security: move LSM xattrnames to xattr.h
[linux-2.6.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79 #include <linux/syslog.h>
80
81 #include "avc.h"
82 #include "objsec.h"
83 #include "netif.h"
84 #include "netnode.h"
85 #include "netport.h"
86 #include "xfrm.h"
87 #include "netlabel.h"
88 #include "audit.h"
89
90 #define NUM_SEL_MNT_OPTS 5
91
92 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
93 extern struct security_operations *security_ops;
94
95 /* SECMARK reference count */
96 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
97
98 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
99 int selinux_enforcing;
100
101 static int __init enforcing_setup(char *str)
102 {
103         unsigned long enforcing;
104         if (!strict_strtoul(str, 0, &enforcing))
105                 selinux_enforcing = enforcing ? 1 : 0;
106         return 1;
107 }
108 __setup("enforcing=", enforcing_setup);
109 #endif
110
111 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
112 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
113
114 static int __init selinux_enabled_setup(char *str)
115 {
116         unsigned long enabled;
117         if (!strict_strtoul(str, 0, &enabled))
118                 selinux_enabled = enabled ? 1 : 0;
119         return 1;
120 }
121 __setup("selinux=", selinux_enabled_setup);
122 #else
123 int selinux_enabled = 1;
124 #endif
125
126 static struct kmem_cache *sel_inode_cache;
127
128 /**
129  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
130  *
131  * Description:
132  * This function checks the SECMARK reference counter to see if any SECMARK
133  * targets are currently configured, if the reference counter is greater than
134  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
135  * enabled, false (0) if SECMARK is disabled.
136  *
137  */
138 static int selinux_secmark_enabled(void)
139 {
140         return (atomic_read(&selinux_secmark_refcount) > 0);
141 }
142
143 /*
144  * initialise the security for the init task
145  */
146 static void cred_init_security(void)
147 {
148         struct cred *cred = (struct cred *) current->real_cred;
149         struct task_security_struct *tsec;
150
151         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
152         if (!tsec)
153                 panic("SELinux:  Failed to initialize initial task.\n");
154
155         tsec->osid = tsec->sid = SECINITSID_KERNEL;
156         cred->security = tsec;
157 }
158
159 /*
160  * get the security ID of a set of credentials
161  */
162 static inline u32 cred_sid(const struct cred *cred)
163 {
164         const struct task_security_struct *tsec;
165
166         tsec = cred->security;
167         return tsec->sid;
168 }
169
170 /*
171  * get the objective security ID of a task
172  */
173 static inline u32 task_sid(const struct task_struct *task)
174 {
175         u32 sid;
176
177         rcu_read_lock();
178         sid = cred_sid(__task_cred(task));
179         rcu_read_unlock();
180         return sid;
181 }
182
183 /*
184  * get the subjective security ID of the current task
185  */
186 static inline u32 current_sid(void)
187 {
188         const struct task_security_struct *tsec = current_security();
189
190         return tsec->sid;
191 }
192
193 /* Allocate and free functions for each kind of security blob. */
194
195 static int inode_alloc_security(struct inode *inode)
196 {
197         struct inode_security_struct *isec;
198         u32 sid = current_sid();
199
200         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
201         if (!isec)
202                 return -ENOMEM;
203
204         mutex_init(&isec->lock);
205         INIT_LIST_HEAD(&isec->list);
206         isec->inode = inode;
207         isec->sid = SECINITSID_UNLABELED;
208         isec->sclass = SECCLASS_FILE;
209         isec->task_sid = sid;
210         inode->i_security = isec;
211
212         return 0;
213 }
214
215 static void inode_free_security(struct inode *inode)
216 {
217         struct inode_security_struct *isec = inode->i_security;
218         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
219
220         spin_lock(&sbsec->isec_lock);
221         if (!list_empty(&isec->list))
222                 list_del_init(&isec->list);
223         spin_unlock(&sbsec->isec_lock);
224
225         inode->i_security = NULL;
226         kmem_cache_free(sel_inode_cache, isec);
227 }
228
229 static int file_alloc_security(struct file *file)
230 {
231         struct file_security_struct *fsec;
232         u32 sid = current_sid();
233
234         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
235         if (!fsec)
236                 return -ENOMEM;
237
238         fsec->sid = sid;
239         fsec->fown_sid = sid;
240         file->f_security = fsec;
241
242         return 0;
243 }
244
245 static void file_free_security(struct file *file)
246 {
247         struct file_security_struct *fsec = file->f_security;
248         file->f_security = NULL;
249         kfree(fsec);
250 }
251
252 static int superblock_alloc_security(struct super_block *sb)
253 {
254         struct superblock_security_struct *sbsec;
255
256         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
257         if (!sbsec)
258                 return -ENOMEM;
259
260         mutex_init(&sbsec->lock);
261         INIT_LIST_HEAD(&sbsec->isec_head);
262         spin_lock_init(&sbsec->isec_lock);
263         sbsec->sb = sb;
264         sbsec->sid = SECINITSID_UNLABELED;
265         sbsec->def_sid = SECINITSID_FILE;
266         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
267         sb->s_security = sbsec;
268
269         return 0;
270 }
271
272 static void superblock_free_security(struct super_block *sb)
273 {
274         struct superblock_security_struct *sbsec = sb->s_security;
275         sb->s_security = NULL;
276         kfree(sbsec);
277 }
278
279 /* The security server must be initialized before
280    any labeling or access decisions can be provided. */
281 extern int ss_initialized;
282
283 /* The file system's label must be initialized prior to use. */
284
285 static const char *labeling_behaviors[6] = {
286         "uses xattr",
287         "uses transition SIDs",
288         "uses task SIDs",
289         "uses genfs_contexts",
290         "not configured for labeling",
291         "uses mountpoint labeling",
292 };
293
294 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
295
296 static inline int inode_doinit(struct inode *inode)
297 {
298         return inode_doinit_with_dentry(inode, NULL);
299 }
300
301 enum {
302         Opt_error = -1,
303         Opt_context = 1,
304         Opt_fscontext = 2,
305         Opt_defcontext = 3,
306         Opt_rootcontext = 4,
307         Opt_labelsupport = 5,
308 };
309
310 static const match_table_t tokens = {
311         {Opt_context, CONTEXT_STR "%s"},
312         {Opt_fscontext, FSCONTEXT_STR "%s"},
313         {Opt_defcontext, DEFCONTEXT_STR "%s"},
314         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
315         {Opt_labelsupport, LABELSUPP_STR},
316         {Opt_error, NULL},
317 };
318
319 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
320
321 static int may_context_mount_sb_relabel(u32 sid,
322                         struct superblock_security_struct *sbsec,
323                         const struct cred *cred)
324 {
325         const struct task_security_struct *tsec = cred->security;
326         int rc;
327
328         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
329                           FILESYSTEM__RELABELFROM, NULL);
330         if (rc)
331                 return rc;
332
333         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
334                           FILESYSTEM__RELABELTO, NULL);
335         return rc;
336 }
337
338 static int may_context_mount_inode_relabel(u32 sid,
339                         struct superblock_security_struct *sbsec,
340                         const struct cred *cred)
341 {
342         const struct task_security_struct *tsec = cred->security;
343         int rc;
344         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
345                           FILESYSTEM__RELABELFROM, NULL);
346         if (rc)
347                 return rc;
348
349         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
350                           FILESYSTEM__ASSOCIATE, NULL);
351         return rc;
352 }
353
354 static int sb_finish_set_opts(struct super_block *sb)
355 {
356         struct superblock_security_struct *sbsec = sb->s_security;
357         struct dentry *root = sb->s_root;
358         struct inode *root_inode = root->d_inode;
359         int rc = 0;
360
361         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
362                 /* Make sure that the xattr handler exists and that no
363                    error other than -ENODATA is returned by getxattr on
364                    the root directory.  -ENODATA is ok, as this may be
365                    the first boot of the SELinux kernel before we have
366                    assigned xattr values to the filesystem. */
367                 if (!root_inode->i_op->getxattr) {
368                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
369                                "xattr support\n", sb->s_id, sb->s_type->name);
370                         rc = -EOPNOTSUPP;
371                         goto out;
372                 }
373                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
374                 if (rc < 0 && rc != -ENODATA) {
375                         if (rc == -EOPNOTSUPP)
376                                 printk(KERN_WARNING "SELinux: (dev %s, type "
377                                        "%s) has no security xattr handler\n",
378                                        sb->s_id, sb->s_type->name);
379                         else
380                                 printk(KERN_WARNING "SELinux: (dev %s, type "
381                                        "%s) getxattr errno %d\n", sb->s_id,
382                                        sb->s_type->name, -rc);
383                         goto out;
384                 }
385         }
386
387         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
388
389         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
390                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
391                        sb->s_id, sb->s_type->name);
392         else
393                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
394                        sb->s_id, sb->s_type->name,
395                        labeling_behaviors[sbsec->behavior-1]);
396
397         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
398             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
399             sbsec->behavior == SECURITY_FS_USE_NONE ||
400             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
401                 sbsec->flags &= ~SE_SBLABELSUPP;
402
403         /* Special handling for sysfs. Is genfs but also has setxattr handler*/
404         if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
405                 sbsec->flags |= SE_SBLABELSUPP;
406
407         /* Initialize the root inode. */
408         rc = inode_doinit_with_dentry(root_inode, root);
409
410         /* Initialize any other inodes associated with the superblock, e.g.
411            inodes created prior to initial policy load or inodes created
412            during get_sb by a pseudo filesystem that directly
413            populates itself. */
414         spin_lock(&sbsec->isec_lock);
415 next_inode:
416         if (!list_empty(&sbsec->isec_head)) {
417                 struct inode_security_struct *isec =
418                                 list_entry(sbsec->isec_head.next,
419                                            struct inode_security_struct, list);
420                 struct inode *inode = isec->inode;
421                 spin_unlock(&sbsec->isec_lock);
422                 inode = igrab(inode);
423                 if (inode) {
424                         if (!IS_PRIVATE(inode))
425                                 inode_doinit(inode);
426                         iput(inode);
427                 }
428                 spin_lock(&sbsec->isec_lock);
429                 list_del_init(&isec->list);
430                 goto next_inode;
431         }
432         spin_unlock(&sbsec->isec_lock);
433 out:
434         return rc;
435 }
436
437 /*
438  * This function should allow an FS to ask what it's mount security
439  * options were so it can use those later for submounts, displaying
440  * mount options, or whatever.
441  */
442 static int selinux_get_mnt_opts(const struct super_block *sb,
443                                 struct security_mnt_opts *opts)
444 {
445         int rc = 0, i;
446         struct superblock_security_struct *sbsec = sb->s_security;
447         char *context = NULL;
448         u32 len;
449         char tmp;
450
451         security_init_mnt_opts(opts);
452
453         if (!(sbsec->flags & SE_SBINITIALIZED))
454                 return -EINVAL;
455
456         if (!ss_initialized)
457                 return -EINVAL;
458
459         tmp = sbsec->flags & SE_MNTMASK;
460         /* count the number of mount options for this sb */
461         for (i = 0; i < 8; i++) {
462                 if (tmp & 0x01)
463                         opts->num_mnt_opts++;
464                 tmp >>= 1;
465         }
466         /* Check if the Label support flag is set */
467         if (sbsec->flags & SE_SBLABELSUPP)
468                 opts->num_mnt_opts++;
469
470         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
471         if (!opts->mnt_opts) {
472                 rc = -ENOMEM;
473                 goto out_free;
474         }
475
476         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
477         if (!opts->mnt_opts_flags) {
478                 rc = -ENOMEM;
479                 goto out_free;
480         }
481
482         i = 0;
483         if (sbsec->flags & FSCONTEXT_MNT) {
484                 rc = security_sid_to_context(sbsec->sid, &context, &len);
485                 if (rc)
486                         goto out_free;
487                 opts->mnt_opts[i] = context;
488                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
489         }
490         if (sbsec->flags & CONTEXT_MNT) {
491                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
492                 if (rc)
493                         goto out_free;
494                 opts->mnt_opts[i] = context;
495                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
496         }
497         if (sbsec->flags & DEFCONTEXT_MNT) {
498                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
499                 if (rc)
500                         goto out_free;
501                 opts->mnt_opts[i] = context;
502                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
503         }
504         if (sbsec->flags & ROOTCONTEXT_MNT) {
505                 struct inode *root = sbsec->sb->s_root->d_inode;
506                 struct inode_security_struct *isec = root->i_security;
507
508                 rc = security_sid_to_context(isec->sid, &context, &len);
509                 if (rc)
510                         goto out_free;
511                 opts->mnt_opts[i] = context;
512                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
513         }
514         if (sbsec->flags & SE_SBLABELSUPP) {
515                 opts->mnt_opts[i] = NULL;
516                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
517         }
518
519         BUG_ON(i != opts->num_mnt_opts);
520
521         return 0;
522
523 out_free:
524         security_free_mnt_opts(opts);
525         return rc;
526 }
527
528 static int bad_option(struct superblock_security_struct *sbsec, char flag,
529                       u32 old_sid, u32 new_sid)
530 {
531         char mnt_flags = sbsec->flags & SE_MNTMASK;
532
533         /* check if the old mount command had the same options */
534         if (sbsec->flags & SE_SBINITIALIZED)
535                 if (!(sbsec->flags & flag) ||
536                     (old_sid != new_sid))
537                         return 1;
538
539         /* check if we were passed the same options twice,
540          * aka someone passed context=a,context=b
541          */
542         if (!(sbsec->flags & SE_SBINITIALIZED))
543                 if (mnt_flags & flag)
544                         return 1;
545         return 0;
546 }
547
548 /*
549  * Allow filesystems with binary mount data to explicitly set mount point
550  * labeling information.
551  */
552 static int selinux_set_mnt_opts(struct super_block *sb,
553                                 struct security_mnt_opts *opts)
554 {
555         const struct cred *cred = current_cred();
556         int rc = 0, i;
557         struct superblock_security_struct *sbsec = sb->s_security;
558         const char *name = sb->s_type->name;
559         struct inode *inode = sbsec->sb->s_root->d_inode;
560         struct inode_security_struct *root_isec = inode->i_security;
561         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
562         u32 defcontext_sid = 0;
563         char **mount_options = opts->mnt_opts;
564         int *flags = opts->mnt_opts_flags;
565         int num_opts = opts->num_mnt_opts;
566
567         mutex_lock(&sbsec->lock);
568
569         if (!ss_initialized) {
570                 if (!num_opts) {
571                         /* Defer initialization until selinux_complete_init,
572                            after the initial policy is loaded and the security
573                            server is ready to handle calls. */
574                         goto out;
575                 }
576                 rc = -EINVAL;
577                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
578                         "before the security server is initialized\n");
579                 goto out;
580         }
581
582         /*
583          * Binary mount data FS will come through this function twice.  Once
584          * from an explicit call and once from the generic calls from the vfs.
585          * Since the generic VFS calls will not contain any security mount data
586          * we need to skip the double mount verification.
587          *
588          * This does open a hole in which we will not notice if the first
589          * mount using this sb set explict options and a second mount using
590          * this sb does not set any security options.  (The first options
591          * will be used for both mounts)
592          */
593         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
594             && (num_opts == 0))
595                 goto out;
596
597         /*
598          * parse the mount options, check if they are valid sids.
599          * also check if someone is trying to mount the same sb more
600          * than once with different security options.
601          */
602         for (i = 0; i < num_opts; i++) {
603                 u32 sid;
604
605                 if (flags[i] == SE_SBLABELSUPP)
606                         continue;
607                 rc = security_context_to_sid(mount_options[i],
608                                              strlen(mount_options[i]), &sid);
609                 if (rc) {
610                         printk(KERN_WARNING "SELinux: security_context_to_sid"
611                                "(%s) failed for (dev %s, type %s) errno=%d\n",
612                                mount_options[i], sb->s_id, name, rc);
613                         goto out;
614                 }
615                 switch (flags[i]) {
616                 case FSCONTEXT_MNT:
617                         fscontext_sid = sid;
618
619                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
620                                         fscontext_sid))
621                                 goto out_double_mount;
622
623                         sbsec->flags |= FSCONTEXT_MNT;
624                         break;
625                 case CONTEXT_MNT:
626                         context_sid = sid;
627
628                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
629                                         context_sid))
630                                 goto out_double_mount;
631
632                         sbsec->flags |= CONTEXT_MNT;
633                         break;
634                 case ROOTCONTEXT_MNT:
635                         rootcontext_sid = sid;
636
637                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
638                                         rootcontext_sid))
639                                 goto out_double_mount;
640
641                         sbsec->flags |= ROOTCONTEXT_MNT;
642
643                         break;
644                 case DEFCONTEXT_MNT:
645                         defcontext_sid = sid;
646
647                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
648                                         defcontext_sid))
649                                 goto out_double_mount;
650
651                         sbsec->flags |= DEFCONTEXT_MNT;
652
653                         break;
654                 default:
655                         rc = -EINVAL;
656                         goto out;
657                 }
658         }
659
660         if (sbsec->flags & SE_SBINITIALIZED) {
661                 /* previously mounted with options, but not on this attempt? */
662                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
663                         goto out_double_mount;
664                 rc = 0;
665                 goto out;
666         }
667
668         if (strcmp(sb->s_type->name, "proc") == 0)
669                 sbsec->flags |= SE_SBPROC;
670
671         /* Determine the labeling behavior to use for this filesystem type. */
672         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
673         if (rc) {
674                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
675                        __func__, sb->s_type->name, rc);
676                 goto out;
677         }
678
679         /* sets the context of the superblock for the fs being mounted. */
680         if (fscontext_sid) {
681                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
682                 if (rc)
683                         goto out;
684
685                 sbsec->sid = fscontext_sid;
686         }
687
688         /*
689          * Switch to using mount point labeling behavior.
690          * sets the label used on all file below the mountpoint, and will set
691          * the superblock context if not already set.
692          */
693         if (context_sid) {
694                 if (!fscontext_sid) {
695                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
696                                                           cred);
697                         if (rc)
698                                 goto out;
699                         sbsec->sid = context_sid;
700                 } else {
701                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
702                                                              cred);
703                         if (rc)
704                                 goto out;
705                 }
706                 if (!rootcontext_sid)
707                         rootcontext_sid = context_sid;
708
709                 sbsec->mntpoint_sid = context_sid;
710                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
711         }
712
713         if (rootcontext_sid) {
714                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
715                                                      cred);
716                 if (rc)
717                         goto out;
718
719                 root_isec->sid = rootcontext_sid;
720                 root_isec->initialized = 1;
721         }
722
723         if (defcontext_sid) {
724                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
725                         rc = -EINVAL;
726                         printk(KERN_WARNING "SELinux: defcontext option is "
727                                "invalid for this filesystem type\n");
728                         goto out;
729                 }
730
731                 if (defcontext_sid != sbsec->def_sid) {
732                         rc = may_context_mount_inode_relabel(defcontext_sid,
733                                                              sbsec, cred);
734                         if (rc)
735                                 goto out;
736                 }
737
738                 sbsec->def_sid = defcontext_sid;
739         }
740
741         rc = sb_finish_set_opts(sb);
742 out:
743         mutex_unlock(&sbsec->lock);
744         return rc;
745 out_double_mount:
746         rc = -EINVAL;
747         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
748                "security settings for (dev %s, type %s)\n", sb->s_id, name);
749         goto out;
750 }
751
752 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
753                                         struct super_block *newsb)
754 {
755         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
756         struct superblock_security_struct *newsbsec = newsb->s_security;
757
758         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
759         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
760         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
761
762         /*
763          * if the parent was able to be mounted it clearly had no special lsm
764          * mount options.  thus we can safely deal with this superblock later
765          */
766         if (!ss_initialized)
767                 return;
768
769         /* how can we clone if the old one wasn't set up?? */
770         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
771
772         /* if fs is reusing a sb, just let its options stand... */
773         if (newsbsec->flags & SE_SBINITIALIZED)
774                 return;
775
776         mutex_lock(&newsbsec->lock);
777
778         newsbsec->flags = oldsbsec->flags;
779
780         newsbsec->sid = oldsbsec->sid;
781         newsbsec->def_sid = oldsbsec->def_sid;
782         newsbsec->behavior = oldsbsec->behavior;
783
784         if (set_context) {
785                 u32 sid = oldsbsec->mntpoint_sid;
786
787                 if (!set_fscontext)
788                         newsbsec->sid = sid;
789                 if (!set_rootcontext) {
790                         struct inode *newinode = newsb->s_root->d_inode;
791                         struct inode_security_struct *newisec = newinode->i_security;
792                         newisec->sid = sid;
793                 }
794                 newsbsec->mntpoint_sid = sid;
795         }
796         if (set_rootcontext) {
797                 const struct inode *oldinode = oldsb->s_root->d_inode;
798                 const struct inode_security_struct *oldisec = oldinode->i_security;
799                 struct inode *newinode = newsb->s_root->d_inode;
800                 struct inode_security_struct *newisec = newinode->i_security;
801
802                 newisec->sid = oldisec->sid;
803         }
804
805         sb_finish_set_opts(newsb);
806         mutex_unlock(&newsbsec->lock);
807 }
808
809 static int selinux_parse_opts_str(char *options,
810                                   struct security_mnt_opts *opts)
811 {
812         char *p;
813         char *context = NULL, *defcontext = NULL;
814         char *fscontext = NULL, *rootcontext = NULL;
815         int rc, num_mnt_opts = 0;
816
817         opts->num_mnt_opts = 0;
818
819         /* Standard string-based options. */
820         while ((p = strsep(&options, "|")) != NULL) {
821                 int token;
822                 substring_t args[MAX_OPT_ARGS];
823
824                 if (!*p)
825                         continue;
826
827                 token = match_token(p, tokens, args);
828
829                 switch (token) {
830                 case Opt_context:
831                         if (context || defcontext) {
832                                 rc = -EINVAL;
833                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
834                                 goto out_err;
835                         }
836                         context = match_strdup(&args[0]);
837                         if (!context) {
838                                 rc = -ENOMEM;
839                                 goto out_err;
840                         }
841                         break;
842
843                 case Opt_fscontext:
844                         if (fscontext) {
845                                 rc = -EINVAL;
846                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
847                                 goto out_err;
848                         }
849                         fscontext = match_strdup(&args[0]);
850                         if (!fscontext) {
851                                 rc = -ENOMEM;
852                                 goto out_err;
853                         }
854                         break;
855
856                 case Opt_rootcontext:
857                         if (rootcontext) {
858                                 rc = -EINVAL;
859                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
860                                 goto out_err;
861                         }
862                         rootcontext = match_strdup(&args[0]);
863                         if (!rootcontext) {
864                                 rc = -ENOMEM;
865                                 goto out_err;
866                         }
867                         break;
868
869                 case Opt_defcontext:
870                         if (context || defcontext) {
871                                 rc = -EINVAL;
872                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
873                                 goto out_err;
874                         }
875                         defcontext = match_strdup(&args[0]);
876                         if (!defcontext) {
877                                 rc = -ENOMEM;
878                                 goto out_err;
879                         }
880                         break;
881                 case Opt_labelsupport:
882                         break;
883                 default:
884                         rc = -EINVAL;
885                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
886                         goto out_err;
887
888                 }
889         }
890
891         rc = -ENOMEM;
892         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
893         if (!opts->mnt_opts)
894                 goto out_err;
895
896         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
897         if (!opts->mnt_opts_flags) {
898                 kfree(opts->mnt_opts);
899                 goto out_err;
900         }
901
902         if (fscontext) {
903                 opts->mnt_opts[num_mnt_opts] = fscontext;
904                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
905         }
906         if (context) {
907                 opts->mnt_opts[num_mnt_opts] = context;
908                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
909         }
910         if (rootcontext) {
911                 opts->mnt_opts[num_mnt_opts] = rootcontext;
912                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
913         }
914         if (defcontext) {
915                 opts->mnt_opts[num_mnt_opts] = defcontext;
916                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
917         }
918
919         opts->num_mnt_opts = num_mnt_opts;
920         return 0;
921
922 out_err:
923         kfree(context);
924         kfree(defcontext);
925         kfree(fscontext);
926         kfree(rootcontext);
927         return rc;
928 }
929 /*
930  * string mount options parsing and call set the sbsec
931  */
932 static int superblock_doinit(struct super_block *sb, void *data)
933 {
934         int rc = 0;
935         char *options = data;
936         struct security_mnt_opts opts;
937
938         security_init_mnt_opts(&opts);
939
940         if (!data)
941                 goto out;
942
943         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
944
945         rc = selinux_parse_opts_str(options, &opts);
946         if (rc)
947                 goto out_err;
948
949 out:
950         rc = selinux_set_mnt_opts(sb, &opts);
951
952 out_err:
953         security_free_mnt_opts(&opts);
954         return rc;
955 }
956
957 static void selinux_write_opts(struct seq_file *m,
958                                struct security_mnt_opts *opts)
959 {
960         int i;
961         char *prefix;
962
963         for (i = 0; i < opts->num_mnt_opts; i++) {
964                 char *has_comma;
965
966                 if (opts->mnt_opts[i])
967                         has_comma = strchr(opts->mnt_opts[i], ',');
968                 else
969                         has_comma = NULL;
970
971                 switch (opts->mnt_opts_flags[i]) {
972                 case CONTEXT_MNT:
973                         prefix = CONTEXT_STR;
974                         break;
975                 case FSCONTEXT_MNT:
976                         prefix = FSCONTEXT_STR;
977                         break;
978                 case ROOTCONTEXT_MNT:
979                         prefix = ROOTCONTEXT_STR;
980                         break;
981                 case DEFCONTEXT_MNT:
982                         prefix = DEFCONTEXT_STR;
983                         break;
984                 case SE_SBLABELSUPP:
985                         seq_putc(m, ',');
986                         seq_puts(m, LABELSUPP_STR);
987                         continue;
988                 default:
989                         BUG();
990                 };
991                 /* we need a comma before each option */
992                 seq_putc(m, ',');
993                 seq_puts(m, prefix);
994                 if (has_comma)
995                         seq_putc(m, '\"');
996                 seq_puts(m, opts->mnt_opts[i]);
997                 if (has_comma)
998                         seq_putc(m, '\"');
999         }
1000 }
1001
1002 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1003 {
1004         struct security_mnt_opts opts;
1005         int rc;
1006
1007         rc = selinux_get_mnt_opts(sb, &opts);
1008         if (rc) {
1009                 /* before policy load we may get EINVAL, don't show anything */
1010                 if (rc == -EINVAL)
1011                         rc = 0;
1012                 return rc;
1013         }
1014
1015         selinux_write_opts(m, &opts);
1016
1017         security_free_mnt_opts(&opts);
1018
1019         return rc;
1020 }
1021
1022 static inline u16 inode_mode_to_security_class(umode_t mode)
1023 {
1024         switch (mode & S_IFMT) {
1025         case S_IFSOCK:
1026                 return SECCLASS_SOCK_FILE;
1027         case S_IFLNK:
1028                 return SECCLASS_LNK_FILE;
1029         case S_IFREG:
1030                 return SECCLASS_FILE;
1031         case S_IFBLK:
1032                 return SECCLASS_BLK_FILE;
1033         case S_IFDIR:
1034                 return SECCLASS_DIR;
1035         case S_IFCHR:
1036                 return SECCLASS_CHR_FILE;
1037         case S_IFIFO:
1038                 return SECCLASS_FIFO_FILE;
1039
1040         }
1041
1042         return SECCLASS_FILE;
1043 }
1044
1045 static inline int default_protocol_stream(int protocol)
1046 {
1047         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1048 }
1049
1050 static inline int default_protocol_dgram(int protocol)
1051 {
1052         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1053 }
1054
1055 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1056 {
1057         switch (family) {
1058         case PF_UNIX:
1059                 switch (type) {
1060                 case SOCK_STREAM:
1061                 case SOCK_SEQPACKET:
1062                         return SECCLASS_UNIX_STREAM_SOCKET;
1063                 case SOCK_DGRAM:
1064                         return SECCLASS_UNIX_DGRAM_SOCKET;
1065                 }
1066                 break;
1067         case PF_INET:
1068         case PF_INET6:
1069                 switch (type) {
1070                 case SOCK_STREAM:
1071                         if (default_protocol_stream(protocol))
1072                                 return SECCLASS_TCP_SOCKET;
1073                         else
1074                                 return SECCLASS_RAWIP_SOCKET;
1075                 case SOCK_DGRAM:
1076                         if (default_protocol_dgram(protocol))
1077                                 return SECCLASS_UDP_SOCKET;
1078                         else
1079                                 return SECCLASS_RAWIP_SOCKET;
1080                 case SOCK_DCCP:
1081                         return SECCLASS_DCCP_SOCKET;
1082                 default:
1083                         return SECCLASS_RAWIP_SOCKET;
1084                 }
1085                 break;
1086         case PF_NETLINK:
1087                 switch (protocol) {
1088                 case NETLINK_ROUTE:
1089                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1090                 case NETLINK_FIREWALL:
1091                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1092                 case NETLINK_INET_DIAG:
1093                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1094                 case NETLINK_NFLOG:
1095                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1096                 case NETLINK_XFRM:
1097                         return SECCLASS_NETLINK_XFRM_SOCKET;
1098                 case NETLINK_SELINUX:
1099                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1100                 case NETLINK_AUDIT:
1101                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1102                 case NETLINK_IP6_FW:
1103                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1104                 case NETLINK_DNRTMSG:
1105                         return SECCLASS_NETLINK_DNRT_SOCKET;
1106                 case NETLINK_KOBJECT_UEVENT:
1107                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1108                 default:
1109                         return SECCLASS_NETLINK_SOCKET;
1110                 }
1111         case PF_PACKET:
1112                 return SECCLASS_PACKET_SOCKET;
1113         case PF_KEY:
1114                 return SECCLASS_KEY_SOCKET;
1115         case PF_APPLETALK:
1116                 return SECCLASS_APPLETALK_SOCKET;
1117         }
1118
1119         return SECCLASS_SOCKET;
1120 }
1121
1122 #ifdef CONFIG_PROC_FS
1123 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1124                                 u16 tclass,
1125                                 u32 *sid)
1126 {
1127         int buflen, rc;
1128         char *buffer, *path, *end;
1129
1130         buffer = (char *)__get_free_page(GFP_KERNEL);
1131         if (!buffer)
1132                 return -ENOMEM;
1133
1134         buflen = PAGE_SIZE;
1135         end = buffer+buflen;
1136         *--end = '\0';
1137         buflen--;
1138         path = end-1;
1139         *path = '/';
1140         while (de && de != de->parent) {
1141                 buflen -= de->namelen + 1;
1142                 if (buflen < 0)
1143                         break;
1144                 end -= de->namelen;
1145                 memcpy(end, de->name, de->namelen);
1146                 *--end = '/';
1147                 path = end;
1148                 de = de->parent;
1149         }
1150         rc = security_genfs_sid("proc", path, tclass, sid);
1151         free_page((unsigned long)buffer);
1152         return rc;
1153 }
1154 #else
1155 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1156                                 u16 tclass,
1157                                 u32 *sid)
1158 {
1159         return -EINVAL;
1160 }
1161 #endif
1162
1163 /* The inode's security attributes must be initialized before first use. */
1164 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1165 {
1166         struct superblock_security_struct *sbsec = NULL;
1167         struct inode_security_struct *isec = inode->i_security;
1168         u32 sid;
1169         struct dentry *dentry;
1170 #define INITCONTEXTLEN 255
1171         char *context = NULL;
1172         unsigned len = 0;
1173         int rc = 0;
1174
1175         if (isec->initialized)
1176                 goto out;
1177
1178         mutex_lock(&isec->lock);
1179         if (isec->initialized)
1180                 goto out_unlock;
1181
1182         sbsec = inode->i_sb->s_security;
1183         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1184                 /* Defer initialization until selinux_complete_init,
1185                    after the initial policy is loaded and the security
1186                    server is ready to handle calls. */
1187                 spin_lock(&sbsec->isec_lock);
1188                 if (list_empty(&isec->list))
1189                         list_add(&isec->list, &sbsec->isec_head);
1190                 spin_unlock(&sbsec->isec_lock);
1191                 goto out_unlock;
1192         }
1193
1194         switch (sbsec->behavior) {
1195         case SECURITY_FS_USE_XATTR:
1196                 if (!inode->i_op->getxattr) {
1197                         isec->sid = sbsec->def_sid;
1198                         break;
1199                 }
1200
1201                 /* Need a dentry, since the xattr API requires one.
1202                    Life would be simpler if we could just pass the inode. */
1203                 if (opt_dentry) {
1204                         /* Called from d_instantiate or d_splice_alias. */
1205                         dentry = dget(opt_dentry);
1206                 } else {
1207                         /* Called from selinux_complete_init, try to find a dentry. */
1208                         dentry = d_find_alias(inode);
1209                 }
1210                 if (!dentry) {
1211                         /*
1212                          * this is can be hit on boot when a file is accessed
1213                          * before the policy is loaded.  When we load policy we
1214                          * may find inodes that have no dentry on the
1215                          * sbsec->isec_head list.  No reason to complain as these
1216                          * will get fixed up the next time we go through
1217                          * inode_doinit with a dentry, before these inodes could
1218                          * be used again by userspace.
1219                          */
1220                         goto out_unlock;
1221                 }
1222
1223                 len = INITCONTEXTLEN;
1224                 context = kmalloc(len+1, GFP_NOFS);
1225                 if (!context) {
1226                         rc = -ENOMEM;
1227                         dput(dentry);
1228                         goto out_unlock;
1229                 }
1230                 context[len] = '\0';
1231                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1232                                            context, len);
1233                 if (rc == -ERANGE) {
1234                         kfree(context);
1235
1236                         /* Need a larger buffer.  Query for the right size. */
1237                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1238                                                    NULL, 0);
1239                         if (rc < 0) {
1240                                 dput(dentry);
1241                                 goto out_unlock;
1242                         }
1243                         len = rc;
1244                         context = kmalloc(len+1, GFP_NOFS);
1245                         if (!context) {
1246                                 rc = -ENOMEM;
1247                                 dput(dentry);
1248                                 goto out_unlock;
1249                         }
1250                         context[len] = '\0';
1251                         rc = inode->i_op->getxattr(dentry,
1252                                                    XATTR_NAME_SELINUX,
1253                                                    context, len);
1254                 }
1255                 dput(dentry);
1256                 if (rc < 0) {
1257                         if (rc != -ENODATA) {
1258                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1259                                        "%d for dev=%s ino=%ld\n", __func__,
1260                                        -rc, inode->i_sb->s_id, inode->i_ino);
1261                                 kfree(context);
1262                                 goto out_unlock;
1263                         }
1264                         /* Map ENODATA to the default file SID */
1265                         sid = sbsec->def_sid;
1266                         rc = 0;
1267                 } else {
1268                         rc = security_context_to_sid_default(context, rc, &sid,
1269                                                              sbsec->def_sid,
1270                                                              GFP_NOFS);
1271                         if (rc) {
1272                                 char *dev = inode->i_sb->s_id;
1273                                 unsigned long ino = inode->i_ino;
1274
1275                                 if (rc == -EINVAL) {
1276                                         if (printk_ratelimit())
1277                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1278                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1279                                                         "filesystem in question.\n", ino, dev, context);
1280                                 } else {
1281                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1282                                                "returned %d for dev=%s ino=%ld\n",
1283                                                __func__, context, -rc, dev, ino);
1284                                 }
1285                                 kfree(context);
1286                                 /* Leave with the unlabeled SID */
1287                                 rc = 0;
1288                                 break;
1289                         }
1290                 }
1291                 kfree(context);
1292                 isec->sid = sid;
1293                 break;
1294         case SECURITY_FS_USE_TASK:
1295                 isec->sid = isec->task_sid;
1296                 break;
1297         case SECURITY_FS_USE_TRANS:
1298                 /* Default to the fs SID. */
1299                 isec->sid = sbsec->sid;
1300
1301                 /* Try to obtain a transition SID. */
1302                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1303                 rc = security_transition_sid(isec->task_sid,
1304                                              sbsec->sid,
1305                                              isec->sclass,
1306                                              &sid);
1307                 if (rc)
1308                         goto out_unlock;
1309                 isec->sid = sid;
1310                 break;
1311         case SECURITY_FS_USE_MNTPOINT:
1312                 isec->sid = sbsec->mntpoint_sid;
1313                 break;
1314         default:
1315                 /* Default to the fs superblock SID. */
1316                 isec->sid = sbsec->sid;
1317
1318                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1319                         struct proc_inode *proci = PROC_I(inode);
1320                         if (proci->pde) {
1321                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1322                                 rc = selinux_proc_get_sid(proci->pde,
1323                                                           isec->sclass,
1324                                                           &sid);
1325                                 if (rc)
1326                                         goto out_unlock;
1327                                 isec->sid = sid;
1328                         }
1329                 }
1330                 break;
1331         }
1332
1333         isec->initialized = 1;
1334
1335 out_unlock:
1336         mutex_unlock(&isec->lock);
1337 out:
1338         if (isec->sclass == SECCLASS_FILE)
1339                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1340         return rc;
1341 }
1342
1343 /* Convert a Linux signal to an access vector. */
1344 static inline u32 signal_to_av(int sig)
1345 {
1346         u32 perm = 0;
1347
1348         switch (sig) {
1349         case SIGCHLD:
1350                 /* Commonly granted from child to parent. */
1351                 perm = PROCESS__SIGCHLD;
1352                 break;
1353         case SIGKILL:
1354                 /* Cannot be caught or ignored */
1355                 perm = PROCESS__SIGKILL;
1356                 break;
1357         case SIGSTOP:
1358                 /* Cannot be caught or ignored */
1359                 perm = PROCESS__SIGSTOP;
1360                 break;
1361         default:
1362                 /* All other signals. */
1363                 perm = PROCESS__SIGNAL;
1364                 break;
1365         }
1366
1367         return perm;
1368 }
1369
1370 /*
1371  * Check permission between a pair of credentials
1372  * fork check, ptrace check, etc.
1373  */
1374 static int cred_has_perm(const struct cred *actor,
1375                          const struct cred *target,
1376                          u32 perms)
1377 {
1378         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1379
1380         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1381 }
1382
1383 /*
1384  * Check permission between a pair of tasks, e.g. signal checks,
1385  * fork check, ptrace check, etc.
1386  * tsk1 is the actor and tsk2 is the target
1387  * - this uses the default subjective creds of tsk1
1388  */
1389 static int task_has_perm(const struct task_struct *tsk1,
1390                          const struct task_struct *tsk2,
1391                          u32 perms)
1392 {
1393         const struct task_security_struct *__tsec1, *__tsec2;
1394         u32 sid1, sid2;
1395
1396         rcu_read_lock();
1397         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1398         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1399         rcu_read_unlock();
1400         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1401 }
1402
1403 /*
1404  * Check permission between current and another task, e.g. signal checks,
1405  * fork check, ptrace check, etc.
1406  * current is the actor and tsk2 is the target
1407  * - this uses current's subjective creds
1408  */
1409 static int current_has_perm(const struct task_struct *tsk,
1410                             u32 perms)
1411 {
1412         u32 sid, tsid;
1413
1414         sid = current_sid();
1415         tsid = task_sid(tsk);
1416         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1417 }
1418
1419 #if CAP_LAST_CAP > 63
1420 #error Fix SELinux to handle capabilities > 63.
1421 #endif
1422
1423 /* Check whether a task is allowed to use a capability. */
1424 static int task_has_capability(struct task_struct *tsk,
1425                                const struct cred *cred,
1426                                int cap, int audit)
1427 {
1428         struct common_audit_data ad;
1429         struct av_decision avd;
1430         u16 sclass;
1431         u32 sid = cred_sid(cred);
1432         u32 av = CAP_TO_MASK(cap);
1433         int rc;
1434
1435         COMMON_AUDIT_DATA_INIT(&ad, CAP);
1436         ad.tsk = tsk;
1437         ad.u.cap = cap;
1438
1439         switch (CAP_TO_INDEX(cap)) {
1440         case 0:
1441                 sclass = SECCLASS_CAPABILITY;
1442                 break;
1443         case 1:
1444                 sclass = SECCLASS_CAPABILITY2;
1445                 break;
1446         default:
1447                 printk(KERN_ERR
1448                        "SELinux:  out of range capability %d\n", cap);
1449                 BUG();
1450         }
1451
1452         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1453         if (audit == SECURITY_CAP_AUDIT)
1454                 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1455         return rc;
1456 }
1457
1458 /* Check whether a task is allowed to use a system operation. */
1459 static int task_has_system(struct task_struct *tsk,
1460                            u32 perms)
1461 {
1462         u32 sid = task_sid(tsk);
1463
1464         return avc_has_perm(sid, SECINITSID_KERNEL,
1465                             SECCLASS_SYSTEM, perms, NULL);
1466 }
1467
1468 /* Check whether a task has a particular permission to an inode.
1469    The 'adp' parameter is optional and allows other audit
1470    data to be passed (e.g. the dentry). */
1471 static int inode_has_perm(const struct cred *cred,
1472                           struct inode *inode,
1473                           u32 perms,
1474                           struct common_audit_data *adp)
1475 {
1476         struct inode_security_struct *isec;
1477         struct common_audit_data ad;
1478         u32 sid;
1479
1480         validate_creds(cred);
1481
1482         if (unlikely(IS_PRIVATE(inode)))
1483                 return 0;
1484
1485         sid = cred_sid(cred);
1486         isec = inode->i_security;
1487
1488         if (!adp) {
1489                 adp = &ad;
1490                 COMMON_AUDIT_DATA_INIT(&ad, FS);
1491                 ad.u.fs.inode = inode;
1492         }
1493
1494         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1495 }
1496
1497 /* Same as inode_has_perm, but pass explicit audit data containing
1498    the dentry to help the auditing code to more easily generate the
1499    pathname if needed. */
1500 static inline int dentry_has_perm(const struct cred *cred,
1501                                   struct vfsmount *mnt,
1502                                   struct dentry *dentry,
1503                                   u32 av)
1504 {
1505         struct inode *inode = dentry->d_inode;
1506         struct common_audit_data ad;
1507
1508         COMMON_AUDIT_DATA_INIT(&ad, FS);
1509         ad.u.fs.path.mnt = mnt;
1510         ad.u.fs.path.dentry = dentry;
1511         return inode_has_perm(cred, inode, av, &ad);
1512 }
1513
1514 /* Check whether a task can use an open file descriptor to
1515    access an inode in a given way.  Check access to the
1516    descriptor itself, and then use dentry_has_perm to
1517    check a particular permission to the file.
1518    Access to the descriptor is implicitly granted if it
1519    has the same SID as the process.  If av is zero, then
1520    access to the file is not checked, e.g. for cases
1521    where only the descriptor is affected like seek. */
1522 static int file_has_perm(const struct cred *cred,
1523                          struct file *file,
1524                          u32 av)
1525 {
1526         struct file_security_struct *fsec = file->f_security;
1527         struct inode *inode = file->f_path.dentry->d_inode;
1528         struct common_audit_data ad;
1529         u32 sid = cred_sid(cred);
1530         int rc;
1531
1532         COMMON_AUDIT_DATA_INIT(&ad, FS);
1533         ad.u.fs.path = file->f_path;
1534
1535         if (sid != fsec->sid) {
1536                 rc = avc_has_perm(sid, fsec->sid,
1537                                   SECCLASS_FD,
1538                                   FD__USE,
1539                                   &ad);
1540                 if (rc)
1541                         goto out;
1542         }
1543
1544         /* av is zero if only checking access to the descriptor. */
1545         rc = 0;
1546         if (av)
1547                 rc = inode_has_perm(cred, inode, av, &ad);
1548
1549 out:
1550         return rc;
1551 }
1552
1553 /* Check whether a task can create a file. */
1554 static int may_create(struct inode *dir,
1555                       struct dentry *dentry,
1556                       u16 tclass)
1557 {
1558         const struct task_security_struct *tsec = current_security();
1559         struct inode_security_struct *dsec;
1560         struct superblock_security_struct *sbsec;
1561         u32 sid, newsid;
1562         struct common_audit_data ad;
1563         int rc;
1564
1565         dsec = dir->i_security;
1566         sbsec = dir->i_sb->s_security;
1567
1568         sid = tsec->sid;
1569         newsid = tsec->create_sid;
1570
1571         COMMON_AUDIT_DATA_INIT(&ad, FS);
1572         ad.u.fs.path.dentry = dentry;
1573
1574         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1575                           DIR__ADD_NAME | DIR__SEARCH,
1576                           &ad);
1577         if (rc)
1578                 return rc;
1579
1580         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1581                 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1582                 if (rc)
1583                         return rc;
1584         }
1585
1586         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1587         if (rc)
1588                 return rc;
1589
1590         return avc_has_perm(newsid, sbsec->sid,
1591                             SECCLASS_FILESYSTEM,
1592                             FILESYSTEM__ASSOCIATE, &ad);
1593 }
1594
1595 /* Check whether a task can create a key. */
1596 static int may_create_key(u32 ksid,
1597                           struct task_struct *ctx)
1598 {
1599         u32 sid = task_sid(ctx);
1600
1601         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1602 }
1603
1604 #define MAY_LINK        0
1605 #define MAY_UNLINK      1
1606 #define MAY_RMDIR       2
1607
1608 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1609 static int may_link(struct inode *dir,
1610                     struct dentry *dentry,
1611                     int kind)
1612
1613 {
1614         struct inode_security_struct *dsec, *isec;
1615         struct common_audit_data ad;
1616         u32 sid = current_sid();
1617         u32 av;
1618         int rc;
1619
1620         dsec = dir->i_security;
1621         isec = dentry->d_inode->i_security;
1622
1623         COMMON_AUDIT_DATA_INIT(&ad, FS);
1624         ad.u.fs.path.dentry = dentry;
1625
1626         av = DIR__SEARCH;
1627         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1628         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1629         if (rc)
1630                 return rc;
1631
1632         switch (kind) {
1633         case MAY_LINK:
1634                 av = FILE__LINK;
1635                 break;
1636         case MAY_UNLINK:
1637                 av = FILE__UNLINK;
1638                 break;
1639         case MAY_RMDIR:
1640                 av = DIR__RMDIR;
1641                 break;
1642         default:
1643                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1644                         __func__, kind);
1645                 return 0;
1646         }
1647
1648         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1649         return rc;
1650 }
1651
1652 static inline int may_rename(struct inode *old_dir,
1653                              struct dentry *old_dentry,
1654                              struct inode *new_dir,
1655                              struct dentry *new_dentry)
1656 {
1657         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1658         struct common_audit_data ad;
1659         u32 sid = current_sid();
1660         u32 av;
1661         int old_is_dir, new_is_dir;
1662         int rc;
1663
1664         old_dsec = old_dir->i_security;
1665         old_isec = old_dentry->d_inode->i_security;
1666         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1667         new_dsec = new_dir->i_security;
1668
1669         COMMON_AUDIT_DATA_INIT(&ad, FS);
1670
1671         ad.u.fs.path.dentry = old_dentry;
1672         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1673                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1674         if (rc)
1675                 return rc;
1676         rc = avc_has_perm(sid, old_isec->sid,
1677                           old_isec->sclass, FILE__RENAME, &ad);
1678         if (rc)
1679                 return rc;
1680         if (old_is_dir && new_dir != old_dir) {
1681                 rc = avc_has_perm(sid, old_isec->sid,
1682                                   old_isec->sclass, DIR__REPARENT, &ad);
1683                 if (rc)
1684                         return rc;
1685         }
1686
1687         ad.u.fs.path.dentry = new_dentry;
1688         av = DIR__ADD_NAME | DIR__SEARCH;
1689         if (new_dentry->d_inode)
1690                 av |= DIR__REMOVE_NAME;
1691         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1692         if (rc)
1693                 return rc;
1694         if (new_dentry->d_inode) {
1695                 new_isec = new_dentry->d_inode->i_security;
1696                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1697                 rc = avc_has_perm(sid, new_isec->sid,
1698                                   new_isec->sclass,
1699                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1700                 if (rc)
1701                         return rc;
1702         }
1703
1704         return 0;
1705 }
1706
1707 /* Check whether a task can perform a filesystem operation. */
1708 static int superblock_has_perm(const struct cred *cred,
1709                                struct super_block *sb,
1710                                u32 perms,
1711                                struct common_audit_data *ad)
1712 {
1713         struct superblock_security_struct *sbsec;
1714         u32 sid = cred_sid(cred);
1715
1716         sbsec = sb->s_security;
1717         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1718 }
1719
1720 /* Convert a Linux mode and permission mask to an access vector. */
1721 static inline u32 file_mask_to_av(int mode, int mask)
1722 {
1723         u32 av = 0;
1724
1725         if ((mode & S_IFMT) != S_IFDIR) {
1726                 if (mask & MAY_EXEC)
1727                         av |= FILE__EXECUTE;
1728                 if (mask & MAY_READ)
1729                         av |= FILE__READ;
1730
1731                 if (mask & MAY_APPEND)
1732                         av |= FILE__APPEND;
1733                 else if (mask & MAY_WRITE)
1734                         av |= FILE__WRITE;
1735
1736         } else {
1737                 if (mask & MAY_EXEC)
1738                         av |= DIR__SEARCH;
1739                 if (mask & MAY_WRITE)
1740                         av |= DIR__WRITE;
1741                 if (mask & MAY_READ)
1742                         av |= DIR__READ;
1743         }
1744
1745         return av;
1746 }
1747
1748 /* Convert a Linux file to an access vector. */
1749 static inline u32 file_to_av(struct file *file)
1750 {
1751         u32 av = 0;
1752
1753         if (file->f_mode & FMODE_READ)
1754                 av |= FILE__READ;
1755         if (file->f_mode & FMODE_WRITE) {
1756                 if (file->f_flags & O_APPEND)
1757                         av |= FILE__APPEND;
1758                 else
1759                         av |= FILE__WRITE;
1760         }
1761         if (!av) {
1762                 /*
1763                  * Special file opened with flags 3 for ioctl-only use.
1764                  */
1765                 av = FILE__IOCTL;
1766         }
1767
1768         return av;
1769 }
1770
1771 /*
1772  * Convert a file to an access vector and include the correct open
1773  * open permission.
1774  */
1775 static inline u32 open_file_to_av(struct file *file)
1776 {
1777         u32 av = file_to_av(file);
1778
1779         if (selinux_policycap_openperm) {
1780                 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1781                 /*
1782                  * lnk files and socks do not really have an 'open'
1783                  */
1784                 if (S_ISREG(mode))
1785                         av |= FILE__OPEN;
1786                 else if (S_ISCHR(mode))
1787                         av |= CHR_FILE__OPEN;
1788                 else if (S_ISBLK(mode))
1789                         av |= BLK_FILE__OPEN;
1790                 else if (S_ISFIFO(mode))
1791                         av |= FIFO_FILE__OPEN;
1792                 else if (S_ISDIR(mode))
1793                         av |= DIR__OPEN;
1794                 else if (S_ISSOCK(mode))
1795                         av |= SOCK_FILE__OPEN;
1796                 else
1797                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1798                                 "unknown mode:%o\n", __func__, mode);
1799         }
1800         return av;
1801 }
1802
1803 /* Hook functions begin here. */
1804
1805 static int selinux_ptrace_access_check(struct task_struct *child,
1806                                      unsigned int mode)
1807 {
1808         int rc;
1809
1810         rc = cap_ptrace_access_check(child, mode);
1811         if (rc)
1812                 return rc;
1813
1814         if (mode == PTRACE_MODE_READ) {
1815                 u32 sid = current_sid();
1816                 u32 csid = task_sid(child);
1817                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1818         }
1819
1820         return current_has_perm(child, PROCESS__PTRACE);
1821 }
1822
1823 static int selinux_ptrace_traceme(struct task_struct *parent)
1824 {
1825         int rc;
1826
1827         rc = cap_ptrace_traceme(parent);
1828         if (rc)
1829                 return rc;
1830
1831         return task_has_perm(parent, current, PROCESS__PTRACE);
1832 }
1833
1834 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1835                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1836 {
1837         int error;
1838
1839         error = current_has_perm(target, PROCESS__GETCAP);
1840         if (error)
1841                 return error;
1842
1843         return cap_capget(target, effective, inheritable, permitted);
1844 }
1845
1846 static int selinux_capset(struct cred *new, const struct cred *old,
1847                           const kernel_cap_t *effective,
1848                           const kernel_cap_t *inheritable,
1849                           const kernel_cap_t *permitted)
1850 {
1851         int error;
1852
1853         error = cap_capset(new, old,
1854                                       effective, inheritable, permitted);
1855         if (error)
1856                 return error;
1857
1858         return cred_has_perm(old, new, PROCESS__SETCAP);
1859 }
1860
1861 /*
1862  * (This comment used to live with the selinux_task_setuid hook,
1863  * which was removed).
1864  *
1865  * Since setuid only affects the current process, and since the SELinux
1866  * controls are not based on the Linux identity attributes, SELinux does not
1867  * need to control this operation.  However, SELinux does control the use of
1868  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1869  */
1870
1871 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1872                            int cap, int audit)
1873 {
1874         int rc;
1875
1876         rc = cap_capable(tsk, cred, cap, audit);
1877         if (rc)
1878                 return rc;
1879
1880         return task_has_capability(tsk, cred, cap, audit);
1881 }
1882
1883 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1884 {
1885         int buflen, rc;
1886         char *buffer, *path, *end;
1887
1888         rc = -ENOMEM;
1889         buffer = (char *)__get_free_page(GFP_KERNEL);
1890         if (!buffer)
1891                 goto out;
1892
1893         buflen = PAGE_SIZE;
1894         end = buffer+buflen;
1895         *--end = '\0';
1896         buflen--;
1897         path = end-1;
1898         *path = '/';
1899         while (table) {
1900                 const char *name = table->procname;
1901                 size_t namelen = strlen(name);
1902                 buflen -= namelen + 1;
1903                 if (buflen < 0)
1904                         goto out_free;
1905                 end -= namelen;
1906                 memcpy(end, name, namelen);
1907                 *--end = '/';
1908                 path = end;
1909                 table = table->parent;
1910         }
1911         buflen -= 4;
1912         if (buflen < 0)
1913                 goto out_free;
1914         end -= 4;
1915         memcpy(end, "/sys", 4);
1916         path = end;
1917         rc = security_genfs_sid("proc", path, tclass, sid);
1918 out_free:
1919         free_page((unsigned long)buffer);
1920 out:
1921         return rc;
1922 }
1923
1924 static int selinux_sysctl(ctl_table *table, int op)
1925 {
1926         int error = 0;
1927         u32 av;
1928         u32 tsid, sid;
1929         int rc;
1930
1931         sid = current_sid();
1932
1933         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1934                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1935         if (rc) {
1936                 /* Default to the well-defined sysctl SID. */
1937                 tsid = SECINITSID_SYSCTL;
1938         }
1939
1940         /* The op values are "defined" in sysctl.c, thereby creating
1941          * a bad coupling between this module and sysctl.c */
1942         if (op == 001) {
1943                 error = avc_has_perm(sid, tsid,
1944                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1945         } else {
1946                 av = 0;
1947                 if (op & 004)
1948                         av |= FILE__READ;
1949                 if (op & 002)
1950                         av |= FILE__WRITE;
1951                 if (av)
1952                         error = avc_has_perm(sid, tsid,
1953                                              SECCLASS_FILE, av, NULL);
1954         }
1955
1956         return error;
1957 }
1958
1959 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1960 {
1961         const struct cred *cred = current_cred();
1962         int rc = 0;
1963
1964         if (!sb)
1965                 return 0;
1966
1967         switch (cmds) {
1968         case Q_SYNC:
1969         case Q_QUOTAON:
1970         case Q_QUOTAOFF:
1971         case Q_SETINFO:
1972         case Q_SETQUOTA:
1973                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1974                 break;
1975         case Q_GETFMT:
1976         case Q_GETINFO:
1977         case Q_GETQUOTA:
1978                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1979                 break;
1980         default:
1981                 rc = 0;  /* let the kernel handle invalid cmds */
1982                 break;
1983         }
1984         return rc;
1985 }
1986
1987 static int selinux_quota_on(struct dentry *dentry)
1988 {
1989         const struct cred *cred = current_cred();
1990
1991         return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
1992 }
1993
1994 static int selinux_syslog(int type, bool from_file)
1995 {
1996         int rc;
1997
1998         rc = cap_syslog(type, from_file);
1999         if (rc)
2000                 return rc;
2001
2002         switch (type) {
2003         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
2004         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2005                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2006                 break;
2007         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2008         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
2009         /* Set level of messages printed to console */
2010         case SYSLOG_ACTION_CONSOLE_LEVEL:
2011                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2012                 break;
2013         case SYSLOG_ACTION_CLOSE:       /* Close log */
2014         case SYSLOG_ACTION_OPEN:        /* Open log */
2015         case SYSLOG_ACTION_READ:        /* Read from log */
2016         case SYSLOG_ACTION_READ_CLEAR:  /* Read/clear last kernel messages */
2017         case SYSLOG_ACTION_CLEAR:       /* Clear ring buffer */
2018         default:
2019                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2020                 break;
2021         }
2022         return rc;
2023 }
2024
2025 /*
2026  * Check that a process has enough memory to allocate a new virtual
2027  * mapping. 0 means there is enough memory for the allocation to
2028  * succeed and -ENOMEM implies there is not.
2029  *
2030  * Do not audit the selinux permission check, as this is applied to all
2031  * processes that allocate mappings.
2032  */
2033 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2034 {
2035         int rc, cap_sys_admin = 0;
2036
2037         rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2038                              SECURITY_CAP_NOAUDIT);
2039         if (rc == 0)
2040                 cap_sys_admin = 1;
2041
2042         return __vm_enough_memory(mm, pages, cap_sys_admin);
2043 }
2044
2045 /* binprm security operations */
2046
2047 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2048 {
2049         const struct task_security_struct *old_tsec;
2050         struct task_security_struct *new_tsec;
2051         struct inode_security_struct *isec;
2052         struct common_audit_data ad;
2053         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2054         int rc;
2055
2056         rc = cap_bprm_set_creds(bprm);
2057         if (rc)
2058                 return rc;
2059
2060         /* SELinux context only depends on initial program or script and not
2061          * the script interpreter */
2062         if (bprm->cred_prepared)
2063                 return 0;
2064
2065         old_tsec = current_security();
2066         new_tsec = bprm->cred->security;
2067         isec = inode->i_security;
2068
2069         /* Default to the current task SID. */
2070         new_tsec->sid = old_tsec->sid;
2071         new_tsec->osid = old_tsec->sid;
2072
2073         /* Reset fs, key, and sock SIDs on execve. */
2074         new_tsec->create_sid = 0;
2075         new_tsec->keycreate_sid = 0;
2076         new_tsec->sockcreate_sid = 0;
2077
2078         if (old_tsec->exec_sid) {
2079                 new_tsec->sid = old_tsec->exec_sid;
2080                 /* Reset exec SID on execve. */
2081                 new_tsec->exec_sid = 0;
2082         } else {
2083                 /* Check for a default transition on this program. */
2084                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2085                                              SECCLASS_PROCESS, &new_tsec->sid);
2086                 if (rc)
2087                         return rc;
2088         }
2089
2090         COMMON_AUDIT_DATA_INIT(&ad, FS);
2091         ad.u.fs.path = bprm->file->f_path;
2092
2093         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2094                 new_tsec->sid = old_tsec->sid;
2095
2096         if (new_tsec->sid == old_tsec->sid) {
2097                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2098                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2099                 if (rc)
2100                         return rc;
2101         } else {
2102                 /* Check permissions for the transition. */
2103                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2104                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2105                 if (rc)
2106                         return rc;
2107
2108                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2109                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2110                 if (rc)
2111                         return rc;
2112
2113                 /* Check for shared state */
2114                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2115                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2116                                           SECCLASS_PROCESS, PROCESS__SHARE,
2117                                           NULL);
2118                         if (rc)
2119                                 return -EPERM;
2120                 }
2121
2122                 /* Make sure that anyone attempting to ptrace over a task that
2123                  * changes its SID has the appropriate permit */
2124                 if (bprm->unsafe &
2125                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2126                         struct task_struct *tracer;
2127                         struct task_security_struct *sec;
2128                         u32 ptsid = 0;
2129
2130                         rcu_read_lock();
2131                         tracer = tracehook_tracer_task(current);
2132                         if (likely(tracer != NULL)) {
2133                                 sec = __task_cred(tracer)->security;
2134                                 ptsid = sec->sid;
2135                         }
2136                         rcu_read_unlock();
2137
2138                         if (ptsid != 0) {
2139                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2140                                                   SECCLASS_PROCESS,
2141                                                   PROCESS__PTRACE, NULL);
2142                                 if (rc)
2143                                         return -EPERM;
2144                         }
2145                 }
2146
2147                 /* Clear any possibly unsafe personality bits on exec: */
2148                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2149         }
2150
2151         return 0;
2152 }
2153
2154 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2155 {
2156         const struct task_security_struct *tsec = current_security();
2157         u32 sid, osid;
2158         int atsecure = 0;
2159
2160         sid = tsec->sid;
2161         osid = tsec->osid;
2162
2163         if (osid != sid) {
2164                 /* Enable secure mode for SIDs transitions unless
2165                    the noatsecure permission is granted between
2166                    the two SIDs, i.e. ahp returns 0. */
2167                 atsecure = avc_has_perm(osid, sid,
2168                                         SECCLASS_PROCESS,
2169                                         PROCESS__NOATSECURE, NULL);
2170         }
2171
2172         return (atsecure || cap_bprm_secureexec(bprm));
2173 }
2174
2175 extern struct vfsmount *selinuxfs_mount;
2176 extern struct dentry *selinux_null;
2177
2178 /* Derived from fs/exec.c:flush_old_files. */
2179 static inline void flush_unauthorized_files(const struct cred *cred,
2180                                             struct files_struct *files)
2181 {
2182         struct common_audit_data ad;
2183         struct file *file, *devnull = NULL;
2184         struct tty_struct *tty;
2185         struct fdtable *fdt;
2186         long j = -1;
2187         int drop_tty = 0;
2188
2189         tty = get_current_tty();
2190         if (tty) {
2191                 file_list_lock();
2192                 if (!list_empty(&tty->tty_files)) {
2193                         struct inode *inode;
2194
2195                         /* Revalidate access to controlling tty.
2196                            Use inode_has_perm on the tty inode directly rather
2197                            than using file_has_perm, as this particular open
2198                            file may belong to another process and we are only
2199                            interested in the inode-based check here. */
2200                         file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2201                         inode = file->f_path.dentry->d_inode;
2202                         if (inode_has_perm(cred, inode,
2203                                            FILE__READ | FILE__WRITE, NULL)) {
2204                                 drop_tty = 1;
2205                         }
2206                 }
2207                 file_list_unlock();
2208                 tty_kref_put(tty);
2209         }
2210         /* Reset controlling tty. */
2211         if (drop_tty)
2212                 no_tty();
2213
2214         /* Revalidate access to inherited open files. */
2215
2216         COMMON_AUDIT_DATA_INIT(&ad, FS);
2217
2218         spin_lock(&files->file_lock);
2219         for (;;) {
2220                 unsigned long set, i;
2221                 int fd;
2222
2223                 j++;
2224                 i = j * __NFDBITS;
2225                 fdt = files_fdtable(files);
2226                 if (i >= fdt->max_fds)
2227                         break;
2228                 set = fdt->open_fds->fds_bits[j];
2229                 if (!set)
2230                         continue;
2231                 spin_unlock(&files->file_lock);
2232                 for ( ; set ; i++, set >>= 1) {
2233                         if (set & 1) {
2234                                 file = fget(i);
2235                                 if (!file)
2236                                         continue;
2237                                 if (file_has_perm(cred,
2238                                                   file,
2239                                                   file_to_av(file))) {
2240                                         sys_close(i);
2241                                         fd = get_unused_fd();
2242                                         if (fd != i) {
2243                                                 if (fd >= 0)
2244                                                         put_unused_fd(fd);
2245                                                 fput(file);
2246                                                 continue;
2247                                         }
2248                                         if (devnull) {
2249                                                 get_file(devnull);
2250                                         } else {
2251                                                 devnull = dentry_open(
2252                                                         dget(selinux_null),
2253                                                         mntget(selinuxfs_mount),
2254                                                         O_RDWR, cred);
2255                                                 if (IS_ERR(devnull)) {
2256                                                         devnull = NULL;
2257                                                         put_unused_fd(fd);
2258                                                         fput(file);
2259                                                         continue;
2260                                                 }
2261                                         }
2262                                         fd_install(fd, devnull);
2263                                 }
2264                                 fput(file);
2265                         }
2266                 }
2267                 spin_lock(&files->file_lock);
2268
2269         }
2270         spin_unlock(&files->file_lock);
2271 }
2272
2273 /*
2274  * Prepare a process for imminent new credential changes due to exec
2275  */
2276 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2277 {
2278         struct task_security_struct *new_tsec;
2279         struct rlimit *rlim, *initrlim;
2280         int rc, i;
2281
2282         new_tsec = bprm->cred->security;
2283         if (new_tsec->sid == new_tsec->osid)
2284                 return;
2285
2286         /* Close files for which the new task SID is not authorized. */
2287         flush_unauthorized_files(bprm->cred, current->files);
2288
2289         /* Always clear parent death signal on SID transitions. */
2290         current->pdeath_signal = 0;
2291
2292         /* Check whether the new SID can inherit resource limits from the old
2293          * SID.  If not, reset all soft limits to the lower of the current
2294          * task's hard limit and the init task's soft limit.
2295          *
2296          * Note that the setting of hard limits (even to lower them) can be
2297          * controlled by the setrlimit check.  The inclusion of the init task's
2298          * soft limit into the computation is to avoid resetting soft limits
2299          * higher than the default soft limit for cases where the default is
2300          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2301          */
2302         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2303                           PROCESS__RLIMITINH, NULL);
2304         if (rc) {
2305                 for (i = 0; i < RLIM_NLIMITS; i++) {
2306                         rlim = current->signal->rlim + i;
2307                         initrlim = init_task.signal->rlim + i;
2308                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2309                 }
2310                 update_rlimit_cpu(current->signal->rlim[RLIMIT_CPU].rlim_cur);
2311         }
2312 }
2313
2314 /*
2315  * Clean up the process immediately after the installation of new credentials
2316  * due to exec
2317  */
2318 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2319 {
2320         const struct task_security_struct *tsec = current_security();
2321         struct itimerval itimer;
2322         u32 osid, sid;
2323         int rc, i;
2324
2325         osid = tsec->osid;
2326         sid = tsec->sid;
2327
2328         if (sid == osid)
2329                 return;
2330
2331         /* Check whether the new SID can inherit signal state from the old SID.
2332          * If not, clear itimers to avoid subsequent signal generation and
2333          * flush and unblock signals.
2334          *
2335          * This must occur _after_ the task SID has been updated so that any
2336          * kill done after the flush will be checked against the new SID.
2337          */
2338         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2339         if (rc) {
2340                 memset(&itimer, 0, sizeof itimer);
2341                 for (i = 0; i < 3; i++)
2342                         do_setitimer(i, &itimer, NULL);
2343                 spin_lock_irq(&current->sighand->siglock);
2344                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2345                         __flush_signals(current);
2346                         flush_signal_handlers(current, 1);
2347                         sigemptyset(&current->blocked);
2348                 }
2349                 spin_unlock_irq(&current->sighand->siglock);
2350         }
2351
2352         /* Wake up the parent if it is waiting so that it can recheck
2353          * wait permission to the new task SID. */
2354         read_lock(&tasklist_lock);
2355         __wake_up_parent(current, current->real_parent);
2356         read_unlock(&tasklist_lock);
2357 }
2358
2359 /* superblock security operations */
2360
2361 static int selinux_sb_alloc_security(struct super_block *sb)
2362 {
2363         return superblock_alloc_security(sb);
2364 }
2365
2366 static void selinux_sb_free_security(struct super_block *sb)
2367 {
2368         superblock_free_security(sb);
2369 }
2370
2371 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2372 {
2373         if (plen > olen)
2374                 return 0;
2375
2376         return !memcmp(prefix, option, plen);
2377 }
2378
2379 static inline int selinux_option(char *option, int len)
2380 {
2381         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2382                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2383                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2384                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2385                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2386 }
2387
2388 static inline void take_option(char **to, char *from, int *first, int len)
2389 {
2390         if (!*first) {
2391                 **to = ',';
2392                 *to += 1;
2393         } else
2394                 *first = 0;
2395         memcpy(*to, from, len);
2396         *to += len;
2397 }
2398
2399 static inline void take_selinux_option(char **to, char *from, int *first,
2400                                        int len)
2401 {
2402         int current_size = 0;
2403
2404         if (!*first) {
2405                 **to = '|';
2406                 *to += 1;
2407         } else
2408                 *first = 0;
2409
2410         while (current_size < len) {
2411                 if (*from != '"') {
2412                         **to = *from;
2413                         *to += 1;
2414                 }
2415                 from += 1;
2416                 current_size += 1;
2417         }
2418 }
2419
2420 static int selinux_sb_copy_data(char *orig, char *copy)
2421 {
2422         int fnosec, fsec, rc = 0;
2423         char *in_save, *in_curr, *in_end;
2424         char *sec_curr, *nosec_save, *nosec;
2425         int open_quote = 0;
2426
2427         in_curr = orig;
2428         sec_curr = copy;
2429
2430         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2431         if (!nosec) {
2432                 rc = -ENOMEM;
2433                 goto out;
2434         }
2435
2436         nosec_save = nosec;
2437         fnosec = fsec = 1;
2438         in_save = in_end = orig;
2439
2440         do {
2441                 if (*in_end == '"')
2442                         open_quote = !open_quote;
2443                 if ((*in_end == ',' && open_quote == 0) ||
2444                                 *in_end == '\0') {
2445                         int len = in_end - in_curr;
2446
2447                         if (selinux_option(in_curr, len))
2448                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2449                         else
2450                                 take_option(&nosec, in_curr, &fnosec, len);
2451
2452                         in_curr = in_end + 1;
2453                 }
2454         } while (*in_end++);
2455
2456         strcpy(in_save, nosec_save);
2457         free_page((unsigned long)nosec_save);
2458 out:
2459         return rc;
2460 }
2461
2462 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2463 {
2464         const struct cred *cred = current_cred();
2465         struct common_audit_data ad;
2466         int rc;
2467
2468         rc = superblock_doinit(sb, data);
2469         if (rc)
2470                 return rc;
2471
2472         /* Allow all mounts performed by the kernel */
2473         if (flags & MS_KERNMOUNT)
2474                 return 0;
2475
2476         COMMON_AUDIT_DATA_INIT(&ad, FS);
2477         ad.u.fs.path.dentry = sb->s_root;
2478         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2479 }
2480
2481 static int selinux_sb_statfs(struct dentry *dentry)
2482 {
2483         const struct cred *cred = current_cred();
2484         struct common_audit_data ad;
2485
2486         COMMON_AUDIT_DATA_INIT(&ad, FS);
2487         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2488         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2489 }
2490
2491 static int selinux_mount(char *dev_name,
2492                          struct path *path,
2493                          char *type,
2494                          unsigned long flags,
2495                          void *data)
2496 {
2497         const struct cred *cred = current_cred();
2498
2499         if (flags & MS_REMOUNT)
2500                 return superblock_has_perm(cred, path->mnt->mnt_sb,
2501                                            FILESYSTEM__REMOUNT, NULL);
2502         else
2503                 return dentry_has_perm(cred, path->mnt, path->dentry,
2504                                        FILE__MOUNTON);
2505 }
2506
2507 static int selinux_umount(struct vfsmount *mnt, int flags)
2508 {
2509         const struct cred *cred = current_cred();
2510
2511         return superblock_has_perm(cred, mnt->mnt_sb,
2512                                    FILESYSTEM__UNMOUNT, NULL);
2513 }
2514
2515 /* inode security operations */
2516
2517 static int selinux_inode_alloc_security(struct inode *inode)
2518 {
2519         return inode_alloc_security(inode);
2520 }
2521
2522 static void selinux_inode_free_security(struct inode *inode)
2523 {
2524         inode_free_security(inode);
2525 }
2526
2527 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2528                                        char **name, void **value,
2529                                        size_t *len)
2530 {
2531         const struct task_security_struct *tsec = current_security();
2532         struct inode_security_struct *dsec;
2533         struct superblock_security_struct *sbsec;
2534         u32 sid, newsid, clen;
2535         int rc;
2536         char *namep = NULL, *context;
2537
2538         dsec = dir->i_security;
2539         sbsec = dir->i_sb->s_security;
2540
2541         sid = tsec->sid;
2542         newsid = tsec->create_sid;
2543
2544         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2545                 rc = security_transition_sid(sid, dsec->sid,
2546                                              inode_mode_to_security_class(inode->i_mode),
2547                                              &newsid);
2548                 if (rc) {
2549                         printk(KERN_WARNING "%s:  "
2550                                "security_transition_sid failed, rc=%d (dev=%s "
2551                                "ino=%ld)\n",
2552                                __func__,
2553                                -rc, inode->i_sb->s_id, inode->i_ino);
2554                         return rc;
2555                 }
2556         }
2557
2558         /* Possibly defer initialization to selinux_complete_init. */
2559         if (sbsec->flags & SE_SBINITIALIZED) {
2560                 struct inode_security_struct *isec = inode->i_security;
2561                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2562                 isec->sid = newsid;
2563                 isec->initialized = 1;
2564         }
2565
2566         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2567                 return -EOPNOTSUPP;
2568
2569         if (name) {
2570                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2571                 if (!namep)
2572                         return -ENOMEM;
2573                 *name = namep;
2574         }
2575
2576         if (value && len) {
2577                 rc = security_sid_to_context_force(newsid, &context, &clen);
2578                 if (rc) {
2579                         kfree(namep);
2580                         return rc;
2581                 }
2582                 *value = context;
2583                 *len = clen;
2584         }
2585
2586         return 0;
2587 }
2588
2589 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2590 {
2591         return may_create(dir, dentry, SECCLASS_FILE);
2592 }
2593
2594 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2595 {
2596         return may_link(dir, old_dentry, MAY_LINK);
2597 }
2598
2599 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2600 {
2601         return may_link(dir, dentry, MAY_UNLINK);
2602 }
2603
2604 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2605 {
2606         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2607 }
2608
2609 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2610 {
2611         return may_create(dir, dentry, SECCLASS_DIR);
2612 }
2613
2614 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2615 {
2616         return may_link(dir, dentry, MAY_RMDIR);
2617 }
2618
2619 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2620 {
2621         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2622 }
2623
2624 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2625                                 struct inode *new_inode, struct dentry *new_dentry)
2626 {
2627         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2628 }
2629
2630 static int selinux_inode_readlink(struct dentry *dentry)
2631 {
2632         const struct cred *cred = current_cred();
2633
2634         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2635 }
2636
2637 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2638 {
2639         const struct cred *cred = current_cred();
2640
2641         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2642 }
2643
2644 static int selinux_inode_permission(struct inode *inode, int mask)
2645 {
2646         const struct cred *cred = current_cred();
2647
2648         if (!mask) {
2649                 /* No permission to check.  Existence test. */
2650                 return 0;
2651         }
2652
2653         return inode_has_perm(cred, inode,
2654                               file_mask_to_av(inode->i_mode, mask), NULL);
2655 }
2656
2657 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2658 {
2659         const struct cred *cred = current_cred();
2660         unsigned int ia_valid = iattr->ia_valid;
2661
2662         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2663         if (ia_valid & ATTR_FORCE) {
2664                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2665                               ATTR_FORCE);
2666                 if (!ia_valid)
2667                         return 0;
2668         }
2669
2670         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2671                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2672                 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2673
2674         return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2675 }
2676
2677 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2678 {
2679         const struct cred *cred = current_cred();
2680
2681         return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2682 }
2683
2684 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2685 {
2686         const struct cred *cred = current_cred();
2687
2688         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2689                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2690                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2691                         if (!capable(CAP_SETFCAP))
2692                                 return -EPERM;
2693                 } else if (!capable(CAP_SYS_ADMIN)) {
2694                         /* A different attribute in the security namespace.
2695                            Restrict to administrator. */
2696                         return -EPERM;
2697                 }
2698         }
2699
2700         /* Not an attribute we recognize, so just check the
2701            ordinary setattr permission. */
2702         return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2703 }
2704
2705 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2706                                   const void *value, size_t size, int flags)
2707 {
2708         struct inode *inode = dentry->d_inode;
2709         struct inode_security_struct *isec = inode->i_security;
2710         struct superblock_security_struct *sbsec;
2711         struct common_audit_data ad;
2712         u32 newsid, sid = current_sid();
2713         int rc = 0;
2714
2715         if (strcmp(name, XATTR_NAME_SELINUX))
2716                 return selinux_inode_setotherxattr(dentry, name);
2717
2718         sbsec = inode->i_sb->s_security;
2719         if (!(sbsec->flags & SE_SBLABELSUPP))
2720                 return -EOPNOTSUPP;
2721
2722         if (!is_owner_or_cap(inode))
2723                 return -EPERM;
2724
2725         COMMON_AUDIT_DATA_INIT(&ad, FS);
2726         ad.u.fs.path.dentry = dentry;
2727
2728         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2729                           FILE__RELABELFROM, &ad);
2730         if (rc)
2731                 return rc;
2732
2733         rc = security_context_to_sid(value, size, &newsid);
2734         if (rc == -EINVAL) {
2735                 if (!capable(CAP_MAC_ADMIN))
2736                         return rc;
2737                 rc = security_context_to_sid_force(value, size, &newsid);
2738         }
2739         if (rc)
2740                 return rc;
2741
2742         rc = avc_has_perm(sid, newsid, isec->sclass,
2743                           FILE__RELABELTO, &ad);
2744         if (rc)
2745                 return rc;
2746
2747         rc = security_validate_transition(isec->sid, newsid, sid,
2748                                           isec->sclass);
2749         if (rc)
2750                 return rc;
2751
2752         return avc_has_perm(newsid,
2753                             sbsec->sid,
2754                             SECCLASS_FILESYSTEM,
2755                             FILESYSTEM__ASSOCIATE,
2756                             &ad);
2757 }
2758
2759 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2760                                         const void *value, size_t size,
2761                                         int flags)
2762 {
2763         struct inode *inode = dentry->d_inode;
2764         struct inode_security_struct *isec = inode->i_security;
2765         u32 newsid;
2766         int rc;
2767
2768         if (strcmp(name, XATTR_NAME_SELINUX)) {
2769                 /* Not an attribute we recognize, so nothing to do. */
2770                 return;
2771         }
2772
2773         rc = security_context_to_sid_force(value, size, &newsid);
2774         if (rc) {
2775                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2776                        "for (%s, %lu), rc=%d\n",
2777                        inode->i_sb->s_id, inode->i_ino, -rc);
2778                 return;
2779         }
2780
2781         isec->sid = newsid;
2782         return;
2783 }
2784
2785 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2786 {
2787         const struct cred *cred = current_cred();
2788
2789         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2790 }
2791
2792 static int selinux_inode_listxattr(struct dentry *dentry)
2793 {
2794         const struct cred *cred = current_cred();
2795
2796         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2797 }
2798
2799 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2800 {
2801         if (strcmp(name, XATTR_NAME_SELINUX))
2802                 return selinux_inode_setotherxattr(dentry, name);
2803
2804         /* No one is allowed to remove a SELinux security label.
2805            You can change the label, but all data must be labeled. */
2806         return -EACCES;
2807 }
2808
2809 /*
2810  * Copy the inode security context value to the user.
2811  *
2812  * Permission check is handled by selinux_inode_getxattr hook.
2813  */
2814 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2815 {
2816         u32 size;
2817         int error;
2818         char *context = NULL;
2819         struct inode_security_struct *isec = inode->i_security;
2820
2821         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2822                 return -EOPNOTSUPP;
2823
2824         /*
2825          * If the caller has CAP_MAC_ADMIN, then get the raw context
2826          * value even if it is not defined by current policy; otherwise,
2827          * use the in-core value under current policy.
2828          * Use the non-auditing forms of the permission checks since
2829          * getxattr may be called by unprivileged processes commonly
2830          * and lack of permission just means that we fall back to the
2831          * in-core context value, not a denial.
2832          */
2833         error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2834                                 SECURITY_CAP_NOAUDIT);
2835         if (!error)
2836                 error = security_sid_to_context_force(isec->sid, &context,
2837                                                       &size);
2838         else
2839                 error = security_sid_to_context(isec->sid, &context, &size);
2840         if (error)
2841                 return error;
2842         error = size;
2843         if (alloc) {
2844                 *buffer = context;
2845                 goto out_nofree;
2846         }
2847         kfree(context);
2848 out_nofree:
2849         return error;
2850 }
2851
2852 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2853                                      const void *value, size_t size, int flags)
2854 {
2855         struct inode_security_struct *isec = inode->i_security;
2856         u32 newsid;
2857         int rc;
2858
2859         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2860                 return -EOPNOTSUPP;
2861
2862         if (!value || !size)
2863                 return -EACCES;
2864
2865         rc = security_context_to_sid((void *)value, size, &newsid);
2866         if (rc)
2867                 return rc;
2868
2869         isec->sid = newsid;
2870         isec->initialized = 1;
2871         return 0;
2872 }
2873
2874 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2875 {
2876         const int len = sizeof(XATTR_NAME_SELINUX);
2877         if (buffer && len <= buffer_size)
2878                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2879         return len;
2880 }
2881
2882 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2883 {
2884         struct inode_security_struct *isec = inode->i_security;
2885         *secid = isec->sid;
2886 }
2887
2888 /* file security operations */
2889
2890 static int selinux_revalidate_file_permission(struct file *file, int mask)
2891 {
2892         const struct cred *cred = current_cred();
2893         struct inode *inode = file->f_path.dentry->d_inode;
2894
2895         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2896         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2897                 mask |= MAY_APPEND;
2898
2899         return file_has_perm(cred, file,
2900                              file_mask_to_av(inode->i_mode, mask));
2901 }
2902
2903 static int selinux_file_permission(struct file *file, int mask)
2904 {
2905         struct inode *inode = file->f_path.dentry->d_inode;
2906         struct file_security_struct *fsec = file->f_security;
2907         struct inode_security_struct *isec = inode->i_security;
2908         u32 sid = current_sid();
2909
2910         if (!mask)
2911                 /* No permission to check.  Existence test. */
2912                 return 0;
2913
2914         if (sid == fsec->sid && fsec->isid == isec->sid &&
2915             fsec->pseqno == avc_policy_seqno())
2916                 /* No change since dentry_open check. */
2917                 return 0;
2918
2919         return selinux_revalidate_file_permission(file, mask);
2920 }
2921
2922 static int selinux_file_alloc_security(struct file *file)
2923 {
2924         return file_alloc_security(file);
2925 }
2926
2927 static void selinux_file_free_security(struct file *file)
2928 {
2929         file_free_security(file);
2930 }
2931
2932 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2933                               unsigned long arg)
2934 {
2935         const struct cred *cred = current_cred();
2936         u32 av = 0;
2937
2938         if (_IOC_DIR(cmd) & _IOC_WRITE)
2939                 av |= FILE__WRITE;
2940         if (_IOC_DIR(cmd) & _IOC_READ)
2941                 av |= FILE__READ;
2942         if (!av)
2943                 av = FILE__IOCTL;
2944
2945         return file_has_perm(cred, file, av);
2946 }
2947
2948 static int default_noexec;
2949
2950 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2951 {
2952         const struct cred *cred = current_cred();
2953         int rc = 0;
2954
2955         if (default_noexec &&
2956             (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2957                 /*
2958                  * We are making executable an anonymous mapping or a
2959                  * private file mapping that will also be writable.
2960                  * This has an additional check.
2961                  */
2962                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
2963                 if (rc)
2964                         goto error;
2965         }
2966
2967         if (file) {
2968                 /* read access is always possible with a mapping */
2969                 u32 av = FILE__READ;
2970
2971                 /* write access only matters if the mapping is shared */
2972                 if (shared && (prot & PROT_WRITE))
2973                         av |= FILE__WRITE;
2974
2975                 if (prot & PROT_EXEC)
2976                         av |= FILE__EXECUTE;
2977
2978                 return file_has_perm(cred, file, av);
2979         }
2980
2981 error:
2982         return rc;
2983 }
2984
2985 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2986                              unsigned long prot, unsigned long flags,
2987                              unsigned long addr, unsigned long addr_only)
2988 {
2989         int rc = 0;
2990         u32 sid = current_sid();
2991
2992         /*
2993          * notice that we are intentionally putting the SELinux check before
2994          * the secondary cap_file_mmap check.  This is such a likely attempt
2995          * at bad behaviour/exploit that we always want to get the AVC, even
2996          * if DAC would have also denied the operation.
2997          */
2998         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
2999                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3000                                   MEMPROTECT__MMAP_ZERO, NULL);
3001                 if (rc)
3002                         return rc;
3003         }
3004
3005         /* do DAC check on address space usage */
3006         rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3007         if (rc || addr_only)
3008                 return rc;
3009
3010         if (selinux_checkreqprot)
3011                 prot = reqprot;
3012
3013         return file_map_prot_check(file, prot,
3014                                    (flags & MAP_TYPE) == MAP_SHARED);
3015 }
3016
3017 static int selinux_file_mprotect(struct vm_area_struct *vma,
3018                                  unsigned long reqprot,
3019                                  unsigned long prot)
3020 {
3021         const struct cred *cred = current_cred();
3022
3023         if (selinux_checkreqprot)
3024                 prot = reqprot;
3025
3026         if (default_noexec &&
3027             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3028                 int rc = 0;
3029                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3030                     vma->vm_end <= vma->vm_mm->brk) {
3031                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3032                 } else if (!vma->vm_file &&
3033                            vma->vm_start <= vma->vm_mm->start_stack &&
3034                            vma->vm_end >= vma->vm_mm->start_stack) {
3035                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3036                 } else if (vma->vm_file && vma->anon_vma) {
3037                         /*
3038                          * We are making executable a file mapping that has
3039                          * had some COW done. Since pages might have been
3040                          * written, check ability to execute the possibly
3041                          * modified content.  This typically should only
3042                          * occur for text relocations.
3043                          */
3044                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3045                 }
3046                 if (rc)
3047                         return rc;
3048         }
3049
3050         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3051 }
3052
3053 static int selinux_file_lock(struct file *file, unsigned int cmd)
3054 {
3055         const struct cred *cred = current_cred();
3056
3057         return file_has_perm(cred, file, FILE__LOCK);
3058 }
3059
3060 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3061                               unsigned long arg)
3062 {
3063         const struct cred *cred = current_cred();
3064         int err = 0;
3065
3066         switch (cmd) {
3067         case F_SETFL:
3068                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3069                         err = -EINVAL;
3070                         break;
3071                 }
3072
3073                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3074                         err = file_has_perm(cred, file, FILE__WRITE);
3075                         break;
3076                 }
3077                 /* fall through */
3078         case F_SETOWN:
3079         case F_SETSIG:
3080         case F_GETFL:
3081         case F_GETOWN:
3082         case F_GETSIG:
3083                 /* Just check FD__USE permission */
3084                 err = file_has_perm(cred, file, 0);
3085                 break;
3086         case F_GETLK:
3087         case F_SETLK:
3088         case F_SETLKW:
3089 #if BITS_PER_LONG == 32
3090         case F_GETLK64:
3091         case F_SETLK64:
3092         case F_SETLKW64:
3093 #endif
3094                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3095                         err = -EINVAL;
3096                         break;
3097                 }
3098                 err = file_has_perm(cred, file, FILE__LOCK);
3099                 break;
3100         }
3101
3102         return err;
3103 }
3104
3105 static int selinux_file_set_fowner(struct file *file)
3106 {
3107         struct file_security_struct *fsec;
3108
3109         fsec = file->f_security;
3110         fsec->fown_sid = current_sid();
3111
3112         return 0;
3113 }
3114
3115 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3116                                        struct fown_struct *fown, int signum)
3117 {
3118         struct file *file;
3119         u32 sid = task_sid(tsk);
3120         u32 perm;
3121         struct file_security_struct *fsec;
3122
3123         /* struct fown_struct is never outside the context of a struct file */
3124         file = container_of(fown, struct file, f_owner);
3125
3126         fsec = file->f_security;
3127
3128         if (!signum)
3129                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3130         else
3131                 perm = signal_to_av(signum);
3132
3133         return avc_has_perm(fsec->fown_sid, sid,
3134                             SECCLASS_PROCESS, perm, NULL);
3135 }
3136
3137 static int selinux_file_receive(struct file *file)
3138 {
3139         const struct cred *cred = current_cred();
3140
3141         return file_has_perm(cred, file, file_to_av(file));
3142 }
3143
3144 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3145 {
3146         struct file_security_struct *fsec;
3147         struct inode *inode;
3148         struct inode_security_struct *isec;
3149
3150         inode = file->f_path.dentry->d_inode;
3151         fsec = file->f_security;
3152         isec = inode->i_security;
3153         /*
3154          * Save inode label and policy sequence number
3155          * at open-time so that selinux_file_permission
3156          * can determine whether revalidation is necessary.
3157          * Task label is already saved in the file security
3158          * struct as its SID.
3159          */
3160         fsec->isid = isec->sid;
3161         fsec->pseqno = avc_policy_seqno();
3162         /*
3163          * Since the inode label or policy seqno may have changed
3164          * between the selinux_inode_permission check and the saving
3165          * of state above, recheck that access is still permitted.
3166          * Otherwise, access might never be revalidated against the
3167          * new inode label or new policy.
3168          * This check is not redundant - do not remove.
3169          */
3170         return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3171 }
3172
3173 /* task security operations */
3174
3175 static int selinux_task_create(unsigned long clone_flags)
3176 {
3177         return current_has_perm(current, PROCESS__FORK);
3178 }
3179
3180 /*
3181  * allocate the SELinux part of blank credentials
3182  */
3183 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3184 {
3185         struct task_security_struct *tsec;
3186
3187         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3188         if (!tsec)
3189                 return -ENOMEM;
3190
3191         cred->security = tsec;
3192         return 0;
3193 }
3194
3195 /*
3196  * detach and free the LSM part of a set of credentials
3197  */
3198 static void selinux_cred_free(struct cred *cred)
3199 {
3200         struct task_security_struct *tsec = cred->security;
3201
3202         BUG_ON((unsigned long) cred->security < PAGE_SIZE);
3203         cred->security = (void *) 0x7UL;
3204         kfree(tsec);
3205 }
3206
3207 /*
3208  * prepare a new set of credentials for modification
3209  */
3210 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3211                                 gfp_t gfp)
3212 {
3213         const struct task_security_struct *old_tsec;
3214         struct task_security_struct *tsec;
3215
3216         old_tsec = old->security;
3217
3218         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3219         if (!tsec)
3220                 return -ENOMEM;
3221
3222         new->security = tsec;
3223         return 0;
3224 }
3225
3226 /*
3227  * transfer the SELinux data to a blank set of creds
3228  */
3229 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3230 {
3231         const struct task_security_struct *old_tsec = old->security;
3232         struct task_security_struct *tsec = new->security;
3233
3234         *tsec = *old_tsec;
3235 }
3236
3237 /*
3238  * set the security data for a kernel service
3239  * - all the creation contexts are set to unlabelled
3240  */
3241 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3242 {
3243         struct task_security_struct *tsec = new->security;
3244         u32 sid = current_sid();
3245         int ret;
3246
3247         ret = avc_has_perm(sid, secid,
3248                            SECCLASS_KERNEL_SERVICE,
3249                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3250                            NULL);
3251         if (ret == 0) {
3252                 tsec->sid = secid;
3253                 tsec->create_sid = 0;
3254                 tsec->keycreate_sid = 0;
3255                 tsec->sockcreate_sid = 0;
3256         }
3257         return ret;
3258 }
3259
3260 /*
3261  * set the file creation context in a security record to the same as the
3262  * objective context of the specified inode
3263  */
3264 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3265 {
3266         struct inode_security_struct *isec = inode->i_security;
3267         struct task_security_struct *tsec = new->security;
3268         u32 sid = current_sid();
3269         int ret;
3270
3271         ret = avc_has_perm(sid, isec->sid,
3272                            SECCLASS_KERNEL_SERVICE,
3273                            KERNEL_SERVICE__CREATE_FILES_AS,
3274                            NULL);
3275
3276         if (ret == 0)
3277                 tsec->create_sid = isec->sid;
3278         return ret;
3279 }
3280
3281 static int selinux_kernel_module_request(char *kmod_name)
3282 {
3283         u32 sid;
3284         struct common_audit_data ad;
3285
3286         sid = task_sid(current);
3287
3288         COMMON_AUDIT_DATA_INIT(&ad, KMOD);
3289         ad.u.kmod_name = kmod_name;
3290
3291         return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3292                             SYSTEM__MODULE_REQUEST, &ad);
3293 }
3294
3295 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3296 {
3297         return current_has_perm(p, PROCESS__SETPGID);
3298 }
3299
3300 static int selinux_task_getpgid(struct task_struct *p)
3301 {
3302         return current_has_perm(p, PROCESS__GETPGID);
3303 }
3304
3305 static int selinux_task_getsid(struct task_struct *p)
3306 {
3307         return current_has_perm(p, PROCESS__GETSESSION);
3308 }
3309
3310 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3311 {
3312         *secid = task_sid(p);
3313 }
3314
3315 static int selinux_task_setnice(struct task_struct *p, int nice)
3316 {
3317         int rc;
3318
3319         rc = cap_task_setnice(p, nice);
3320         if (rc)
3321                 return rc;
3322
3323         return current_has_perm(p, PROCESS__SETSCHED);
3324 }
3325
3326 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3327 {
3328         int rc;
3329
3330         rc = cap_task_setioprio(p, ioprio);
3331         if (rc)
3332                 return rc;
3333
3334         return current_has_perm(p, PROCESS__SETSCHED);
3335 }
3336
3337 static int selinux_task_getioprio(struct task_struct *p)
3338 {
3339         return current_has_perm(p, PROCESS__GETSCHED);
3340 }
3341
3342 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3343 {
3344         struct rlimit *old_rlim = current->signal->rlim + resource;
3345
3346         /* Control the ability to change the hard limit (whether
3347            lowering or raising it), so that the hard limit can
3348            later be used as a safe reset point for the soft limit
3349            upon context transitions.  See selinux_bprm_committing_creds. */
3350         if (old_rlim->rlim_max != new_rlim->rlim_max)
3351                 return current_has_perm(current, PROCESS__SETRLIMIT);
3352
3353         return 0;
3354 }
3355
3356 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3357 {
3358         int rc;
3359
3360         rc = cap_task_setscheduler(p, policy, lp);
3361         if (rc)
3362                 return rc;
3363
3364         return current_has_perm(p, PROCESS__SETSCHED);
3365 }
3366
3367 static int selinux_task_getscheduler(struct task_struct *p)
3368 {
3369         return current_has_perm(p, PROCESS__GETSCHED);
3370 }
3371
3372 static int selinux_task_movememory(struct task_struct *p)
3373 {
3374         return current_has_perm(p, PROCESS__SETSCHED);
3375 }
3376
3377 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3378                                 int sig, u32 secid)
3379 {
3380         u32 perm;
3381         int rc;
3382
3383         if (!sig)
3384                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3385         else
3386                 perm = signal_to_av(sig);
3387         if (secid)
3388                 rc = avc_has_perm(secid, task_sid(p),
3389                                   SECCLASS_PROCESS, perm, NULL);
3390         else
3391                 rc = current_has_perm(p, perm);
3392         return rc;
3393 }
3394
3395 static int selinux_task_wait(struct task_struct *p)
3396 {
3397         return task_has_perm(p, current, PROCESS__SIGCHLD);
3398 }
3399
3400 static void selinux_task_to_inode(struct task_struct *p,
3401                                   struct inode *inode)
3402 {
3403         struct inode_security_struct *isec = inode->i_security;
3404         u32 sid = task_sid(p);
3405
3406         isec->sid = sid;
3407         isec->initialized = 1;
3408 }
3409
3410 /* Returns error only if unable to parse addresses */
3411 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3412                         struct common_audit_data *ad, u8 *proto)
3413 {
3414         int offset, ihlen, ret = -EINVAL;
3415         struct iphdr _iph, *ih;
3416
3417         offset = skb_network_offset(skb);
3418         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3419         if (ih == NULL)
3420                 goto out;
3421
3422         ihlen = ih->ihl * 4;
3423         if (ihlen < sizeof(_iph))
3424                 goto out;
3425
3426         ad->u.net.v4info.saddr = ih->saddr;
3427         ad->u.net.v4info.daddr = ih->daddr;
3428         ret = 0;
3429
3430         if (proto)
3431                 *proto = ih->protocol;
3432
3433         switch (ih->protocol) {
3434         case IPPROTO_TCP: {
3435                 struct tcphdr _tcph, *th;
3436
3437                 if (ntohs(ih->frag_off) & IP_OFFSET)
3438                         break;
3439
3440                 offset += ihlen;
3441                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3442                 if (th == NULL)
3443                         break;
3444
3445                 ad->u.net.sport = th->source;
3446                 ad->u.net.dport = th->dest;
3447                 break;
3448         }
3449
3450         case IPPROTO_UDP: {
3451                 struct udphdr _udph, *uh;
3452
3453                 if (ntohs(ih->frag_off) & IP_OFFSET)
3454                         break;
3455
3456                 offset += ihlen;
3457                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3458                 if (uh == NULL)
3459                         break;
3460
3461                 ad->u.net.sport = uh->source;
3462                 ad->u.net.dport = uh->dest;
3463                 break;
3464         }
3465
3466         case IPPROTO_DCCP: {
3467                 struct dccp_hdr _dccph, *dh;
3468
3469                 if (ntohs(ih->frag_off) & IP_OFFSET)
3470                         break;
3471
3472                 offset += ihlen;
3473                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3474                 if (dh == NULL)
3475                         break;
3476
3477                 ad->u.net.sport = dh->dccph_sport;
3478                 ad->u.net.dport = dh->dccph_dport;
3479                 break;
3480         }
3481
3482         default:
3483                 break;
3484         }
3485 out:
3486         return ret;
3487 }
3488
3489 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3490
3491 /* Returns error only if unable to parse addresses */
3492 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3493                         struct common_audit_data *ad, u8 *proto)
3494 {
3495         u8 nexthdr;
3496         int ret = -EINVAL, offset;
3497         struct ipv6hdr _ipv6h, *ip6;
3498
3499         offset = skb_network_offset(skb);
3500         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3501         if (ip6 == NULL)
3502                 goto out;
3503
3504         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3505         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3506         ret = 0;
3507
3508         nexthdr = ip6->nexthdr;
3509         offset += sizeof(_ipv6h);
3510         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3511         if (offset < 0)
3512                 goto out;
3513
3514         if (proto)
3515                 *proto = nexthdr;
3516
3517         switch (nexthdr) {
3518         case IPPROTO_TCP: {
3519                 struct tcphdr _tcph, *th;
3520
3521                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3522                 if (th == NULL)
3523                         break;
3524
3525                 ad->u.net.sport = th->source;
3526                 ad->u.net.dport = th->dest;
3527                 break;
3528         }
3529
3530         case IPPROTO_UDP: {
3531                 struct udphdr _udph, *uh;
3532
3533                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3534                 if (uh == NULL)
3535                         break;
3536
3537                 ad->u.net.sport = uh->source;
3538                 ad->u.net.dport = uh->dest;
3539                 break;
3540         }
3541
3542         case IPPROTO_DCCP: {
3543                 struct dccp_hdr _dccph, *dh;
3544
3545                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3546                 if (dh == NULL)
3547                         break;
3548
3549                 ad->u.net.sport = dh->dccph_sport;
3550                 ad->u.net.dport = dh->dccph_dport;
3551                 break;
3552         }
3553
3554         /* includes fragments */
3555         default:
3556                 break;
3557         }
3558 out:
3559         return ret;
3560 }
3561
3562 #endif /* IPV6 */
3563
3564 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3565                              char **_addrp, int src, u8 *proto)
3566 {
3567         char *addrp;
3568         int ret;
3569
3570         switch (ad->u.net.family) {
3571         case PF_INET:
3572                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3573                 if (ret)
3574                         goto parse_error;
3575                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3576                                        &ad->u.net.v4info.daddr);
3577                 goto okay;
3578
3579 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3580         case PF_INET6:
3581                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3582                 if (ret)
3583                         goto parse_error;
3584                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3585                                        &ad->u.net.v6info.daddr);
3586                 goto okay;
3587 #endif  /* IPV6 */
3588         default:
3589                 addrp = NULL;
3590                 goto okay;
3591         }
3592
3593 parse_error:
3594         printk(KERN_WARNING
3595                "SELinux: failure in selinux_parse_skb(),"
3596                " unable to parse packet\n");
3597         return ret;
3598
3599 okay:
3600         if (_addrp)
3601                 *_addrp = addrp;
3602         return 0;
3603 }
3604
3605 /**
3606  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3607  * @skb: the packet
3608  * @family: protocol family
3609  * @sid: the packet's peer label SID
3610  *
3611  * Description:
3612  * Check the various different forms of network peer labeling and determine
3613  * the peer label/SID for the packet; most of the magic actually occurs in
3614  * the security server function security_net_peersid_cmp().  The function
3615  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3616  * or -EACCES if @sid is invalid due to inconsistencies with the different
3617  * peer labels.
3618  *
3619  */
3620 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3621 {
3622         int err;
3623         u32 xfrm_sid;
3624         u32 nlbl_sid;
3625         u32 nlbl_type;
3626
3627         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3628         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3629
3630         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3631         if (unlikely(err)) {
3632                 printk(KERN_WARNING
3633                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3634                        " unable to determine packet's peer label\n");
3635                 return -EACCES;
3636         }
3637
3638         return 0;
3639 }
3640
3641 /* socket security operations */
3642
3643 static u32 socket_sockcreate_sid(const struct task_security_struct *tsec)
3644 {
3645         return tsec->sockcreate_sid ? : tsec->sid;
3646 }
3647
3648 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3649 {
3650         struct sk_security_struct *sksec = sk->sk_security;
3651         struct common_audit_data ad;
3652         u32 tsid = task_sid(task);
3653
3654         if (sksec->sid == SECINITSID_KERNEL)
3655                 return 0;
3656
3657         COMMON_AUDIT_DATA_INIT(&ad, NET);
3658         ad.u.net.sk = sk;
3659
3660         return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3661 }
3662
3663 static int selinux_socket_create(int family, int type,
3664                                  int protocol, int kern)
3665 {
3666         const struct task_security_struct *tsec = current_security();
3667         u32 newsid;
3668         u16 secclass;
3669
3670         if (kern)
3671                 return 0;
3672
3673         newsid = socket_sockcreate_sid(tsec);
3674         secclass = socket_type_to_security_class(family, type, protocol);
3675         return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3676 }
3677
3678 static int selinux_socket_post_create(struct socket *sock, int family,
3679                                       int type, int protocol, int kern)
3680 {
3681         const struct task_security_struct *tsec = current_security();
3682         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3683         struct sk_security_struct *sksec;
3684         int err = 0;
3685
3686         if (kern)
3687                 isec->sid = SECINITSID_KERNEL;
3688         else
3689                 isec->sid = socket_sockcreate_sid(tsec);
3690
3691         isec->sclass = socket_type_to_security_class(family, type, protocol);
3692         isec->initialized = 1;
3693
3694         if (sock->sk) {
3695                 sksec = sock->sk->sk_security;
3696                 sksec->sid = isec->sid;
3697                 sksec->sclass = isec->sclass;
3698                 err = selinux_netlbl_socket_post_create(sock->sk, family);
3699         }
3700
3701         return err;
3702 }
3703
3704 /* Range of port numbers used to automatically bind.
3705    Need to determine whether we should perform a name_bind
3706    permission check between the socket and the port number. */
3707
3708 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3709 {
3710         struct sock *sk = sock->sk;
3711         u16 family;
3712         int err;
3713
3714         err = sock_has_perm(current, sk, SOCKET__BIND);
3715         if (err)
3716                 goto out;
3717
3718         /*
3719          * If PF_INET or PF_INET6, check name_bind permission for the port.
3720          * Multiple address binding for SCTP is not supported yet: we just
3721          * check the first address now.
3722          */
3723         family = sk->sk_family;
3724         if (family == PF_INET || family == PF_INET6) {
3725                 char *addrp;
3726                 struct sk_security_struct *sksec = sk->sk_security;
3727                 struct common_audit_data ad;
3728                 struct sockaddr_in *addr4 = NULL;
3729                 struct sockaddr_in6 *addr6 = NULL;
3730                 unsigned short snum;
3731                 u32 sid, node_perm;
3732
3733                 if (family == PF_INET) {
3734                         addr4 = (struct sockaddr_in *)address;
3735                         snum = ntohs(addr4->sin_port);
3736                         addrp = (char *)&addr4->sin_addr.s_addr;
3737                 } else {
3738                         addr6 = (struct sockaddr_in6 *)address;
3739                         snum = ntohs(addr6->sin6_port);
3740                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3741                 }
3742
3743                 if (snum) {
3744                         int low, high;
3745
3746                         inet_get_local_port_range(&low, &high);
3747
3748                         if (snum < max(PROT_SOCK, low) || snum > high) {
3749                                 err = sel_netport_sid(sk->sk_protocol,
3750                                                       snum, &sid);
3751                                 if (err)
3752                                         goto out;
3753                                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3754                                 ad.u.net.sport = htons(snum);
3755                                 ad.u.net.family = family;
3756                                 err = avc_has_perm(sksec->sid, sid,
3757                                                    sksec->sclass,
3758                                                    SOCKET__NAME_BIND, &ad);
3759                                 if (err)
3760                                         goto out;
3761                         }
3762                 }
3763
3764                 switch (sksec->sclass) {
3765                 case SECCLASS_TCP_SOCKET:
3766                         node_perm = TCP_SOCKET__NODE_BIND;
3767                         break;
3768
3769                 case SECCLASS_UDP_SOCKET:
3770                         node_perm = UDP_SOCKET__NODE_BIND;
3771                         break;
3772
3773                 case SECCLASS_DCCP_SOCKET:
3774                         node_perm = DCCP_SOCKET__NODE_BIND;
3775                         break;
3776
3777                 default:
3778                         node_perm = RAWIP_SOCKET__NODE_BIND;
3779                         break;
3780                 }
3781
3782                 err = sel_netnode_sid(addrp, family, &sid);
3783                 if (err)
3784                         goto out;
3785
3786                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3787                 ad.u.net.sport = htons(snum);
3788                 ad.u.net.family = family;
3789
3790                 if (family == PF_INET)
3791                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3792                 else
3793                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3794
3795                 err = avc_has_perm(sksec->sid, sid,
3796                                    sksec->sclass, node_perm, &ad);
3797                 if (err)
3798                         goto out;
3799         }
3800 out:
3801         return err;
3802 }
3803
3804 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3805 {
3806         struct sock *sk = sock->sk;
3807         struct sk_security_struct *sksec = sk->sk_security;
3808         int err;
3809
3810         err = sock_has_perm(current, sk, SOCKET__CONNECT);
3811         if (err)
3812                 return err;
3813
3814         /*
3815          * If a TCP or DCCP socket, check name_connect permission for the port.
3816          */
3817         if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3818             sksec->sclass == SECCLASS_DCCP_SOCKET) {
3819                 struct common_audit_data ad;
3820                 struct sockaddr_in *addr4 = NULL;
3821                 struct sockaddr_in6 *addr6 = NULL;
3822                 unsigned short snum;
3823                 u32 sid, perm;
3824
3825                 if (sk->sk_family == PF_INET) {
3826                         addr4 = (struct sockaddr_in *)address;
3827                         if (addrlen < sizeof(struct sockaddr_in))
3828                                 return -EINVAL;
3829                         snum = ntohs(addr4->sin_port);
3830                 } else {
3831                         addr6 = (struct sockaddr_in6 *)address;
3832                         if (addrlen < SIN6_LEN_RFC2133)
3833                                 return -EINVAL;
3834                         snum = ntohs(addr6->sin6_port);
3835                 }
3836
3837                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3838                 if (err)
3839                         goto out;
3840
3841                 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3842                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3843
3844                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3845                 ad.u.net.dport = htons(snum);
3846                 ad.u.net.family = sk->sk_family;
3847                 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3848                 if (err)
3849                         goto out;
3850         }
3851
3852         err = selinux_netlbl_socket_connect(sk, address);
3853
3854 out:
3855         return err;
3856 }
3857
3858 static int selinux_socket_listen(struct socket *sock, int backlog)
3859 {
3860         return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3861 }
3862
3863 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3864 {
3865         int err;
3866         struct inode_security_struct *isec;
3867         struct inode_security_struct *newisec;
3868
3869         err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
3870         if (err)
3871                 return err;
3872
3873         newisec = SOCK_INODE(newsock)->i_security;
3874
3875         isec = SOCK_INODE(sock)->i_security;
3876         newisec->sclass = isec->sclass;
3877         newisec->sid = isec->sid;
3878         newisec->initialized = 1;
3879
3880         return 0;
3881 }
3882
3883 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3884                                   int size)
3885 {
3886         return sock_has_perm(current, sock->sk, SOCKET__WRITE);
3887 }
3888
3889 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3890                                   int size, int flags)
3891 {
3892         return sock_has_perm(current, sock->sk, SOCKET__READ);
3893 }
3894
3895 static int selinux_socket_getsockname(struct socket *sock)
3896 {
3897         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3898 }
3899
3900 static int selinux_socket_getpeername(struct socket *sock)
3901 {
3902         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3903 }
3904
3905 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3906 {
3907         int err;
3908
3909         err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
3910         if (err)
3911                 return err;
3912
3913         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3914 }
3915
3916 static int selinux_socket_getsockopt(struct socket *sock, int level,
3917                                      int optname)
3918 {
3919         return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
3920 }
3921
3922 static int selinux_socket_shutdown(struct socket *sock, int how)
3923 {
3924         return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
3925 }
3926
3927 static int selinux_socket_unix_stream_connect(struct socket *sock,
3928                                               struct socket *other,
3929                                               struct sock *newsk)
3930 {
3931         struct sk_security_struct *sksec_sock = sock->sk->sk_security;
3932         struct sk_security_struct *sksec_other = other->sk->sk_security;
3933         struct sk_security_struct *sksec_new = newsk->sk_security;
3934         struct common_audit_data ad;
3935         int err;
3936
3937         COMMON_AUDIT_DATA_INIT(&ad, NET);
3938         ad.u.net.sk = other->sk;
3939
3940         err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
3941                            sksec_other->sclass,
3942                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3943         if (err)
3944                 return err;
3945
3946         /* server child socket */
3947         sksec_new->peer_sid = sksec_sock->sid;
3948         err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
3949                                     &sksec_new->sid);
3950         if (err)
3951                 return err;
3952
3953         /* connecting socket */
3954         sksec_sock->peer_sid = sksec_new->sid;
3955
3956         return 0;
3957 }
3958
3959 static int selinux_socket_unix_may_send(struct socket *sock,
3960                                         struct socket *other)
3961 {
3962         struct sk_security_struct *ssec = sock->sk->sk_security;
3963         struct sk_security_struct *osec = other->sk->sk_security;
3964         struct common_audit_data ad;
3965
3966         COMMON_AUDIT_DATA_INIT(&ad, NET);
3967         ad.u.net.sk = other->sk;
3968
3969         return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
3970                             &ad);
3971 }
3972
3973 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
3974                                     u32 peer_sid,
3975                                     struct common_audit_data *ad)
3976 {
3977         int err;
3978         u32 if_sid;
3979         u32 node_sid;
3980
3981         err = sel_netif_sid(ifindex, &if_sid);
3982         if (err)
3983                 return err;
3984         err = avc_has_perm(peer_sid, if_sid,
3985                            SECCLASS_NETIF, NETIF__INGRESS, ad);
3986         if (err)
3987                 return err;
3988
3989         err = sel_netnode_sid(addrp, family, &node_sid);
3990         if (err)
3991                 return err;
3992         return avc_has_perm(peer_sid, node_sid,
3993                             SECCLASS_NODE, NODE__RECVFROM, ad);
3994 }
3995
3996 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3997                                        u16 family)
3998 {
3999         int err = 0;
4000         struct sk_security_struct *sksec = sk->sk_security;
4001         u32 peer_sid;
4002         u32 sk_sid = sksec->sid;
4003         struct common_audit_data ad;
4004         char *addrp;
4005
4006         COMMON_AUDIT_DATA_INIT(&ad, NET);
4007         ad.u.net.netif = skb->skb_iif;
4008         ad.u.net.family = family;
4009         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4010         if (err)
4011                 return err;
4012
4013         if (selinux_secmark_enabled()) {
4014                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4015                                    PACKET__RECV, &ad);
4016                 if (err)
4017                         return err;
4018         }
4019
4020         if (selinux_policycap_netpeer) {
4021                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4022                 if (err)
4023                         return err;
4024                 err = avc_has_perm(sk_sid, peer_sid,
4025                                    SECCLASS_PEER, PEER__RECV, &ad);
4026                 if (err)
4027                         selinux_netlbl_err(skb, err, 0);
4028         } else {
4029                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4030                 if (err)
4031                         return err;
4032                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4033         }
4034
4035         return err;
4036 }
4037
4038 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4039 {
4040         int err;
4041         struct sk_security_struct *sksec = sk->sk_security;
4042         u16 family = sk->sk_family;
4043         u32 sk_sid = sksec->sid;
4044         struct common_audit_data ad;
4045         char *addrp;
4046         u8 secmark_active;
4047         u8 peerlbl_active;
4048
4049         if (family != PF_INET && family != PF_INET6)
4050                 return 0;
4051
4052         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4053         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4054                 family = PF_INET;
4055
4056         /* If any sort of compatibility mode is enabled then handoff processing
4057          * to the selinux_sock_rcv_skb_compat() function to deal with the
4058          * special handling.  We do this in an attempt to keep this function
4059          * as fast and as clean as possible. */
4060         if (!selinux_policycap_netpeer)
4061                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4062
4063         secmark_active = selinux_secmark_enabled();
4064         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4065         if (!secmark_active && !peerlbl_active)
4066                 return 0;
4067
4068         COMMON_AUDIT_DATA_INIT(&ad, NET);
4069         ad.u.net.netif = skb->skb_iif;
4070         ad.u.net.family = family;
4071         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4072         if (err)
4073                 return err;
4074
4075         if (peerlbl_active) {
4076                 u32 peer_sid;
4077
4078                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4079                 if (err)
4080                         return err;
4081                 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4082                                                peer_sid, &ad);
4083                 if (err) {
4084                         selinux_netlbl_err(skb, err, 0);
4085                         return err;
4086                 }
4087                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4088                                    PEER__RECV, &ad);
4089                 if (err)
4090                         selinux_netlbl_err(skb, err, 0);
4091         }
4092
4093         if (secmark_active) {
4094                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4095                                    PACKET__RECV, &ad);
4096                 if (err)
4097                         return err;
4098         }
4099
4100         return err;
4101 }
4102
4103 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4104                                             int __user *optlen, unsigned len)
4105 {
4106         int err = 0;
4107         char *scontext;
4108         u32 scontext_len;
4109         struct sk_security_struct *sksec = sock->sk->sk_security;
4110         u32 peer_sid = SECSID_NULL;
4111
4112         if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4113             sksec->sclass == SECCLASS_TCP_SOCKET)
4114                 peer_sid = sksec->peer_sid;
4115         if (peer_sid == SECSID_NULL)
4116                 return -ENOPROTOOPT;
4117
4118         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4119         if (err)
4120                 return err;
4121
4122         if (scontext_len > len) {
4123                 err = -ERANGE;
4124                 goto out_len;
4125         }
4126
4127         if (copy_to_user(optval, scontext, scontext_len))
4128                 err = -EFAULT;
4129
4130 out_len:
4131         if (put_user(scontext_len, optlen))
4132                 err = -EFAULT;
4133         kfree(scontext);
4134         return err;
4135 }
4136
4137 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4138 {
4139         u32 peer_secid = SECSID_NULL;
4140         u16 family;
4141
4142         if (skb && skb->protocol == htons(ETH_P_IP))
4143                 family = PF_INET;
4144         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4145                 family = PF_INET6;
4146         else if (sock)
4147                 family = sock->sk->sk_family;
4148         else
4149                 goto out;
4150
4151         if (sock && family == PF_UNIX)
4152                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4153         else if (skb)
4154                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4155
4156 out:
4157         *secid = peer_secid;
4158         if (peer_secid == SECSID_NULL)
4159                 return -EINVAL;
4160         return 0;
4161 }
4162
4163 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4164 {
4165         struct sk_security_struct *sksec;
4166
4167         sksec = kzalloc(sizeof(*sksec), priority);
4168         if (!sksec)
4169                 return -ENOMEM;
4170
4171         sksec->peer_sid = SECINITSID_UNLABELED;
4172         sksec->sid = SECINITSID_UNLABELED;
4173         selinux_netlbl_sk_security_reset(sksec);
4174         sk->sk_security = sksec;
4175
4176         return 0;
4177 }
4178
4179 static void selinux_sk_free_security(struct sock *sk)
4180 {
4181         struct sk_security_struct *sksec = sk->sk_security;
4182
4183         sk->sk_security = NULL;
4184         selinux_netlbl_sk_security_free(sksec);
4185         kfree(sksec);
4186 }
4187
4188 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4189 {
4190         struct sk_security_struct *sksec = sk->sk_security;
4191         struct sk_security_struct *newsksec = newsk->sk_security;
4192
4193         newsksec->sid = sksec->sid;
4194         newsksec->peer_sid = sksec->peer_sid;
4195         newsksec->sclass = sksec->sclass;
4196
4197         selinux_netlbl_sk_security_reset(newsksec);
4198 }
4199
4200 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4201 {
4202         if (!sk)
4203                 *secid = SECINITSID_ANY_SOCKET;
4204         else {
4205                 struct sk_security_struct *sksec = sk->sk_security;
4206
4207                 *secid = sksec->sid;
4208         }
4209 }
4210
4211 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4212 {
4213         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4214         struct sk_security_struct *sksec = sk->sk_security;
4215
4216         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4217             sk->sk_family == PF_UNIX)
4218                 isec->sid = sksec->sid;
4219         sksec->sclass = isec->sclass;
4220 }
4221
4222 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4223                                      struct request_sock *req)
4224 {
4225         struct sk_security_struct *sksec = sk->sk_security;
4226         int err;
4227         u16 family = sk->sk_family;
4228         u32 newsid;
4229         u32 peersid;
4230
4231         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4232         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4233                 family = PF_INET;
4234
4235         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4236         if (err)
4237                 return err;
4238         if (peersid == SECSID_NULL) {
4239                 req->secid = sksec->sid;
4240                 req->peer_secid = SECSID_NULL;
4241         } else {
4242                 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4243                 if (err)
4244                         return err;
4245                 req->secid = newsid;
4246                 req->peer_secid = peersid;
4247         }
4248
4249         return selinux_netlbl_inet_conn_request(req, family);
4250 }
4251
4252 static void selinux_inet_csk_clone(struct sock *newsk,
4253                                    const struct request_sock *req)
4254 {
4255         struct sk_security_struct *newsksec = newsk->sk_security;
4256
4257         newsksec->sid = req->secid;
4258         newsksec->peer_sid = req->peer_secid;
4259         /* NOTE: Ideally, we should also get the isec->sid for the
4260            new socket in sync, but we don't have the isec available yet.
4261            So we will wait until sock_graft to do it, by which
4262            time it will have been created and available. */
4263
4264         /* We don't need to take any sort of lock here as we are the only
4265          * thread with access to newsksec */
4266         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4267 }
4268
4269 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4270 {
4271         u16 family = sk->sk_family;
4272         struct sk_security_struct *sksec = sk->sk_security;
4273
4274         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4275         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4276                 family = PF_INET;
4277
4278         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4279 }
4280
4281 static void selinux_req_classify_flow(const struct request_sock *req,
4282                                       struct flowi *fl)
4283 {
4284         fl->secid = req->secid;
4285 }
4286
4287 static int selinux_tun_dev_create(void)
4288 {
4289         u32 sid = current_sid();
4290
4291         /* we aren't taking into account the "sockcreate" SID since the socket
4292          * that is being created here is not a socket in the traditional sense,
4293          * instead it is a private sock, accessible only to the kernel, and
4294          * representing a wide range of network traffic spanning multiple
4295          * connections unlike traditional sockets - check the TUN driver to
4296          * get a better understanding of why this socket is special */
4297
4298         return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4299                             NULL);
4300 }
4301
4302 static void selinux_tun_dev_post_create(struct sock *sk)
4303 {
4304         struct sk_security_struct *sksec = sk->sk_security;
4305
4306         /* we don't currently perform any NetLabel based labeling here and it
4307          * isn't clear that we would want to do so anyway; while we could apply
4308          * labeling without the support of the TUN user the resulting labeled
4309          * traffic from the other end of the connection would almost certainly
4310          * cause confusion to the TUN user that had no idea network labeling
4311          * protocols were being used */
4312
4313         /* see the comments in selinux_tun_dev_create() about why we don't use
4314          * the sockcreate SID here */
4315
4316         sksec->sid = current_sid();
4317         sksec->sclass = SECCLASS_TUN_SOCKET;
4318 }
4319
4320 static int selinux_tun_dev_attach(struct sock *sk)
4321 {
4322         struct sk_security_struct *sksec = sk->sk_security;
4323         u32 sid = current_sid();
4324         int err;
4325
4326         err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4327                            TUN_SOCKET__RELABELFROM, NULL);
4328         if (err)
4329                 return err;
4330         err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4331                            TUN_SOCKET__RELABELTO, NULL);
4332         if (err)
4333                 return err;
4334
4335         sksec->sid = sid;
4336
4337         return 0;
4338 }
4339
4340 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4341 {
4342         int err = 0;
4343         u32 perm;
4344         struct nlmsghdr *nlh;
4345         struct sk_security_struct *sksec = sk->sk_security;
4346
4347         if (skb->len < NLMSG_SPACE(0)) {
4348                 err = -EINVAL;
4349                 goto out;
4350         }
4351         nlh = nlmsg_hdr(skb);
4352
4353         err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4354         if (err) {
4355                 if (err == -EINVAL) {
4356                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4357                                   "SELinux:  unrecognized netlink message"
4358                                   " type=%hu for sclass=%hu\n",
4359                                   nlh->nlmsg_type, sksec->sclass);
4360                         if (!selinux_enforcing || security_get_allow_unknown())
4361                                 err = 0;
4362                 }
4363
4364                 /* Ignore */
4365                 if (err == -ENOENT)
4366                         err = 0;
4367                 goto out;
4368         }
4369
4370         err = sock_has_perm(current, sk, perm);
4371 out:
4372         return err;
4373 }
4374
4375 #ifdef CONFIG_NETFILTER
4376
4377 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4378                                        u16 family)
4379 {
4380         int err;
4381         char *addrp;
4382         u32 peer_sid;
4383         struct common_audit_data ad;
4384         u8 secmark_active;
4385         u8 netlbl_active;
4386         u8 peerlbl_active;
4387
4388         if (!selinux_policycap_netpeer)
4389                 return NF_ACCEPT;
4390
4391         secmark_active = selinux_secmark_enabled();
4392         netlbl_active = netlbl_enabled();
4393         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4394         if (!secmark_active && !peerlbl_active)
4395                 return NF_ACCEPT;
4396
4397         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4398                 return NF_DROP;
4399
4400         COMMON_AUDIT_DATA_INIT(&ad, NET);
4401         ad.u.net.netif = ifindex;
4402         ad.u.net.family = family;
4403         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4404                 return NF_DROP;
4405
4406         if (peerlbl_active) {
4407                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4408                                                peer_sid, &ad);
4409                 if (err) {
4410                         selinux_netlbl_err(skb, err, 1);
4411                         return NF_DROP;
4412                 }
4413         }
4414
4415         if (secmark_active)
4416                 if (avc_has_perm(peer_sid, skb->secmark,
4417                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4418                         return NF_DROP;
4419
4420         if (netlbl_active)
4421                 /* we do this in the FORWARD path and not the POST_ROUTING
4422                  * path because we want to make sure we apply the necessary
4423                  * labeling before IPsec is applied so we can leverage AH
4424                  * protection */
4425                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4426                         return NF_DROP;
4427
4428         return NF_ACCEPT;
4429 }
4430
4431 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4432                                          struct sk_buff *skb,
4433                                          const struct net_device *in,
4434                                          const struct net_device *out,
4435                                          int (*okfn)(struct sk_buff *))
4436 {
4437         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4438 }
4439
4440 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4441 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4442                                          struct sk_buff *skb,
4443                                          const struct net_device *in,
4444                                          const struct net_device *out,
4445                                          int (*okfn)(struct sk_buff *))
4446 {
4447         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4448 }
4449 #endif  /* IPV6 */
4450
4451 static unsigned int selinux_ip_output(struct sk_buff *skb,
4452                                       u16 family)
4453 {
4454         u32 sid;
4455
4456         if (!netlbl_enabled())
4457                 return NF_ACCEPT;
4458
4459         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4460          * because we want to make sure we apply the necessary labeling
4461          * before IPsec is applied so we can leverage AH protection */
4462         if (skb->sk) {
4463                 struct sk_security_struct *sksec = skb->sk->sk_security;
4464                 sid = sksec->sid;
4465         } else
4466                 sid = SECINITSID_KERNEL;
4467         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4468                 return NF_DROP;
4469
4470         return NF_ACCEPT;
4471 }
4472
4473 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4474                                         struct sk_buff *skb,
4475                                         const struct net_device *in,
4476                                         const struct net_device *out,
4477                                         int (*okfn)(struct sk_buff *))
4478 {
4479         return selinux_ip_output(skb, PF_INET);
4480 }
4481
4482 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4483                                                 int ifindex,
4484                                                 u16 family)
4485 {
4486         struct sock *sk = skb->sk;
4487         struct sk_security_struct *sksec;
4488         struct common_audit_data ad;
4489         char *addrp;
4490         u8 proto;
4491
4492         if (sk == NULL)
4493                 return NF_ACCEPT;
4494         sksec = sk->sk_security;
4495
4496         COMMON_AUDIT_DATA_INIT(&ad, NET);
4497         ad.u.net.netif = ifindex;
4498         ad.u.net.family = family;
4499         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4500                 return NF_DROP;
4501
4502         if (selinux_secmark_enabled())
4503                 if (avc_has_perm(sksec->sid, skb->secmark,
4504                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4505                         return NF_DROP;
4506
4507         if (selinux_policycap_netpeer)
4508                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4509                         return NF_DROP;
4510
4511         return NF_ACCEPT;
4512 }
4513
4514 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4515                                          u16 family)
4516 {
4517         u32 secmark_perm;
4518         u32 peer_sid;
4519         struct sock *sk;
4520         struct common_audit_data ad;
4521         char *addrp;
4522         u8 secmark_active;
4523         u8 peerlbl_active;
4524
4525         /* If any sort of compatibility mode is enabled then handoff processing
4526          * to the selinux_ip_postroute_compat() function to deal with the
4527          * special handling.  We do this in an attempt to keep this function
4528          * as fast and as clean as possible. */
4529         if (!selinux_policycap_netpeer)
4530                 return selinux_ip_postroute_compat(skb, ifindex, family);
4531 #ifdef CONFIG_XFRM
4532         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4533          * packet transformation so allow the packet to pass without any checks
4534          * since we'll have another chance to perform access control checks
4535          * when the packet is on it's final way out.
4536          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4537          *       is NULL, in this case go ahead and apply access control. */
4538         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4539                 return NF_ACCEPT;
4540 #endif
4541         secmark_active = selinux_secmark_enabled();
4542         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4543         if (!secmark_active && !peerlbl_active)
4544                 return NF_ACCEPT;
4545
4546         /* if the packet is being forwarded then get the peer label from the
4547          * packet itself; otherwise check to see if it is from a local
4548          * application or the kernel, if from an application get the peer label
4549          * from the sending socket, otherwise use the kernel's sid */
4550         sk = skb->sk;
4551         if (sk == NULL) {
4552                 switch (family) {
4553                 case PF_INET:
4554                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4555                                 secmark_perm = PACKET__FORWARD_OUT;
4556                         else
4557                                 secmark_perm = PACKET__SEND;
4558                         break;
4559                 case PF_INET6:
4560                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4561                                 secmark_perm = PACKET__FORWARD_OUT;
4562                         else
4563                                 secmark_perm = PACKET__SEND;
4564                         break;
4565                 default:
4566                         return NF_DROP;
4567                 }
4568                 if (secmark_perm == PACKET__FORWARD_OUT) {
4569                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4570                                 return NF_DROP;
4571                 } else
4572                         peer_sid = SECINITSID_KERNEL;
4573         } else {
4574                 struct sk_security_struct *sksec = sk->sk_security;
4575                 peer_sid = sksec->sid;
4576                 secmark_perm = PACKET__SEND;
4577         }
4578
4579         COMMON_AUDIT_DATA_INIT(&ad, NET);
4580         ad.u.net.netif = ifindex;
4581         ad.u.net.family = family;
4582         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4583                 return NF_DROP;
4584
4585         if (secmark_active)
4586                 if (avc_has_perm(peer_sid, skb->secmark,
4587                                  SECCLASS_PACKET, secmark_perm, &ad))
4588                         return NF_DROP;
4589
4590         if (peerlbl_active) {
4591                 u32 if_sid;
4592                 u32 node_sid;
4593
4594                 if (sel_netif_sid(ifindex, &if_sid))
4595                         return NF_DROP;
4596                 if (avc_has_perm(peer_sid, if_sid,
4597                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4598                         return NF_DROP;
4599
4600                 if (sel_netnode_sid(addrp, family, &node_sid))
4601                         return NF_DROP;
4602                 if (avc_has_perm(peer_sid, node_sid,
4603                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4604                         return NF_DROP;
4605         }
4606
4607         return NF_ACCEPT;
4608 }
4609
4610 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4611                                            struct sk_buff *skb,
4612                                            const struct net_device *in,
4613                                            const struct net_device *out,
4614                                            int (*okfn)(struct sk_buff *))
4615 {
4616         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4617 }
4618
4619 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4620 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4621                                            struct sk_buff *skb,
4622                                            const struct net_device *in,
4623                                            const struct net_device *out,
4624                                            int (*okfn)(struct sk_buff *))
4625 {
4626         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4627 }
4628 #endif  /* IPV6 */
4629
4630 #endif  /* CONFIG_NETFILTER */
4631
4632 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4633 {
4634         int err;
4635
4636         err = cap_netlink_send(sk, skb);
4637         if (err)
4638                 return err;
4639
4640         return selinux_nlmsg_perm(sk, skb);
4641 }
4642
4643 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4644 {
4645         int err;
4646         struct common_audit_data ad;
4647
4648         err = cap_netlink_recv(skb, capability);
4649         if (err)
4650                 return err;
4651
4652         COMMON_AUDIT_DATA_INIT(&ad, CAP);
4653         ad.u.cap = capability;
4654
4655         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4656                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4657 }
4658
4659 static int ipc_alloc_security(struct task_struct *task,
4660                               struct kern_ipc_perm *perm,
4661                               u16 sclass)
4662 {
4663         struct ipc_security_struct *isec;
4664         u32 sid;
4665
4666         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4667         if (!isec)
4668                 return -ENOMEM;
4669
4670         sid = task_sid(task);
4671         isec->sclass = sclass;
4672         isec->sid = sid;
4673         perm->security = isec;
4674
4675         return 0;
4676 }
4677
4678 static void ipc_free_security(struct kern_ipc_perm *perm)
4679 {
4680         struct ipc_security_struct *isec = perm->security;
4681         perm->security = NULL;
4682         kfree(isec);
4683 }
4684
4685 static int msg_msg_alloc_security(struct msg_msg *msg)
4686 {
4687         struct msg_security_struct *msec;
4688
4689         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4690         if (!msec)
4691                 return -ENOMEM;
4692
4693         msec->sid = SECINITSID_UNLABELED;
4694         msg->security = msec;
4695
4696         return 0;
4697 }
4698
4699 static void msg_msg_free_security(struct msg_msg *msg)
4700 {
4701         struct msg_security_struct *msec = msg->security;
4702
4703         msg->security = NULL;
4704         kfree(msec);
4705 }
4706
4707 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4708                         u32 perms)
4709 {
4710         struct ipc_security_struct *isec;
4711         struct common_audit_data ad;
4712         u32 sid = current_sid();
4713
4714         isec = ipc_perms->security;
4715
4716         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4717         ad.u.ipc_id = ipc_perms->key;
4718
4719         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4720 }
4721
4722 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4723 {
4724         return msg_msg_alloc_security(msg);
4725 }
4726
4727 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4728 {
4729         msg_msg_free_security(msg);
4730 }
4731
4732 /* message queue security operations */
4733 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4734 {
4735         struct ipc_security_struct *isec;
4736         struct common_audit_data ad;
4737         u32 sid = current_sid();
4738         int rc;
4739
4740         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4741         if (rc)
4742                 return rc;
4743
4744         isec = msq->q_perm.security;
4745
4746         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4747         ad.u.ipc_id = msq->q_perm.key;
4748
4749         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4750                           MSGQ__CREATE, &ad);
4751         if (rc) {
4752                 ipc_free_security(&msq->q_perm);
4753                 return rc;
4754         }
4755         return 0;
4756 }
4757
4758 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4759 {
4760         ipc_free_security(&msq->q_perm);
4761 }
4762
4763 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4764 {
4765         struct ipc_security_struct *isec;
4766         struct common_audit_data ad;
4767         u32 sid = current_sid();
4768
4769         isec = msq->q_perm.security;
4770
4771         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4772         ad.u.ipc_id = msq->q_perm.key;
4773
4774         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4775                             MSGQ__ASSOCIATE, &ad);
4776 }
4777
4778 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4779 {
4780         int err;
4781         int perms;
4782
4783         switch (cmd) {
4784         case IPC_INFO:
4785         case MSG_INFO:
4786                 /* No specific object, just general system-wide information. */
4787                 return task_has_system(current, SYSTEM__IPC_INFO);
4788         case IPC_STAT:
4789         case MSG_STAT:
4790                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4791                 break;
4792         case IPC_SET:
4793                 perms = MSGQ__SETATTR;
4794                 break;
4795         case IPC_RMID:
4796                 perms = MSGQ__DESTROY;
4797                 break;
4798         default:
4799                 return 0;
4800         }
4801
4802         err = ipc_has_perm(&msq->q_perm, perms);
4803         return err;
4804 }
4805
4806 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4807 {
4808         struct ipc_security_struct *isec;
4809         struct msg_security_struct *msec;
4810         struct common_audit_data ad;
4811         u32 sid = current_sid();
4812         int rc;
4813
4814         isec = msq->q_perm.security;
4815         msec = msg->security;
4816
4817         /*
4818          * First time through, need to assign label to the message
4819          */
4820         if (msec->sid == SECINITSID_UNLABELED) {
4821                 /*
4822                  * Compute new sid based on current process and
4823                  * message queue this message will be stored in
4824                  */
4825                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4826                                              &msec->sid);
4827                 if (rc)
4828                         return rc;
4829         }
4830
4831         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4832         ad.u.ipc_id = msq->q_perm.key;
4833
4834         /* Can this process write to the queue? */
4835         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4836                           MSGQ__WRITE, &ad);
4837         if (!rc)
4838                 /* Can this process send the message */
4839                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4840                                   MSG__SEND, &ad);
4841         if (!rc)
4842                 /* Can the message be put in the queue? */
4843                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4844                                   MSGQ__ENQUEUE, &ad);
4845
4846         return rc;
4847 }
4848
4849 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4850                                     struct task_struct *target,
4851                                     long type, int mode)
4852 {
4853         struct ipc_security_struct *isec;
4854         struct msg_security_struct *msec;
4855         struct common_audit_data ad;
4856         u32 sid = task_sid(target);
4857         int rc;
4858
4859         isec = msq->q_perm.security;
4860         msec = msg->security;
4861
4862         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4863         ad.u.ipc_id = msq->q_perm.key;
4864
4865         rc = avc_has_perm(sid, isec->sid,
4866                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4867         if (!rc)
4868                 rc = avc_has_perm(sid, msec->sid,
4869                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4870         return rc;
4871 }
4872
4873 /* Shared Memory security operations */
4874 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4875 {
4876         struct ipc_security_struct *isec;
4877         struct common_audit_data ad;
4878         u32 sid = current_sid();
4879         int rc;
4880
4881         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4882         if (rc)
4883                 return rc;
4884
4885         isec = shp->shm_perm.security;
4886
4887         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4888         ad.u.ipc_id = shp->shm_perm.key;
4889
4890         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4891                           SHM__CREATE, &ad);
4892         if (rc) {
4893                 ipc_free_security(&shp->shm_perm);
4894                 return rc;
4895         }
4896         return 0;
4897 }
4898
4899 static void selinux_shm_free_security(struct shmid_kernel *shp)
4900 {
4901         ipc_free_security(&shp->shm_perm);
4902 }
4903
4904 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4905 {
4906         struct ipc_security_struct *isec;
4907         struct common_audit_data ad;
4908         u32 sid = current_sid();
4909
4910         isec = shp->shm_perm.security;
4911
4912         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4913         ad.u.ipc_id = shp->shm_perm.key;
4914
4915         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4916                             SHM__ASSOCIATE, &ad);
4917 }
4918
4919 /* Note, at this point, shp is locked down */
4920 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4921 {
4922         int perms;
4923         int err;
4924
4925         switch (cmd) {
4926         case IPC_INFO:
4927         case SHM_INFO:
4928                 /* No specific object, just general system-wide information. */
4929                 return task_has_system(current, SYSTEM__IPC_INFO);
4930         case IPC_STAT:
4931         case SHM_STAT:
4932                 perms = SHM__GETATTR | SHM__ASSOCIATE;
4933                 break;
4934         case IPC_SET:
4935                 perms = SHM__SETATTR;
4936                 break;
4937         case SHM_LOCK:
4938         case SHM_UNLOCK:
4939                 perms = SHM__LOCK;
4940                 break;
4941         case IPC_RMID:
4942                 perms = SHM__DESTROY;
4943                 break;
4944         default:
4945                 return 0;
4946         }
4947
4948         err = ipc_has_perm(&shp->shm_perm, perms);
4949         return err;
4950 }
4951
4952 static int selinux_shm_shmat(struct shmid_kernel *shp,
4953                              char __user *shmaddr, int shmflg)
4954 {
4955         u32 perms;
4956
4957         if (shmflg & SHM_RDONLY)
4958                 perms = SHM__READ;
4959         else
4960                 perms = SHM__READ | SHM__WRITE;
4961
4962         return ipc_has_perm(&shp->shm_perm, perms);
4963 }
4964
4965 /* Semaphore security operations */
4966 static int selinux_sem_alloc_security(struct sem_array *sma)
4967 {
4968         struct ipc_security_struct *isec;
4969         struct common_audit_data ad;
4970         u32 sid = current_sid();
4971         int rc;
4972
4973         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4974         if (rc)
4975                 return rc;
4976
4977         isec = sma->sem_perm.security;
4978
4979         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4980         ad.u.ipc_id = sma->sem_perm.key;
4981
4982         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
4983                           SEM__CREATE, &ad);
4984         if (rc) {
4985                 ipc_free_security(&sma->sem_perm);
4986                 return rc;
4987         }
4988         return 0;
4989 }
4990
4991 static void selinux_sem_free_security(struct sem_array *sma)
4992 {
4993         ipc_free_security(&sma->sem_perm);
4994 }
4995
4996 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4997 {
4998         struct ipc_security_struct *isec;
4999         struct common_audit_data ad;
5000         u32 sid = current_sid();
5001
5002         isec = sma->sem_perm.security;
5003
5004         COMMON_AUDIT_DATA_INIT(&ad, IPC);
5005         ad.u.ipc_id = sma->sem_perm.key;
5006
5007         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5008                             SEM__ASSOCIATE, &ad);
5009 }
5010
5011 /* Note, at this point, sma is locked down */
5012 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5013 {
5014         int err;
5015         u32 perms;
5016
5017         switch (cmd) {
5018         case IPC_INFO:
5019         case SEM_INFO:
5020                 /* No specific object, just general system-wide information. */
5021                 return task_has_system(current, SYSTEM__IPC_INFO);
5022         case GETPID:
5023         case GETNCNT:
5024         case GETZCNT:
5025                 perms = SEM__GETATTR;
5026                 break;
5027         case GETVAL:
5028         case GETALL:
5029                 perms = SEM__READ;
5030                 break;
5031         case SETVAL:
5032         case SETALL:
5033                 perms = SEM__WRITE;
5034                 break;
5035         case IPC_RMID:
5036                 perms = SEM__DESTROY;
5037                 break;
5038         case IPC_SET:
5039                 perms = SEM__SETATTR;
5040                 break;
5041         case IPC_STAT:
5042         case SEM_STAT:
5043                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5044                 break;
5045         default:
5046                 return 0;
5047         }
5048
5049         err = ipc_has_perm(&sma->sem_perm, perms);
5050         return err;
5051 }
5052
5053 static int selinux_sem_semop(struct sem_array *sma,
5054                              struct sembuf *sops, unsigned nsops, int alter)
5055 {
5056         u32 perms;
5057
5058         if (alter)
5059                 perms = SEM__READ | SEM__WRITE;
5060         else
5061                 perms = SEM__READ;
5062
5063         return ipc_has_perm(&sma->sem_perm, perms);
5064 }
5065
5066 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5067 {
5068         u32 av = 0;
5069
5070         av = 0;
5071         if (flag & S_IRUGO)
5072                 av |= IPC__UNIX_READ;
5073         if (flag & S_IWUGO)
5074                 av |= IPC__UNIX_WRITE;
5075
5076         if (av == 0)
5077                 return 0;
5078
5079         return ipc_has_perm(ipcp, av);
5080 }
5081
5082 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5083 {
5084         struct ipc_security_struct *isec = ipcp->security;
5085         *secid = isec->sid;
5086 }
5087
5088 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5089 {
5090         if (inode)
5091                 inode_doinit_with_dentry(inode, dentry);
5092 }
5093
5094 static int selinux_getprocattr(struct task_struct *p,
5095                                char *name, char **value)
5096 {
5097         const struct task_security_struct *__tsec;
5098         u32 sid;
5099         int error;
5100         unsigned len;
5101
5102         if (current != p) {
5103                 error = current_has_perm(p, PROCESS__GETATTR);
5104                 if (error)
5105                         return error;
5106         }
5107
5108         rcu_read_lock();
5109         __tsec = __task_cred(p)->security;
5110
5111         if (!strcmp(name, "current"))
5112                 sid = __tsec->sid;
5113         else if (!strcmp(name, "prev"))
5114                 sid = __tsec->osid;
5115         else if (!strcmp(name, "exec"))
5116                 sid = __tsec->exec_sid;
5117         else if (!strcmp(name, "fscreate"))
5118                 sid = __tsec->create_sid;
5119         else if (!strcmp(name, "keycreate"))
5120                 sid = __tsec->keycreate_sid;
5121         else if (!strcmp(name, "sockcreate"))
5122                 sid = __tsec->sockcreate_sid;
5123         else
5124                 goto invalid;
5125         rcu_read_unlock();
5126
5127         if (!sid)
5128                 return 0;
5129
5130         error = security_sid_to_context(sid, value, &len);
5131         if (error)
5132                 return error;
5133         return len;
5134
5135 invalid:
5136         rcu_read_unlock();
5137         return -EINVAL;
5138 }
5139
5140 static int selinux_setprocattr(struct task_struct *p,
5141                                char *name, void *value, size_t size)
5142 {
5143         struct task_security_struct *tsec;
5144         struct task_struct *tracer;
5145         struct cred *new;
5146         u32 sid = 0, ptsid;
5147         int error;
5148         char *str = value;
5149
5150         if (current != p) {
5151                 /* SELinux only allows a process to change its own
5152                    security attributes. */
5153                 return -EACCES;
5154         }
5155
5156         /*
5157          * Basic control over ability to set these attributes at all.
5158          * current == p, but we'll pass them separately in case the
5159          * above restriction is ever removed.
5160          */
5161         if (!strcmp(name, "exec"))
5162                 error = current_has_perm(p, PROCESS__SETEXEC);
5163         else if (!strcmp(name, "fscreate"))
5164                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5165         else if (!strcmp(name, "keycreate"))
5166                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5167         else if (!strcmp(name, "sockcreate"))
5168                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5169         else if (!strcmp(name, "current"))
5170                 error = current_has_perm(p, PROCESS__SETCURRENT);
5171         else
5172                 error = -EINVAL;
5173         if (error)
5174                 return error;
5175
5176         /* Obtain a SID for the context, if one was specified. */
5177         if (size && str[1] && str[1] != '\n') {
5178                 if (str[size-1] == '\n') {
5179                         str[size-1] = 0;
5180                         size--;
5181                 }
5182                 error = security_context_to_sid(value, size, &sid);
5183                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5184                         if (!capable(CAP_MAC_ADMIN))
5185                                 return error;
5186                         error = security_context_to_sid_force(value, size,
5187                                                               &sid);
5188                 }
5189                 if (error)
5190                         return error;
5191         }
5192
5193         new = prepare_creds();
5194         if (!new)
5195                 return -ENOMEM;
5196
5197         /* Permission checking based on the specified context is
5198            performed during the actual operation (execve,
5199            open/mkdir/...), when we know the full context of the
5200            operation.  See selinux_bprm_set_creds for the execve
5201            checks and may_create for the file creation checks. The
5202            operation will then fail if the context is not permitted. */
5203         tsec = new->security;
5204         if (!strcmp(name, "exec")) {
5205                 tsec->exec_sid = sid;
5206         } else if (!strcmp(name, "fscreate")) {
5207                 tsec->create_sid = sid;
5208         } else if (!strcmp(name, "keycreate")) {
5209                 error = may_create_key(sid, p);
5210                 if (error)
5211                         goto abort_change;
5212                 tsec->keycreate_sid = sid;
5213         } else if (!strcmp(name, "sockcreate")) {
5214                 tsec->sockcreate_sid = sid;
5215         } else if (!strcmp(name, "current")) {
5216                 error = -EINVAL;
5217                 if (sid == 0)
5218                         goto abort_change;
5219
5220                 /* Only allow single threaded processes to change context */
5221                 error = -EPERM;
5222                 if (!current_is_single_threaded()) {
5223                         error = security_bounded_transition(tsec->sid, sid);
5224                         if (error)
5225                                 goto abort_change;
5226                 }
5227
5228                 /* Check permissions for the transition. */
5229                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5230                                      PROCESS__DYNTRANSITION, NULL);
5231                 if (error)
5232                         goto abort_change;
5233
5234                 /* Check for ptracing, and update the task SID if ok.
5235                    Otherwise, leave SID unchanged and fail. */
5236                 ptsid = 0;
5237                 task_lock(p);
5238                 tracer = tracehook_tracer_task(p);
5239                 if (tracer)
5240                         ptsid = task_sid(tracer);
5241                 task_unlock(p);
5242
5243                 if (tracer) {
5244                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5245                                              PROCESS__PTRACE, NULL);
5246                         if (error)
5247                                 goto abort_change;
5248                 }
5249
5250                 tsec->sid = sid;
5251         } else {
5252                 error = -EINVAL;
5253                 goto abort_change;
5254         }
5255
5256         commit_creds(new);
5257         return size;
5258
5259 abort_change:
5260         abort_creds(new);
5261         return error;
5262 }
5263
5264 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5265 {
5266         return security_sid_to_context(secid, secdata, seclen);
5267 }
5268
5269 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5270 {
5271         return security_context_to_sid(secdata, seclen, secid);
5272 }
5273
5274 static void selinux_release_secctx(char *secdata, u32 seclen)
5275 {
5276         kfree(secdata);
5277 }
5278
5279 /*
5280  *      called with inode->i_mutex locked
5281  */
5282 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5283 {
5284         return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5285 }
5286
5287 /*
5288  *      called with inode->i_mutex locked
5289  */
5290 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5291 {
5292         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5293 }
5294
5295 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5296 {
5297         int len = 0;
5298         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5299                                                 ctx, true);
5300         if (len < 0)
5301                 return len;
5302         *ctxlen = len;
5303         return 0;
5304 }
5305 #ifdef CONFIG_KEYS
5306
5307 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5308                              unsigned long flags)
5309 {
5310         const struct task_security_struct *tsec;
5311         struct key_security_struct *ksec;
5312
5313         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5314         if (!ksec)
5315                 return -ENOMEM;
5316
5317         tsec = cred->security;
5318         if (tsec->keycreate_sid)
5319                 ksec->sid = tsec->keycreate_sid;
5320         else
5321                 ksec->sid = tsec->sid;
5322
5323         k->security = ksec;
5324         return 0;
5325 }
5326
5327 static void selinux_key_free(struct key *k)
5328 {
5329         struct key_security_struct *ksec = k->security;
5330
5331         k->security = NULL;
5332         kfree(ksec);
5333 }
5334
5335 static int selinux_key_permission(key_ref_t key_ref,
5336                                   const struct cred *cred,
5337                                   key_perm_t perm)
5338 {
5339         struct key *key;
5340         struct key_security_struct *ksec;
5341         u32 sid;
5342
5343         /* if no specific permissions are requested, we skip the
5344            permission check. No serious, additional covert channels
5345            appear to be created. */
5346         if (perm == 0)
5347                 return 0;
5348
5349         sid = cred_sid(cred);
5350
5351         key = key_ref_to_ptr(key_ref);
5352         ksec = key->security;
5353
5354         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5355 }
5356
5357 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5358 {
5359         struct key_security_struct *ksec = key->security;
5360         char *context = NULL;
5361         unsigned len;
5362         int rc;
5363
5364         rc = security_sid_to_context(ksec->sid, &context, &len);
5365         if (!rc)
5366                 rc = len;
5367         *_buffer = context;
5368         return rc;
5369 }
5370
5371 #endif
5372
5373 static struct security_operations selinux_ops = {
5374         .name =                         "selinux",
5375
5376         .ptrace_access_check =          selinux_ptrace_access_check,
5377         .ptrace_traceme =               selinux_ptrace_traceme,
5378         .capget =                       selinux_capget,
5379         .capset =                       selinux_capset,
5380         .sysctl =                       selinux_sysctl,
5381         .capable =                      selinux_capable,
5382         .quotactl =                     selinux_quotactl,
5383         .quota_on =                     selinux_quota_on,
5384         .syslog =                       selinux_syslog,
5385         .vm_enough_memory =             selinux_vm_enough_memory,
5386
5387         .netlink_send =                 selinux_netlink_send,
5388         .netlink_recv =                 selinux_netlink_recv,
5389
5390         .bprm_set_creds =               selinux_bprm_set_creds,
5391         .bprm_committing_creds =        selinux_bprm_committing_creds,
5392         .bprm_committed_creds =         selinux_bprm_committed_creds,
5393         .bprm_secureexec =              selinux_bprm_secureexec,
5394
5395         .sb_alloc_security =            selinux_sb_alloc_security,
5396         .sb_free_security =             selinux_sb_free_security,
5397         .sb_copy_data =                 selinux_sb_copy_data,
5398         .sb_kern_mount =                selinux_sb_kern_mount,
5399         .sb_show_options =              selinux_sb_show_options,
5400         .sb_statfs =                    selinux_sb_statfs,
5401         .sb_mount =                     selinux_mount,
5402         .sb_umount =                    selinux_umount,
5403         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5404         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5405         .sb_parse_opts_str =            selinux_parse_opts_str,
5406
5407
5408         .inode_alloc_security =         selinux_inode_alloc_security,
5409         .inode_free_security =          selinux_inode_free_security,
5410         .inode_init_security =          selinux_inode_init_security,
5411         .inode_create =                 selinux_inode_create,
5412         .inode_link =                   selinux_inode_link,
5413         .inode_unlink =                 selinux_inode_unlink,
5414         .inode_symlink =                selinux_inode_symlink,
5415         .inode_mkdir =                  selinux_inode_mkdir,
5416         .inode_rmdir =                  selinux_inode_rmdir,
5417         .inode_mknod =                  selinux_inode_mknod,
5418         .inode_rename =                 selinux_inode_rename,
5419         .inode_readlink =               selinux_inode_readlink,
5420         .inode_follow_link =            selinux_inode_follow_link,
5421         .inode_permission =             selinux_inode_permission,
5422         .inode_setattr =                selinux_inode_setattr,
5423         .inode_getattr =                selinux_inode_getattr,
5424         .inode_setxattr =               selinux_inode_setxattr,
5425         .inode_post_setxattr =          selinux_inode_post_setxattr,
5426         .inode_getxattr =               selinux_inode_getxattr,
5427         .inode_listxattr =              selinux_inode_listxattr,
5428         .inode_removexattr =            selinux_inode_removexattr,
5429         .inode_getsecurity =            selinux_inode_getsecurity,
5430         .inode_setsecurity =            selinux_inode_setsecurity,
5431         .inode_listsecurity =           selinux_inode_listsecurity,
5432         .inode_getsecid =               selinux_inode_getsecid,
5433
5434         .file_permission =              selinux_file_permission,
5435         .file_alloc_security =          selinux_file_alloc_security,
5436         .file_free_security =           selinux_file_free_security,
5437         .file_ioctl =                   selinux_file_ioctl,
5438         .file_mmap =                    selinux_file_mmap,
5439         .file_mprotect =                selinux_file_mprotect,
5440         .file_lock =                    selinux_file_lock,
5441         .file_fcntl =                   selinux_file_fcntl,
5442         .file_set_fowner =              selinux_file_set_fowner,
5443         .file_send_sigiotask =          selinux_file_send_sigiotask,
5444         .file_receive =                 selinux_file_receive,
5445
5446         .dentry_open =                  selinux_dentry_open,
5447
5448         .task_create =                  selinux_task_create,
5449         .cred_alloc_blank =             selinux_cred_alloc_blank,
5450         .cred_free =                    selinux_cred_free,
5451         .cred_prepare =                 selinux_cred_prepare,
5452         .cred_transfer =                selinux_cred_transfer,
5453         .kernel_act_as =                selinux_kernel_act_as,
5454         .kernel_create_files_as =       selinux_kernel_create_files_as,
5455         .kernel_module_request =        selinux_kernel_module_request,
5456         .task_setpgid =                 selinux_task_setpgid,
5457         .task_getpgid =                 selinux_task_getpgid,
5458         .task_getsid =                  selinux_task_getsid,
5459         .task_getsecid =                selinux_task_getsecid,
5460         .task_setnice =                 selinux_task_setnice,
5461         .task_setioprio =               selinux_task_setioprio,
5462         .task_getioprio =               selinux_task_getioprio,
5463         .task_setrlimit =               selinux_task_setrlimit,
5464         .task_setscheduler =            selinux_task_setscheduler,
5465         .task_getscheduler =            selinux_task_getscheduler,
5466         .task_movememory =              selinux_task_movememory,
5467         .task_kill =                    selinux_task_kill,
5468         .task_wait =                    selinux_task_wait,
5469         .task_to_inode =                selinux_task_to_inode,
5470
5471         .ipc_permission =               selinux_ipc_permission,
5472         .ipc_getsecid =                 selinux_ipc_getsecid,
5473
5474         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5475         .msg_msg_free_security =        selinux_msg_msg_free_security,
5476
5477         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5478         .msg_queue_free_security =      selinux_msg_queue_free_security,
5479         .msg_queue_associate =          selinux_msg_queue_associate,
5480         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5481         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5482         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5483
5484         .shm_alloc_security =           selinux_shm_alloc_security,
5485         .shm_free_security =            selinux_shm_free_security,
5486         .shm_associate =                selinux_shm_associate,
5487         .shm_shmctl =                   selinux_shm_shmctl,
5488         .shm_shmat =                    selinux_shm_shmat,
5489
5490         .sem_alloc_security =           selinux_sem_alloc_security,
5491         .sem_free_security =            selinux_sem_free_security,
5492         .sem_associate =                selinux_sem_associate,
5493         .sem_semctl =                   selinux_sem_semctl,
5494         .sem_semop =                    selinux_sem_semop,
5495
5496         .d_instantiate =                selinux_d_instantiate,
5497
5498         .getprocattr =                  selinux_getprocattr,
5499         .setprocattr =                  selinux_setprocattr,
5500
5501         .secid_to_secctx =              selinux_secid_to_secctx,
5502         .secctx_to_secid =              selinux_secctx_to_secid,
5503         .release_secctx =               selinux_release_secctx,
5504         .inode_notifysecctx =           selinux_inode_notifysecctx,
5505         .inode_setsecctx =              selinux_inode_setsecctx,
5506         .inode_getsecctx =              selinux_inode_getsecctx,
5507
5508         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5509         .unix_may_send =                selinux_socket_unix_may_send,
5510
5511         .socket_create =                selinux_socket_create,
5512         .socket_post_create =           selinux_socket_post_create,
5513         .socket_bind =                  selinux_socket_bind,
5514         .socket_connect =               selinux_socket_connect,
5515         .socket_listen =                selinux_socket_listen,
5516         .socket_accept =                selinux_socket_accept,
5517         .socket_sendmsg =               selinux_socket_sendmsg,
5518         .socket_recvmsg =               selinux_socket_recvmsg,
5519         .socket_getsockname =           selinux_socket_getsockname,
5520         .socket_getpeername =           selinux_socket_getpeername,
5521         .socket_getsockopt =            selinux_socket_getsockopt,
5522         .socket_setsockopt =            selinux_socket_setsockopt,
5523         .socket_shutdown =              selinux_socket_shutdown,
5524         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5525         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5526         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5527         .sk_alloc_security =            selinux_sk_alloc_security,
5528         .sk_free_security =             selinux_sk_free_security,
5529         .sk_clone_security =            selinux_sk_clone_security,
5530         .sk_getsecid =                  selinux_sk_getsecid,
5531         .sock_graft =                   selinux_sock_graft,
5532         .inet_conn_request =            selinux_inet_conn_request,
5533         .inet_csk_clone =               selinux_inet_csk_clone,
5534         .inet_conn_established =        selinux_inet_conn_established,
5535         .req_classify_flow =            selinux_req_classify_flow,
5536         .tun_dev_create =               selinux_tun_dev_create,
5537         .tun_dev_post_create =          selinux_tun_dev_post_create,
5538         .tun_dev_attach =               selinux_tun_dev_attach,
5539
5540 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5541         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5542         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5543         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5544         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5545         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5546         .xfrm_state_free_security =     selinux_xfrm_state_free,
5547         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5548         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5549         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5550         .xfrm_decode_session =          selinux_xfrm_decode_session,
5551 #endif
5552
5553 #ifdef CONFIG_KEYS
5554         .key_alloc =                    selinux_key_alloc,
5555         .key_free =                     selinux_key_free,
5556         .key_permission =               selinux_key_permission,
5557         .key_getsecurity =              selinux_key_getsecurity,
5558 #endif
5559
5560 #ifdef CONFIG_AUDIT
5561         .audit_rule_init =              selinux_audit_rule_init,
5562         .audit_rule_known =             selinux_audit_rule_known,
5563         .audit_rule_match =             selinux_audit_rule_match,
5564         .audit_rule_free =              selinux_audit_rule_free,
5565 #endif
5566 };
5567
5568 static __init int selinux_init(void)
5569 {
5570         if (!security_module_enable(&selinux_ops)) {
5571                 selinux_enabled = 0;
5572                 return 0;
5573         }
5574
5575         if (!selinux_enabled) {
5576                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5577                 return 0;
5578         }
5579
5580         printk(KERN_INFO "SELinux:  Initializing.\n");
5581
5582         /* Set the security state for the initial task. */
5583         cred_init_security();
5584
5585         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5586
5587         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5588                                             sizeof(struct inode_security_struct),
5589                                             0, SLAB_PANIC, NULL);
5590         avc_init();
5591
5592         if (register_security(&selinux_ops))
5593                 panic("SELinux: Unable to register with kernel.\n");
5594
5595         if (selinux_enforcing)
5596                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5597         else
5598                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5599
5600         return 0;
5601 }
5602
5603 static void delayed_superblock_init(struct super_block *sb, void *unused)
5604 {
5605         superblock_doinit(sb, NULL);
5606 }
5607
5608 void selinux_complete_init(void)
5609 {
5610         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5611
5612         /* Set up any superblocks initialized prior to the policy load. */
5613         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5614         iterate_supers(delayed_superblock_init, NULL);
5615 }
5616
5617 /* SELinux requires early initialization in order to label
5618    all processes and objects when they are created. */
5619 security_initcall(selinux_init);
5620
5621 #if defined(CONFIG_NETFILTER)
5622
5623 static struct nf_hook_ops selinux_ipv4_ops[] = {
5624         {
5625                 .hook =         selinux_ipv4_postroute,
5626                 .owner =        THIS_MODULE,
5627                 .pf =           PF_INET,
5628                 .hooknum =      NF_INET_POST_ROUTING,
5629                 .priority =     NF_IP_PRI_SELINUX_LAST,
5630         },
5631         {
5632                 .hook =         selinux_ipv4_forward,
5633                 .owner =        THIS_MODULE,
5634                 .pf =           PF_INET,
5635                 .hooknum =      NF_INET_FORWARD,
5636                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5637         },
5638         {
5639                 .hook =         selinux_ipv4_output,
5640                 .owner =        THIS_MODULE,
5641                 .pf =           PF_INET,
5642                 .hooknum =      NF_INET_LOCAL_OUT,
5643                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5644         }
5645 };
5646
5647 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5648
5649 static struct nf_hook_ops selinux_ipv6_ops[] = {
5650         {
5651                 .hook =         selinux_ipv6_postroute,
5652                 .owner =        THIS_MODULE,
5653                 .pf =           PF_INET6,
5654                 .hooknum =      NF_INET_POST_ROUTING,
5655                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5656         },
5657         {
5658                 .hook =         selinux_ipv6_forward,
5659                 .owner =        THIS_MODULE,
5660                 .pf =           PF_INET6,
5661                 .hooknum =      NF_INET_FORWARD,
5662                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5663         }
5664 };
5665
5666 #endif  /* IPV6 */
5667
5668 static int __init selinux_nf_ip_init(void)
5669 {
5670         int err = 0;
5671
5672         if (!selinux_enabled)
5673                 goto out;
5674
5675         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5676
5677         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5678         if (err)
5679                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5680
5681 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5682         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5683         if (err)
5684                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5685 #endif  /* IPV6 */
5686
5687 out:
5688         return err;
5689 }
5690
5691 __initcall(selinux_nf_ip_init);
5692
5693 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5694 static void selinux_nf_ip_exit(void)
5695 {
5696         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5697
5698         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5699 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5700         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5701 #endif  /* IPV6 */
5702 }
5703 #endif
5704
5705 #else /* CONFIG_NETFILTER */
5706
5707 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5708 #define selinux_nf_ip_exit()
5709 #endif
5710
5711 #endif /* CONFIG_NETFILTER */
5712
5713 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5714 static int selinux_disabled;
5715
5716 int selinux_disable(void)
5717 {
5718         extern void exit_sel_fs(void);
5719
5720         if (ss_initialized) {
5721                 /* Not permitted after initial policy load. */
5722                 return -EINVAL;
5723         }
5724
5725         if (selinux_disabled) {
5726                 /* Only do this once. */
5727                 return -EINVAL;
5728         }
5729
5730         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5731
5732         selinux_disabled = 1;
5733         selinux_enabled = 0;
5734
5735         reset_security_ops();
5736
5737         /* Try to destroy the avc node cache */
5738         avc_disable();
5739
5740         /* Unregister netfilter hooks. */
5741         selinux_nf_ip_exit();
5742
5743         /* Unregister selinuxfs. */
5744         exit_sel_fs();
5745
5746         return 0;
5747 }
5748 #endif