILE__APPEND;
1817                 else
1818                         av |= FILE__WRITE;
1819         }
1820         if (!av) {
1821                 /*
1822                  * Special file opened with flags 3 for ioctl-only use.
1823                  */
1824                 av = FILE__IOCTL;
1825         }
1826
1827         return av;
1828 }
1829
1830 /*
1831  * Convert a file to an access vector and include the correct open
1832  * open permission.
1833  */
1834 static inline u32 open_file_to_av(struct file *file)
1835 {
1836         u32 av = file_to_av(file);
1837
1838         if (selinux_policycap_openperm) {
1839                 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1840                 /*
1841                  * lnk files and socks do not really have an 'open'
1842                  */
1843                 if (S_ISREG(mode))
1844                         av |= FILE__OPEN;
1845                 else if (S_ISCHR(mode))
1846                         av |= CHR_FILE__OPEN;
1847                 else if (S_ISBLK(mode))
1848                         av |= BLK_FILE__OPEN;
1849                 else if (S_ISFIFO(mode))
1850                         av |= FIFO_FILE__OPEN;
1851                 else if (S_ISDIR(mode))
1852                         av |= DIR__OPEN;
1853                 else if (S_ISSOCK(mode))
1854                         av |= SOCK_FILE__OPEN;
1855                 else
1856                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1857                                 "unknown mode:%o\n", __func__, mode);
1858         }
1859         return av;
1860 }
1861
1862 /* Hook functions begin here. */
1863
1864 static int selinux_ptrace_access_check(struct task_struct *child,
1865                                      unsigned int mode)
1866 {
1867         int rc;
1868
1869         rc = cap_ptrace_access_check(child, mode);
1870         if (rc)
1871                 return rc;
1872
1873         if (mode == PTRACE_MODE_READ) {
1874                 u32 sid = current_sid();
1875                 u32 csid = task_sid(child);
1876                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1877         }
1878
1879         return current_has_perm(child, PROCESS__PTRACE);
1880 }
1881
1882 static int selinux_ptrace_traceme(struct task_struct *parent)
1883 {
1884         int rc;
1885
1886         rc = cap_ptrace_traceme(parent);
1887         if (rc)
1888                 return rc;
1889
1890         return task_has_perm(parent, current, PROCESS__PTRACE);
1891 }
1892
1893 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1894                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1895 {
1896         int error;
1897
1898         error = current_has_perm(target, PROCESS__GETCAP);
1899         if (error)
1900                 return error;
1901
1902         return cap_capget(target, effective, inheritable, permitted);
1903 }
1904
1905 static int selinux_capset(struct cred *new, const struct cred *old,
1906                           const kernel_cap_t *effective,
1907                           const kernel_cap_t *inheritable,
1908                           const kernel_cap_t *permitted)
1909 {
1910         int error;
1911
1912         error = cap_capset(new, old,
1913                                       effective, inheritable, permitted);
1914         if (error)
1915                 return error;
1916
1917         return cred_has_perm(old, new, PROCESS__SETCAP);
1918 }
1919
1920 /*
1921  * (This comment used to live with the selinux_task_setuid hook,
1922  * which was removed).
1923  *
1924  * Since setuid only affects the current process, and since the SELinux
1925  * controls are not based on the Linux identity attributes, SELinux does not
1926  * need to control this operation.  However, SELinux does control the use of
1927  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1928  */
1929
1930 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1931                            int cap, int audit)
1932 {
1933         int rc;
1934
1935         rc = cap_capable(tsk, cred, cap, audit);
1936         if (rc)
1937                 return rc;
1938
1939         return task_has_capability(tsk, cred, cap, audit);
1940 }
1941
1942 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1943 {
1944         int buflen, rc;
1945         char *buffer, *path, *end;
1946
1947         rc = -ENOMEM;
1948         buffer = (char *)__get_free_page(GFP_KERNEL);
1949         if (!buffer)
1950                 goto out;
1951
1952         buflen = PAGE_SIZE;
1953         end = buffer+buflen;
1954         *--end = '\0';
1955         buflen--;
1956         path = end-1;
1957         *path = '/';
1958         while (table) {
1959                 const char *name = table->procname;
1960                 size_t namelen = strlen(name);
1961                 buflen -= namelen + 1;
1962                 if (buflen < 0)
1963                         goto out_free;
1964                 end -= namelen;
1965                 memcpy(end, name, namelen);
1966                 *--end = '/';
1967                 path = end;
1968                 table = table->parent;
1969         }
1970         buflen -= 4;
1971         if (buflen < 0)
1972                 goto out_free;
1973         end -= 4;
1974         memcpy(end, "/sys", 4);
1975         path = end;
1976         rc = security_genfs_sid("proc", path, tclass, sid);
1977 out_free:
1978         free_page((unsigned long)buffer);
1979 out:
1980         return rc;
1981 }
1982
1983 static int selinux_sysctl(ctl_table *table, int op)
1984 {
1985         int error = 0;
1986         u32 av;
1987         u32 tsid, sid;
1988         int rc;
1989
1990         sid = current_sid();
1991
1992         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1993                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1994         if (rc) {
1995                 /* Default to the well-defined sysctl SID. */
1996                 tsid = SECINITSID_SYSCTL;
1997         }
1998
1999         /* The op values are "defined" in sysctl.c, thereby creating
2000          * a bad coupling between this module and sysctl.c */
2001         if (op == 001) {
2002                 error = avc_has_perm(sid, tsid,
2003                                      SECCLASS_DIR, DIR__SEARCH, NULL);
2004         } else {
2005                 av = 0;
2006                 if (op & 004)
2007                         av |= FILE__READ;
2008                 if (op & 002)
2009                         av |= FILE__WRITE;
2010                 if (av)
2011                         error = avc_has_perm(sid, tsid,
2012                                              SECCLASS_FILE, av, NULL);
2013         }
2014
2015         return error;
2016 }
2017
2018 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2019 {
2020         const struct cred *cred = current_cred();
2021         int rc = 0;
2022
2023         if (!sb)
2024                 return 0;
2025
2026         switch (cmds) {
2027         case Q_SYNC:
2028         case Q_QUOTAON:
2029         case Q_QUOTAOFF:
2030         case Q_SETINFO:
2031         case Q_SETQUOTA:
2032                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2033                 break;
2034         case Q_GETFMT:
2035         case Q_GETINFO:
2036         case Q_GETQUOTA:
2037                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2038                 break;
2039         default:
2040                 rc = 0;  /* let the kernel handle invalid cmds */
2041                 break;
2042         }
2043         return rc;
2044 }
2045
2046 static int selinux_quota_on(struct dentry *dentry)
2047 {
2048         const struct cred *cred = current_cred();
2049
2050         return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
2051 }
2052
2053 static int selinux_syslog(int type)
2054 {
2055         int rc;
2056
2057         rc = cap_syslog(type);
2058         if (rc)
2059                 return rc;
2060
2061         switch (type) {
2062         case 3:         /* Read last kernel messages */
2063         case 10:        /* Return size of the log buffer */
2064                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2065                 break;
2066         case 6:         /* Disable logging to console */
2067         case 7:         /* Enable logging to console */
2068         case 8:         /* Set level of messages printed to console */
2069                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2070                 break;
2071         case 0:         /* Close log */
2072         case 1:         /* Open log */
2073         case 2:         /* Read from log */
2074         case 4:         /* Read/clear last kernel messages */
2075         case 5:         /* Clear ring buffer */
2076         default:
2077                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2078                 break;
2079         }
2080         return rc;
2081 }
2082
2083 /*
2084  * Check that a process has enough memory to allocate a new virtual
2085  * mapping. 0 means there is enough memory for the allocation to
2086  * succeed and -ENOMEM implies there is not.
2087  *
2088  * Do not audit the selinux permission check, as this is applied to all
2089  * processes that allocate mappings.
2090  */
2091 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2092 {
2093         int rc, cap_sys_admin = 0;
2094
2095         rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2096                              SECURITY_CAP_NOAUDIT);
2097         if (rc == 0)
2098                 cap_sys_admin = 1;
2099
2100         return __vm_enough_memory(mm, pages, cap_sys_admin);
2101 }
2102
2103 /* binprm security operations */
2104
2105 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2106 {
2107         const struct task_security_struct *old_tsec;
2108         struct task_security_struct *new_tsec;
2109         struct inode_security_struct *isec;
2110         struct common_audit_data ad;
2111         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2112         int rc;
2113
2114         rc = cap_bprm_set_creds(bprm);
2115         if (rc)
2116                 return rc;
2117
2118         /* SELinux context only depends on initial program or script and not
2119          * the script interpreter */
2120         if (bprm->cred_prepared)
2121                 return 0;
2122
2123         old_tsec = current_security();
2124         new_tsec = bprm->cred->security;
2125         isec = inode->i_security;
2126
2127         /* Default to the current task SID. */
2128         new_tsec->sid = old_tsec->sid;
2129         new_tsec->osid = old_tsec->sid;
2130
2131         /* Reset fs, key, and sock SIDs on execve. */
2132         new_tsec->create_sid = 0;
2133         new_tsec->keycreate_sid = 0;
2134         new_tsec->sockcreate_sid = 0;
2135
2136         if (old_tsec->exec_sid) {
2137                 new_tsec->sid = old_tsec->exec_sid;
2138                 /* Reset exec SID on execve. */
2139                 new_tsec->exec_sid = 0;
2140         } else {
2141                 /* Check for a default transition on this program. */
2142                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2143                                              SECCLASS_PROCESS, &new_tsec->sid);
2144                 if (rc)
2145                         return rc;
2146         }
2147
2148         COMMON_AUDIT_DATA_INIT(&ad, FS);
2149         ad.u.fs.path = bprm->file->f_path;
2150
2151         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2152                 new_tsec->sid = old_tsec->sid;
2153
2154         if (new_tsec->sid == old_tsec->sid) {
2155                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2156                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2157                 if (rc)
2158                         return rc;
2159         } else {
2160                 /* Check permissions for the transition. */
2161                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2162                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2163                 if (rc)
2164                         return rc;
2165
2166                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2167                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2168                 if (rc)
2169                         return rc;
2170
2171                 /* Check for shared state */
2172                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2173                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2174                                           SECCLASS_PROCESS, PROCESS__SHARE,
2175                                           NULL);
2176                         if (rc)
2177                                 return -EPERM;
2178                 }
2179
2180                 /* Make sure that anyone attempting to ptrace over a task that
2181                  * changes its SID has the appropriate permit */
2182                 if (bprm->unsafe &
2183                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2184                         struct task_struct *tracer;
2185                         struct task_security_struct *sec;
2186                         u32 ptsid = 0;
2187
2188                         rcu_read_lock();
2189                         tracer = tracehook_tracer_task(current);
2190                         if (likely(tracer != NULL)) {
2191                                 sec = __task_cred(tracer)->security;
2192                                 ptsid = sec->sid;
2193                         }
2194                         rcu_read_unlock();
2195
2196                         if (ptsid != 0) {
2197                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2198                                                   SECCLASS_PROCESS,
2199                                                   PROCESS__PTRACE, NULL);
2200                                 if (rc)
2201                                         return -EPERM;
2202                         }
2203                 }
2204
2205                 /* Clear any possibly unsafe personality bits on exec: */
2206                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2207         }
2208
2209         return 0;
2210 }
2211
2212 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2213 {
2214         const struct cred *cred = current_cred();
2215         const struct task_security_struct *tsec = cred->security;
2216         u32 sid, osid;
2217         int atsecure = 0;
2218
2219         sid = tsec->sid;
2220         osid = tsec->osid;
2221
2222         if (osid != sid) {
2223                 /* Enable secure mode for SIDs transitions unless
2224                    the noatsecure permission is granted between
2225                    the two SIDs, i.e. ahp returns 0. */
2226                 atsecure = avc_has_perm(osid, sid,
2227                                         SECCLASS_PROCESS,
2228                                         PROCESS__NOATSECURE, NULL);
2229         }
2230
2231         return (atsecure || cap_bprm_secureexec(bprm));
2232 }
2233
2234 extern struct vfsmount *selinuxfs_mount;
2235 extern struct dentry *selinux_null;
2236
2237 /* Derived from fs/exec.c:flush_old_files. */
2238 static inline void flush_unauthorized_files(const struct cred *cred,
2239                                             struct files_struct *files)
2240 {
2241         struct common_audit_data ad;
2242         struct file *file, *devnull = NULL;
2243         struct tty_struct *tty;
2244         struct fdtable *fdt;
2245         long j = -1;
2246         int drop_tty = 0;
2247
2248         tty = get_current_tty();
2249         if (tty) {
2250                 file_list_lock();
2251                 if (!list_empty(&tty->tty_files)) {
2252                         struct inode *inode;
2253
2254                         /* Revalidate access to controlling tty.
2255                            Use inode_has_perm on the tty inode directly rather
2256                            than using file_has_perm, as this particular open
2257                            file may belong to another process and we are only
2258                            interested in the inode-based check here. */
2259                         file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2260                         inode = file->f_path.dentry->d_inode;
2261                         if (inode_has_perm(cred, inode,
2262                                            FILE__READ | FILE__WRITE, NULL)) {
2263                                 drop_tty = 1;
2264                         }
2265                 }
2266                 file_list_unlock();
2267                 tty_kref_put(tty);
2268         }
2269         /* Reset controlling tty. */
2270         if (drop_tty)
2271                 no_tty();
2272
2273         /* Revalidate access to inherited open files. */
2274
2275         COMMON_AUDIT_DATA_INIT(&ad, FS);
2276
2277         spin_lock(&files->file_lock);
2278         for (;;) {
2279                 unsigned long set, i;
2280                 int fd;
2281
2282                 j++;
2283                 i = j * __NFDBITS;
2284                 fdt = files_fdtable(files);
2285                 if (i >= fdt->max_fds)
2286                         break;
2287                 set = fdt->open_fds->fds_bits[j];
2288                 if (!set)
2289                         continue;
2290                 spin_unlock(&files->file_lock);
2291                 for ( ; set ; i++, set >>= 1) {
2292                         if (set & 1) {
2293                                 file = fget(i);
2294                                 if (!file)
2295                                         continue;
2296                                 if (file_has_perm(cred,
2297                                                   file,
2298                                                   file_to_av(file))) {
2299                                         sys_close(i);
2300                                         fd = get_unused_fd();
2301                                         if (fd != i) {
2302                                                 if (fd >= 0)
2303                                                         put_unused_fd(fd);
2304                                                 fput(file);
2305                                                 continue;
2306                                         }
2307                                         if (devnull) {
2308                                                 get_file(devnull);
2309                                         } else {
2310                                                 devnull = dentry_open(
2311                                                         dget(selinux_null),
2312                                                         mntget(selinuxfs_mount),
2313                                                         O_RDWR, cred);
2314                                                 if (IS_ERR(devnull)) {
2315                                                         devnull = NULL;
2316                                                         put_unused_fd(fd);
2317                                                         fput(file);
2318                                                         continue;
2319                                                 }
2320                                         }
2321                                         fd_install(fd, devnull);
2322                                 }
2323                                 fput(file);
2324                         }
2325                 }
2326                 spin_lock(&files->file_lock);
2327
2328         }
2329         spin_unlock(&files->file_lock);
2330 }
2331
2332 /*
2333  * Prepare a process for imminent new credential changes due to exec
2334  */
2335 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2336 {
2337         struct task_security_struct *new_tsec;
2338         struct rlimit *rlim, *initrlim;
2339         int rc, i;
2340
2341         new_tsec = bprm->cred->security;
2342         if (new_tsec->sid == new_tsec->osid)
2343                 return;
2344
2345         /* Close files for which the new task SID is not authorized. */
2346         flush_unauthorized_files(bprm->cred, current->files);
2347
2348         /* Always clear parent death signal on SID transitions. */
2349         current->pdeath_signal = 0;
2350
2351         /* Check whether the new SID can inherit resource limits from the old
2352          * SID.  If not, reset all soft limits to the lower of the current
2353          * task's hard limit and the init task's soft limit.
2354          *
2355          * Note that the setting of hard limits (even to lower them) can be
2356          * controlled by the setrlimit check.  The inclusion of the init task's
2357          * soft limit into the computation is to avoid resetting soft limits
2358          * higher than the default soft limit for cases where the default is
2359          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2360          */
2361         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2362                           PROCESS__RLIMITINH, NULL);
2363         if (rc) {
2364                 for (i = 0; i < RLIM_NLIMITS; i++) {
2365                         rlim = current->signal->rlim + i;
2366                         initrlim = init_task.signal->rlim + i;
2367                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2368                 }
2369                 update_rlimit_cpu(rlim->rlim_cur);
2370         }
2371 }
2372
2373 /*
2374  * Clean up the process immediately after the installation of new credentials
2375  * due to exec
2376  */
2377 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2378 {
2379         const struct task_security_struct *tsec = current_security();
2380         struct itimerval itimer;
2381         u32 osid, sid;
2382         int rc, i;
2383
2384         osid = tsec->osid;
2385         sid = tsec->sid;
2386
2387         if (sid == osid)
2388                 return;
2389
2390         /* Check whether the new SID can inherit signal state from the old SID.
2391          * If not, clear itimers to avoid subsequent signal generation and
2392          * flush and unblock signals.
2393          *
2394          * This must occur _after_ the task SID has been updated so that any
2395          * kill done after the flush will be checked against the new SID.
2396          */
2397         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2398         if (rc) {
2399                 memset(&itimer, 0, sizeof itimer);
2400                 for (i = 0; i < 3; i++)
2401                         do_setitimer(i, &itimer, NULL);
2402                 spin_lock_irq(&current->sighand->siglock);
2403                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2404                         __flush_signals(current);
2405                         flush_signal_handlers(current, 1);
2406                         sigemptyset(&current->blocked);
2407                 }
2408                 spin_unlock_irq(&current->sighand->siglock);
2409         }
2410
2411         /* Wake up the parent if it is waiting so that it can recheck
2412          * wait permission to the new task SID. */
2413         read_lock(&tasklist_lock);
2414         wake_up_interruptible(&current->real_parent->signal->wait_chldexit);
2415         read_unlock(&tasklist_lock);
2416 }
2417
2418 /* superblock security operations */
2419
2420 static int selinux_sb_alloc_security(struct super_block *sb)
2421 {
2422         return superblock_alloc_security(sb);
2423 }
2424
2425 static void selinux_sb_free_security(struct super_block *sb)
2426 {
2427         superblock_free_security(sb);
2428 }
2429
2430 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2431 {
2432         if (plen > olen)
2433                 return 0;
2434
2435         return !memcmp(prefix, option, plen);
2436 }
2437
2438 static inline int selinux_option(char *option, int len)
2439 {
2440         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2441                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2442                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2443                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2444                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2445 }
2446
2447 static inline void take_option(char **to, char *from, int *first, int len)
2448 {
2449         if (!*first) {
2450                 **to = ',';
2451                 *to += 1;
2452         } else
2453                 *first = 0;
2454         memcpy(*to, from, len);
2455         *to += len;
2456 }
2457
2458 static inline void take_selinux_option(char **to, char *from, int *first,
2459                                        int len)
2460 {
2461         int current_size = 0;
2462
2463         if (!*first) {
2464                 **to = '|';
2465                 *to += 1;
2466         } else
2467                 *first = 0;
2468
2469         while (current_size < len) {
2470                 if (*from != '"') {
2471                         **to = *from;
2472                         *to += 1;
2473                 }
2474                 from += 1;
2475                 current_size += 1;
2476         }
2477 }
2478
2479 static int selinux_sb_copy_data(char *orig, char *copy)
2480 {
2481         int fnosec, fsec, rc = 0;
2482         char *in_save, *in_curr, *in_end;
2483         char *sec_curr, *nosec_save, *nosec;
2484         int open_quote = 0;
2485
2486         in_curr = orig;
2487         sec_curr = copy;
2488
2489         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2490         if (!nosec) {
2491                 rc = -ENOMEM;
2492                 goto out;
2493         }
2494
2495         nosec_save = nosec;
2496         fnosec = fsec = 1;
2497         in_save = in_end = orig;
2498
2499         do {
2500                 if (*in_end == '"')
2501                         open_quote = !open_quote;
2502                 if ((*in_end == ',' && open_quote == 0) ||
2503                                 *in_end == '\0') {
2504                         int len = in_end - in_curr;
2505
2506                         if (selinux_option(in_curr, len))
2507                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2508                         else
2509                                 take_option(&nosec, in_curr, &fnosec, len);
2510
2511                         in_curr = in_end + 1;
2512                 }
2513         } while (*in_end++);
2514
2515         strcpy(in_save, nosec_save);
2516         free_page((unsigned long)nosec_save);
2517 out:
2518         return rc;
2519 }
2520
2521 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2522 {
2523         const struct cred *cred = current_cred();
2524         struct common_audit_data ad;
2525         int rc;
2526
2527         rc = superblock_doinit(sb, data);
2528         if (rc)
2529                 return rc;
2530
2531         /* Allow all mounts performed by the kernel */
2532         if (flags & MS_KERNMOUNT)
2533                 return 0;
2534
2535         COMMON_AUDIT_DATA_INIT(&ad, FS);
2536         ad.u.fs.path.dentry = sb->s_root;
2537         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2538 }
2539
2540 static int selinux_sb_statfs(struct dentry *dentry)
2541 {
2542         const struct cred *cred = current_cred();
2543         struct common_audit_data ad;
2544
2545         COMMON_AUDIT_DATA_INIT(&ad, FS);
2546         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2547         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2548 }
2549
2550 static int selinux_mount(char *dev_name,
2551                          struct path *path,
2552                          char *type,
2553                          unsigned long flags,
2554                          void *data)
2555 {
2556         const struct cred *cred = current_cred();
2557
2558         if (flags & MS_REMOUNT)
2559                 return superblock_has_perm(cred, path->mnt->mnt_sb,
2560                                            FILESYSTEM__REMOUNT, NULL);
2561         else
2562                 return dentry_has_perm(cred, path->mnt, path->dentry,
2563                                        FILE__MOUNTON);
2564 }
2565
2566 static int selinux_umount(struct vfsmount *mnt, int flags)
2567 {
2568         const struct cred *cred = current_cred();
2569
2570         return superblock_has_perm(cred, mnt->mnt_sb,
2571                                    FILESYSTEM__UNMOUNT, NULL);
2572 }
2573
2574 /* inode security operations */
2575
2576 static int selinux_inode_alloc_security(struct inode *inode)
2577 {
2578         return inode_alloc_security(inode);
2579 }
2580
2581 static void selinux_inode_free_security(struct inode *inode)
2582 {
2583         inode_free_security(inode);
2584 }
2585
2586 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2587                                        char **name, void **value,
2588                                        size_t *len)
2589 {
2590         const struct cred *cred = current_cred();
2591         const struct task_security_struct *tsec = cred->security;
2592         struct inode_security_struct *dsec;
2593         struct superblock_security_struct *sbsec;
2594         u32 sid, newsid, clen;
2595         int rc;
2596         char *namep = NULL, *context;
2597
2598         dsec = dir->i_security;
2599         sbsec = dir->i_sb->s_security;
2600
2601         sid = tsec->sid;
2602         newsid = tsec->create_sid;
2603
2604         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2605                 rc = security_transition_sid(sid, dsec->sid,
2606                                              inode_mode_to_security_class(inode->i_mode),
2607                                              &newsid);
2608                 if (rc) {
2609                         printk(KERN_WARNING "%s:  "
2610                                "security_transition_sid failed, rc=%d (dev=%s "
2611                                "ino=%ld)\n",
2612                                __func__,
2613                                -rc, inode->i_sb->s_id, inode->i_ino);
2614                         return rc;
2615                 }
2616         }
2617
2618         /* Possibly defer initialization to selinux_complete_init. */
2619         if (sbsec->flags & SE_SBINITIALIZED) {
2620                 struct inode_security_struct *isec = inode->i_security;
2621                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2622                 isec->sid = newsid;
2623                 isec->initialized = 1;
2624         }
2625
2626         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2627                 return -EOPNOTSUPP;
2628
2629         if (name) {
2630                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2631                 if (!namep)
2632                         return -ENOMEM;
2633                 *name = namep;
2634         }
2635
2636         if (value && len) {
2637                 rc = security_sid_to_context_force(newsid, &context, &clen);
2638                 if (rc) {
2639                         kfree(namep);
2640                         return rc;
2641                 }
2642                 *value = context;
2643                 *len = clen;
2644         }
2645
2646         return 0;
2647 }
2648
2649 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2650 {
2651         return may_create(dir, dentry, SECCLASS_FILE);
2652 }
2653
2654 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2655 {
2656         return may_link(dir, old_dentry, MAY_LINK);
2657 }
2658
2659 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2660 {
2661         return may_link(dir, dentry, MAY_UNLINK);
2662 }
2663
2664 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2665 {
2666         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2667 }
2668
2669 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2670 {
2671         return may_create(dir, dentry, SECCLASS_DIR);
2672 }
2673
2674 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2675 {
2676         return may_link(dir, dentry, MAY_RMDIR);
2677 }
2678
2679 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2680 {
2681         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2682 }
2683
2684 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2685                                 struct inode *new_inode, struct dentry *new_dentry)
2686 {
2687         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2688 }
2689
2690 static int selinux_inode_readlink(struct dentry *dentry)
2691 {
2692         const struct cred *cred = current_cred();
2693
2694         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2695 }
2696
2697 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2698 {
2699         const struct cred *cred = current_cred();
2700
2701         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2702 }
2703
2704 static int selinux_inode_permission(struct inode *inode, int mask)
2705 {
2706         const struct cred *cred = current_cred();
2707
2708         if (!mask) {
2709                 /* No permission to check.  Existence test. */
2710                 return 0;
2711         }
2712
2713         return inode_has_perm(cred, inode,
2714                               file_mask_to_av(inode->i_mode, mask), NULL);
2715 }
2716
2717 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2718 {
2719         const struct cred *cred = current_cred();
2720         unsigned int ia_valid = iattr->ia_valid;
2721
2722         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2723         if (ia_valid & ATTR_FORCE) {
2724                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2725                               ATTR_FORCE);
2726                 if (!ia_valid)
2727                         return 0;
2728         }
2729
2730         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2731                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2732                 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2733
2734         return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2735 }
2736
2737 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2738 {
2739         const struct cred *cred = current_cred();
2740
2741         return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2742 }
2743
2744 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2745 {
2746         const struct cred *cred = current_cred();
2747
2748         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2749                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2750                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2751                         if (!capable(CAP_SETFCAP))
2752                                 return -EPERM;
2753                 } else if (!capable(CAP_SYS_ADMIN)) {
2754                         /* A different attribute in the security namespace.
2755                            Restrict to administrator. */
2756                         return -EPERM;
2757                 }
2758         }
2759
2760         /* Not an attribute we recognize, so just check the
2761            ordinary setattr permission. */
2762         return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2763 }
2764
2765 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2766                                   const void *value, size_t size, int flags)
2767 {
2768         struct inode *inode = dentry->d_inode;
2769         struct inode_security_struct *isec = inode->i_security;
2770         struct superblock_security_struct *sbsec;
2771         struct common_audit_data ad;
2772         u32 newsid, sid = current_sid();
2773         int rc = 0;
2774
2775         if (strcmp(name, XATTR_NAME_SELINUX))
2776                 return selinux_inode_setotherxattr(dentry, name);
2777
2778         sbsec = inode->i_sb->s_security;
2779         if (!(sbsec->flags & SE_SBLABELSUPP))
2780                 return -EOPNOTSUPP;
2781
2782         if (!is_owner_or_cap(inode))
2783                 return -EPERM;
2784
2785         COMMON_AUDIT_DATA_INIT(&ad, FS);
2786         ad.u.fs.path.dentry = dentry;
2787
2788         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2789                           FILE__RELABELFROM, &ad);
2790         if (rc)
2791                 return rc;
2792
2793         rc = security_context_to_sid(value, size, &newsid);
2794         if (rc == -EINVAL) {
2795                 if (!capable(CAP_MAC_ADMIN))
2796                         return rc;
2797                 rc = security_context_to_sid_force(value, size, &newsid);
2798         }
2799         if (rc)
2800                 return rc;
2801
2802         rc = avc_has_perm(sid, newsid, isec->sclass,
2803                           FILE__RELABELTO, &ad);
2804         if (rc)
2805                 return rc;
2806
2807         rc = security_validate_transition(isec->sid, newsid, sid,
2808                                           isec->sclass);
2809         if (rc)
2810                 return rc;
2811
2812         return avc_has_perm(newsid,
2813                             sbsec->sid,
2814                             SECCLASS_FILESYSTEM,
2815                             FILESYSTEM__ASSOCIATE,
2816                             &ad);
2817 }
2818
2819 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2820                                         const void *value, size_t size,
2821                                         int flags)
2822 {
2823         struct inode *inode = dentry->d_inode;
2824         struct inode_security_struct *isec = inode->i_security;
2825         u32 newsid;
2826         int rc;
2827
2828         if (strcmp(name, XATTR_NAME_SELINUX)) {
2829                 /* Not an attribute we recognize, so nothing to do. */
2830                 return;
2831         }
2832
2833         rc = security_context_to_sid_force(value, size, &newsid);
2834         if (rc) {
2835                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2836                        "for (%s, %lu), rc=%d\n",
2837                        inode->i_sb->s_id, inode->i_ino, -rc);
2838                 return;
2839         }
2840
2841         isec->sid = newsid;
2842         return;
2843 }
2844
2845 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2846 {
2847         const struct cred *cred = current_cred();
2848
2849         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2850 }
2851
2852 static int selinux_inode_listxattr(struct dentry *dentry)
2853 {
2854         const struct cred *cred = current_cred();
2855
2856         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2857 }
2858
2859 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2860 {
2861         if (strcmp(name, XATTR_NAME_SELINUX))
2862                 return selinux_inode_setotherxattr(dentry, name);
2863
2864         /* No one is allowed to remove a SELinux security label.
2865            You can change the label, but all data must be labeled. */
2866         return -EACCES;
2867 }
2868
2869 /*
2870  * Copy the inode security context value to the user.
2871  *
2872  * Permission check is handled by selinux_inode_getxattr hook.
2873  */
2874 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2875 {
2876         u32 size;
2877         int error;
2878         char *context = NULL;
2879         struct inode_security_struct *isec = inode->i_security;
2880
2881         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2882                 return -EOPNOTSUPP;
2883
2884         /*
2885          * If the caller has CAP_MAC_ADMIN, then get the raw context
2886          * value even if it is not defined by current policy; otherwise,
2887          * use the in-core value under current policy.
2888          * Use the non-auditing forms of the permission checks since
2889          * getxattr may be called by unprivileged processes commonly
2890          * and lack of permission just means that we fall back to the
2891          * in-core context value, not a denial.
2892          */
2893         error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2894                                 SECURITY_CAP_NOAUDIT);
2895         if (!error)
2896                 error = security_sid_to_context_force(isec->sid, &context,
2897                                                       &size);
2898         else
2899                 error = security_sid_to_context(isec->sid, &context, &size);
2900         if (error)
2901                 return error;
2902         error = size;
2903         if (alloc) {
2904                 *buffer = context;
2905                 goto out_nofree;
2906         }
2907         kfree(context);
2908 out_nofree:
2909         return error;
2910 }
2911
2912 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2913                                      const void *value, size_t size, int flags)
2914 {
2915         struct inode_security_struct *isec = inode->i_security;
2916         u32 newsid;
2917         int rc;
2918
2919         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2920                 return -EOPNOTSUPP;
2921
2922         if (!value || !size)
2923                 return -EACCES;
2924
2925         rc = security_context_to_sid((void *)value, size, &newsid);
2926         if (rc)
2927                 return rc;
2928
2929         isec->sid = newsid;
2930         isec->initialized = 1;
2931         return 0;
2932 }
2933
2934 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2935 {
2936         const int len = sizeof(XATTR_NAME_SELINUX);
2937         if (buffer && len <= buffer_size)
2938                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2939         return len;
2940 }
2941
2942 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2943 {
2944         struct inode_security_struct *isec = inode->i_security;
2945         *secid = isec->sid;
2946 }
2947
2948 /* file security operations */
2949
2950 static int selinux_revalidate_file_permission(struct file *file, int mask)
2951 {
2952         const struct cred *cred = current_cred();
2953         struct inode *inode = file->f_path.dentry->d_inode;
2954
2955         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2956         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2957                 mask |= MAY_APPEND;
2958
2959         return file_has_perm(cred, file,
2960                              file_mask_to_av(inode->i_mode, mask));
2961 }
2962
2963 static int selinux_file_permission(struct file *file, int mask)
2964 {
2965         struct inode *inode = file->f_path.dentry->d_inode;
2966         struct file_security_struct *fsec = file->f_security;
2967         struct inode_security_struct *isec = inode->i_security;
2968         u32 sid = current_sid();
2969
2970         if (!mask)
2971                 /* No permission to check.  Existence test. */
2972                 return 0;
2973
2974         if (sid == fsec->sid && fsec->isid == isec->sid &&
2975             fsec->pseqno == avc_policy_seqno())
2976                 /* No change since dentry_open check. */
2977                 return 0;
2978
2979         return selinux_revalidate_file_permission(file, mask);
2980 }
2981
2982 static int selinux_file_alloc_security(struct file *file)
2983 {
2984         return file_alloc_security(file);
2985 }
2986
2987 static void selinux_file_free_security(struct file *file)
2988 {
2989         file_free_security(file);
2990 }
2991
2992 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2993                               unsigned long arg)
2994 {
2995         const struct cred *cred = current_cred();
2996         u32 av = 0;
2997
2998         if (_IOC_DIR(cmd) & _IOC_WRITE)
2999                 av |= FILE__WRITE;
3000         if (_IOC_DIR(cmd) & _IOC_READ)
3001                 av |= FILE__READ;
3002         if (!av)
3003                 av = FILE__IOCTL;
3004
3005         return file_has_perm(cred, file, av);
3006 }
3007
3008 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3009 {
3010         const struct cred *cred = current_cred();
3011         int rc = 0;
3012
3013 #ifndef CONFIG_PPC32
3014         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3015                 /*
3016                  * We are making executable an anonymous mapping or a
3017                  * private file mapping that will also be writable.
3018                  * This has an additional check.
3019                  */
3020                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3021                 if (rc)
3022                         goto error;
3023         }
3024 #endif
3025
3026         if (file) {
3027                 /* read access is always possible with a mapping */
3028                 u32 av = FILE__READ;
3029
3030                 /* write access only matters if the mapping is shared */
3031                 if (shared && (prot & PROT_WRITE))
3032                         av |= FILE__WRITE;
3033
3034                 if (prot & PROT_EXEC)
3035                         av |= FILE__EXECUTE;
3036
3037                 return file_has_perm(cred, file, av);
3038         }
3039
3040 error:
3041         return rc;
3042 }
3043
3044 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3045                              unsigned long prot, unsigned long flags,
3046                              unsigned long addr, unsigned long addr_only)
3047 {
3048         int rc = 0;
3049         u32 sid = current_sid();
3050
3051         /*
3052          * notice that we are intentionally putting the SELinux check before
3053          * the secondary cap_file_mmap check.  This is such a likely attempt
3054          * at bad behaviour/exploit that we always want to get the AVC, even
3055          * if DAC would have also denied the operation.
3056          */
3057         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3058                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3059                                   MEMPROTECT__MMAP_ZERO, NULL);
3060                 if (rc)
3061                         return rc;
3062         }
3063
3064         /* do DAC check on address space usage */
3065         rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3066         if (rc || addr_only)
3067                 return rc;
3068
3069         if (selinux_checkreqprot)
3070                 prot = reqprot;
3071
3072         return file_map_prot_check(file, prot,
3073                                    (flags & MAP_TYPE) == MAP_SHARED);
3074 }
3075
3076 static int selinux_file_mprotect(struct vm_area_struct *vma,
3077                                  unsigned long reqprot,
3078                                  unsigned long prot)
3079 {
3080         const struct cred *cred = current_cred();
3081
3082         if (selinux_checkreqprot)
3083                 prot = reqprot;
3084
3085 #ifndef CONFIG_PPC32
3086         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3087                 int rc = 0;
3088                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3089                     vma->vm_end <= vma->vm_mm->brk) {
3090                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3091                 } else if (!vma->vm_file &&
3092                            vma->vm_start <= vma->vm_mm->start_stack &&
3093                            vma->vm_end >= vma->vm_mm->start_stack) {
3094                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3095                 } else if (vma->vm_file && vma->anon_vma) {
3096                         /*
3097                          * We are making executable a file mapping that has
3098                          * had some COW done. Since pages might have been
3099                          * written, check ability to execute the possibly
3100                          * modified content.  This typically should only
3101                          * occur for text relocations.
3102                          */
3103                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3104                 }
3105                 if (rc)
3106                         return rc;
3107         }
3108 #endif
3109
3110         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3111 }
3112
3113 static int selinux_file_lock(struct file *file, unsigned int cmd)
3114 {
3115         const struct cred *cred = current_cred();
3116
3117         return file_has_perm(cred, file, FILE__LOCK);
3118 }
3119
3120 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3121                               unsigned long arg)
3122 {
3123         const struct cred *cred = current_cred();
3124         int err = 0;
3125
3126         switch (cmd) {
3127         case F_SETFL:
3128                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3129                         err = -EINVAL;
3130                         break;
3131                 }
3132
3133                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3134                         err = file_has_perm(cred, file, FILE__WRITE);
3135                         break;
3136                 }
3137                 /* fall through */
3138         case F_SETOWN:
3139         case F_SETSIG:
3140         case F_GETFL:
3141         case F_GETOWN:
3142         case F_GETSIG:
3143                 /* Just check FD__USE permission */
3144                 err = file_has_perm(cred, file, 0);
3145                 break;
3146         case F_GETLK:
3147         case F_SETLK:
3148         case F_SETLKW:
3149 #if BITS_PER_LONG == 32
3150         case F_GETLK64:
3151         case F_SETLK64:
3152         case F_SETLKW64:
3153 #endif
3154                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3155                         err = -EINVAL;
3156                         break;
3157                 }
3158                 err = file_has_perm(cred, file, FILE__LOCK);
3159                 break;
3160         }
3161
3162         return err;
3163 }
3164
3165 static int selinux_file_set_fowner(struct file *file)
3166 {
3167         struct file_security_struct *fsec;
3168
3169         fsec = file->f_security;
3170         fsec->fown_sid = current_sid();
3171
3172         return 0;
3173 }
3174
3175 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3176                                        struct fown_struct *fown, int signum)
3177 {
3178         struct file *file;
3179         u32 sid = task_sid(tsk);
3180         u32 perm;
3181         struct file_security_struct *fsec;
3182
3183         /* struct fown_struct is never outside the context of a struct file */
3184         file = container_of(fown, struct file, f_owner);
3185
3186         fsec = file->f_security;
3187
3188         if (!signum)
3189                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3190         else
3191                 perm = signal_to_av(signum);
3192
3193         return avc_has_perm(fsec->fown_sid, sid,
3194                             SECCLASS_PROCESS, perm, NULL);
3195 }
3196
3197 static int selinux_file_receive(struct file *file)
3198 {
3199         const struct cred *cred = current_cred();
3200
3201         return file_has_perm(cred, file, file_to_av(file));
3202 }
3203
3204 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3205 {
3206         struct file_security_struct *fsec;
3207         struct inode *inode;
3208         struct inode_security_struct *isec;
3209
3210         inode = file->f_path.dentry->d_inode;
3211         fsec = file->f_security;
3212         isec = inode->i_security;
3213         /*
3214          * Save inode label and policy sequence number
3215          * at open-time so that selinux_file_permission
3216          * can determine whether revalidation is necessary.
3217          * Task label is already saved in the file security
3218          * struct as its SID.
3219          */
3220         fsec->isid = isec->sid;
3221         fsec->pseqno = avc_policy_seqno();
3222         /*
3223          * Since the inode label or policy seqno may have changed
3224          * between the selinux_inode_permission check and the saving
3225          * of state above, recheck that access is still permitted.
3226          * Otherwise, access might never be revalidated against the
3227          * new inode label or new policy.
3228          * This check is not redundant - do not remove.
3229          */
3230         return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3231 }
3232
3233 /* task security operations */
3234
3235 static int selinux_task_create(unsigned long clone_flags)
3236 {
3237         return current_has_perm(current, PROCESS__FORK);
3238 }
3239
3240 /*
3241  * allocate the SELinux part of blank credentials
3242  */
3243 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3244 {
3245         struct task_security_struct *tsec;
3246
3247         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3248         if (!tsec)
3249                 return -ENOMEM;
3250
3251         cred->security = tsec;
3252         return 0;
3253 }
3254
3255 /*
3256  * detach and free the LSM part of a set of credentials
3257  */
3258 static void selinux_cred_free(struct cred *cred)
3259 {
3260         struct task_security_struct *tsec = cred->security;
3261
3262         BUG_ON((unsigned long) cred->security < PAGE_SIZE);
3263         cred->security = (void *) 0x7UL;
3264         kfree(tsec);
3265 }
3266
3267 /*
3268  * prepare a new set of credentials for modification
3269  */
3270 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3271                                 gfp_t gfp)
3272 {
3273         const struct task_security_struct *old_tsec;
3274         struct task_security_struct *tsec;
3275
3276         old_tsec = old->security;
3277
3278         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3279         if (!tsec)
3280                 return -ENOMEM;
3281
3282         new->security = tsec;
3283         return 0;
3284 }
3285
3286 /*
3287  * transfer the SELinux data to a blank set of creds
3288  */
3289 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3290 {
3291         const struct task_security_struct *old_tsec = old->security;
3292         struct task_security_struct *tsec = new->security;
3293
3294         *tsec = *old_tsec;
3295 }
3296
3297 /*
3298  * set the security data for a kernel service
3299  * - all the creation contexts are set to unlabelled
3300  */
3301 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3302 {
3303         struct task_security_struct *tsec = new->security;
3304         u32 sid = current_sid();
3305         int ret;
3306
3307         ret = avc_has_perm(sid, secid,
3308                            SECCLASS_KERNEL_SERVICE,
3309                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3310                            NULL);
3311         if (ret == 0) {
3312                 tsec->sid = secid;
3313                 tsec->create_sid = 0;
3314                 tsec->keycreate_sid = 0;
3315                 tsec->sockcreate_sid = 0;
3316         }
3317         return ret;
3318 }
3319
3320 /*
3321  * set the file creation context in a security record to the same as the
3322  * objective context of the specified inode
3323  */
3324 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3325 {
3326         struct inode_security_struct *isec = inode->i_security;
3327         struct task_security_struct *tsec = new->security;
3328         u32 sid = current_sid();
3329         int ret;
3330
3331         ret = avc_has_perm(sid, isec->sid,
3332                            SECCLASS_KERNEL_SERVICE,
3333                            KERNEL_SERVICE__CREATE_FILES_AS,
3334                            NULL);
3335
3336         if (ret == 0)
3337                 tsec->create_sid = isec->sid;
3338         return 0;
3339 }
3340
3341 static int selinux_kernel_module_request(void)
3342 {
3343         return task_has_system(current, SYSTEM__MODULE_REQUEST);
3344 }
3345
3346 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3347 {
3348         return current_has_perm(p, PROCESS__SETPGID);
3349 }
3350
3351 static int selinux_task_getpgid(struct task_struct *p)
3352 {
3353         return current_has_perm(p, PROCESS__GETPGID);
3354 }
3355
3356 static int selinux_task_getsid(struct task_struct *p)
3357 {
3358         return current_has_perm(p, PROCESS__GETSESSION);
3359 }
3360
3361 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3362 {
3363         *secid = task_sid(p);
3364 }
3365
3366 static int selinux_task_setnice(struct task_struct *p, int nice)
3367 {
3368         int rc;
3369
3370         rc = cap_task_setnice(p, nice);
3371         if (rc)
3372                 return rc;
3373
3374         return current_has_perm(p, PROCESS__SETSCHED);
3375 }
3376
3377 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3378 {
3379         int rc;
3380
3381         rc = cap_task_setioprio(p, ioprio);
3382         if (rc)
3383                 return rc;
3384
3385         return current_has_perm(p, PROCESS__SETSCHED);
3386 }
3387
3388 static int selinux_task_getioprio(struct task_struct *p)
3389 {
3390         return current_has_perm(p, PROCESS__GETSCHED);
3391 }
3392
3393 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3394 {
3395         struct rlimit *old_rlim = current->signal->rlim + resource;
3396
3397         /* Control the ability to change the hard limit (whether
3398            lowering or raising it), so that the hard limit can
3399            later be used as a safe reset point for the soft limit
3400            upon context transitions.  See selinux_bprm_committing_creds. */
3401         if (old_rlim->rlim_max != new_rlim->rlim_max)
3402                 return current_has_perm(current, PROCESS__SETRLIMIT);
3403
3404         return 0;
3405 }
3406
3407 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3408 {
3409         int rc;
3410
3411         rc = cap_task_setscheduler(p, policy, lp);
3412         if (rc)
3413                 return rc;
3414
3415         return current_has_perm(p, PROCESS__SETSCHED);
3416 }
3417
3418 static int selinux_task_getscheduler(struct task_struct *p)
3419 {
3420         return current_has_perm(p, PROCESS__GETSCHED);
3421 }
3422
3423 static int selinux_task_movememory(struct task_struct *p)
3424 {
3425         return current_has_perm(p, PROCESS__SETSCHED);
3426 }
3427
3428 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3429                                 int sig, u32 secid)
3430 {
3431         u32 perm;
3432         int rc;
3433
3434         if (!sig)
3435                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3436         else
3437                 perm = signal_to_av(sig);
3438         if (secid)
3439                 rc = avc_has_perm(secid, task_sid(p),
3440                                   SECCLASS_PROCESS, perm, NULL);
3441         else
3442                 rc = current_has_perm(p, perm);
3443         return rc;
3444 }
3445
3446 static int selinux_task_wait(struct task_struct *p)
3447 {
3448         return task_has_perm(p, current, PROCESS__SIGCHLD);
3449 }
3450
3451 static void selinux_task_to_inode(struct task_struct *p,
3452                                   struct inode *inode)
3453 {
3454         struct inode_security_struct *isec = inode->i_security;
3455         u32 sid = task_sid(p);
3456
3457         isec->sid = sid;
3458         isec->initialized = 1;
3459 }
3460
3461 /* Returns error only if unable to parse addresses */
3462 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3463                         struct common_audit_data *ad, u8 *proto)
3464 {
3465         int offset, ihlen, ret = -EINVAL;
3466         struct iphdr _iph, *ih;
3467
3468         offset = skb_network_offset(skb);
3469         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3470         if (ih == NULL)
3471                 goto out;
3472
3473         ihlen = ih->ihl * 4;
3474         if (ihlen < sizeof(_iph))
3475                 goto out;
3476
3477         ad->u.net.v4info.saddr = ih->saddr;
3478         ad->u.net.v4info.daddr = ih->daddr;
3479         ret = 0;
3480
3481         if (proto)
3482                 *proto = ih->protocol;
3483
3484         switch (ih->protocol) {
3485         case IPPROTO_TCP: {
3486                 struct tcphdr _tcph, *th;
3487
3488                 if (ntohs(ih->frag_off) & IP_OFFSET)
3489                         break;
3490
3491                 offset += ihlen;
3492                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3493                 if (th == NULL)
3494                         break;
3495
3496                 ad->u.net.sport = th->source;
3497                 ad->u.net.dport = th->dest;
3498                 break;
3499         }
3500
3501         case IPPROTO_UDP: {
3502                 struct udphdr _udph, *uh;
3503
3504                 if (ntohs(ih->frag_off) & IP_OFFSET)
3505                         break;
3506
3507                 offset += ihlen;
3508                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3509                 if (uh == NULL)
3510                         break;
3511
3512                 ad->u.net.sport = uh->source;
3513                 ad->u.net.dport = uh->dest;
3514                 break;
3515         }
3516
3517         case IPPROTO_DCCP: {
3518                 struct dccp_hdr _dccph, *dh;
3519
3520                 if (ntohs(ih->frag_off) & IP_OFFSET)
3521                         break;
3522
3523                 offset += ihlen;
3524                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3525                 if (dh == NULL)
3526                         break;
3527
3528                 ad->u.net.sport = dh->dccph_sport;
3529                 ad->u.net.dport = dh->dccph_dport;
3530                 break;
3531         }
3532
3533         default:
3534                 break;
3535         }
3536 out:
3537         return ret;
3538 }
3539
3540 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3541
3542 /* Returns error only if unable to parse addresses */
3543 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3544                         struct common_audit_data *ad, u8 *proto)
3545 {
3546         u8 nexthdr;
3547         int ret = -EINVAL, offset;
3548         struct ipv6hdr _ipv6h, *ip6;
3549
3550         offset = skb_network_offset(skb);
3551         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3552         if (ip6 == NULL)
3553                 goto out;
3554
3555         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3556         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3557         ret = 0;
3558
3559         nexthdr = ip6->nexthdr;
3560         offset += sizeof(_ipv6h);
3561         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3562         if (offset < 0)
3563                 goto out;
3564
3565         if (proto)
3566                 *proto = nexthdr;
3567
3568         switch (nexthdr) {
3569         case IPPROTO_TCP: {
3570                 struct tcphdr _tcph, *th;
3571
3572                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3573                 if (th == NULL)
3574                         break;
3575
3576                 ad->u.net.sport = th->source;
3577                 ad->u.net.dport = th->dest;
3578                 break;
3579         }
3580
3581         case IPPROTO_UDP: {
3582                 struct udphdr _udph, *uh;
3583
3584                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3585                 if (uh == NULL)
3586                         break;
3587
3588                 ad->u.net.sport = uh->source;
3589                 ad->u.net.dport = uh->dest;
3590                 break;
3591         }
3592
3593         case IPPROTO_DCCP: {
3594                 struct dccp_hdr _dccph, *dh;
3595
3596                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3597                 if (dh == NULL)
3598                         break;
3599
3600                 ad->u.net.sport = dh->dccph_sport;
3601                 ad->u.net.dport = dh->dccph_dport;
3602                 break;
3603         }
3604
3605         /* includes fragments */
3606         default:
3607                 break;
3608         }
3609 out:
3610         return ret;
3611 }
3612
3613 #endif /* IPV6 */
3614
3615 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3616                              char **_addrp, int src, u8 *proto)
3617 {
3618         char *addrp;
3619         int ret;
3620
3621         switch (ad->u.net.family) {
3622         case PF_INET:
3623                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3624                 if (ret)
3625                         goto parse_error;
3626                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3627                                        &ad->u.net.v4info.daddr);
3628                 goto okay;
3629
3630 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3631         case PF_INET6:
3632                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3633                 if (ret)
3634                         goto parse_error;
3635                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3636                                        &ad->u.net.v6info.daddr);
3637                 goto okay;
3638 #endif  /* IPV6 */
3639         default:
3640                 addrp = NULL;
3641                 goto okay;
3642         }
3643
3644 parse_error:
3645         printk(KERN_WARNING
3646                "SELinux: failure in selinux_parse_skb(),"
3647                " unable to parse packet\n");
3648         return ret;
3649
3650 okay:
3651         if (_addrp)
3652                 *_addrp = addrp;
3653         return 0;
3654 }
3655
3656 /**
3657  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3658  * @skb: the packet
3659  * @family: protocol family
3660  * @sid: the packet's peer label SID
3661  *
3662  * Description:
3663  * Check the various different forms of network peer labeling and determine
3664  * the peer label/SID for the packet; most of the magic actually occurs in
3665  * the security server function security_net_peersid_cmp().  The function
3666  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3667  * or -EACCES if @sid is invalid due to inconsistencies with the different
3668  * peer labels.
3669  *
3670  */
3671 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3672 {
3673         int err;
3674         u32 xfrm_sid;
3675         u32 nlbl_sid;
3676         u32 nlbl_type;
3677
3678         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3679         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3680
3681         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3682         if (unlikely(err)) {
3683                 printk(KERN_WARNING
3684                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3685                        " unable to determine packet's peer label\n");
3686                 return -EACCES;
3687         }
3688
3689         return 0;
3690 }
3691
3692 /* socket security operations */
3693 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3694                            u32 perms)
3695 {
3696         struct inode_security_struct *isec;
3697         struct common_audit_data ad;
3698         u32 sid;
3699         int err = 0;
3700
3701         isec = SOCK_INODE(sock)->i_security;
3702
3703         if (isec->sid == SECINITSID_KERNEL)
3704                 goto out;
3705         sid = task_sid(task);
3706
3707         COMMON_AUDIT_DATA_INIT(&ad, NET);
3708         ad.u.net.sk = sock->sk;
3709         err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
3710
3711 out:
3712         return err;
3713 }
3714
3715 static int selinux_socket_create(int family, int type,
3716                                  int protocol, int kern)
3717 {
3718         const struct cred *cred = current_cred();
3719         const struct task_security_struct *tsec = cred->security;
3720         u32 sid, newsid;
3721         u16 secclass;
3722         int err = 0;
3723
3724         if (kern)
3725                 goto out;
3726
3727         sid = tsec->sid;
3728         newsid = tsec->sockcreate_sid ?: sid;
3729
3730         secclass = socket_type_to_security_class(family, type, protocol);
3731         err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL);
3732
3733 out:
3734         return err;
3735 }
3736
3737 static int selinux_socket_post_create(struct socket *sock, int family,
3738                                       int type, int protocol, int kern)
3739 {
3740         const struct cred *cred = current_cred();
3741         const struct task_security_struct *tsec = cred->security;
3742         struct inode_security_struct *isec;
3743         struct sk_security_struct *sksec;
3744         u32 sid, newsid;
3745         int err = 0;
3746
3747         sid = tsec->sid;
3748         newsid = tsec->sockcreate_sid;
3749
3750         isec = SOCK_INODE(sock)->i_security;
3751
3752         if (kern)
3753                 isec->sid = SECINITSID_KERNEL;
3754         else if (newsid)
3755                 isec->sid = newsid;
3756         else
3757                 isec->sid = sid;
3758
3759         isec->sclass = socket_type_to_security_class(family, type, protocol);
3760         isec->initialized = 1;
3761
3762         if (sock->sk) {
3763                 sksec = sock->sk->sk_security;
3764                 sksec->sid = isec->sid;
3765                 sksec->sclass = isec->sclass;
3766                 err = selinux_netlbl_socket_post_create(sock->sk, family);
3767         }
3768
3769         return err;
3770 }
3771
3772 /* Range of port numbers used to automatically bind.
3773    Need to determine whether we should perform a name_bind
3774    permission check between the socket and the port number. */
3775
3776 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3777 {
3778         u16 family;
3779         int err;
3780
3781         err = socket_has_perm(current, sock, SOCKET__BIND);
3782         if (err)
3783                 goto out;
3784
3785         /*
3786          * If PF_INET or PF_INET6, check name_bind permission for the port.
3787          * Multiple address binding for SCTP is not supported yet: we just
3788          * check the first address now.
3789          */
3790         family = sock->sk->sk_family;
3791         if (family == PF_INET || family == PF_INET6) {
3792                 char *addrp;
3793                 struct inode_security_struct *isec;
3794                 struct common_audit_data ad;
3795                 struct sockaddr_in *addr4 = NULL;
3796                 struct sockaddr_in6 *addr6 = NULL;
3797                 unsigned short snum;
3798                 struct sock *sk = sock->sk;
3799                 u32 sid, node_perm;
3800
3801                 isec = SOCK_INODE(sock)->i_security;
3802
3803                 if (family == PF_INET) {
3804                         addr4 = (struct sockaddr_in *)address;
3805                         snum = ntohs(addr4->sin_port);
3806                         addrp = (char *)&addr4->sin_addr.s_addr;
3807                 } else {
3808                         addr6 = (struct sockaddr_in6 *)address;
3809                         snum = ntohs(addr6->sin6_port);
3810                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3811                 }
3812
3813                 if (snum) {
3814                         int low, high;
3815
3816                         inet_get_local_port_range(&low, &high);
3817
3818                         if (snum < max(PROT_SOCK, low) || snum > high) {
3819                                 err = sel_netport_sid(sk->sk_protocol,
3820                                                       snum, &sid);
3821                                 if (err)
3822                                         goto out;
3823                                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3824                                 ad.u.net.sport = htons(snum);
3825                                 ad.u.net.family = family;
3826                                 err = avc_has_perm(isec->sid, sid,
3827                                                    isec->sclass,
3828                                                    SOCKET__NAME_BIND, &ad);
3829                                 if (err)
3830                                         goto out;
3831                         }
3832                 }
3833
3834                 switch (isec->sclass) {
3835                 case SECCLASS_TCP_SOCKET:
3836                         node_perm = TCP_SOCKET__NODE_BIND;
3837                         break;
3838
3839                 case SECCLASS_UDP_SOCKET:
3840                         node_perm = UDP_SOCKET__NODE_BIND;
3841                         break;
3842
3843                 case SECCLASS_DCCP_SOCKET:
3844                         node_perm = DCCP_SOCKET__NODE_BIND;
3845                         break;
3846
3847                 default:
3848                         node_perm = RAWIP_SOCKET__NODE_BIND;
3849                         break;
3850                 }
3851
3852                 err = sel_netnode_sid(addrp, family, &sid);
3853                 if (err)
3854                         goto out;
3855
3856                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3857                 ad.u.net.sport = htons(snum);
3858                 ad.u.net.family = family;
3859
3860                 if (family == PF_INET)
3861                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3862                 else
3863                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3864
3865                 err = avc_has_perm(isec->sid, sid,
3866                                    isec->sclass, node_perm, &ad);
3867                 if (err)
3868                         goto out;
3869         }
3870 out:
3871         return err;
3872 }
3873
3874 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3875 {
3876         struct sock *sk = sock->sk;
3877         struct inode_security_struct *isec;
3878         int err;
3879
3880         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3881         if (err)
3882                 return err;
3883
3884         /*
3885          * If a TCP or DCCP socket, check name_connect permission for the port.
3886          */
3887         isec = SOCK_INODE(sock)->i_security;
3888         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3889             isec->sclass == SECCLASS_DCCP_SOCKET) {
3890                 struct common_audit_data ad;
3891                 struct sockaddr_in *addr4 = NULL;
3892                 struct sockaddr_in6 *addr6 = NULL;
3893                 unsigned short snum;
3894                 u32 sid, perm;
3895
3896                 if (sk->sk_family == PF_INET) {
3897                         addr4 = (struct sockaddr_in *)address;
3898                         if (addrlen < sizeof(struct sockaddr_in))
3899                                 return -EINVAL;
3900                         snum = ntohs(addr4->sin_port);
3901                 } else {
3902                         addr6 = (struct sockaddr_in6 *)address;
3903                         if (addrlen < SIN6_LEN_RFC2133)
3904                                 return -EINVAL;
3905                         snum = ntohs(addr6->sin6_port);
3906                 }
3907
3908                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3909                 if (err)
3910                         goto out;
3911
3912                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3913                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3914
3915                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3916                 ad.u.net.dport = htons(snum);
3917                 ad.u.net.family = sk->sk_family;
3918                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3919                 if (err)
3920                         goto out;
3921         }
3922
3923         err = selinux_netlbl_socket_connect(sk, address);
3924
3925 out:
3926         return err;
3927 }
3928
3929 static int selinux_socket_listen(struct socket *sock, int backlog)
3930 {
3931         return socket_has_perm(current, sock, SOCKET__LISTEN);
3932 }
3933
3934 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3935 {
3936         int err;
3937         struct inode_security_struct *isec;
3938         struct inode_security_struct *newisec;
3939
3940         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3941         if (err)
3942                 return err;
3943
3944         newisec = SOCK_INODE(newsock)->i_security;
3945
3946         isec = SOCK_INODE(sock)->i_security;
3947         newisec->sclass = isec->sclass;
3948         newisec->sid = isec->sid;
3949         newisec->initialized = 1;
3950
3951         return 0;
3952 }
3953
3954 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3955                                   int size)
3956 {
3957         return socket_has_perm(current, sock, SOCKET__WRITE);
3958 }
3959
3960 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3961                                   int size, int flags)
3962 {
3963         return socket_has_perm(current, sock, SOCKET__READ);
3964 }
3965
3966 static int selinux_socket_getsockname(struct socket *sock)
3967 {
3968         return socket_has_perm(current, sock, SOCKET__GETATTR);
3969 }
3970
3971 static int selinux_socket_getpeername(struct socket *sock)
3972 {
3973         return socket_has_perm(current, sock, SOCKET__GETATTR);
3974 }
3975
3976 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3977 {
3978         int err;
3979
3980         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3981         if (err)
3982                 return err;
3983
3984         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3985 }
3986
3987 static int selinux_socket_getsockopt(struct socket *sock, int level,
3988                                      int optname)
3989 {
3990         return socket_has_perm(current, sock, SOCKET__GETOPT);
3991 }
3992
3993 static int selinux_socket_shutdown(struct socket *sock, int how)
3994 {
3995         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3996 }
3997
3998 static int selinux_socket_unix_stream_connect(struct socket *sock,
3999                                               struct socket *other,
4000                                               struct sock *newsk)
4001 {
4002         struct sk_security_struct *ssec;
4003         struct inode_security_struct *isec;
4004         struct inode_security_struct *other_isec;
4005         struct common_audit_data ad;
4006         int err;
4007
4008         isec = SOCK_INODE(sock)->i_security;
4009         other_isec = SOCK_INODE(other)->i_security;
4010
4011         COMMON_AUDIT_DATA_INIT(&ad, NET);
4012         ad.u.net.sk = other->sk;
4013
4014         err = avc_has_perm(isec->sid, other_isec->sid,
4015                            isec->sclass,
4016                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4017         if (err)
4018                 return err;
4019
4020         /* connecting socket */
4021         ssec = sock->sk->sk_security;
4022         ssec->peer_sid = other_isec->sid;
4023
4024         /* server child socket */
4025         ssec = newsk->sk_security;
4026         ssec->peer_sid = isec->sid;
4027         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
4028
4029         return err;
4030 }
4031
4032 static int selinux_socket_unix_may_send(struct socket *sock,
4033                                         struct socket *other)
4034 {
4035         struct inode_security_struct *isec;
4036         struct inode_security_struct *other_isec;
4037         struct common_audit_data ad;
4038         int err;
4039
4040         isec = SOCK_INODE(sock)->i_security;
4041         other_isec = SOCK_INODE(other)->i_security;
4042
4043         COMMON_AUDIT_DATA_INIT(&ad, NET);
4044         ad.u.net.sk = other->sk;
4045
4046         err = avc_has_perm(isec->sid, other_isec->sid,
4047                            isec->sclass, SOCKET__SENDTO, &ad);
4048         if (err)
4049                 return err;
4050
4051         return 0;
4052 }
4053
4054 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4055                                     u32 peer_sid,
4056                                     struct common_audit_data *ad)
4057 {
4058         int err;
4059         u32 if_sid;
4060         u32 node_sid;
4061
4062         err = sel_netif_sid(ifindex, &if_sid);
4063         if (err)
4064                 return err;
4065         err = avc_has_perm(peer_sid, if_sid,
4066                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4067         if (err)
4068                 return err;
4069
4070         err = sel_netnode_sid(addrp, family, &node_sid);
4071         if (err)
4072                 return err;
4073         return avc_has_perm(peer_sid, node_sid,
4074                             SECCLASS_NODE, NODE__RECVFROM, ad);
4075 }
4076
4077 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4078                                        u16 family)
4079 {
4080         int err = 0;
4081         struct sk_security_struct *sksec = sk->sk_security;
4082         u32 peer_sid;
4083         u32 sk_sid = sksec->sid;
4084         struct common_audit_data ad;
4085         char *addrp;
4086
4087         COMMON_AUDIT_DATA_INIT(&ad, NET);
4088         ad.u.net.netif = skb->iif;
4089         ad.u.net.family = family;
4090         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4091         if (err)
4092                 return err;
4093
4094         if (selinux_secmark_enabled()) {
4095                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4096                                    PACKET__RECV, &ad);
4097                 if (err)
4098                         return err;
4099         }
4100
4101         if (selinux_policycap_netpeer) {
4102                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4103                 if (err)
4104                         return err;
4105                 err = avc_has_perm(sk_sid, peer_sid,
4106                                    SECCLASS_PEER, PEER__RECV, &ad);
4107                 if (err)
4108                         selinux_netlbl_err(skb, err, 0);
4109         } else {
4110                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4111                 if (err)
4112                         return err;
4113                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4114         }
4115
4116         return err;
4117 }
4118
4119 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4120 {
4121         int err;
4122         struct sk_security_struct *sksec = sk->sk_security;
4123         u16 family = sk->sk_family;
4124         u32 sk_sid = sksec->sid;
4125         struct common_audit_data ad;
4126         char *addrp;
4127         u8 secmark_active;
4128         u8 peerlbl_active;
4129
4130         if (family != PF_INET && family != PF_INET6)
4131                 return 0;
4132
4133         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4134         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4135                 family = PF_INET;
4136
4137         /* If any sort of compatibility mode is enabled then handoff processing
4138          * to the selinux_sock_rcv_skb_compat() function to deal with the
4139          * special handling.  We do this in an attempt to keep this function
4140          * as fast and as clean as possible. */
4141         if (!selinux_policycap_netpeer)
4142                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4143
4144         secmark_active = selinux_secmark_enabled();
4145         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4146         if (!secmark_active && !peerlbl_active)
4147                 return 0;
4148
4149         COMMON_AUDIT_DATA_INIT(&ad, NET);
4150         ad.u.net.netif = skb->iif;
4151         ad.u.net.family = family;
4152         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4153         if (err)
4154                 return err;
4155
4156         if (peerlbl_active) {
4157                 u32 peer_sid;
4158
4159                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4160                 if (err)
4161                         return err;
4162                 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4163                                                peer_sid, &ad);
4164                 if (err) {
4165                         selinux_netlbl_err(skb, err, 0);
4166                         return err;
4167                 }
4168                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4169                                    PEER__RECV, &ad);
4170                 if (err)
4171                         selinux_netlbl_err(skb, err, 0);
4172         }
4173
4174         if (secmark_active) {
4175                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4176                                    PACKET__RECV, &ad);
4177                 if (err)
4178                         return err;
4179         }
4180
4181         return err;
4182 }
4183
4184 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4185                                             int __user *optlen, unsigned len)
4186 {
4187         int err = 0;
4188         char *scontext;
4189         u32 scontext_len;
4190         struct sk_security_struct *ssec;
4191         struct inode_security_struct *isec;
4192         u32 peer_sid = SECSID_NULL;
4193
4194         isec = SOCK_INODE(sock)->i_security;
4195
4196         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4197             isec->sclass == SECCLASS_TCP_SOCKET) {
4198                 ssec = sock->sk->sk_security;
4199                 peer_sid = ssec->peer_sid;
4200         }
4201         if (peer_sid == SECSID_NULL) {
4202                 err = -ENOPROTOOPT;
4203                 goto out;
4204         }
4205
4206         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4207
4208         if (err)
4209                 goto out;
4210
4211         if (scontext_len > len) {
4212                 err = -ERANGE;
4213                 goto out_len;
4214         }
4215
4216         if (copy_to_user(optval, scontext, scontext_len))
4217                 err = -EFAULT;
4218
4219 out_len:
4220         if (put_user(scontext_len, optlen))
4221                 err = -EFAULT;
4222
4223         kfree(scontext);
4224 out:
4225         return err;
4226 }
4227
4228 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4229 {
4230         u32 peer_secid = SECSID_NULL;
4231         u16 family;
4232
4233         if (skb && skb->protocol == htons(ETH_P_IP))
4234                 family = PF_INET;
4235         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4236                 family = PF_INET6;
4237         else if (sock)
4238                 family = sock->sk->sk_family;
4239         else
4240                 goto out;
4241
4242         if (sock && family == PF_UNIX)
4243                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4244         else if (skb)
4245                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4246
4247 out:
4248         *secid = peer_secid;
4249         if (peer_secid == SECSID_NULL)
4250                 return -EINVAL;
4251         return 0;
4252 }
4253
4254 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4255 {
4256         return sk_alloc_security(sk, family, priority);
4257 }
4258
4259 static void selinux_sk_free_security(struct sock *sk)
4260 {
4261         sk_free_security(sk);
4262 }
4263
4264 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4265 {
4266         struct sk_security_struct *ssec = sk->sk_security;
4267         struct sk_security_struct *newssec = newsk->sk_security;
4268
4269         newssec->sid = ssec->sid;
4270         newssec->peer_sid = ssec->peer_sid;
4271         newssec->sclass = ssec->sclass;
4272
4273         selinux_netlbl_sk_security_reset(newssec);
4274 }
4275
4276 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4277 {
4278         if (!sk)
4279                 *secid = SECINITSID_ANY_SOCKET;
4280         else {
4281                 struct sk_security_struct *sksec = sk->sk_security;
4282
4283                 *secid = sksec->sid;
4284         }
4285 }
4286
4287 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4288 {
4289         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4290         struct sk_security_struct *sksec = sk->sk_security;
4291
4292         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4293             sk->sk_family == PF_UNIX)
4294                 isec->sid = sksec->sid;
4295         sksec->sclass = isec->sclass;
4296 }
4297
4298 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4299                                      struct request_sock *req)
4300 {
4301         struct sk_security_struct *sksec = sk->sk_security;
4302         int err;
4303         u16 family = sk->sk_family;
4304         u32 newsid;
4305         u32 peersid;
4306
4307         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4308         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4309                 family = PF_INET;
4310
4311         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4312         if (err)
4313                 return err;
4314         if (peersid == SECSID_NULL) {
4315                 req->secid = sksec->sid;
4316                 req->peer_secid = SECSID_NULL;
4317         } else {
4318                 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4319                 if (err)
4320                         return err;
4321                 req->secid = newsid;
4322                 req->peer_secid = peersid;
4323         }
4324
4325         return selinux_netlbl_inet_conn_request(req, family);
4326 }
4327
4328 static void selinux_inet_csk_clone(struct sock *newsk,
4329                                    const struct request_sock *req)
4330 {
4331         struct sk_security_struct *newsksec = newsk->sk_security;
4332
4333         newsksec->sid = req->secid;
4334         newsksec->peer_sid = req->peer_secid;
4335         /* NOTE: Ideally, we should also get the isec->sid for the
4336            new socket in sync, but we don't have the isec available yet.
4337            So we will wait until sock_graft to do it, by which
4338            time it will have been created and available. */
4339
4340         /* We don't need to take any sort of lock here as we are the only
4341          * thread with access to newsksec */
4342         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4343 }
4344
4345 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4346 {
4347         u16 family = sk->sk_family;
4348         struct sk_security_struct *sksec = sk->sk_security;
4349
4350         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4351         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4352                 family = PF_INET;
4353
4354         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4355 }
4356
4357 static void selinux_req_classify_flow(const struct request_sock *req,
4358                                       struct flowi *fl)
4359 {
4360         fl->secid = req->secid;
4361 }
4362
4363 static int selinux_tun_dev_create(void)
4364 {
4365         u32 sid = current_sid();
4366
4367         /* we aren't taking into account the "sockcreate" SID since the socket
4368          * that is being created here is not a socket in the traditional sense,
4369          * instead it is a private sock, accessible only to the kernel, and
4370          * representing a wide range of network traffic spanning multiple
4371          * connections unlike traditional sockets - check the TUN driver to
4372          * get a better understanding of why this socket is special */
4373
4374         return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4375                             NULL);
4376 }
4377
4378 static void selinux_tun_dev_post_create(struct sock *sk)
4379 {
4380         struct sk_security_struct *sksec = sk->sk_security;
4381
4382         /* we don't currently perform any NetLabel based labeling here and it
4383          * isn't clear that we would want to do so anyway; while we could apply
4384          * labeling without the support of the TUN user the resulting labeled
4385          * traffic from the other end of the connection would almost certainly
4386          * cause confusion to the TUN user that had no idea network labeling
4387          * protocols were being used */
4388
4389         /* see the comments in selinux_tun_dev_create() about why we don't use
4390          * the sockcreate SID here */
4391
4392         sksec->sid = current_sid();
4393         sksec->sclass = SECCLASS_TUN_SOCKET;
4394 }
4395
4396 static int selinux_tun_dev_attach(struct sock *sk)
4397 {
4398         struct sk_security_struct *sksec = sk->sk_security;
4399         u32 sid = current_sid();
4400         int err;
4401
4402         err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4403                            TUN_SOCKET__RELABELFROM, NULL);
4404         if (err)
4405                 return err;
4406         err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4407                            TUN_SOCKET__RELABELTO, NULL);
4408         if (err)
4409                 return err;
4410
4411         sksec->sid = sid;
4412
4413         return 0;
4414 }
4415
4416 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4417 {
4418         int err = 0;
4419         u32 perm;
4420         struct nlmsghdr *nlh;
4421         struct socket *sock = sk->sk_socket;
4422         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4423
4424         if (skb->len < NLMSG_SPACE(0)) {
4425                 err = -EINVAL;
4426                 goto out;
4427         }
4428         nlh = nlmsg_hdr(skb);
4429
4430         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4431         if (err) {
4432                 if (err == -EINVAL) {
4433                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4434                                   "SELinux:  unrecognized netlink message"
4435                                   " type=%hu for sclass=%hu\n",
4436                                   nlh->nlmsg_type, isec->sclass);
4437                         if (!selinux_enforcing || security_get_allow_unknown())
4438                                 err = 0;
4439                 }
4440
4441                 /* Ignore */
4442                 if (err == -ENOENT)
4443                         err = 0;
4444                 goto out;
4445         }
4446
4447         err = socket_has_perm(current, sock, perm);
4448 out:
4449         return err;
4450 }
4451
4452 #ifdef CONFIG_NETFILTER
4453
4454 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4455                                        u16 family)
4456 {
4457         int err;
4458         char *addrp;
4459         u32 peer_sid;
4460         struct common_audit_data ad;
4461         u8 secmark_active;
4462         u8 netlbl_active;
4463         u8 peerlbl_active;
4464
4465         if (!selinux_policycap_netpeer)
4466                 return NF_ACCEPT;
4467
4468         secmark_active = selinux_secmark_enabled();
4469         netlbl_active = netlbl_enabled();
4470         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4471         if (!secmark_active && !peerlbl_active)
4472                 return NF_ACCEPT;
4473
4474         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4475                 return NF_DROP;
4476
4477         COMMON_AUDIT_DATA_INIT(&ad, NET);
4478         ad.u.net.netif = ifindex;
4479         ad.u.net.family = family;
4480         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4481                 return NF_DROP;
4482
4483         if (peerlbl_active) {
4484                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4485                                                peer_sid, &ad);
4486                 if (err) {
4487                         selinux_netlbl_err(skb, err, 1);
4488                         return NF_DROP;
4489                 }
4490         }
4491
4492         if (secmark_active)
4493                 if (avc_has_perm(peer_sid, skb->secmark,
4494                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4495                         return NF_DROP;
4496
4497         if (netlbl_active)
4498                 /* we do this in the FORWARD path and not the POST_ROUTING
4499                  * path because we want to make sure we apply the necessary
4500                  * labeling before IPsec is applied so we can leverage AH
4501                  * protection */
4502                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4503                         return NF_DROP;
4504
4505         return NF_ACCEPT;
4506 }
4507
4508 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4509                                          struct sk_buff *skb,
4510                                          const struct net_device *in,
4511                                          const struct net_device *out,
4512                                          int (*okfn)(struct sk_buff *))
4513 {
4514         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4515 }
4516
4517 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4518 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4519                                          struct sk_buff *skb,
4520                                          const struct net_device *in,
4521                                          const struct net_device *out,
4522                                          int (*okfn)(struct sk_buff *))
4523 {
4524         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4525 }
4526 #endif  /* IPV6 */
4527
4528 static unsigned int selinux_ip_output(struct sk_buff *skb,
4529                                       u16 family)
4530 {
4531         u32 sid;
4532
4533         if (!netlbl_enabled())
4534                 return NF_ACCEPT;
4535
4536         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4537          * because we want to make sure we apply the necessary labeling
4538          * before IPsec is applied so we can leverage AH protection */
4539         if (skb->sk) {
4540                 struct sk_security_struct *sksec = skb->sk->sk_security;
4541                 sid = sksec->sid;
4542         } else
4543                 sid = SECINITSID_KERNEL;
4544         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4545                 return NF_DROP;
4546
4547         return NF_ACCEPT;
4548 }
4549
4550 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4551                                         struct sk_buff *skb,
4552                                         const struct net_device *in,
4553                                         const struct net_device *out,
4554                                         int (*okfn)(struct sk_buff *))
4555 {
4556         return selinux_ip_output(skb, PF_INET);
4557 }
4558
4559 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4560                                                 int ifindex,
4561                                                 u16 family)
4562 {
4563         struct sock *sk = skb->sk;
4564         struct sk_security_struct *sksec;
4565         struct common_audit_data ad;
4566         char *addrp;
4567         u8 proto;
4568
4569         if (sk == NULL)
4570                 return NF_ACCEPT;
4571         sksec = sk->sk_security;
4572
4573         COMMON_AUDIT_DATA_INIT(&ad, NET);
4574         ad.u.net.netif = ifindex;
4575         ad.u.net.family = family;
4576         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4577                 return NF_DROP;
4578
4579         if (selinux_secmark_enabled())
4580                 if (avc_has_perm(sksec->sid, skb->secmark,
4581                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4582                         return NF_DROP;
4583
4584         if (selinux_policycap_netpeer)
4585                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4586                         return NF_DROP;
4587
4588         return NF_ACCEPT;
4589 }
4590
4591 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4592                                          u16 family)
4593 {
4594         u32 secmark_perm;
4595         u32 peer_sid;
4596         struct sock *sk;
4597         struct common_audit_data ad;
4598         char *addrp;
4599         u8 secmark_active;
4600         u8 peerlbl_active;
4601
4602         /* If any sort of compatibility mode is enabled then handoff processing
4603          * to the selinux_ip_postroute_compat() function to deal with the
4604          * special handling.  We do this in an attempt to keep this function
4605          * as fast and as clean as possible. */
4606         if (!selinux_policycap_netpeer)
4607                 return selinux_ip_postroute_compat(skb, ifindex, family);
4608 #ifdef CONFIG_XFRM
4609         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4610          * packet transformation so allow the packet to pass without any checks
4611          * since we'll have another chance to perform access control checks
4612          * when the packet is on it's final way out.
4613          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4614          *       is NULL, in this case go ahead and apply access control. */
4615         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4616                 return NF_ACCEPT;
4617 #endif
4618         secmark_active = selinux_secmark_enabled();
4619         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4620         if (!secmark_active && !peerlbl_active)
4621                 return NF_ACCEPT;
4622
4623         /* if the packet is being forwarded then get the peer label from the
4624          * packet itself; otherwise check to see if it is from a local
4625          * application or the kernel, if from an application get the peer label
4626          * from the sending socket, otherwise use the kernel's sid */
4627         sk = skb->sk;
4628         if (sk == NULL) {
4629                 switch (family) {
4630                 case PF_INET:
4631                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4632                                 secmark_perm = PACKET__FORWARD_OUT;
4633                         else
4634                                 secmark_perm = PACKET__SEND;
4635                         break;
4636                 case PF_INET6:
4637                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4638                                 secmark_perm = PACKET__FORWARD_OUT;
4639                         else
4640                                 secmark_perm = PACKET__SEND;
4641                         break;
4642                 default:
4643                         return NF_DROP;
4644                 }
4645                 if (secmark_perm == PACKET__FORWARD_OUT) {
4646                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4647                                 return NF_DROP;
4648                 } else
4649                         peer_sid = SECINITSID_KERNEL;
4650         } else {
4651                 struct sk_security_struct *sksec = sk->sk_security;
4652                 peer_sid = sksec->sid;
4653                 secmark_perm = PACKET__SEND;
4654         }
4655
4656         COMMON_AUDIT_DATA_INIT(&ad, NET);
4657         ad.u.net.netif = ifindex;
4658         ad.u.net.family = family;
4659         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4660                 return NF_DROP;
4661
4662         if (secmark_active)
4663                 if (avc_has_perm(peer_sid, skb->secmark,
4664                                  SECCLASS_PACKET, secmark_perm, &ad))
4665                         return NF_DROP;
4666
4667         if (peerlbl_active) {
4668                 u32 if_sid;
4669                 u32 node_sid;
4670
4671                 if (sel_netif_sid(ifindex, &if_sid))
4672                         return NF_DROP;
4673                 if (avc_has_perm(peer_sid, if_sid,
4674                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4675                         return NF_DROP;
4676
4677                 if (sel_netnode_sid(addrp, family, &node_sid))
4678                         return NF_DROP;
4679                 if (avc_has_perm(peer_sid, node_sid,
4680                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4681                         return NF_DROP;
4682         }
4683
4684         return NF_ACCEPT;
4685 }
4686
4687 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4688                                            struct sk_buff *skb,
4689                                            const struct net_device *in,
4690                                            const struct net_device *out,
4691                                            int (*okfn)(struct sk_buff *))
4692 {
4693         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4694 }
4695
4696 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4697 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4698                                            struct sk_buff *skb,
4699                                            const struct net_device *in,
4700                                            const struct net_device *out,
4701                                            int (*okfn)(struct sk_buff *))
4702 {
4703         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4704 }
4705 #endif  /* IPV6 */
4706
4707 #endif  /* CONFIG_NETFILTER */
4708
4709 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4710 {
4711         int err;
4712
4713         err = cap_netlink_send(sk, skb);
4714         if (err)
4715                 return err;
4716
4717         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4718                 err = selinux_nlmsg_perm(sk, skb);
4719
4720         return err;
4721 }
4722
4723 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4724 {
4725         int err;
4726         struct common_audit_data ad;
4727
4728         err = cap_netlink_recv(skb, capability);
4729         if (err)
4730                 return err;
4731
4732         COMMON_AUDIT_DATA_INIT(&ad, CAP);
4733         ad.u.cap = capability;
4734
4735         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4736                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4737 }
4738
4739 static int ipc_alloc_security(struct task_struct *task,
4740                               struct kern_ipc_perm *perm,
4741                               u16 sclass)
4742 {
4743         struct ipc_security_struct *isec;
4744         u32 sid;
4745
4746         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4747         if (!isec)
4748                 return -ENOMEM;
4749
4750         sid = task_sid(task);
4751         isec->sclass = sclass;
4752         isec->sid = sid;
4753         perm->security = isec;
4754
4755         return 0;
4756 }
4757
4758 static void ipc_free_security(struct kern_ipc_perm *perm)
4759 {
4760         struct ipc_security_struct *isec = perm->security;
4761         perm->security = NULL;
4762         kfree(isec);
4763 }
4764
4765 static int msg_msg_alloc_security(struct msg_msg *msg)
4766 {
4767         struct msg_security_struct *msec;
4768
4769         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4770         if (!msec)
4771                 return -ENOMEM;
4772
4773         msec->sid = SECINITSID_UNLABELED;
4774         msg->security = msec;
4775
4776         return 0;
4777 }
4778
4779 static void msg_msg_free_security(struct msg_msg *msg)
4780 {
4781         struct msg_security_struct *msec = msg->security;
4782
4783         msg->security = NULL;
4784         kfree(msec);
4785 }
4786
4787 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4788                         u32 perms)
4789 {
4790         struct ipc_security_struct *isec;
4791         struct common_audit_data ad;
4792         u32 sid = current_sid();
4793
4794         isec = ipc_perms->security;
4795
4796         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4797         ad.u.ipc_id = ipc_perms->key;
4798
4799         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4800 }
4801
4802 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4803 {
4804         return msg_msg_alloc_security(msg);
4805 }
4806
4807 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4808 {
4809         msg_msg_free_security(msg);
4810 }
4811
4812 /* message queue security operations */
4813 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4814 {
4815         struct ipc_security_struct *isec;
4816         struct common_audit_data ad;
4817         u32 sid = current_sid();
4818         int rc;
4819
4820         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4821         if (rc)
4822                 return rc;
4823
4824         isec = msq->q_perm.security;
4825
4826         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4827         ad.u.ipc_id = msq->q_perm.key;
4828
4829         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4830                           MSGQ__CREATE, &ad);
4831         if (rc) {
4832                 ipc_free_security(&msq->q_perm);
4833                 return rc;
4834         }
4835         return 0;
4836 }
4837
4838 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4839 {
4840         ipc_free_security(&msq->q_perm);
4841 }
4842
4843 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4844 {
4845         struct ipc_security_struct *isec;
4846         struct common_audit_data ad;
4847         u32 sid = current_sid();
4848
4849         isec = msq->q_perm.security;
4850
4851         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4852         ad.u.ipc_id = msq->q_perm.key;
4853
4854         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4855                             MSGQ__ASSOCIATE, &ad);
4856 }
4857
4858 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4859 {
4860         int err;
4861         int perms;
4862
4863         switch (cmd) {
4864         case IPC_INFO:
4865         case MSG_INFO:
4866                 /* No specific object, just general system-wide information. */
4867                 return task_has_system(current, SYSTEM__IPC_INFO);
4868         case IPC_STAT:
4869         case MSG_STAT:
4870                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4871                 break;
4872         case IPC_SET:
4873                 perms = MSGQ__SETATTR;
4874                 break;
4875         case IPC_RMID:
4876                 perms = MSGQ__DESTROY;
4877                 break;
4878         default:
4879                 return 0;
4880         }
4881
4882         err = ipc_has_perm(&msq->q_perm, perms);
4883         return err;
4884 }
4885
4886 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4887 {
4888         struct ipc_security_struct *isec;
4889         struct msg_security_struct *msec;
4890         struct common_audit_data ad;
4891         u32 sid = current_sid();
4892         int rc;
4893
4894         isec = msq->q_perm.security;
4895         msec = msg->security;
4896
4897         /*
4898          * First time through, need to assign label to the message
4899          */
4900         if (msec->sid == SECINITSID_UNLABELED) {
4901                 /*
4902                  * Compute new sid based on current process and
4903                  * message queue this message will be stored in
4904                  */
4905                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4906                                              &msec->sid);
4907                 if (rc)
4908                         return rc;
4909         }
4910
4911         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4912         ad.u.ipc_id = msq->q_perm.key;
4913
4914         /* Can this process write to the queue? */
4915         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4916                           MSGQ__WRITE, &ad);
4917         if (!rc)
4918                 /* Can this process send the message */
4919                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4920                                   MSG__SEND, &ad);
4921         if (!rc)
4922                 /* Can the message be put in the queue? */
4923                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4924                                   MSGQ__ENQUEUE, &ad);
4925
4926         return rc;
4927 }
4928
4929 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4930                                     struct task_struct *target,
4931                                     long type, int mode)
4932 {
4933         struct ipc_security_struct *isec;
4934         struct msg_security_struct *msec;
4935         struct common_audit_data ad;
4936         u32 sid = task_sid(target);
4937         int rc;
4938
4939         isec = msq->q_perm.security;
4940         msec = msg->security;
4941
4942         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4943         ad.u.ipc_id = msq->q_perm.key;
4944
4945         rc = avc_has_perm(sid, isec->sid,
4946                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4947         if (!rc)
4948                 rc = avc_has_perm(sid, msec->sid,
4949                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4950         return rc;
4951 }
4952
4953 /* Shared Memory security operations */
4954 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4955 {
4956         struct ipc_security_struct *isec;
4957         struct common_audit_data ad;
4958         u32 sid = current_sid();
4959         int rc;
4960
4961         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4962         if (rc)
4963                 return rc;
4964
4965         isec = shp->shm_perm.security;
4966
4967         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4968         ad.u.ipc_id = shp->shm_perm.key;
4969
4970         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4971                           SHM__CREATE, &ad);
4972         if (rc) {
4973                 ipc_free_security(&shp->shm_perm);
4974                 return rc;
4975         }
4976         return 0;
4977 }
4978
4979 static void selinux_shm_free_security(struct shmid_kernel *shp)
4980 {
4981         ipc_free_security(&shp->shm_perm);
4982 }
4983
4984 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4985 {
4986         struct ipc_security_struct *isec;
4987         struct common_audit_data ad;
4988         u32 sid = current_sid();
4989
4990         isec = shp->shm_perm.security;
4991
4992         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4993         ad.u.ipc_id = shp->shm_perm.key;
4994
4995         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4996                             SHM__ASSOCIATE, &ad);
4997 }
4998
4999 /* Note, at this point, shp is locked down */
5000 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5001 {
5002         int perms;
5003         int err;
5004
5005         switch (cmd) {
5006         case IPC_INFO:
5007         case SHM_INFO:
5008                 /* No specific object, just general system-wide information. */
5009                 return task_has_system(current, SYSTEM__IPC_INFO);
5010         case IPC_STAT:
5011         case SHM_STAT:
5012                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5013                 break;
5014         case IPC_SET:
5015                 perms = SHM__SETATTR;
5016                 break;
5017         case SHM_LOCK:
5018         case SHM_UNLOCK:
5019                 perms = SHM__LOCK;
5020                 break;
5021         case IPC_RMID:
5022                 perms = SHM__DESTROY;
5023                 break;
5024         default:
5025                 return 0;
5026         }
5027
5028         err = ipc_has_perm(&shp->shm_perm, perms);
5029         return err;
5030 }
5031
5032 static int selinux_shm_shmat(struct shmid_kernel *shp,
5033                              char __user *shmaddr, int shmflg)
5034 {
5035         u32 perms;
5036
5037         if (shmflg & SHM_RDONLY)
5038                 perms = SHM__READ;
5039         else
5040                 perms = SHM__READ | SHM__WRITE;
5041
5042         return ipc_has_perm(&shp->shm_perm, perms);
5043 }
5044
5045 /* Semaphore security operations */
5046 static int selinux_sem_alloc_security(struct sem_array *sma)
5047 {
5048         struct ipc_security_struct *isec;
5049         struct common_audit_data ad;
5050         u32 sid = current_sid();
5051         int rc;
5052
5053         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5054         if (rc)
5055                 return rc;
5056
5057         isec = sma->sem_perm.security;
5058
5059         COMMON_AUDIT_DATA_INIT(&ad, IPC);
5060         ad.u.ipc_id = sma->sem_perm.key;
5061
5062         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5063                           SEM__CREATE, &ad);
5064         if (rc) {
5065                 ipc_free_security(&sma->sem_perm);
5066                 return rc;
5067         }
5068         return 0;
5069 }
5070
5071 static void selinux_sem_free_security(struct sem_array *sma)
5072 {
5073         ipc_free_security(&sma->sem_perm);
5074 }
5075
5076 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5077 {
5078         struct ipc_security_struct *isec;
5079         struct common_audit_data ad;
5080         u32 sid = current_sid();
5081
5082         isec = sma->sem_perm.security;
5083
5084         COMMON_AUDIT_DATA_INIT(&ad, IPC);
5085         ad.u.ipc_id = sma->sem_perm.key;
5086
5087         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5088                             SEM__ASSOCIATE, &ad);
5089 }
5090
5091 /* Note, at this point, sma is locked down */
5092 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5093 {
5094         int err;
5095         u32 perms;
5096
5097         switch (cmd) {
5098         case IPC_INFO:
5099         case SEM_INFO:
5100                 /* No specific object, just general system-wide information. */
5101                 return task_has_system(current, SYSTEM__IPC_INFO);
5102         case GETPID:
5103         case GETNCNT:
5104         case GETZCNT:
5105                 perms = SEM__GETATTR;
5106                 break;
5107         case GETVAL:
5108         case GETALL:
5109                 perms = SEM__READ;
5110                 break;
5111         case SETVAL:
5112         case SETALL:
5113                 perms = SEM__WRITE;
5114                 break;
5115         case IPC_RMID:
5116                 perms = SEM__DESTROY;
5117                 break;
5118         case IPC_SET:
5119                 perms = SEM__SETATTR;
5120                 break;
5121         case IPC_STAT:
5122         case SEM_STAT:
5123                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5124                 break;
5125         default:
5126                 return 0;
5127         }
5128
5129         err = ipc_has_perm(&sma->sem_perm, perms);
5130         return err;
5131 }
5132
5133 static int selinux_sem_semop(struct sem_array *sma,
5134                              struct sembuf *sops, unsigned nsops, int alter)
5135 {
5136         u32 perms;
5137
5138         if (alter)
5139                 perms = SEM__READ | SEM__WRITE;
5140         else
5141                 perms = SEM__READ;
5142
5143         return ipc_has_perm(&sma->sem_perm, perms);
5144 }
5145
5146 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5147 {
5148         u32 av = 0;
5149
5150         av = 0;
5151         if (flag & S_IRUGO)
5152                 av |= IPC__UNIX_READ;
5153         if (flag & S_IWUGO)
5154                 av |= IPC__UNIX_WRITE;
5155
5156         if (av == 0)
5157                 return 0;
5158
5159         return ipc_has_perm(ipcp, av);
5160 }
5161
5162 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5163 {
5164         struct ipc_security_struct *isec = ipcp->security;
5165         *secid = isec->sid;
5166 }
5167
5168 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5169 {
5170         if (inode)
5171                 inode_doinit_with_dentry(inode, dentry);
5172 }
5173
5174 static int selinux_getprocattr(struct task_struct *p,
5175                                char *name, char **value)
5176 {
5177         const struct task_security_struct *__tsec;
5178         u32 sid;
5179         int error;
5180         unsigned len;
5181
5182         if (current != p) {
5183                 error = current_has_perm(p, PROCESS__GETATTR);
5184                 if (error)
5185                         return error;
5186         }
5187
5188         rcu_read_lock();
5189         __tsec = __task_cred(p)->security;
5190
5191         if (!strcmp(name, "current"))
5192                 sid = __tsec->sid;
5193         else if (!strcmp(name, "prev"))
5194                 sid = __tsec->osid;
5195         else if (!strcmp(name, "exec"))
5196                 sid = __tsec->exec_sid;
5197         else if (!strcmp(name, "fscreate"))
5198                 sid = __tsec->create_sid;
5199         else if (!strcmp(name, "keycreate"))
5200                 sid = __tsec->keycreate_sid;
5201         else if (!strcmp(name, "sockcreate"))
5202                 sid = __tsec->sockcreate_sid;
5203         else
5204                 goto invalid;
5205         rcu_read_unlock();
5206
5207         if (!sid)
5208                 return 0;
5209
5210         error = security_sid_to_context(sid, value, &len);
5211         if (error)
5212                 return error;
5213         return len;
5214
5215 invalid:
5216         rcu_read_unlock();
5217         return -EINVAL;
5218 }
5219
5220 static int selinux_setprocattr(struct task_struct *p,
5221                                char *name, void *value, size_t size)
5222 {
5223         struct task_security_struct *tsec;
5224         struct task_struct *tracer;
5225         struct cred *new;
5226         u32 sid = 0, ptsid;
5227         int error;
5228         char *str = value;
5229
5230         if (current != p) {
5231                 /* SELinux only allows a process to change its own
5232                    security attributes. */
5233                 return -EACCES;
5234         }
5235
5236         /*
5237          * Basic control over ability to set these attributes at all.
5238          * current == p, but we'll pass them separately in case the
5239          * above restriction is ever removed.
5240          */
5241         if (!strcmp(name, "exec"))
5242                 error = current_has_perm(p, PROCESS__SETEXEC);
5243         else if (!strcmp(name, "fscreate"))
5244                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5245         else if (!strcmp(name, "keycreate"))
5246                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5247         else if (!strcmp(name, "sockcreate"))
5248                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5249         else if (!strcmp(name, "current"))
5250                 error = current_has_perm(p, PROCESS__SETCURRENT);
5251         else
5252                 error = -EINVAL;
5253         if (error)
5254                 return error;
5255
5256         /* Obtain a SID for the context, if one was specified. */
5257         if (size && str[1] && str[1] != '\n') {
5258                 if (str[size-1] == '\n') {
5259                         str[size-1] = 0;
5260                         size--;
5261                 }
5262                 error = security_context_to_sid(value, size, &sid);
5263                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5264                         if (!capable(CAP_MAC_ADMIN))
5265                                 return error;
5266                         error = security_context_to_sid_force(value, size,
5267                                                               &sid);
5268                 }
5269                 if (error)
5270                         return error;
5271         }
5272
5273         new = prepare_creds();
5274         if (!new)
5275                 return -ENOMEM;
5276
5277         /* Permission checking based on the specified context is
5278            performed during the actual operation (execve,
5279            open/mkdir/...), when we know the full context of the
5280            operation.  See selinux_bprm_set_creds for the execve
5281            checks and may_create for the file creation checks. The
5282            operation will then fail if the context is not permitted. */
5283         tsec = new->security;
5284         if (!strcmp(name, "exec")) {
5285                 tsec->exec_sid = sid;
5286         } else if (!strcmp(name, "fscreate")) {
5287                 tsec->create_sid = sid;
5288         } else if (!strcmp(name, "keycreate")) {
5289                 error = may_create_key(sid, p);
5290                 if (error)
5291                         goto abort_change;
5292                 tsec->keycreate_sid = sid;
5293         } else if (!strcmp(name, "sockcreate")) {
5294                 tsec->sockcreate_sid = sid;
5295         } else if (!strcmp(name, "current")) {
5296                 error = -EINVAL;
5297                 if (sid == 0)
5298                         goto abort_change;
5299
5300                 /* Only allow single threaded processes to change context */
5301                 error = -EPERM;
5302                 if (!current_is_single_threaded()) {
5303                         error = security_bounded_transition(tsec->sid, sid);
5304                         if (error)
5305                                 goto abort_change;
5306                 }
5307
5308                 /* Check permissions for the transition. */
5309                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5310                                      PROCESS__DYNTRANSITION, NULL);
5311                 if (error)
5312                         goto abort_change;
5313
5314                 /* Check for ptracing, and update the task SID if ok.
5315                    Otherwise, leave SID unchanged and fail. */
5316                 ptsid = 0;
5317                 task_lock(p);
5318                 tracer = tracehook_tracer_task(p);
5319                 if (tracer)
5320                         ptsid = task_sid(tracer);
5321                 task_unlock(p);
5322
5323                 if (tracer) {
5324                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5325                                              PROCESS__PTRACE, NULL);
5326                         if (error)
5327                                 goto abort_change;
5328                 }
5329
5330                 tsec->sid = sid;
5331         } else {
5332                 error = -EINVAL;
5333                 goto abort_change;
5334         }
5335
5336         commit_creds(new);
5337         return size;
5338
5339 abort_change:
5340         abort_creds(new);
5341         return error;
5342 }
5343
5344 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5345 {
5346         return security_sid_to_context(secid, secdata, seclen);
5347 }
5348
5349 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5350 {
5351         return security_context_to_sid(secdata, seclen, secid);
5352 }
5353
5354 static void selinux_release_secctx(char *secdata, u32 seclen)
5355 {
5356         kfree(secdata);
5357 }
5358
5359 /*
5360  *      called with inode->i_mutex locked
5361  */
5362 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5363 {
5364         return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5365 }
5366
5367 /*
5368  *      called with inode->i_mutex locked
5369  */
5370 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5371 {
5372         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5373 }
5374
5375 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5376 {
5377         int len = 0;
5378         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5379                                                 ctx, true);
5380         if (len < 0)
5381                 return len;
5382         *ctxlen = len;
5383         return 0;
5384 }
5385 #ifdef CONFIG_KEYS
5386
5387 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5388                              unsigned long flags)
5389 {
5390         const struct task_security_struct *tsec;
5391         struct key_security_struct *ksec;
5392
5393         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5394         if (!ksec)
5395                 return -ENOMEM;
5396
5397         tsec = cred->security;
5398         if (tsec->keycreate_sid)
5399                 ksec->sid = tsec->keycreate_sid;
5400         else
5401                 ksec->sid = tsec->sid;
5402
5403         k->security = ksec;
5404         return 0;
5405 }
5406
5407 static void selinux_key_free(struct key *k)
5408 {
5409         struct key_security_struct *ksec = k->security;
5410
5411         k->security = NULL;
5412         kfree(ksec);
5413 }
5414
5415 static int selinux_key_permission(key_ref_t key_ref,
5416                                   const struct cred *cred,
5417                                   key_perm_t perm)
5418 {
5419         struct key *key;
5420         struct key_security_struct *ksec;
5421         u32 sid;
5422
5423         /* if no specific permissions are requested, we skip the
5424            permission check. No serious, additional covert channels
5425            appear to be created. */
5426         if (perm == 0)
5427                 return 0;
5428
5429         sid = cred_sid(cred);
5430
5431         key = key_ref_to_ptr(key_ref);
5432         ksec = key->security;
5433
5434         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5435 }
5436
5437 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5438 {
5439         struct key_security_struct *ksec = key->security;
5440         char *context = NULL;
5441         unsigned len;
5442         int rc;
5443
5444         rc = security_sid_to_context(ksec->sid, &context, &len);
5445         if (!rc)
5446                 rc = len;
5447         *_buffer = context;
5448         return rc;
5449 }
5450
5451 #endif
5452
5453 static struct security_operations selinux_ops = {
5454         .name =                         "selinux",
5455
5456         .ptrace_access_check =          selinux_ptrace_access_check,
5457         .ptrace_traceme =               selinux_ptrace_traceme,
5458         .capget =                       selinux_capget,
5459         .capset =                       selinux_capset,
5460         .sysctl =                       selinux_sysctl,
5461         .capable =                      selinux_capable,
5462         .quotactl =                     selinux_quotactl,
5463         .quota_on =                     selinux_quota_on,
5464         .syslog =                       selinux_syslog,
5465         .vm_enough_memory =             selinux_vm_enough_memory,
5466
5467         .netlink_send =                 selinux_netlink_send,
5468         .netlink_recv =                 selinux_netlink_recv,
5469
5470         .bprm_set_creds =               selinux_bprm_set_creds,
5471         .bprm_committing_creds =        selinux_bprm_committing_creds,
5472         .bprm_committed_creds =         selinux_bprm_committed_creds,
5473         .bprm_secureexec =              selinux_bprm_secureexec,
5474
5475         .sb_alloc_security =            selinux_sb_alloc_security,
5476         .sb_free_security =             selinux_sb_free_security,
5477         .sb_copy_data =                 selinux_sb_copy_data,
5478         .sb_kern_mount =                selinux_sb_kern_mount,
5479         .sb_show_options =              selinux_sb_show_options,
5480         .sb_statfs =                    selinux_sb_statfs,
5481         .sb_mount =                     selinux_mount,
5482         .sb_umount =                    selinux_umount,
5483         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5484         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5485         .sb_parse_opts_str =            selinux_parse_opts_str,
5486
5487
5488         .inode_alloc_security =         selinux_inode_alloc_security,
5489         .inode_free_security =          selinux_inode_free_security,
5490         .inode_init_security =          selinux_inode_init_security,
5491         .inode_create =                 selinux_inode_create,
5492         .inode_link =                   selinux_inode_link,
5493         .inode_unlink =                 selinux_inode_unlink,
5494         .inode_symlink =                selinux_inode_symlink,
5495         .inode_mkdir =                  selinux_inode_mkdir,
5496         .inode_rmdir =                  selinux_inode_rmdir,
5497         .inode_mknod =                  selinux_inode_mknod,
5498         .inode_rename =                 selinux_inode_rename,
5499         .inode_readlink =               selinux_inode_readlink,
5500         .inode_follow_link =            selinux_inode_follow_link,
5501         .inode_permission =             selinux_inode_permission,
5502         .inode_setattr =                selinux_inode_setattr,
5503         .inode_getattr =                selinux_inode_getattr,
5504         .inode_setxattr =               selinux_inode_setxattr,
5505         .inode_post_setxattr =          selinux_inode_post_setxattr,
5506         .inode_getxattr =               selinux_inode_getxattr,
5507         .inode_listxattr =              selinux_inode_listxattr,
5508         .inode_removexattr =            selinux_inode_removexattr,
5509         .inode_getsecurity =            selinux_inode_getsecurity,
5510         .inode_setsecurity =            selinux_inode_setsecurity,
5511         .inode_listsecurity =           selinux_inode_listsecurity,
5512         .inode_getsecid =               selinux_inode_getsecid,
5513
5514         .file_permission =              selinux_file_permission,
5515         .file_alloc_security =          selinux_file_alloc_security,
5516         .file_free_security =           selinux_file_free_security,
5517         .file_ioctl =                   selinux_file_ioctl,
5518         .file_mmap =                    selinux_file_mmap,
5519         .file_mprotect =                selinux_file_mprotect,
5520         .file_lock =                    selinux_file_lock,
5521         .file_fcntl =                   selinux_file_fcntl,
5522         .file_set_fowner =              selinux_file_set_fowner,
5523         .file_send_sigiotask =          selinux_file_send_sigiotask,
5524         .file_receive =                 selinux_file_receive,
5525
5526         .dentry_open =                  selinux_dentry_open,
5527
5528         .task_create =                  selinux_task_create,
5529         .cred_alloc_blank =             selinux_cred_alloc_blank,
5530         .cred_free =                    selinux_cred_free,
5531         .cred_prepare =                 selinux_cred_prepare,
5532         .cred_transfer =                selinux_cred_transfer,
5533         .kernel_act_as =                selinux_kernel_act_as,
5534         .kernel_create_files_as =       selinux_kernel_create_files_as,
5535         .kernel_module_request =        selinux_kernel_module_request,
5536         .task_setpgid =                 selinux_task_setpgid,
5537         .task_getpgid =                 selinux_task_getpgid,
5538         .task_getsid =                  selinux_task_getsid,
5539         .task_getsecid =                selinux_task_getsecid,
5540         .task_setnice =                 selinux_task_setnice,
5541         .task_setioprio =               selinux_task_setioprio,
5542         .task_getioprio =               selinux_task_getioprio,
5543         .task_setrlimit =               selinux_task_setrlimit,
5544         .task_setscheduler =            selinux_task_setscheduler,
5545         .task_getscheduler =            selinux_task_getscheduler,
5546         .task_movememory =              selinux_task_movememory,
5547         .task_kill =                    selinux_task_kill,
5548         .task_wait =                    selinux_task_wait,
5549         .task_to_inode =                selinux_task_to_inode,
5550
5551         .ipc_permission =               selinux_ipc_permission,
5552         .ipc_getsecid =                 selinux_ipc_getsecid,
5553
5554         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5555         .msg_msg_free_security =        selinux_msg_msg_free_security,
5556
5557         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5558         .msg_queue_free_security =      selinux_msg_queue_free_security,
5559         .msg_queue_associate =          selinux_msg_queue_associate,
5560         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5561         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5562         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5563
5564         .shm_alloc_security =           selinux_shm_alloc_security,
5565         .shm_free_security =            selinux_shm_free_security,
5566         .shm_associate =                selinux_shm_associate,
5567         .shm_shmctl =                   selinux_shm_shmctl,
5568         .shm_shmat =                    selinux_shm_shmat,
5569
5570         .sem_alloc_security =           selinux_sem_alloc_security,
5571         .sem_free_security =            selinux_sem_free_security,
5572         .sem_associate =                selinux_sem_associate,
5573         .sem_semctl =                   selinux_sem_semctl,
5574         .sem_semop =                    selinux_sem_semop,
5575
5576         .d_instantiate =                selinux_d_instantiate,
5577
5578         .getprocattr =                  selinux_getprocattr,
5579         .setprocattr =                  selinux_setprocattr,
5580
5581         .secid_to_secctx =              selinux_secid_to_secctx,
5582         .secctx_to_secid =              selinux_secctx_to_secid,
5583         .release_secctx =               selinux_release_secctx,
5584         .inode_notifysecctx =           selinux_inode_notifysecctx,
5585         .inode_setsecctx =              selinux_inode_setsecctx,
5586         .inode_getsecctx =              selinux_inode_getsecctx,
5587
5588         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5589         .unix_may_send =                selinux_socket_unix_may_send,
5590
5591         .socket_create =                selinux_socket_create,
5592         .socket_post_create =           selinux_socket_post_create,
5593         .socket_bind =                  selinux_socket_bind,
5594         .socket_connect =               selinux_socket_connect,
5595         .socket_listen =                selinux_socket_listen,
5596         .socket_accept =                selinux_socket_accept,
5597         .socket_sendmsg =               selinux_socket_sendmsg,
5598         .socket_recvmsg =               selinux_socket_recvmsg,
5599         .socket_getsockname =           selinux_socket_getsockname,
5600         .socket_getpeername =           selinux_socket_getpeername,
5601         .socket_getsockopt =            selinux_socket_getsockopt,
5602         .socket_setsockopt =            selinux_socket_setsockopt,
5603         .socket_shutdown =              selinux_socket_shutdown,
5604         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5605         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5606         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5607         .sk_alloc_security =            selinux_sk_alloc_security,
5608         .sk_free_security =             selinux_sk_free_security,
5609         .sk_clone_security =            selinux_sk_clone_security,
5610         .sk_getsecid =                  selinux_sk_getsecid,
5611         .sock_graft =                   selinux_sock_graft,
5612         .inet_conn_request =            selinux_inet_conn_request,
5613         .inet_csk_clone =               selinux_inet_csk_clone,
5614         .inet_conn_established =        selinux_inet_conn_established,
5615         .req_classify_flow =            selinux_req_classify_flow,
5616         .tun_dev_create =               selinux_tun_dev_create,
5617         .tun_dev_post_create =          selinux_tun_dev_post_create,
5618         .tun_dev_attach =               selinux_tun_dev_attach,
5619
5620 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5621         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5622         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5623         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5624         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5625         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5626         .xfrm_state_free_security =     selinux_xfrm_state_free,
5627         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5628         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5629         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5630         .xfrm_decode_session =          selinux_xfrm_decode_session,
5631 #endif
5632
5633 #ifdef CONFIG_KEYS
5634         .key_alloc =                    selinux_key_alloc,
5635         .key_free =                     selinux_key_free,
5636         .key_permission =               selinux_key_permission,
5637         .key_getsecurity =              selinux_key_getsecurity,
5638 #endif
5639
5640 #ifdef CONFIG_AUDIT
5641         .audit_rule_init =              selinux_audit_rule_init,
5642         .audit_rule_known =             selinux_audit_rule_known,
5643         .audit_rule_match =             selinux_audit_rule_match,
5644         .audit_rule_free =              selinux_audit_rule_free,
5645 #endif
5646 };
5647
5648 static __init int selinux_init(void)
5649 {
5650         if (!security_module_enable(&selinux_ops)) {
5651                 selinux_enabled = 0;
5652                 return 0;
5653         }
5654
5655         if (!selinux_enabled) {
5656                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5657                 return 0;
5658         }
5659
5660         printk(KERN_INFO "SELinux:  Initializing.\n");
5661
5662         /* Set the security state for the initial task. */
5663         cred_init_security();
5664
5665         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5666                                             sizeof(struct inode_security_struct),
5667                                             0, SLAB_PANIC, NULL);
5668         avc_init();
5669
5670         secondary_ops = security_ops;
5671         if (!secondary_ops)
5672                 panic("SELinux: No initial security operations\n");
5673         if (register_security(&selinux_ops))
5674                 panic("SELinux: Unable to register with kernel.\n");
5675
5676         if (selinux_enforcing)
5677                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5678         else
5679                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5680
5681         return 0;
5682 }
5683
5684 void selinux_complete_init(void)
5685 {
5686         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5687
5688         /* Set up any superblocks initialized prior to the policy load. */
5689         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5690         spin_lock(&sb_lock);
5691         spin_lock(&sb_security_lock);
5692 next_sb:
5693         if (!list_empty(&superblock_security_head)) {
5694                 struct superblock_security_struct *sbsec =
5695                                 list_entry(superblock_security_head.next,
5696                                            struct superblock_security_struct,
5697                                            list);
5698                 struct super_block *sb = sbsec->sb;
5699                 sb->s_count++;
5700                 spin_unlock(&sb_security_lock);
5701                 spin_unlock(&sb_lock);
5702                 down_read(&sb->s_umount);
5703                 if (sb->s_root)
5704                         superblock_doinit(sb, NULL);
5705                 drop_super(sb);
5706                 spin_lock(&sb_lock);
5707                 spin_lock(&sb_security_lock);
5708                 list_del_init(&sbsec->list);
5709                 goto next_sb;
5710         }
5711         spin_unlock(&sb_security_lock);
5712         spin_unlock(&sb_lock);
5713 }
5714
5715 /* SELinux requires early initialization in order to label
5716    all processes and objects when they are created. */
5717 security_initcall(selinux_init);
5718
5719 #if defined(CONFIG_NETFILTER)
5720
5721 static struct nf_hook_ops selinux_ipv4_ops[] = {
5722         {
5723                 .hook =         selinux_ipv4_postroute,
5724                 .owner =        THIS_MODULE,
5725                 .pf =           PF_INET,
5726                 .hooknum =      NF_INET_POST_ROUTING,
5727                 .priority =     NF_IP_PRI_SELINUX_LAST,
5728         },
5729         {
5730                 .hook =         selinux_ipv4_forward,
5731                 .owner =        THIS_MODULE,
5732                 .pf =           PF_INET,
5733                 .hooknum =      NF_INET_FORWARD,
5734                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5735         },
5736         {
5737                 .hook =         selinux_ipv4_output,
5738                 .owner =        THIS_MODULE,
5739                 .pf =           PF_INET,
5740                 .hooknum =      NF_INET_LOCAL_OUT,
5741                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5742         }
5743 };
5744
5745 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5746
5747 static struct nf_hook_ops selinux_ipv6_ops[] = {
5748         {
5749                 .hook =         selinux_ipv6_postroute,
5750                 .owner =        THIS_MODULE,
5751                 .pf =           PF_INET6,
5752                 .hooknum =      NF_INET_POST_ROUTING,
5753                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5754         },
5755         {
5756                 .hook =         selinux_ipv6_forward,
5757                 .owner =        THIS_MODULE,
5758                 .pf =           PF_INET6,
5759                 .hooknum =      NF_INET_FORWARD,
5760                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5761         }
5762 };
5763
5764 #endif  /* IPV6 */
5765
5766 static int __init selinux_nf_ip_init(void)
5767 {
5768         int err = 0;
5769
5770         if (!selinux_enabled)
5771                 goto out;
5772
5773         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5774
5775         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5776         if (err)
5777                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5778
5779 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5780         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5781         if (err)
5782                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5783 #endif  /* IPV6 */
5784
5785 out:
5786         return err;
5787 }
5788
5789 __initcall(selinux_nf_ip_init);
5790
5791 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5792 static void selinux_nf_ip_exit(void)
5793 {
5794         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5795
5796         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5797 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5798         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5799 #endif  /* IPV6 */
5800 }
5801 #endif
5802
5803 #else /* CONFIG_NETFILTER */
5804
5805 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5806 #define selinux_nf_ip_exit()
5807 #endif
5808
5809 #endif /* CONFIG_NETFILTER */
5810
5811 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5812 static int selinux_disabled;
5813
5814 int selinux_disable(void)
5815 {
5816         extern void exit_sel_fs(void);
5817
5818         if (ss_initialized) {
5819                 /* Not permitted after initial policy load. */
5820                 return -EINVAL;
5821         }
5822
5823         if (selinux_disabled) {
5824                 /* Only do this once. */
5825                 return -EINVAL;
5826         }
5827
5828         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5829
5830         selinux_disabled = 1;
5831         selinux_enabled = 0;
5832
5833         /* Try to destroy the avc node cache */
5834         avc_disable();
5835
5836         /* Reset security_ops to the secondary module, dummy or capability. */
5837         security_ops = secondary_ops;
5838
5839         /* Unregister netfilter hooks. */
5840         selinux_nf_ip_exit();
5841
5842         /* Unregister selinuxfs. */
5843         exit_sel_fs();
5844
5845         return 0;
5846 }
5847 #endif