selinux: remove secondary ops call to task_kill
[linux-2.6.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17  *              Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
88
89 #define XATTR_SELINUX_SUFFIX "selinux"
90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
91
92 #define NUM_SEL_MNT_OPTS 5
93
94 extern unsigned int policydb_loaded_version;
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern int selinux_compat_net;
97 extern struct security_operations *security_ops;
98
99 /* SECMARK reference count */
100 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
101
102 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
103 int selinux_enforcing;
104
105 static int __init enforcing_setup(char *str)
106 {
107         unsigned long enforcing;
108         if (!strict_strtoul(str, 0, &enforcing))
109                 selinux_enforcing = enforcing ? 1 : 0;
110         return 1;
111 }
112 __setup("enforcing=", enforcing_setup);
113 #endif
114
115 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
116 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
117
118 static int __init selinux_enabled_setup(char *str)
119 {
120         unsigned long enabled;
121         if (!strict_strtoul(str, 0, &enabled))
122                 selinux_enabled = enabled ? 1 : 0;
123         return 1;
124 }
125 __setup("selinux=", selinux_enabled_setup);
126 #else
127 int selinux_enabled = 1;
128 #endif
129
130
131 /*
132  * Minimal support for a secondary security module,
133  * just to allow the use of the capability module.
134  */
135 static struct security_operations *secondary_ops;
136
137 /* Lists of inode and superblock security structures initialized
138    before the policy was loaded. */
139 static LIST_HEAD(superblock_security_head);
140 static DEFINE_SPINLOCK(sb_security_lock);
141
142 static struct kmem_cache *sel_inode_cache;
143
144 /**
145  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
146  *
147  * Description:
148  * This function checks the SECMARK reference counter to see if any SECMARK
149  * targets are currently configured, if the reference counter is greater than
150  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
151  * enabled, false (0) if SECMARK is disabled.
152  *
153  */
154 static int selinux_secmark_enabled(void)
155 {
156         return (atomic_read(&selinux_secmark_refcount) > 0);
157 }
158
159 /*
160  * initialise the security for the init task
161  */
162 static void cred_init_security(void)
163 {
164         struct cred *cred = (struct cred *) current->real_cred;
165         struct task_security_struct *tsec;
166
167         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
168         if (!tsec)
169                 panic("SELinux:  Failed to initialize initial task.\n");
170
171         tsec->osid = tsec->sid = SECINITSID_KERNEL;
172         cred->security = tsec;
173 }
174
175 /*
176  * get the security ID of a set of credentials
177  */
178 static inline u32 cred_sid(const struct cred *cred)
179 {
180         const struct task_security_struct *tsec;
181
182         tsec = cred->security;
183         return tsec->sid;
184 }
185
186 /*
187  * get the objective security ID of a task
188  */
189 static inline u32 task_sid(const struct task_struct *task)
190 {
191         u32 sid;
192
193         rcu_read_lock();
194         sid = cred_sid(__task_cred(task));
195         rcu_read_unlock();
196         return sid;
197 }
198
199 /*
200  * get the subjective security ID of the current task
201  */
202 static inline u32 current_sid(void)
203 {
204         const struct task_security_struct *tsec = current_cred()->security;
205
206         return tsec->sid;
207 }
208
209 /* Allocate and free functions for each kind of security blob. */
210
211 static int inode_alloc_security(struct inode *inode)
212 {
213         struct inode_security_struct *isec;
214         u32 sid = current_sid();
215
216         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
217         if (!isec)
218                 return -ENOMEM;
219
220         mutex_init(&isec->lock);
221         INIT_LIST_HEAD(&isec->list);
222         isec->inode = inode;
223         isec->sid = SECINITSID_UNLABELED;
224         isec->sclass = SECCLASS_FILE;
225         isec->task_sid = sid;
226         inode->i_security = isec;
227
228         return 0;
229 }
230
231 static void inode_free_security(struct inode *inode)
232 {
233         struct inode_security_struct *isec = inode->i_security;
234         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
235
236         spin_lock(&sbsec->isec_lock);
237         if (!list_empty(&isec->list))
238                 list_del_init(&isec->list);
239         spin_unlock(&sbsec->isec_lock);
240
241         inode->i_security = NULL;
242         kmem_cache_free(sel_inode_cache, isec);
243 }
244
245 static int file_alloc_security(struct file *file)
246 {
247         struct file_security_struct *fsec;
248         u32 sid = current_sid();
249
250         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
251         if (!fsec)
252                 return -ENOMEM;
253
254         fsec->sid = sid;
255         fsec->fown_sid = sid;
256         file->f_security = fsec;
257
258         return 0;
259 }
260
261 static void file_free_security(struct file *file)
262 {
263         struct file_security_struct *fsec = file->f_security;
264         file->f_security = NULL;
265         kfree(fsec);
266 }
267
268 static int superblock_alloc_security(struct super_block *sb)
269 {
270         struct superblock_security_struct *sbsec;
271
272         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
273         if (!sbsec)
274                 return -ENOMEM;
275
276         mutex_init(&sbsec->lock);
277         INIT_LIST_HEAD(&sbsec->list);
278         INIT_LIST_HEAD(&sbsec->isec_head);
279         spin_lock_init(&sbsec->isec_lock);
280         sbsec->sb = sb;
281         sbsec->sid = SECINITSID_UNLABELED;
282         sbsec->def_sid = SECINITSID_FILE;
283         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
284         sb->s_security = sbsec;
285
286         return 0;
287 }
288
289 static void superblock_free_security(struct super_block *sb)
290 {
291         struct superblock_security_struct *sbsec = sb->s_security;
292
293         spin_lock(&sb_security_lock);
294         if (!list_empty(&sbsec->list))
295                 list_del_init(&sbsec->list);
296         spin_unlock(&sb_security_lock);
297
298         sb->s_security = NULL;
299         kfree(sbsec);
300 }
301
302 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
303 {
304         struct sk_security_struct *ssec;
305
306         ssec = kzalloc(sizeof(*ssec), priority);
307         if (!ssec)
308                 return -ENOMEM;
309
310         ssec->peer_sid = SECINITSID_UNLABELED;
311         ssec->sid = SECINITSID_UNLABELED;
312         sk->sk_security = ssec;
313
314         selinux_netlbl_sk_security_reset(ssec, family);
315
316         return 0;
317 }
318
319 static void sk_free_security(struct sock *sk)
320 {
321         struct sk_security_struct *ssec = sk->sk_security;
322
323         sk->sk_security = NULL;
324         selinux_netlbl_sk_security_free(ssec);
325         kfree(ssec);
326 }
327
328 /* The security server must be initialized before
329    any labeling or access decisions can be provided. */
330 extern int ss_initialized;
331
332 /* The file system's label must be initialized prior to use. */
333
334 static char *labeling_behaviors[6] = {
335         "uses xattr",
336         "uses transition SIDs",
337         "uses task SIDs",
338         "uses genfs_contexts",
339         "not configured for labeling",
340         "uses mountpoint labeling",
341 };
342
343 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
344
345 static inline int inode_doinit(struct inode *inode)
346 {
347         return inode_doinit_with_dentry(inode, NULL);
348 }
349
350 enum {
351         Opt_error = -1,
352         Opt_context = 1,
353         Opt_fscontext = 2,
354         Opt_defcontext = 3,
355         Opt_rootcontext = 4,
356         Opt_labelsupport = 5,
357 };
358
359 static const match_table_t tokens = {
360         {Opt_context, CONTEXT_STR "%s"},
361         {Opt_fscontext, FSCONTEXT_STR "%s"},
362         {Opt_defcontext, DEFCONTEXT_STR "%s"},
363         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
364         {Opt_labelsupport, LABELSUPP_STR},
365         {Opt_error, NULL},
366 };
367
368 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
369
370 static int may_context_mount_sb_relabel(u32 sid,
371                         struct superblock_security_struct *sbsec,
372                         const struct cred *cred)
373 {
374         const struct task_security_struct *tsec = cred->security;
375         int rc;
376
377         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
378                           FILESYSTEM__RELABELFROM, NULL);
379         if (rc)
380                 return rc;
381
382         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
383                           FILESYSTEM__RELABELTO, NULL);
384         return rc;
385 }
386
387 static int may_context_mount_inode_relabel(u32 sid,
388                         struct superblock_security_struct *sbsec,
389                         const struct cred *cred)
390 {
391         const struct task_security_struct *tsec = cred->security;
392         int rc;
393         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
394                           FILESYSTEM__RELABELFROM, NULL);
395         if (rc)
396                 return rc;
397
398         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
399                           FILESYSTEM__ASSOCIATE, NULL);
400         return rc;
401 }
402
403 static int sb_finish_set_opts(struct super_block *sb)
404 {
405         struct superblock_security_struct *sbsec = sb->s_security;
406         struct dentry *root = sb->s_root;
407         struct inode *root_inode = root->d_inode;
408         int rc = 0;
409
410         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
411                 /* Make sure that the xattr handler exists and that no
412                    error other than -ENODATA is returned by getxattr on
413                    the root directory.  -ENODATA is ok, as this may be
414                    the first boot of the SELinux kernel before we have
415                    assigned xattr values to the filesystem. */
416                 if (!root_inode->i_op->getxattr) {
417                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
418                                "xattr support\n", sb->s_id, sb->s_type->name);
419                         rc = -EOPNOTSUPP;
420                         goto out;
421                 }
422                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
423                 if (rc < 0 && rc != -ENODATA) {
424                         if (rc == -EOPNOTSUPP)
425                                 printk(KERN_WARNING "SELinux: (dev %s, type "
426                                        "%s) has no security xattr handler\n",
427                                        sb->s_id, sb->s_type->name);
428                         else
429                                 printk(KERN_WARNING "SELinux: (dev %s, type "
430                                        "%s) getxattr errno %d\n", sb->s_id,
431                                        sb->s_type->name, -rc);
432                         goto out;
433                 }
434         }
435
436         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
437
438         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
439                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
440                        sb->s_id, sb->s_type->name);
441         else
442                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
443                        sb->s_id, sb->s_type->name,
444                        labeling_behaviors[sbsec->behavior-1]);
445
446         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
447             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
448             sbsec->behavior == SECURITY_FS_USE_NONE ||
449             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
450                 sbsec->flags &= ~SE_SBLABELSUPP;
451
452         /* Initialize the root inode. */
453         rc = inode_doinit_with_dentry(root_inode, root);
454
455         /* Initialize any other inodes associated with the superblock, e.g.
456            inodes created prior to initial policy load or inodes created
457            during get_sb by a pseudo filesystem that directly
458            populates itself. */
459         spin_lock(&sbsec->isec_lock);
460 next_inode:
461         if (!list_empty(&sbsec->isec_head)) {
462                 struct inode_security_struct *isec =
463                                 list_entry(sbsec->isec_head.next,
464                                            struct inode_security_struct, list);
465                 struct inode *inode = isec->inode;
466                 spin_unlock(&sbsec->isec_lock);
467                 inode = igrab(inode);
468                 if (inode) {
469                         if (!IS_PRIVATE(inode))
470                                 inode_doinit(inode);
471                         iput(inode);
472                 }
473                 spin_lock(&sbsec->isec_lock);
474                 list_del_init(&isec->list);
475                 goto next_inode;
476         }
477         spin_unlock(&sbsec->isec_lock);
478 out:
479         return rc;
480 }
481
482 /*
483  * This function should allow an FS to ask what it's mount security
484  * options were so it can use those later for submounts, displaying
485  * mount options, or whatever.
486  */
487 static int selinux_get_mnt_opts(const struct super_block *sb,
488                                 struct security_mnt_opts *opts)
489 {
490         int rc = 0, i;
491         struct superblock_security_struct *sbsec = sb->s_security;
492         char *context = NULL;
493         u32 len;
494         char tmp;
495
496         security_init_mnt_opts(opts);
497
498         if (!(sbsec->flags & SE_SBINITIALIZED))
499                 return -EINVAL;
500
501         if (!ss_initialized)
502                 return -EINVAL;
503
504         tmp = sbsec->flags & SE_MNTMASK;
505         /* count the number of mount options for this sb */
506         for (i = 0; i < 8; i++) {
507                 if (tmp & 0x01)
508                         opts->num_mnt_opts++;
509                 tmp >>= 1;
510         }
511         /* Check if the Label support flag is set */
512         if (sbsec->flags & SE_SBLABELSUPP)
513                 opts->num_mnt_opts++;
514
515         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
516         if (!opts->mnt_opts) {
517                 rc = -ENOMEM;
518                 goto out_free;
519         }
520
521         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
522         if (!opts->mnt_opts_flags) {
523                 rc = -ENOMEM;
524                 goto out_free;
525         }
526
527         i = 0;
528         if (sbsec->flags & FSCONTEXT_MNT) {
529                 rc = security_sid_to_context(sbsec->sid, &context, &len);
530                 if (rc)
531                         goto out_free;
532                 opts->mnt_opts[i] = context;
533                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
534         }
535         if (sbsec->flags & CONTEXT_MNT) {
536                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
537                 if (rc)
538                         goto out_free;
539                 opts->mnt_opts[i] = context;
540                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
541         }
542         if (sbsec->flags & DEFCONTEXT_MNT) {
543                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
544                 if (rc)
545                         goto out_free;
546                 opts->mnt_opts[i] = context;
547                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
548         }
549         if (sbsec->flags & ROOTCONTEXT_MNT) {
550                 struct inode *root = sbsec->sb->s_root->d_inode;
551                 struct inode_security_struct *isec = root->i_security;
552
553                 rc = security_sid_to_context(isec->sid, &context, &len);
554                 if (rc)
555                         goto out_free;
556                 opts->mnt_opts[i] = context;
557                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
558         }
559         if (sbsec->flags & SE_SBLABELSUPP) {
560                 opts->mnt_opts[i] = NULL;
561                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
562         }
563
564         BUG_ON(i != opts->num_mnt_opts);
565
566         return 0;
567
568 out_free:
569         security_free_mnt_opts(opts);
570         return rc;
571 }
572
573 static int bad_option(struct superblock_security_struct *sbsec, char flag,
574                       u32 old_sid, u32 new_sid)
575 {
576         char mnt_flags = sbsec->flags & SE_MNTMASK;
577
578         /* check if the old mount command had the same options */
579         if (sbsec->flags & SE_SBINITIALIZED)
580                 if (!(sbsec->flags & flag) ||
581                     (old_sid != new_sid))
582                         return 1;
583
584         /* check if we were passed the same options twice,
585          * aka someone passed context=a,context=b
586          */
587         if (!(sbsec->flags & SE_SBINITIALIZED))
588                 if (mnt_flags & flag)
589                         return 1;
590         return 0;
591 }
592
593 /*
594  * Allow filesystems with binary mount data to explicitly set mount point
595  * labeling information.
596  */
597 static int selinux_set_mnt_opts(struct super_block *sb,
598                                 struct security_mnt_opts *opts)
599 {
600         const struct cred *cred = current_cred();
601         int rc = 0, i;
602         struct superblock_security_struct *sbsec = sb->s_security;
603         const char *name = sb->s_type->name;
604         struct inode *inode = sbsec->sb->s_root->d_inode;
605         struct inode_security_struct *root_isec = inode->i_security;
606         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
607         u32 defcontext_sid = 0;
608         char **mount_options = opts->mnt_opts;
609         int *flags = opts->mnt_opts_flags;
610         int num_opts = opts->num_mnt_opts;
611
612         mutex_lock(&sbsec->lock);
613
614         if (!ss_initialized) {
615                 if (!num_opts) {
616                         /* Defer initialization until selinux_complete_init,
617                            after the initial policy is loaded and the security
618                            server is ready to handle calls. */
619                         spin_lock(&sb_security_lock);
620                         if (list_empty(&sbsec->list))
621                                 list_add(&sbsec->list, &superblock_security_head);
622                         spin_unlock(&sb_security_lock);
623                         goto out;
624                 }
625                 rc = -EINVAL;
626                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
627                         "before the security server is initialized\n");
628                 goto out;
629         }
630
631         /*
632          * Binary mount data FS will come through this function twice.  Once
633          * from an explicit call and once from the generic calls from the vfs.
634          * Since the generic VFS calls will not contain any security mount data
635          * we need to skip the double mount verification.
636          *
637          * This does open a hole in which we will not notice if the first
638          * mount using this sb set explict options and a second mount using
639          * this sb does not set any security options.  (The first options
640          * will be used for both mounts)
641          */
642         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
643             && (num_opts == 0))
644                 goto out;
645
646         /*
647          * parse the mount options, check if they are valid sids.
648          * also check if someone is trying to mount the same sb more
649          * than once with different security options.
650          */
651         for (i = 0; i < num_opts; i++) {
652                 u32 sid;
653
654                 if (flags[i] == SE_SBLABELSUPP)
655                         continue;
656                 rc = security_context_to_sid(mount_options[i],
657                                              strlen(mount_options[i]), &sid);
658                 if (rc) {
659                         printk(KERN_WARNING "SELinux: security_context_to_sid"
660                                "(%s) failed for (dev %s, type %s) errno=%d\n",
661                                mount_options[i], sb->s_id, name, rc);
662                         goto out;
663                 }
664                 switch (flags[i]) {
665                 case FSCONTEXT_MNT:
666                         fscontext_sid = sid;
667
668                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
669                                         fscontext_sid))
670                                 goto out_double_mount;
671
672                         sbsec->flags |= FSCONTEXT_MNT;
673                         break;
674                 case CONTEXT_MNT:
675                         context_sid = sid;
676
677                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
678                                         context_sid))
679                                 goto out_double_mount;
680
681                         sbsec->flags |= CONTEXT_MNT;
682                         break;
683                 case ROOTCONTEXT_MNT:
684                         rootcontext_sid = sid;
685
686                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
687                                         rootcontext_sid))
688                                 goto out_double_mount;
689
690                         sbsec->flags |= ROOTCONTEXT_MNT;
691
692                         break;
693                 case DEFCONTEXT_MNT:
694                         defcontext_sid = sid;
695
696                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
697                                         defcontext_sid))
698                                 goto out_double_mount;
699
700                         sbsec->flags |= DEFCONTEXT_MNT;
701
702                         break;
703                 default:
704                         rc = -EINVAL;
705                         goto out;
706                 }
707         }
708
709         if (sbsec->flags & SE_SBINITIALIZED) {
710                 /* previously mounted with options, but not on this attempt? */
711                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
712                         goto out_double_mount;
713                 rc = 0;
714                 goto out;
715         }
716
717         if (strcmp(sb->s_type->name, "proc") == 0)
718                 sbsec->flags |= SE_SBPROC;
719
720         /* Determine the labeling behavior to use for this filesystem type. */
721         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
722         if (rc) {
723                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
724                        __func__, sb->s_type->name, rc);
725                 goto out;
726         }
727
728         /* sets the context of the superblock for the fs being mounted. */
729         if (fscontext_sid) {
730                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
731                 if (rc)
732                         goto out;
733
734                 sbsec->sid = fscontext_sid;
735         }
736
737         /*
738          * Switch to using mount point labeling behavior.
739          * sets the label used on all file below the mountpoint, and will set
740          * the superblock context if not already set.
741          */
742         if (context_sid) {
743                 if (!fscontext_sid) {
744                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
745                                                           cred);
746                         if (rc)
747                                 goto out;
748                         sbsec->sid = context_sid;
749                 } else {
750                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
751                                                              cred);
752                         if (rc)
753                                 goto out;
754                 }
755                 if (!rootcontext_sid)
756                         rootcontext_sid = context_sid;
757
758                 sbsec->mntpoint_sid = context_sid;
759                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
760         }
761
762         if (rootcontext_sid) {
763                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
764                                                      cred);
765                 if (rc)
766                         goto out;
767
768                 root_isec->sid = rootcontext_sid;
769                 root_isec->initialized = 1;
770         }
771
772         if (defcontext_sid) {
773                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
774                         rc = -EINVAL;
775                         printk(KERN_WARNING "SELinux: defcontext option is "
776                                "invalid for this filesystem type\n");
777                         goto out;
778                 }
779
780                 if (defcontext_sid != sbsec->def_sid) {
781                         rc = may_context_mount_inode_relabel(defcontext_sid,
782                                                              sbsec, cred);
783                         if (rc)
784                                 goto out;
785                 }
786
787                 sbsec->def_sid = defcontext_sid;
788         }
789
790         rc = sb_finish_set_opts(sb);
791 out:
792         mutex_unlock(&sbsec->lock);
793         return rc;
794 out_double_mount:
795         rc = -EINVAL;
796         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
797                "security settings for (dev %s, type %s)\n", sb->s_id, name);
798         goto out;
799 }
800
801 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
802                                         struct super_block *newsb)
803 {
804         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
805         struct superblock_security_struct *newsbsec = newsb->s_security;
806
807         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
808         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
809         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
810
811         /*
812          * if the parent was able to be mounted it clearly had no special lsm
813          * mount options.  thus we can safely put this sb on the list and deal
814          * with it later
815          */
816         if (!ss_initialized) {
817                 spin_lock(&sb_security_lock);
818                 if (list_empty(&newsbsec->list))
819                         list_add(&newsbsec->list, &superblock_security_head);
820                 spin_unlock(&sb_security_lock);
821                 return;
822         }
823
824         /* how can we clone if the old one wasn't set up?? */
825         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
826
827         /* if fs is reusing a sb, just let its options stand... */
828         if (newsbsec->flags & SE_SBINITIALIZED)
829                 return;
830
831         mutex_lock(&newsbsec->lock);
832
833         newsbsec->flags = oldsbsec->flags;
834
835         newsbsec->sid = oldsbsec->sid;
836         newsbsec->def_sid = oldsbsec->def_sid;
837         newsbsec->behavior = oldsbsec->behavior;
838
839         if (set_context) {
840                 u32 sid = oldsbsec->mntpoint_sid;
841
842                 if (!set_fscontext)
843                         newsbsec->sid = sid;
844                 if (!set_rootcontext) {
845                         struct inode *newinode = newsb->s_root->d_inode;
846                         struct inode_security_struct *newisec = newinode->i_security;
847                         newisec->sid = sid;
848                 }
849                 newsbsec->mntpoint_sid = sid;
850         }
851         if (set_rootcontext) {
852                 const struct inode *oldinode = oldsb->s_root->d_inode;
853                 const struct inode_security_struct *oldisec = oldinode->i_security;
854                 struct inode *newinode = newsb->s_root->d_inode;
855                 struct inode_security_struct *newisec = newinode->i_security;
856
857                 newisec->sid = oldisec->sid;
858         }
859
860         sb_finish_set_opts(newsb);
861         mutex_unlock(&newsbsec->lock);
862 }
863
864 static int selinux_parse_opts_str(char *options,
865                                   struct security_mnt_opts *opts)
866 {
867         char *p;
868         char *context = NULL, *defcontext = NULL;
869         char *fscontext = NULL, *rootcontext = NULL;
870         int rc, num_mnt_opts = 0;
871
872         opts->num_mnt_opts = 0;
873
874         /* Standard string-based options. */
875         while ((p = strsep(&options, "|")) != NULL) {
876                 int token;
877                 substring_t args[MAX_OPT_ARGS];
878
879                 if (!*p)
880                         continue;
881
882                 token = match_token(p, tokens, args);
883
884                 switch (token) {
885                 case Opt_context:
886                         if (context || defcontext) {
887                                 rc = -EINVAL;
888                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
889                                 goto out_err;
890                         }
891                         context = match_strdup(&args[0]);
892                         if (!context) {
893                                 rc = -ENOMEM;
894                                 goto out_err;
895                         }
896                         break;
897
898                 case Opt_fscontext:
899                         if (fscontext) {
900                                 rc = -EINVAL;
901                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
902                                 goto out_err;
903                         }
904                         fscontext = match_strdup(&args[0]);
905                         if (!fscontext) {
906                                 rc = -ENOMEM;
907                                 goto out_err;
908                         }
909                         break;
910
911                 case Opt_rootcontext:
912                         if (rootcontext) {
913                                 rc = -EINVAL;
914                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
915                                 goto out_err;
916                         }
917                         rootcontext = match_strdup(&args[0]);
918                         if (!rootcontext) {
919                                 rc = -ENOMEM;
920                                 goto out_err;
921                         }
922                         break;
923
924                 case Opt_defcontext:
925                         if (context || defcontext) {
926                                 rc = -EINVAL;
927                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
928                                 goto out_err;
929                         }
930                         defcontext = match_strdup(&args[0]);
931                         if (!defcontext) {
932                                 rc = -ENOMEM;
933                                 goto out_err;
934                         }
935                         break;
936                 case Opt_labelsupport:
937                         break;
938                 default:
939                         rc = -EINVAL;
940                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
941                         goto out_err;
942
943                 }
944         }
945
946         rc = -ENOMEM;
947         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
948         if (!opts->mnt_opts)
949                 goto out_err;
950
951         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
952         if (!opts->mnt_opts_flags) {
953                 kfree(opts->mnt_opts);
954                 goto out_err;
955         }
956
957         if (fscontext) {
958                 opts->mnt_opts[num_mnt_opts] = fscontext;
959                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
960         }
961         if (context) {
962                 opts->mnt_opts[num_mnt_opts] = context;
963                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
964         }
965         if (rootcontext) {
966                 opts->mnt_opts[num_mnt_opts] = rootcontext;
967                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
968         }
969         if (defcontext) {
970                 opts->mnt_opts[num_mnt_opts] = defcontext;
971                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
972         }
973
974         opts->num_mnt_opts = num_mnt_opts;
975         return 0;
976
977 out_err:
978         kfree(context);
979         kfree(defcontext);
980         kfree(fscontext);
981         kfree(rootcontext);
982         return rc;
983 }
984 /*
985  * string mount options parsing and call set the sbsec
986  */
987 static int superblock_doinit(struct super_block *sb, void *data)
988 {
989         int rc = 0;
990         char *options = data;
991         struct security_mnt_opts opts;
992
993         security_init_mnt_opts(&opts);
994
995         if (!data)
996                 goto out;
997
998         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
999
1000         rc = selinux_parse_opts_str(options, &opts);
1001         if (rc)
1002                 goto out_err;
1003
1004 out:
1005         rc = selinux_set_mnt_opts(sb, &opts);
1006
1007 out_err:
1008         security_free_mnt_opts(&opts);
1009         return rc;
1010 }
1011
1012 static void selinux_write_opts(struct seq_file *m,
1013                                struct security_mnt_opts *opts)
1014 {
1015         int i;
1016         char *prefix;
1017
1018         for (i = 0; i < opts->num_mnt_opts; i++) {
1019                 char *has_comma;
1020
1021                 if (opts->mnt_opts[i])
1022                         has_comma = strchr(opts->mnt_opts[i], ',');
1023                 else
1024                         has_comma = NULL;
1025
1026                 switch (opts->mnt_opts_flags[i]) {
1027                 case CONTEXT_MNT:
1028                         prefix = CONTEXT_STR;
1029                         break;
1030                 case FSCONTEXT_MNT:
1031                         prefix = FSCONTEXT_STR;
1032                         break;
1033                 case ROOTCONTEXT_MNT:
1034                         prefix = ROOTCONTEXT_STR;
1035                         break;
1036                 case DEFCONTEXT_MNT:
1037                         prefix = DEFCONTEXT_STR;
1038                         break;
1039                 case SE_SBLABELSUPP:
1040                         seq_putc(m, ',');
1041                         seq_puts(m, LABELSUPP_STR);
1042                         continue;
1043                 default:
1044                         BUG();
1045                 };
1046                 /* we need a comma before each option */
1047                 seq_putc(m, ',');
1048                 seq_puts(m, prefix);
1049                 if (has_comma)
1050                         seq_putc(m, '\"');
1051                 seq_puts(m, opts->mnt_opts[i]);
1052                 if (has_comma)
1053                         seq_putc(m, '\"');
1054         }
1055 }
1056
1057 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1058 {
1059         struct security_mnt_opts opts;
1060         int rc;
1061
1062         rc = selinux_get_mnt_opts(sb, &opts);
1063         if (rc) {
1064                 /* before policy load we may get EINVAL, don't show anything */
1065                 if (rc == -EINVAL)
1066                         rc = 0;
1067                 return rc;
1068         }
1069
1070         selinux_write_opts(m, &opts);
1071
1072         security_free_mnt_opts(&opts);
1073
1074         return rc;
1075 }
1076
1077 static inline u16 inode_mode_to_security_class(umode_t mode)
1078 {
1079         switch (mode & S_IFMT) {
1080         case S_IFSOCK:
1081                 return SECCLASS_SOCK_FILE;
1082         case S_IFLNK:
1083                 return SECCLASS_LNK_FILE;
1084         case S_IFREG:
1085                 return SECCLASS_FILE;
1086         case S_IFBLK:
1087                 return SECCLASS_BLK_FILE;
1088         case S_IFDIR:
1089                 return SECCLASS_DIR;
1090         case S_IFCHR:
1091                 return SECCLASS_CHR_FILE;
1092         case S_IFIFO:
1093                 return SECCLASS_FIFO_FILE;
1094
1095         }
1096
1097         return SECCLASS_FILE;
1098 }
1099
1100 static inline int default_protocol_stream(int protocol)
1101 {
1102         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1103 }
1104
1105 static inline int default_protocol_dgram(int protocol)
1106 {
1107         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1108 }
1109
1110 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1111 {
1112         switch (family) {
1113         case PF_UNIX:
1114                 switch (type) {
1115                 case SOCK_STREAM:
1116                 case SOCK_SEQPACKET:
1117                         return SECCLASS_UNIX_STREAM_SOCKET;
1118                 case SOCK_DGRAM:
1119                         return SECCLASS_UNIX_DGRAM_SOCKET;
1120                 }
1121                 break;
1122         case PF_INET:
1123         case PF_INET6:
1124                 switch (type) {
1125                 case SOCK_STREAM:
1126                         if (default_protocol_stream(protocol))
1127                                 return SECCLASS_TCP_SOCKET;
1128                         else
1129                                 return SECCLASS_RAWIP_SOCKET;
1130                 case SOCK_DGRAM:
1131                         if (default_protocol_dgram(protocol))
1132                                 return SECCLASS_UDP_SOCKET;
1133                         else
1134                                 return SECCLASS_RAWIP_SOCKET;
1135                 case SOCK_DCCP:
1136                         return SECCLASS_DCCP_SOCKET;
1137                 default:
1138                         return SECCLASS_RAWIP_SOCKET;
1139                 }
1140                 break;
1141         case PF_NETLINK:
1142                 switch (protocol) {
1143                 case NETLINK_ROUTE:
1144                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1145                 case NETLINK_FIREWALL:
1146                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1147                 case NETLINK_INET_DIAG:
1148                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1149                 case NETLINK_NFLOG:
1150                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1151                 case NETLINK_XFRM:
1152                         return SECCLASS_NETLINK_XFRM_SOCKET;
1153                 case NETLINK_SELINUX:
1154                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1155                 case NETLINK_AUDIT:
1156                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1157                 case NETLINK_IP6_FW:
1158                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1159                 case NETLINK_DNRTMSG:
1160                         return SECCLASS_NETLINK_DNRT_SOCKET;
1161                 case NETLINK_KOBJECT_UEVENT:
1162                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1163                 default:
1164                         return SECCLASS_NETLINK_SOCKET;
1165                 }
1166         case PF_PACKET:
1167                 return SECCLASS_PACKET_SOCKET;
1168         case PF_KEY:
1169                 return SECCLASS_KEY_SOCKET;
1170         case PF_APPLETALK:
1171                 return SECCLASS_APPLETALK_SOCKET;
1172         }
1173
1174         return SECCLASS_SOCKET;
1175 }
1176
1177 #ifdef CONFIG_PROC_FS
1178 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1179                                 u16 tclass,
1180                                 u32 *sid)
1181 {
1182         int buflen, rc;
1183         char *buffer, *path, *end;
1184
1185         buffer = (char *)__get_free_page(GFP_KERNEL);
1186         if (!buffer)
1187                 return -ENOMEM;
1188
1189         buflen = PAGE_SIZE;
1190         end = buffer+buflen;
1191         *--end = '\0';
1192         buflen--;
1193         path = end-1;
1194         *path = '/';
1195         while (de && de != de->parent) {
1196                 buflen -= de->namelen + 1;
1197                 if (buflen < 0)
1198                         break;
1199                 end -= de->namelen;
1200                 memcpy(end, de->name, de->namelen);
1201                 *--end = '/';
1202                 path = end;
1203                 de = de->parent;
1204         }
1205         rc = security_genfs_sid("proc", path, tclass, sid);
1206         free_page((unsigned long)buffer);
1207         return rc;
1208 }
1209 #else
1210 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1211                                 u16 tclass,
1212                                 u32 *sid)
1213 {
1214         return -EINVAL;
1215 }
1216 #endif
1217
1218 /* The inode's security attributes must be initialized before first use. */
1219 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1220 {
1221         struct superblock_security_struct *sbsec = NULL;
1222         struct inode_security_struct *isec = inode->i_security;
1223         u32 sid;
1224         struct dentry *dentry;
1225 #define INITCONTEXTLEN 255
1226         char *context = NULL;
1227         unsigned len = 0;
1228         int rc = 0;
1229
1230         if (isec->initialized)
1231                 goto out;
1232
1233         mutex_lock(&isec->lock);
1234         if (isec->initialized)
1235                 goto out_unlock;
1236
1237         sbsec = inode->i_sb->s_security;
1238         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1239                 /* Defer initialization until selinux_complete_init,
1240                    after the initial policy is loaded and the security
1241                    server is ready to handle calls. */
1242                 spin_lock(&sbsec->isec_lock);
1243                 if (list_empty(&isec->list))
1244                         list_add(&isec->list, &sbsec->isec_head);
1245                 spin_unlock(&sbsec->isec_lock);
1246                 goto out_unlock;
1247         }
1248
1249         switch (sbsec->behavior) {
1250         case SECURITY_FS_USE_XATTR:
1251                 if (!inode->i_op->getxattr) {
1252                         isec->sid = sbsec->def_sid;
1253                         break;
1254                 }
1255
1256                 /* Need a dentry, since the xattr API requires one.
1257                    Life would be simpler if we could just pass the inode. */
1258                 if (opt_dentry) {
1259                         /* Called from d_instantiate or d_splice_alias. */
1260                         dentry = dget(opt_dentry);
1261                 } else {
1262                         /* Called from selinux_complete_init, try to find a dentry. */
1263                         dentry = d_find_alias(inode);
1264                 }
1265                 if (!dentry) {
1266                         printk(KERN_WARNING "SELinux: %s:  no dentry for dev=%s "
1267                                "ino=%ld\n", __func__, inode->i_sb->s_id,
1268                                inode->i_ino);
1269                         goto out_unlock;
1270                 }
1271
1272                 len = INITCONTEXTLEN;
1273                 context = kmalloc(len, GFP_NOFS);
1274                 if (!context) {
1275                         rc = -ENOMEM;
1276                         dput(dentry);
1277                         goto out_unlock;
1278                 }
1279                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1280                                            context, len);
1281                 if (rc == -ERANGE) {
1282                         /* Need a larger buffer.  Query for the right size. */
1283                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1284                                                    NULL, 0);
1285                         if (rc < 0) {
1286                                 dput(dentry);
1287                                 goto out_unlock;
1288                         }
1289                         kfree(context);
1290                         len = rc;
1291                         context = kmalloc(len, GFP_NOFS);
1292                         if (!context) {
1293                                 rc = -ENOMEM;
1294                                 dput(dentry);
1295                                 goto out_unlock;
1296                         }
1297                         rc = inode->i_op->getxattr(dentry,
1298                                                    XATTR_NAME_SELINUX,
1299                                                    context, len);
1300                 }
1301                 dput(dentry);
1302                 if (rc < 0) {
1303                         if (rc != -ENODATA) {
1304                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1305                                        "%d for dev=%s ino=%ld\n", __func__,
1306                                        -rc, inode->i_sb->s_id, inode->i_ino);
1307                                 kfree(context);
1308                                 goto out_unlock;
1309                         }
1310                         /* Map ENODATA to the default file SID */
1311                         sid = sbsec->def_sid;
1312                         rc = 0;
1313                 } else {
1314                         rc = security_context_to_sid_default(context, rc, &sid,
1315                                                              sbsec->def_sid,
1316                                                              GFP_NOFS);
1317                         if (rc) {
1318                                 printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1319                                        "returned %d for dev=%s ino=%ld\n",
1320                                        __func__, context, -rc,
1321                                        inode->i_sb->s_id, inode->i_ino);
1322                                 kfree(context);
1323                                 /* Leave with the unlabeled SID */
1324                                 rc = 0;
1325                                 break;
1326                         }
1327                 }
1328                 kfree(context);
1329                 isec->sid = sid;
1330                 break;
1331         case SECURITY_FS_USE_TASK:
1332                 isec->sid = isec->task_sid;
1333                 break;
1334         case SECURITY_FS_USE_TRANS:
1335                 /* Default to the fs SID. */
1336                 isec->sid = sbsec->sid;
1337
1338                 /* Try to obtain a transition SID. */
1339                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1340                 rc = security_transition_sid(isec->task_sid,
1341                                              sbsec->sid,
1342                                              isec->sclass,
1343                                              &sid);
1344                 if (rc)
1345                         goto out_unlock;
1346                 isec->sid = sid;
1347                 break;
1348         case SECURITY_FS_USE_MNTPOINT:
1349                 isec->sid = sbsec->mntpoint_sid;
1350                 break;
1351         default:
1352                 /* Default to the fs superblock SID. */
1353                 isec->sid = sbsec->sid;
1354
1355                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1356                         struct proc_inode *proci = PROC_I(inode);
1357                         if (proci->pde) {
1358                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1359                                 rc = selinux_proc_get_sid(proci->pde,
1360                                                           isec->sclass,
1361                                                           &sid);
1362                                 if (rc)
1363                                         goto out_unlock;
1364                                 isec->sid = sid;
1365                         }
1366                 }
1367                 break;
1368         }
1369
1370         isec->initialized = 1;
1371
1372 out_unlock:
1373         mutex_unlock(&isec->lock);
1374 out:
1375         if (isec->sclass == SECCLASS_FILE)
1376                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1377         return rc;
1378 }
1379
1380 /* Convert a Linux signal to an access vector. */
1381 static inline u32 signal_to_av(int sig)
1382 {
1383         u32 perm = 0;
1384
1385         switch (sig) {
1386         case SIGCHLD:
1387                 /* Commonly granted from child to parent. */
1388                 perm = PROCESS__SIGCHLD;
1389                 break;
1390         case SIGKILL:
1391                 /* Cannot be caught or ignored */
1392                 perm = PROCESS__SIGKILL;
1393                 break;
1394         case SIGSTOP:
1395                 /* Cannot be caught or ignored */
1396                 perm = PROCESS__SIGSTOP;
1397                 break;
1398         default:
1399                 /* All other signals. */
1400                 perm = PROCESS__SIGNAL;
1401                 break;
1402         }
1403
1404         return perm;
1405 }
1406
1407 /*
1408  * Check permission between a pair of credentials
1409  * fork check, ptrace check, etc.
1410  */
1411 static int cred_has_perm(const struct cred *actor,
1412                          const struct cred *target,
1413                          u32 perms)
1414 {
1415         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1416
1417         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1418 }
1419
1420 /*
1421  * Check permission between a pair of tasks, e.g. signal checks,
1422  * fork check, ptrace check, etc.
1423  * tsk1 is the actor and tsk2 is the target
1424  * - this uses the default subjective creds of tsk1
1425  */
1426 static int task_has_perm(const struct task_struct *tsk1,
1427                          const struct task_struct *tsk2,
1428                          u32 perms)
1429 {
1430         const struct task_security_struct *__tsec1, *__tsec2;
1431         u32 sid1, sid2;
1432
1433         rcu_read_lock();
1434         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1435         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1436         rcu_read_unlock();
1437         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1438 }
1439
1440 /*
1441  * Check permission between current and another task, e.g. signal checks,
1442  * fork check, ptrace check, etc.
1443  * current is the actor and tsk2 is the target
1444  * - this uses current's subjective creds
1445  */
1446 static int current_has_perm(const struct task_struct *tsk,
1447                             u32 perms)
1448 {
1449         u32 sid, tsid;
1450
1451         sid = current_sid();
1452         tsid = task_sid(tsk);
1453         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1454 }
1455
1456 #if CAP_LAST_CAP > 63
1457 #error Fix SELinux to handle capabilities > 63.
1458 #endif
1459
1460 /* Check whether a task is allowed to use a capability. */
1461 static int task_has_capability(struct task_struct *tsk,
1462                                const struct cred *cred,
1463                                int cap, int audit)
1464 {
1465         struct avc_audit_data ad;
1466         struct av_decision avd;
1467         u16 sclass;
1468         u32 sid = cred_sid(cred);
1469         u32 av = CAP_TO_MASK(cap);
1470         int rc;
1471
1472         AVC_AUDIT_DATA_INIT(&ad, CAP);
1473         ad.tsk = tsk;
1474         ad.u.cap = cap;
1475
1476         switch (CAP_TO_INDEX(cap)) {
1477         case 0:
1478                 sclass = SECCLASS_CAPABILITY;
1479                 break;
1480         case 1:
1481                 sclass = SECCLASS_CAPABILITY2;
1482                 break;
1483         default:
1484                 printk(KERN_ERR
1485                        "SELinux:  out of range capability %d\n", cap);
1486                 BUG();
1487         }
1488
1489         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1490         if (audit == SECURITY_CAP_AUDIT)
1491                 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1492         return rc;
1493 }
1494
1495 /* Check whether a task is allowed to use a system operation. */
1496 static int task_has_system(struct task_struct *tsk,
1497                            u32 perms)
1498 {
1499         u32 sid = task_sid(tsk);
1500
1501         return avc_has_perm(sid, SECINITSID_KERNEL,
1502                             SECCLASS_SYSTEM, perms, NULL);
1503 }
1504
1505 /* Check whether a task has a particular permission to an inode.
1506    The 'adp' parameter is optional and allows other audit
1507    data to be passed (e.g. the dentry). */
1508 static int inode_has_perm(const struct cred *cred,
1509                           struct inode *inode,
1510                           u32 perms,
1511                           struct avc_audit_data *adp)
1512 {
1513         struct inode_security_struct *isec;
1514         struct avc_audit_data ad;
1515         u32 sid;
1516
1517         if (unlikely(IS_PRIVATE(inode)))
1518                 return 0;
1519
1520         sid = cred_sid(cred);
1521         isec = inode->i_security;
1522
1523         if (!adp) {
1524                 adp = &ad;
1525                 AVC_AUDIT_DATA_INIT(&ad, FS);
1526                 ad.u.fs.inode = inode;
1527         }
1528
1529         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1530 }
1531
1532 /* Same as inode_has_perm, but pass explicit audit data containing
1533    the dentry to help the auditing code to more easily generate the
1534    pathname if needed. */
1535 static inline int dentry_has_perm(const struct cred *cred,
1536                                   struct vfsmount *mnt,
1537                                   struct dentry *dentry,
1538                                   u32 av)
1539 {
1540         struct inode *inode = dentry->d_inode;
1541         struct avc_audit_data ad;
1542
1543         AVC_AUDIT_DATA_INIT(&ad, FS);
1544         ad.u.fs.path.mnt = mnt;
1545         ad.u.fs.path.dentry = dentry;
1546         return inode_has_perm(cred, inode, av, &ad);
1547 }
1548
1549 /* Check whether a task can use an open file descriptor to
1550    access an inode in a given way.  Check access to the
1551    descriptor itself, and then use dentry_has_perm to
1552    check a particular permission to the file.
1553    Access to the descriptor is implicitly granted if it
1554    has the same SID as the process.  If av is zero, then
1555    access to the file is not checked, e.g. for cases
1556    where only the descriptor is affected like seek. */
1557 static int file_has_perm(const struct cred *cred,
1558                          struct file *file,
1559                          u32 av)
1560 {
1561         struct file_security_struct *fsec = file->f_security;
1562         struct inode *inode = file->f_path.dentry->d_inode;
1563         struct avc_audit_data ad;
1564         u32 sid = cred_sid(cred);
1565         int rc;
1566
1567         AVC_AUDIT_DATA_INIT(&ad, FS);
1568         ad.u.fs.path = file->f_path;
1569
1570         if (sid != fsec->sid) {
1571                 rc = avc_has_perm(sid, fsec->sid,
1572                                   SECCLASS_FD,
1573                                   FD__USE,
1574                                   &ad);
1575                 if (rc)
1576                         goto out;
1577         }
1578
1579         /* av is zero if only checking access to the descriptor. */
1580         rc = 0;
1581         if (av)
1582                 rc = inode_has_perm(cred, inode, av, &ad);
1583
1584 out:
1585         return rc;
1586 }
1587
1588 /* Check whether a task can create a file. */
1589 static int may_create(struct inode *dir,
1590                       struct dentry *dentry,
1591                       u16 tclass)
1592 {
1593         const struct cred *cred = current_cred();
1594         const struct task_security_struct *tsec = cred->security;
1595         struct inode_security_struct *dsec;
1596         struct superblock_security_struct *sbsec;
1597         u32 sid, newsid;
1598         struct avc_audit_data ad;
1599         int rc;
1600
1601         dsec = dir->i_security;
1602         sbsec = dir->i_sb->s_security;
1603
1604         sid = tsec->sid;
1605         newsid = tsec->create_sid;
1606
1607         AVC_AUDIT_DATA_INIT(&ad, FS);
1608         ad.u.fs.path.dentry = dentry;
1609
1610         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1611                           DIR__ADD_NAME | DIR__SEARCH,
1612                           &ad);
1613         if (rc)
1614                 return rc;
1615
1616         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1617                 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1618                 if (rc)
1619                         return rc;
1620         }
1621
1622         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1623         if (rc)
1624                 return rc;
1625
1626         return avc_has_perm(newsid, sbsec->sid,
1627                             SECCLASS_FILESYSTEM,
1628                             FILESYSTEM__ASSOCIATE, &ad);
1629 }
1630
1631 /* Check whether a task can create a key. */
1632 static int may_create_key(u32 ksid,
1633                           struct task_struct *ctx)
1634 {
1635         u32 sid = task_sid(ctx);
1636
1637         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1638 }
1639
1640 #define MAY_LINK        0
1641 #define MAY_UNLINK      1
1642 #define MAY_RMDIR       2
1643
1644 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1645 static int may_link(struct inode *dir,
1646                     struct dentry *dentry,
1647                     int kind)
1648
1649 {
1650         struct inode_security_struct *dsec, *isec;
1651         struct avc_audit_data ad;
1652         u32 sid = current_sid();
1653         u32 av;
1654         int rc;
1655
1656         dsec = dir->i_security;
1657         isec = dentry->d_inode->i_security;
1658
1659         AVC_AUDIT_DATA_INIT(&ad, FS);
1660         ad.u.fs.path.dentry = dentry;
1661
1662         av = DIR__SEARCH;
1663         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1664         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1665         if (rc)
1666                 return rc;
1667
1668         switch (kind) {
1669         case MAY_LINK:
1670                 av = FILE__LINK;
1671                 break;
1672         case MAY_UNLINK:
1673                 av = FILE__UNLINK;
1674                 break;
1675         case MAY_RMDIR:
1676                 av = DIR__RMDIR;
1677                 break;
1678         default:
1679                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1680                         __func__, kind);
1681                 return 0;
1682         }
1683
1684         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1685         return rc;
1686 }
1687
1688 static inline int may_rename(struct inode *old_dir,
1689                              struct dentry *old_dentry,
1690                              struct inode *new_dir,
1691                              struct dentry *new_dentry)
1692 {
1693         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1694         struct avc_audit_data ad;
1695         u32 sid = current_sid();
1696         u32 av;
1697         int old_is_dir, new_is_dir;
1698         int rc;
1699
1700         old_dsec = old_dir->i_security;
1701         old_isec = old_dentry->d_inode->i_security;
1702         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1703         new_dsec = new_dir->i_security;
1704
1705         AVC_AUDIT_DATA_INIT(&ad, FS);
1706
1707         ad.u.fs.path.dentry = old_dentry;
1708         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1709                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1710         if (rc)
1711                 return rc;
1712         rc = avc_has_perm(sid, old_isec->sid,
1713                           old_isec->sclass, FILE__RENAME, &ad);
1714         if (rc)
1715                 return rc;
1716         if (old_is_dir && new_dir != old_dir) {
1717                 rc = avc_has_perm(sid, old_isec->sid,
1718                                   old_isec->sclass, DIR__REPARENT, &ad);
1719                 if (rc)
1720                         return rc;
1721         }
1722
1723         ad.u.fs.path.dentry = new_dentry;
1724         av = DIR__ADD_NAME | DIR__SEARCH;
1725         if (new_dentry->d_inode)
1726                 av |= DIR__REMOVE_NAME;
1727         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1728         if (rc)
1729                 return rc;
1730         if (new_dentry->d_inode) {
1731                 new_isec = new_dentry->d_inode->i_security;
1732                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1733                 rc = avc_has_perm(sid, new_isec->sid,
1734                                   new_isec->sclass,
1735                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1736                 if (rc)
1737                         return rc;
1738         }
1739
1740         return 0;
1741 }
1742
1743 /* Check whether a task can perform a filesystem operation. */
1744 static int superblock_has_perm(const struct cred *cred,
1745                                struct super_block *sb,
1746                                u32 perms,
1747                                struct avc_audit_data *ad)
1748 {
1749         struct superblock_security_struct *sbsec;
1750         u32 sid = cred_sid(cred);
1751
1752         sbsec = sb->s_security;
1753         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1754 }
1755
1756 /* Convert a Linux mode and permission mask to an access vector. */
1757 static inline u32 file_mask_to_av(int mode, int mask)
1758 {
1759         u32 av = 0;
1760
1761         if ((mode & S_IFMT) != S_IFDIR) {
1762                 if (mask & MAY_EXEC)
1763                         av |= FILE__EXECUTE;
1764                 if (mask & MAY_READ)
1765                         av |= FILE__READ;
1766
1767                 if (mask & MAY_APPEND)
1768                         av |= FILE__APPEND;
1769                 else if (mask & MAY_WRITE)
1770                         av |= FILE__WRITE;
1771
1772         } else {
1773                 if (mask & MAY_EXEC)
1774                         av |= DIR__SEARCH;
1775                 if (mask & MAY_WRITE)
1776                         av |= DIR__WRITE;
1777                 if (mask & MAY_READ)
1778                         av |= DIR__READ;
1779         }
1780
1781         return av;
1782 }
1783
1784 /* Convert a Linux file to an access vector. */
1785 static inline u32 file_to_av(struct file *file)
1786 {
1787         u32 av = 0;
1788
1789         if (file->f_mode & FMODE_READ)
1790                 av |= FILE__READ;
1791         if (file->f_mode & FMODE_WRITE) {
1792                 if (file->f_flags & O_APPEND)
1793                         av |= FILE__APPEND;
1794                 else
1795                         av |= FILE__WRITE;
1796         }
1797         if (!av) {
1798                 /*
1799                  * Special file opened with flags 3 for ioctl-only use.
1800                  */
1801                 av = FILE__IOCTL;
1802         }
1803
1804         return av;
1805 }
1806
1807 /*
1808  * Convert a file to an access vector and include the correct open
1809  * open permission.
1810  */
1811 static inline u32 open_file_to_av(struct file *file)
1812 {
1813         u32 av = file_to_av(file);
1814
1815         if (selinux_policycap_openperm) {
1816                 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1817                 /*
1818                  * lnk files and socks do not really have an 'open'
1819                  */
1820                 if (S_ISREG(mode))
1821                         av |= FILE__OPEN;
1822                 else if (S_ISCHR(mode))
1823                         av |= CHR_FILE__OPEN;
1824                 else if (S_ISBLK(mode))
1825                         av |= BLK_FILE__OPEN;
1826                 else if (S_ISFIFO(mode))
1827                         av |= FIFO_FILE__OPEN;
1828                 else if (S_ISDIR(mode))
1829                         av |= DIR__OPEN;
1830                 else
1831                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1832                                 "unknown mode:%o\n", __func__, mode);
1833         }
1834         return av;
1835 }
1836
1837 /* Hook functions begin here. */
1838
1839 static int selinux_ptrace_may_access(struct task_struct *child,
1840                                      unsigned int mode)
1841 {
1842         int rc;
1843
1844         rc = secondary_ops->ptrace_may_access(child, mode);
1845         if (rc)
1846                 return rc;
1847
1848         if (mode == PTRACE_MODE_READ) {
1849                 u32 sid = current_sid();
1850                 u32 csid = task_sid(child);
1851                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1852         }
1853
1854         return current_has_perm(child, PROCESS__PTRACE);
1855 }
1856
1857 static int selinux_ptrace_traceme(struct task_struct *parent)
1858 {
1859         int rc;
1860
1861         rc = secondary_ops->ptrace_traceme(parent);
1862         if (rc)
1863                 return rc;
1864
1865         return task_has_perm(parent, current, PROCESS__PTRACE);
1866 }
1867
1868 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1869                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1870 {
1871         int error;
1872
1873         error = current_has_perm(target, PROCESS__GETCAP);
1874         if (error)
1875                 return error;
1876
1877         return secondary_ops->capget(target, effective, inheritable, permitted);
1878 }
1879
1880 static int selinux_capset(struct cred *new, const struct cred *old,
1881                           const kernel_cap_t *effective,
1882                           const kernel_cap_t *inheritable,
1883                           const kernel_cap_t *permitted)
1884 {
1885         int error;
1886
1887         error = secondary_ops->capset(new, old,
1888                                       effective, inheritable, permitted);
1889         if (error)
1890                 return error;
1891
1892         return cred_has_perm(old, new, PROCESS__SETCAP);
1893 }
1894
1895 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1896                            int cap, int audit)
1897 {
1898         int rc;
1899
1900         rc = secondary_ops->capable(tsk, cred, cap, audit);
1901         if (rc)
1902                 return rc;
1903
1904         return task_has_capability(tsk, cred, cap, audit);
1905 }
1906
1907 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1908 {
1909         int buflen, rc;
1910         char *buffer, *path, *end;
1911
1912         rc = -ENOMEM;
1913         buffer = (char *)__get_free_page(GFP_KERNEL);
1914         if (!buffer)
1915                 goto out;
1916
1917         buflen = PAGE_SIZE;
1918         end = buffer+buflen;
1919         *--end = '\0';
1920         buflen--;
1921         path = end-1;
1922         *path = '/';
1923         while (table) {
1924                 const char *name = table->procname;
1925                 size_t namelen = strlen(name);
1926                 buflen -= namelen + 1;
1927                 if (buflen < 0)
1928                         goto out_free;
1929                 end -= namelen;
1930                 memcpy(end, name, namelen);
1931                 *--end = '/';
1932                 path = end;
1933                 table = table->parent;
1934         }
1935         buflen -= 4;
1936         if (buflen < 0)
1937                 goto out_free;
1938         end -= 4;
1939         memcpy(end, "/sys", 4);
1940         path = end;
1941         rc = security_genfs_sid("proc", path, tclass, sid);
1942 out_free:
1943         free_page((unsigned long)buffer);
1944 out:
1945         return rc;
1946 }
1947
1948 static int selinux_sysctl(ctl_table *table, int op)
1949 {
1950         int error = 0;
1951         u32 av;
1952         u32 tsid, sid;
1953         int rc;
1954
1955         rc = secondary_ops->sysctl(table, op);
1956         if (rc)
1957                 return rc;
1958
1959         sid = current_sid();
1960
1961         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1962                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1963         if (rc) {
1964                 /* Default to the well-defined sysctl SID. */
1965                 tsid = SECINITSID_SYSCTL;
1966         }
1967
1968         /* The op values are "defined" in sysctl.c, thereby creating
1969          * a bad coupling between this module and sysctl.c */
1970         if (op == 001) {
1971                 error = avc_has_perm(sid, tsid,
1972                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1973         } else {
1974                 av = 0;
1975                 if (op & 004)
1976                         av |= FILE__READ;
1977                 if (op & 002)
1978                         av |= FILE__WRITE;
1979                 if (av)
1980                         error = avc_has_perm(sid, tsid,
1981                                              SECCLASS_FILE, av, NULL);
1982         }
1983
1984         return error;
1985 }
1986
1987 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1988 {
1989         const struct cred *cred = current_cred();
1990         int rc = 0;
1991
1992         if (!sb)
1993                 return 0;
1994
1995         switch (cmds) {
1996         case Q_SYNC:
1997         case Q_QUOTAON:
1998         case Q_QUOTAOFF:
1999         case Q_SETINFO:
2000         case Q_SETQUOTA:
2001                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2002                 break;
2003         case Q_GETFMT:
2004         case Q_GETINFO:
2005         case Q_GETQUOTA:
2006                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2007                 break;
2008         default:
2009                 rc = 0;  /* let the kernel handle invalid cmds */
2010                 break;
2011         }
2012         return rc;
2013 }
2014
2015 static int selinux_quota_on(struct dentry *dentry)
2016 {
2017         const struct cred *cred = current_cred();
2018
2019         return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
2020 }
2021
2022 static int selinux_syslog(int type)
2023 {
2024         int rc;
2025
2026         rc = secondary_ops->syslog(type);
2027         if (rc)
2028                 return rc;
2029
2030         switch (type) {
2031         case 3:         /* Read last kernel messages */
2032         case 10:        /* Return size of the log buffer */
2033                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2034                 break;
2035         case 6:         /* Disable logging to console */
2036         case 7:         /* Enable logging to console */
2037         case 8:         /* Set level of messages printed to console */
2038                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2039                 break;
2040         case 0:         /* Close log */
2041         case 1:         /* Open log */
2042         case 2:         /* Read from log */
2043         case 4:         /* Read/clear last kernel messages */
2044         case 5:         /* Clear ring buffer */
2045         default:
2046                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2047                 break;
2048         }
2049         return rc;
2050 }
2051
2052 /*
2053  * Check that a process has enough memory to allocate a new virtual
2054  * mapping. 0 means there is enough memory for the allocation to
2055  * succeed and -ENOMEM implies there is not.
2056  *
2057  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
2058  * if the capability is granted, but __vm_enough_memory requires 1 if
2059  * the capability is granted.
2060  *
2061  * Do not audit the selinux permission check, as this is applied to all
2062  * processes that allocate mappings.
2063  */
2064 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2065 {
2066         int rc, cap_sys_admin = 0;
2067
2068         rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2069                              SECURITY_CAP_NOAUDIT);
2070         if (rc == 0)
2071                 cap_sys_admin = 1;
2072
2073         return __vm_enough_memory(mm, pages, cap_sys_admin);
2074 }
2075
2076 /* binprm security operations */
2077
2078 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2079 {
2080         const struct task_security_struct *old_tsec;
2081         struct task_security_struct *new_tsec;
2082         struct inode_security_struct *isec;
2083         struct avc_audit_data ad;
2084         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2085         int rc;
2086
2087         rc = secondary_ops->bprm_set_creds(bprm);
2088         if (rc)
2089                 return rc;
2090
2091         /* SELinux context only depends on initial program or script and not
2092          * the script interpreter */
2093         if (bprm->cred_prepared)
2094                 return 0;
2095
2096         old_tsec = current_security();
2097         new_tsec = bprm->cred->security;
2098         isec = inode->i_security;
2099
2100         /* Default to the current task SID. */
2101         new_tsec->sid = old_tsec->sid;
2102         new_tsec->osid = old_tsec->sid;
2103
2104         /* Reset fs, key, and sock SIDs on execve. */
2105         new_tsec->create_sid = 0;
2106         new_tsec->keycreate_sid = 0;
2107         new_tsec->sockcreate_sid = 0;
2108
2109         if (old_tsec->exec_sid) {
2110                 new_tsec->sid = old_tsec->exec_sid;
2111                 /* Reset exec SID on execve. */
2112                 new_tsec->exec_sid = 0;
2113         } else {
2114                 /* Check for a default transition on this program. */
2115                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2116                                              SECCLASS_PROCESS, &new_tsec->sid);
2117                 if (rc)
2118                         return rc;
2119         }
2120
2121         AVC_AUDIT_DATA_INIT(&ad, FS);
2122         ad.u.fs.path = bprm->file->f_path;
2123
2124         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2125                 new_tsec->sid = old_tsec->sid;
2126
2127         if (new_tsec->sid == old_tsec->sid) {
2128                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2129                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2130                 if (rc)
2131                         return rc;
2132         } else {
2133                 /* Check permissions for the transition. */
2134                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2135                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2136                 if (rc)
2137                         return rc;
2138
2139                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2140                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2141                 if (rc)
2142                         return rc;
2143
2144                 /* Check for shared state */
2145                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2146                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2147                                           SECCLASS_PROCESS, PROCESS__SHARE,
2148                                           NULL);
2149                         if (rc)
2150                                 return -EPERM;
2151                 }
2152
2153                 /* Make sure that anyone attempting to ptrace over a task that
2154                  * changes its SID has the appropriate permit */
2155                 if (bprm->unsafe &
2156                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2157                         struct task_struct *tracer;
2158                         struct task_security_struct *sec;
2159                         u32 ptsid = 0;
2160
2161                         rcu_read_lock();
2162                         tracer = tracehook_tracer_task(current);
2163                         if (likely(tracer != NULL)) {
2164                                 sec = __task_cred(tracer)->security;
2165                                 ptsid = sec->sid;
2166                         }
2167                         rcu_read_unlock();
2168
2169                         if (ptsid != 0) {
2170                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2171                                                   SECCLASS_PROCESS,
2172                                                   PROCESS__PTRACE, NULL);
2173                                 if (rc)
2174                                         return -EPERM;
2175                         }
2176                 }
2177
2178                 /* Clear any possibly unsafe personality bits on exec: */
2179                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2180         }
2181
2182         return 0;
2183 }
2184
2185 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2186 {
2187         const struct cred *cred = current_cred();
2188         const struct task_security_struct *tsec = cred->security;
2189         u32 sid, osid;
2190         int atsecure = 0;
2191
2192         sid = tsec->sid;
2193         osid = tsec->osid;
2194
2195         if (osid != sid) {
2196                 /* Enable secure mode for SIDs transitions unless
2197                    the noatsecure permission is granted between
2198                    the two SIDs, i.e. ahp returns 0. */
2199                 atsecure = avc_has_perm(osid, sid,
2200                                         SECCLASS_PROCESS,
2201                                         PROCESS__NOATSECURE, NULL);
2202         }
2203
2204         return (atsecure || secondary_ops->bprm_secureexec(bprm));
2205 }
2206
2207 extern struct vfsmount *selinuxfs_mount;
2208 extern struct dentry *selinux_null;
2209
2210 /* Derived from fs/exec.c:flush_old_files. */
2211 static inline void flush_unauthorized_files(const struct cred *cred,
2212                                             struct files_struct *files)
2213 {
2214         struct avc_audit_data ad;
2215         struct file *file, *devnull = NULL;
2216         struct tty_struct *tty;
2217         struct fdtable *fdt;
2218         long j = -1;
2219         int drop_tty = 0;
2220
2221         tty = get_current_tty();
2222         if (tty) {
2223                 file_list_lock();
2224                 if (!list_empty(&tty->tty_files)) {
2225                         struct inode *inode;
2226
2227                         /* Revalidate access to controlling tty.
2228                            Use inode_has_perm on the tty inode directly rather
2229                            than using file_has_perm, as this particular open
2230                            file may belong to another process and we are only
2231                            interested in the inode-based check here. */
2232                         file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2233                         inode = file->f_path.dentry->d_inode;
2234                         if (inode_has_perm(cred, inode,
2235                                            FILE__READ | FILE__WRITE, NULL)) {
2236                                 drop_tty = 1;
2237                         }
2238                 }
2239                 file_list_unlock();
2240                 tty_kref_put(tty);
2241         }
2242         /* Reset controlling tty. */
2243         if (drop_tty)
2244                 no_tty();
2245
2246         /* Revalidate access to inherited open files. */
2247
2248         AVC_AUDIT_DATA_INIT(&ad, FS);
2249
2250         spin_lock(&files->file_lock);
2251         for (;;) {
2252                 unsigned long set, i;
2253                 int fd;
2254
2255                 j++;
2256                 i = j * __NFDBITS;
2257                 fdt = files_fdtable(files);
2258                 if (i >= fdt->max_fds)
2259                         break;
2260                 set = fdt->open_fds->fds_bits[j];
2261                 if (!set)
2262                         continue;
2263                 spin_unlock(&files->file_lock);
2264                 for ( ; set ; i++, set >>= 1) {
2265                         if (set & 1) {
2266                                 file = fget(i);
2267                                 if (!file)
2268                                         continue;
2269                                 if (file_has_perm(cred,
2270                                                   file,
2271                                                   file_to_av(file))) {
2272                                         sys_close(i);
2273                                         fd = get_unused_fd();
2274                                         if (fd != i) {
2275                                                 if (fd >= 0)
2276                                                         put_unused_fd(fd);
2277                                                 fput(file);
2278                                                 continue;
2279                                         }
2280                                         if (devnull) {
2281                                                 get_file(devnull);
2282                                         } else {
2283                                                 devnull = dentry_open(
2284                                                         dget(selinux_null),
2285                                                         mntget(selinuxfs_mount),
2286                                                         O_RDWR, cred);
2287                                                 if (IS_ERR(devnull)) {
2288                                                         devnull = NULL;
2289                                                         put_unused_fd(fd);
2290                                                         fput(file);
2291                                                         continue;
2292                                                 }
2293                                         }
2294                                         fd_install(fd, devnull);
2295                                 }
2296                                 fput(file);
2297                         }
2298                 }
2299                 spin_lock(&files->file_lock);
2300
2301         }
2302         spin_unlock(&files->file_lock);
2303 }
2304
2305 /*
2306  * Prepare a process for imminent new credential changes due to exec
2307  */
2308 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2309 {
2310         struct task_security_struct *new_tsec;
2311         struct rlimit *rlim, *initrlim;
2312         int rc, i;
2313
2314         new_tsec = bprm->cred->security;
2315         if (new_tsec->sid == new_tsec->osid)
2316                 return;
2317
2318         /* Close files for which the new task SID is not authorized. */
2319         flush_unauthorized_files(bprm->cred, current->files);
2320
2321         /* Always clear parent death signal on SID transitions. */
2322         current->pdeath_signal = 0;
2323
2324         /* Check whether the new SID can inherit resource limits from the old
2325          * SID.  If not, reset all soft limits to the lower of the current
2326          * task's hard limit and the init task's soft limit.
2327          *
2328          * Note that the setting of hard limits (even to lower them) can be
2329          * controlled by the setrlimit check.  The inclusion of the init task's
2330          * soft limit into the computation is to avoid resetting soft limits
2331          * higher than the default soft limit for cases where the default is
2332          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2333          */
2334         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2335                           PROCESS__RLIMITINH, NULL);
2336         if (rc) {
2337                 for (i = 0; i < RLIM_NLIMITS; i++) {
2338                         rlim = current->signal->rlim + i;
2339                         initrlim = init_task.signal->rlim + i;
2340                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2341                 }
2342                 update_rlimit_cpu(rlim->rlim_cur);
2343         }
2344 }
2345
2346 /*
2347  * Clean up the process immediately after the installation of new credentials
2348  * due to exec
2349  */
2350 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2351 {
2352         const struct task_security_struct *tsec = current_security();
2353         struct itimerval itimer;
2354         struct sighand_struct *psig;
2355         u32 osid, sid;
2356         int rc, i;
2357         unsigned long flags;
2358
2359         osid = tsec->osid;
2360         sid = tsec->sid;
2361
2362         if (sid == osid)
2363                 return;
2364
2365         /* Check whether the new SID can inherit signal state from the old SID.
2366          * If not, clear itimers to avoid subsequent signal generation and
2367          * flush and unblock signals.
2368          *
2369          * This must occur _after_ the task SID has been updated so that any
2370          * kill done after the flush will be checked against the new SID.
2371          */
2372         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2373         if (rc) {
2374                 memset(&itimer, 0, sizeof itimer);
2375                 for (i = 0; i < 3; i++)
2376                         do_setitimer(i, &itimer, NULL);
2377                 flush_signals(current);
2378                 spin_lock_irq(&current->sighand->siglock);
2379                 flush_signal_handlers(current, 1);
2380                 sigemptyset(&current->blocked);
2381                 recalc_sigpending();
2382                 spin_unlock_irq(&current->sighand->siglock);
2383         }
2384
2385         /* Wake up the parent if it is waiting so that it can recheck
2386          * wait permission to the new task SID. */
2387         read_lock_irq(&tasklist_lock);
2388         psig = current->parent->sighand;
2389         spin_lock_irqsave(&psig->siglock, flags);
2390         wake_up_interruptible(&current->parent->signal->wait_chldexit);
2391         spin_unlock_irqrestore(&psig->siglock, flags);
2392         read_unlock_irq(&tasklist_lock);
2393 }
2394
2395 /* superblock security operations */
2396
2397 static int selinux_sb_alloc_security(struct super_block *sb)
2398 {
2399         return superblock_alloc_security(sb);
2400 }
2401
2402 static void selinux_sb_free_security(struct super_block *sb)
2403 {
2404         superblock_free_security(sb);
2405 }
2406
2407 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2408 {
2409         if (plen > olen)
2410                 return 0;
2411
2412         return !memcmp(prefix, option, plen);
2413 }
2414
2415 static inline int selinux_option(char *option, int len)
2416 {
2417         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2418                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2419                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2420                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2421                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2422 }
2423
2424 static inline void take_option(char **to, char *from, int *first, int len)
2425 {
2426         if (!*first) {
2427                 **to = ',';
2428                 *to += 1;
2429         } else
2430                 *first = 0;
2431         memcpy(*to, from, len);
2432         *to += len;
2433 }
2434
2435 static inline void take_selinux_option(char **to, char *from, int *first,
2436                                        int len)
2437 {
2438         int current_size = 0;
2439
2440         if (!*first) {
2441                 **to = '|';
2442                 *to += 1;
2443         } else
2444                 *first = 0;
2445
2446         while (current_size < len) {
2447                 if (*from != '"') {
2448                         **to = *from;
2449                         *to += 1;
2450                 }
2451                 from += 1;
2452                 current_size += 1;
2453         }
2454 }
2455
2456 static int selinux_sb_copy_data(char *orig, char *copy)
2457 {
2458         int fnosec, fsec, rc = 0;
2459         char *in_save, *in_curr, *in_end;
2460         char *sec_curr, *nosec_save, *nosec;
2461         int open_quote = 0;
2462
2463         in_curr = orig;
2464         sec_curr = copy;
2465
2466         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2467         if (!nosec) {
2468                 rc = -ENOMEM;
2469                 goto out;
2470         }
2471
2472         nosec_save = nosec;
2473         fnosec = fsec = 1;
2474         in_save = in_end = orig;
2475
2476         do {
2477                 if (*in_end == '"')
2478                         open_quote = !open_quote;
2479                 if ((*in_end == ',' && open_quote == 0) ||
2480                                 *in_end == '\0') {
2481                         int len = in_end - in_curr;
2482
2483                         if (selinux_option(in_curr, len))
2484                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2485                         else
2486                                 take_option(&nosec, in_curr, &fnosec, len);
2487
2488                         in_curr = in_end + 1;
2489                 }
2490         } while (*in_end++);
2491
2492         strcpy(in_save, nosec_save);
2493         free_page((unsigned long)nosec_save);
2494 out:
2495         return rc;
2496 }
2497
2498 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2499 {
2500         const struct cred *cred = current_cred();
2501         struct avc_audit_data ad;
2502         int rc;
2503
2504         rc = superblock_doinit(sb, data);
2505         if (rc)
2506                 return rc;
2507
2508         /* Allow all mounts performed by the kernel */
2509         if (flags & MS_KERNMOUNT)
2510                 return 0;
2511
2512         AVC_AUDIT_DATA_INIT(&ad, FS);
2513         ad.u.fs.path.dentry = sb->s_root;
2514         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2515 }
2516
2517 static int selinux_sb_statfs(struct dentry *dentry)
2518 {
2519         const struct cred *cred = current_cred();
2520         struct avc_audit_data ad;
2521
2522         AVC_AUDIT_DATA_INIT(&ad, FS);
2523         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2524         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2525 }
2526
2527 static int selinux_mount(char *dev_name,
2528                          struct path *path,
2529                          char *type,
2530                          unsigned long flags,
2531                          void *data)
2532 {
2533         const struct cred *cred = current_cred();
2534
2535         if (flags & MS_REMOUNT)
2536                 return superblock_has_perm(cred, path->mnt->mnt_sb,
2537                                            FILESYSTEM__REMOUNT, NULL);
2538         else
2539                 return dentry_has_perm(cred, path->mnt, path->dentry,
2540                                        FILE__MOUNTON);
2541 }
2542
2543 static int selinux_umount(struct vfsmount *mnt, int flags)
2544 {
2545         const struct cred *cred = current_cred();
2546
2547         return superblock_has_perm(cred, mnt->mnt_sb,
2548                                    FILESYSTEM__UNMOUNT, NULL);
2549 }
2550
2551 /* inode security operations */
2552
2553 static int selinux_inode_alloc_security(struct inode *inode)
2554 {
2555         return inode_alloc_security(inode);
2556 }
2557
2558 static void selinux_inode_free_security(struct inode *inode)
2559 {
2560         inode_free_security(inode);
2561 }
2562
2563 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2564                                        char **name, void **value,
2565                                        size_t *len)
2566 {
2567         const struct cred *cred = current_cred();
2568         const struct task_security_struct *tsec = cred->security;
2569         struct inode_security_struct *dsec;
2570         struct superblock_security_struct *sbsec;
2571         u32 sid, newsid, clen;
2572         int rc;
2573         char *namep = NULL, *context;
2574
2575         dsec = dir->i_security;
2576         sbsec = dir->i_sb->s_security;
2577
2578         sid = tsec->sid;
2579         newsid = tsec->create_sid;
2580
2581         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2582                 rc = security_transition_sid(sid, dsec->sid,
2583                                              inode_mode_to_security_class(inode->i_mode),
2584                                              &newsid);
2585                 if (rc) {
2586                         printk(KERN_WARNING "%s:  "
2587                                "security_transition_sid failed, rc=%d (dev=%s "
2588                                "ino=%ld)\n",
2589                                __func__,
2590                                -rc, inode->i_sb->s_id, inode->i_ino);
2591                         return rc;
2592                 }
2593         }
2594
2595         /* Possibly defer initialization to selinux_complete_init. */
2596         if (sbsec->flags & SE_SBINITIALIZED) {
2597                 struct inode_security_struct *isec = inode->i_security;
2598                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2599                 isec->sid = newsid;
2600                 isec->initialized = 1;
2601         }
2602
2603         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2604                 return -EOPNOTSUPP;
2605
2606         if (name) {
2607                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2608                 if (!namep)
2609                         return -ENOMEM;
2610                 *name = namep;
2611         }
2612
2613         if (value && len) {
2614                 rc = security_sid_to_context_force(newsid, &context, &clen);
2615                 if (rc) {
2616                         kfree(namep);
2617                         return rc;
2618                 }
2619                 *value = context;
2620                 *len = clen;
2621         }
2622
2623         return 0;
2624 }
2625
2626 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2627 {
2628         return may_create(dir, dentry, SECCLASS_FILE);
2629 }
2630
2631 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2632 {
2633         return may_link(dir, old_dentry, MAY_LINK);
2634 }
2635
2636 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2637 {
2638         return may_link(dir, dentry, MAY_UNLINK);
2639 }
2640
2641 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2642 {
2643         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2644 }
2645
2646 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2647 {
2648         return may_create(dir, dentry, SECCLASS_DIR);
2649 }
2650
2651 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2652 {
2653         return may_link(dir, dentry, MAY_RMDIR);
2654 }
2655
2656 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2657 {
2658         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2659 }
2660
2661 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2662                                 struct inode *new_inode, struct dentry *new_dentry)
2663 {
2664         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2665 }
2666
2667 static int selinux_inode_readlink(struct dentry *dentry)
2668 {
2669         const struct cred *cred = current_cred();
2670
2671         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2672 }
2673
2674 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2675 {
2676         const struct cred *cred = current_cred();
2677
2678         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2679 }
2680
2681 static int selinux_inode_permission(struct inode *inode, int mask)
2682 {
2683         const struct cred *cred = current_cred();
2684
2685         if (!mask) {
2686                 /* No permission to check.  Existence test. */
2687                 return 0;
2688         }
2689
2690         return inode_has_perm(cred, inode,
2691                               file_mask_to_av(inode->i_mode, mask), NULL);
2692 }
2693
2694 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2695 {
2696         const struct cred *cred = current_cred();
2697
2698         if (iattr->ia_valid & ATTR_FORCE)
2699                 return 0;
2700
2701         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2702                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2703                 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2704
2705         return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2706 }
2707
2708 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2709 {
2710         const struct cred *cred = current_cred();
2711
2712         return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2713 }
2714
2715 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2716 {
2717         const struct cred *cred = current_cred();
2718
2719         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2720                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2721                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2722                         if (!capable(CAP_SETFCAP))
2723                                 return -EPERM;
2724                 } else if (!capable(CAP_SYS_ADMIN)) {
2725                         /* A different attribute in the security namespace.
2726                            Restrict to administrator. */
2727                         return -EPERM;
2728                 }
2729         }
2730
2731         /* Not an attribute we recognize, so just check the
2732            ordinary setattr permission. */
2733         return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2734 }
2735
2736 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2737                                   const void *value, size_t size, int flags)
2738 {
2739         struct inode *inode = dentry->d_inode;
2740         struct inode_security_struct *isec = inode->i_security;
2741         struct superblock_security_struct *sbsec;
2742         struct avc_audit_data ad;
2743         u32 newsid, sid = current_sid();
2744         int rc = 0;
2745
2746         if (strcmp(name, XATTR_NAME_SELINUX))
2747                 return selinux_inode_setotherxattr(dentry, name);
2748
2749         sbsec = inode->i_sb->s_security;
2750         if (!(sbsec->flags & SE_SBLABELSUPP))
2751                 return -EOPNOTSUPP;
2752
2753         if (!is_owner_or_cap(inode))
2754                 return -EPERM;
2755
2756         AVC_AUDIT_DATA_INIT(&ad, FS);
2757         ad.u.fs.path.dentry = dentry;
2758
2759         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2760                           FILE__RELABELFROM, &ad);
2761         if (rc)
2762                 return rc;
2763
2764         rc = security_context_to_sid(value, size, &newsid);
2765         if (rc == -EINVAL) {
2766                 if (!capable(CAP_MAC_ADMIN))
2767                         return rc;
2768                 rc = security_context_to_sid_force(value, size, &newsid);
2769         }
2770         if (rc)
2771                 return rc;
2772
2773         rc = avc_has_perm(sid, newsid, isec->sclass,
2774                           FILE__RELABELTO, &ad);
2775         if (rc)
2776                 return rc;
2777
2778         rc = security_validate_transition(isec->sid, newsid, sid,
2779                                           isec->sclass);
2780         if (rc)
2781                 return rc;
2782
2783         return avc_has_perm(newsid,
2784                             sbsec->sid,
2785                             SECCLASS_FILESYSTEM,
2786                             FILESYSTEM__ASSOCIATE,
2787                             &ad);
2788 }
2789
2790 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2791                                         const void *value, size_t size,
2792                                         int flags)
2793 {
2794         struct inode *inode = dentry->d_inode;
2795         struct inode_security_struct *isec = inode->i_security;
2796         u32 newsid;
2797         int rc;
2798
2799         if (strcmp(name, XATTR_NAME_SELINUX)) {
2800                 /* Not an attribute we recognize, so nothing to do. */
2801                 return;
2802         }
2803
2804         rc = security_context_to_sid_force(value, size, &newsid);
2805         if (rc) {
2806                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2807                        "for (%s, %lu), rc=%d\n",
2808                        inode->i_sb->s_id, inode->i_ino, -rc);
2809                 return;
2810         }
2811
2812         isec->sid = newsid;
2813         return;
2814 }
2815
2816 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2817 {
2818         const struct cred *cred = current_cred();
2819
2820         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2821 }
2822
2823 static int selinux_inode_listxattr(struct dentry *dentry)
2824 {
2825         const struct cred *cred = current_cred();
2826
2827         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2828 }
2829
2830 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2831 {
2832         if (strcmp(name, XATTR_NAME_SELINUX))
2833                 return selinux_inode_setotherxattr(dentry, name);
2834
2835         /* No one is allowed to remove a SELinux security label.
2836            You can change the label, but all data must be labeled. */
2837         return -EACCES;
2838 }
2839
2840 /*
2841  * Copy the inode security context value to the user.
2842  *
2843  * Permission check is handled by selinux_inode_getxattr hook.
2844  */
2845 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2846 {
2847         u32 size;
2848         int error;
2849         char *context = NULL;
2850         struct inode_security_struct *isec = inode->i_security;
2851
2852         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2853                 return -EOPNOTSUPP;
2854
2855         /*
2856          * If the caller has CAP_MAC_ADMIN, then get the raw context
2857          * value even if it is not defined by current policy; otherwise,
2858          * use the in-core value under current policy.
2859          * Use the non-auditing forms of the permission checks since
2860          * getxattr may be called by unprivileged processes commonly
2861          * and lack of permission just means that we fall back to the
2862          * in-core context value, not a denial.
2863          */
2864         error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2865                                 SECURITY_CAP_NOAUDIT);
2866         if (!error)
2867                 error = security_sid_to_context_force(isec->sid, &context,
2868                                                       &size);
2869         else
2870                 error = security_sid_to_context(isec->sid, &context, &size);
2871         if (error)
2872                 return error;
2873         error = size;
2874         if (alloc) {
2875                 *buffer = context;
2876                 goto out_nofree;
2877         }
2878         kfree(context);
2879 out_nofree:
2880         return error;
2881 }
2882
2883 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2884                                      const void *value, size_t size, int flags)
2885 {
2886         struct inode_security_struct *isec = inode->i_security;
2887         u32 newsid;
2888         int rc;
2889
2890         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2891                 return -EOPNOTSUPP;
2892
2893         if (!value || !size)
2894                 return -EACCES;
2895
2896         rc = security_context_to_sid((void *)value, size, &newsid);
2897         if (rc)
2898                 return rc;
2899
2900         isec->sid = newsid;
2901         return 0;
2902 }
2903
2904 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2905 {
2906         const int len = sizeof(XATTR_NAME_SELINUX);
2907         if (buffer && len <= buffer_size)
2908                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2909         return len;
2910 }
2911
2912 static int selinux_inode_need_killpriv(struct dentry *dentry)
2913 {
2914         return secondary_ops->inode_need_killpriv(dentry);
2915 }
2916
2917 static int selinux_inode_killpriv(struct dentry *dentry)
2918 {
2919         return secondary_ops->inode_killpriv(dentry);
2920 }
2921
2922 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2923 {
2924         struct inode_security_struct *isec = inode->i_security;
2925         *secid = isec->sid;
2926 }
2927
2928 /* file security operations */
2929
2930 static int selinux_revalidate_file_permission(struct file *file, int mask)
2931 {
2932         const struct cred *cred = current_cred();
2933         int rc;
2934         struct inode *inode = file->f_path.dentry->d_inode;
2935
2936         if (!mask) {
2937                 /* No permission to check.  Existence test. */
2938                 return 0;
2939         }
2940
2941         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2942         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2943                 mask |= MAY_APPEND;
2944
2945         rc = file_has_perm(cred, file,
2946                            file_mask_to_av(inode->i_mode, mask));
2947         if (rc)
2948                 return rc;
2949
2950         return selinux_netlbl_inode_permission(inode, mask);
2951 }
2952
2953 static int selinux_file_permission(struct file *file, int mask)
2954 {
2955         struct inode *inode = file->f_path.dentry->d_inode;
2956         struct file_security_struct *fsec = file->f_security;
2957         struct inode_security_struct *isec = inode->i_security;
2958         u32 sid = current_sid();
2959
2960         if (!mask) {
2961                 /* No permission to check.  Existence test. */
2962                 return 0;
2963         }
2964
2965         if (sid == fsec->sid && fsec->isid == isec->sid
2966             && fsec->pseqno == avc_policy_seqno())
2967                 return selinux_netlbl_inode_permission(inode, mask);
2968
2969         return selinux_revalidate_file_permission(file, mask);
2970 }
2971
2972 static int selinux_file_alloc_security(struct file *file)
2973 {
2974         return file_alloc_security(file);
2975 }
2976
2977 static void selinux_file_free_security(struct file *file)
2978 {
2979         file_free_security(file);
2980 }
2981
2982 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2983                               unsigned long arg)
2984 {
2985         const struct cred *cred = current_cred();
2986         u32 av = 0;
2987
2988         if (_IOC_DIR(cmd) & _IOC_WRITE)
2989                 av |= FILE__WRITE;
2990         if (_IOC_DIR(cmd) & _IOC_READ)
2991                 av |= FILE__READ;
2992         if (!av)
2993                 av = FILE__IOCTL;
2994
2995         return file_has_perm(cred, file, av);
2996 }
2997
2998 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2999 {
3000         const struct cred *cred = current_cred();
3001         int rc = 0;
3002
3003 #ifndef CONFIG_PPC32
3004         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3005                 /*
3006                  * We are making executable an anonymous mapping or a
3007                  * private file mapping that will also be writable.
3008                  * This has an additional check.
3009                  */
3010                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3011                 if (rc)
3012                         goto error;
3013         }
3014 #endif
3015
3016         if (file) {
3017                 /* read access is always possible with a mapping */
3018                 u32 av = FILE__READ;
3019
3020                 /* write access only matters if the mapping is shared */
3021                 if (shared && (prot & PROT_WRITE))
3022                         av |= FILE__WRITE;
3023
3024                 if (prot & PROT_EXEC)
3025                         av |= FILE__EXECUTE;
3026
3027                 return file_has_perm(cred, file, av);
3028         }
3029
3030 error:
3031         return rc;
3032 }
3033
3034 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3035                              unsigned long prot, unsigned long flags,
3036                              unsigned long addr, unsigned long addr_only)
3037 {
3038         int rc = 0;
3039         u32 sid = current_sid();
3040
3041         if (addr < mmap_min_addr)
3042                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3043                                   MEMPROTECT__MMAP_ZERO, NULL);
3044         if (rc || addr_only)
3045                 return rc;
3046
3047         if (selinux_checkreqprot)
3048                 prot = reqprot;
3049
3050         return file_map_prot_check(file, prot,
3051                                    (flags & MAP_TYPE) == MAP_SHARED);
3052 }
3053
3054 static int selinux_file_mprotect(struct vm_area_struct *vma,
3055                                  unsigned long reqprot,
3056                                  unsigned long prot)
3057 {
3058         const struct cred *cred = current_cred();
3059
3060         if (selinux_checkreqprot)
3061                 prot = reqprot;
3062
3063 #ifndef CONFIG_PPC32
3064         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3065                 int rc = 0;
3066                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3067                     vma->vm_end <= vma->vm_mm->brk) {
3068                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3069                 } else if (!vma->vm_file &&
3070                            vma->vm_start <= vma->vm_mm->start_stack &&
3071                            vma->vm_end >= vma->vm_mm->start_stack) {
3072                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3073                 } else if (vma->vm_file && vma->anon_vma) {
3074                         /*
3075                          * We are making executable a file mapping that has
3076                          * had some COW done. Since pages might have been
3077                          * written, check ability to execute the possibly
3078                          * modified content.  This typically should only
3079                          * occur for text relocations.
3080                          */
3081                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3082                 }
3083                 if (rc)
3084                         return rc;
3085         }
3086 #endif
3087
3088         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3089 }
3090
3091 static int selinux_file_lock(struct file *file, unsigned int cmd)
3092 {
3093         const struct cred *cred = current_cred();
3094
3095         return file_has_perm(cred, file, FILE__LOCK);
3096 }
3097
3098 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3099                               unsigned long arg)
3100 {
3101         const struct cred *cred = current_cred();
3102         int err = 0;
3103
3104         switch (cmd) {
3105         case F_SETFL:
3106                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3107                         err = -EINVAL;
3108                         break;
3109                 }
3110
3111                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3112                         err = file_has_perm(cred, file, FILE__WRITE);
3113                         break;
3114                 }
3115                 /* fall through */
3116         case F_SETOWN:
3117         case F_SETSIG:
3118         case F_GETFL:
3119         case F_GETOWN:
3120         case F_GETSIG:
3121                 /* Just check FD__USE permission */
3122                 err = file_has_perm(cred, file, 0);
3123                 break;
3124         case F_GETLK:
3125         case F_SETLK:
3126         case F_SETLKW:
3127 #if BITS_PER_LONG == 32
3128         case F_GETLK64:
3129         case F_SETLK64:
3130         case F_SETLKW64:
3131 #endif
3132                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3133                         err = -EINVAL;
3134                         break;
3135                 }
3136                 err = file_has_perm(cred, file, FILE__LOCK);
3137                 break;
3138         }
3139
3140         return err;
3141 }
3142
3143 static int selinux_file_set_fowner(struct file *file)
3144 {
3145         struct file_security_struct *fsec;
3146
3147         fsec = file->f_security;
3148         fsec->fown_sid = current_sid();
3149
3150         return 0;
3151 }
3152
3153 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3154                                        struct fown_struct *fown, int signum)
3155 {
3156         struct file *file;
3157         u32 sid = current_sid();
3158         u32 perm;
3159         struct file_security_struct *fsec;
3160
3161         /* struct fown_struct is never outside the context of a struct file */
3162         file = container_of(fown, struct file, f_owner);
3163
3164         fsec = file->f_security;
3165
3166         if (!signum)
3167                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3168         else
3169                 perm = signal_to_av(signum);
3170
3171         return avc_has_perm(fsec->fown_sid, sid,
3172                             SECCLASS_PROCESS, perm, NULL);
3173 }
3174
3175 static int selinux_file_receive(struct file *file)
3176 {
3177         const struct cred *cred = current_cred();
3178
3179         return file_has_perm(cred, file, file_to_av(file));
3180 }
3181
3182 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3183 {
3184         struct file_security_struct *fsec;
3185         struct inode *inode;
3186         struct inode_security_struct *isec;
3187
3188         inode = file->f_path.dentry->d_inode;
3189         fsec = file->f_security;
3190         isec = inode->i_security;
3191         /*
3192          * Save inode label and policy sequence number
3193          * at open-time so that selinux_file_permission
3194          * can determine whether revalidation is necessary.
3195          * Task label is already saved in the file security
3196          * struct as its SID.
3197          */
3198         fsec->isid = isec->sid;
3199         fsec->pseqno = avc_policy_seqno();
3200         /*
3201          * Since the inode label or policy seqno may have changed
3202          * between the selinux_inode_permission check and the saving
3203          * of state above, recheck that access is still permitted.
3204          * Otherwise, access might never be revalidated against the
3205          * new inode label or new policy.
3206          * This check is not redundant - do not remove.
3207          */
3208         return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3209 }
3210
3211 /* task security operations */
3212
3213 static int selinux_task_create(unsigned long clone_flags)
3214 {
3215         return current_has_perm(current, PROCESS__FORK);
3216 }
3217
3218 /*
3219  * detach and free the LSM part of a set of credentials
3220  */
3221 static void selinux_cred_free(struct cred *cred)
3222 {
3223         struct task_security_struct *tsec = cred->security;
3224         cred->security = NULL;
3225         kfree(tsec);
3226 }
3227
3228 /*
3229  * prepare a new set of credentials for modification
3230  */
3231 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3232                                 gfp_t gfp)
3233 {
3234         const struct task_security_struct *old_tsec;
3235         struct task_security_struct *tsec;
3236
3237         old_tsec = old->security;
3238
3239         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3240         if (!tsec)
3241                 return -ENOMEM;
3242
3243         new->security = tsec;
3244         return 0;
3245 }
3246
3247 /*
3248  * set the security data for a kernel service
3249  * - all the creation contexts are set to unlabelled
3250  */
3251 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3252 {
3253         struct task_security_struct *tsec = new->security;
3254         u32 sid = current_sid();
3255         int ret;
3256
3257         ret = avc_has_perm(sid, secid,
3258                            SECCLASS_KERNEL_SERVICE,
3259                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3260                            NULL);
3261         if (ret == 0) {
3262                 tsec->sid = secid;
3263                 tsec->create_sid = 0;
3264                 tsec->keycreate_sid = 0;
3265                 tsec->sockcreate_sid = 0;
3266         }
3267         return ret;
3268 }
3269
3270 /*
3271  * set the file creation context in a security record to the same as the
3272  * objective context of the specified inode
3273  */
3274 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3275 {
3276         struct inode_security_struct *isec = inode->i_security;
3277         struct task_security_struct *tsec = new->security;
3278         u32 sid = current_sid();
3279         int ret;
3280
3281         ret = avc_has_perm(sid, isec->sid,
3282                            SECCLASS_KERNEL_SERVICE,
3283                            KERNEL_SERVICE__CREATE_FILES_AS,
3284                            NULL);
3285
3286         if (ret == 0)
3287                 tsec->create_sid = isec->sid;
3288         return 0;
3289 }
3290
3291 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3292 {
3293         /* Since setuid only affects the current process, and
3294            since the SELinux controls are not based on the Linux
3295            identity attributes, SELinux does not need to control
3296            this operation.  However, SELinux does control the use
3297            of the CAP_SETUID and CAP_SETGID capabilities using the
3298            capable hook. */
3299         return 0;
3300 }
3301
3302 static int selinux_task_fix_setuid(struct cred *new, const struct cred *old,
3303                                    int flags)
3304 {
3305         return secondary_ops->task_fix_setuid(new, old, flags);
3306 }
3307
3308 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
3309 {
3310         /* See the comment for setuid above. */
3311         return 0;
3312 }
3313
3314 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3315 {
3316         return current_has_perm(p, PROCESS__SETPGID);
3317 }
3318
3319 static int selinux_task_getpgid(struct task_struct *p)
3320 {
3321         return current_has_perm(p, PROCESS__GETPGID);
3322 }
3323
3324 static int selinux_task_getsid(struct task_struct *p)
3325 {
3326         return current_has_perm(p, PROCESS__GETSESSION);
3327 }
3328
3329 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3330 {
3331         *secid = task_sid(p);
3332 }
3333
3334 static int selinux_task_setgroups(struct group_info *group_info)
3335 {
3336         /* See the comment for setuid above. */
3337         return 0;
3338 }
3339
3340 static int selinux_task_setnice(struct task_struct *p, int nice)
3341 {
3342         int rc;
3343
3344         rc = secondary_ops->task_setnice(p, nice);
3345         if (rc)
3346                 return rc;
3347
3348         return current_has_perm(p, PROCESS__SETSCHED);
3349 }
3350
3351 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3352 {
3353         int rc;
3354
3355         rc = secondary_ops->task_setioprio(p, ioprio);
3356         if (rc)
3357                 return rc;
3358
3359         return current_has_perm(p, PROCESS__SETSCHED);
3360 }
3361
3362 static int selinux_task_getioprio(struct task_struct *p)
3363 {
3364         return current_has_perm(p, PROCESS__GETSCHED);
3365 }
3366
3367 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3368 {
3369         struct rlimit *old_rlim = current->signal->rlim + resource;
3370
3371         /* Control the ability to change the hard limit (whether
3372            lowering or raising it), so that the hard limit can
3373            later be used as a safe reset point for the soft limit
3374            upon context transitions.  See selinux_bprm_committing_creds. */
3375         if (old_rlim->rlim_max != new_rlim->rlim_max)
3376                 return current_has_perm(current, PROCESS__SETRLIMIT);
3377
3378         return 0;
3379 }
3380
3381 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3382 {
3383         int rc;
3384
3385         rc = secondary_ops->task_setscheduler(p, policy, lp);
3386         if (rc)
3387                 return rc;
3388
3389         return current_has_perm(p, PROCESS__SETSCHED);
3390 }
3391
3392 static int selinux_task_getscheduler(struct task_struct *p)
3393 {
3394         return current_has_perm(p, PROCESS__GETSCHED);
3395 }
3396
3397 static int selinux_task_movememory(struct task_struct *p)
3398 {
3399         return current_has_perm(p, PROCESS__SETSCHED);
3400 }
3401
3402 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3403                                 int sig, u32 secid)
3404 {
3405         u32 perm;
3406         int rc;
3407
3408         if (!sig)
3409                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3410         else
3411                 perm = signal_to_av(sig);
3412         if (secid)
3413                 rc = avc_has_perm(secid, task_sid(p),
3414                                   SECCLASS_PROCESS, perm, NULL);
3415         else
3416                 rc = current_has_perm(p, perm);
3417         return rc;
3418 }
3419
3420 static int selinux_task_prctl(int option,
3421                               unsigned long arg2,
3422                               unsigned long arg3,
3423                               unsigned long arg4,
3424                               unsigned long arg5)
3425 {
3426         /* The current prctl operations do not appear to require
3427            any SELinux controls since they merely observe or modify
3428            the state of the current process. */
3429         return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5);
3430 }
3431
3432 static int selinux_task_wait(struct task_struct *p)
3433 {
3434         return task_has_perm(p, current, PROCESS__SIGCHLD);
3435 }
3436
3437 static void selinux_task_to_inode(struct task_struct *p,
3438                                   struct inode *inode)
3439 {
3440         struct inode_security_struct *isec = inode->i_security;
3441         u32 sid = task_sid(p);
3442
3443         isec->sid = sid;
3444         isec->initialized = 1;
3445 }
3446
3447 /* Returns error only if unable to parse addresses */
3448 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3449                         struct avc_audit_data *ad, u8 *proto)
3450 {
3451         int offset, ihlen, ret = -EINVAL;
3452         struct iphdr _iph, *ih;
3453
3454         offset = skb_network_offset(skb);
3455         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3456         if (ih == NULL)
3457                 goto out;
3458
3459         ihlen = ih->ihl * 4;
3460         if (ihlen < sizeof(_iph))
3461                 goto out;
3462
3463         ad->u.net.v4info.saddr = ih->saddr;
3464         ad->u.net.v4info.daddr = ih->daddr;
3465         ret = 0;
3466
3467         if (proto)
3468                 *proto = ih->protocol;
3469
3470         switch (ih->protocol) {
3471         case IPPROTO_TCP: {
3472                 struct tcphdr _tcph, *th;
3473
3474                 if (ntohs(ih->frag_off) & IP_OFFSET)
3475                         break;
3476
3477                 offset += ihlen;
3478                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3479                 if (th == NULL)
3480                         break;
3481
3482                 ad->u.net.sport = th->source;
3483                 ad->u.net.dport = th->dest;
3484                 break;
3485         }
3486
3487         case IPPROTO_UDP: {
3488                 struct udphdr _udph, *uh;
3489
3490                 if (ntohs(ih->frag_off) & IP_OFFSET)
3491                         break;
3492
3493                 offset += ihlen;
3494                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3495                 if (uh == NULL)
3496                         break;
3497
3498                 ad->u.net.sport = uh->source;
3499                 ad->u.net.dport = uh->dest;
3500                 break;
3501         }
3502
3503         case IPPROTO_DCCP: {
3504                 struct dccp_hdr _dccph, *dh;
3505
3506                 if (ntohs(ih->frag_off) & IP_OFFSET)
3507                         break;
3508
3509                 offset += ihlen;
3510                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3511                 if (dh == NULL)
3512                         break;
3513
3514                 ad->u.net.sport = dh->dccph_sport;
3515                 ad->u.net.dport = dh->dccph_dport;
3516                 break;
3517         }
3518
3519         default:
3520                 break;
3521         }
3522 out:
3523         return ret;
3524 }
3525
3526 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3527
3528 /* Returns error only if unable to parse addresses */
3529 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3530                         struct avc_audit_data *ad, u8 *proto)
3531 {
3532         u8 nexthdr;
3533         int ret = -EINVAL, offset;
3534         struct ipv6hdr _ipv6h, *ip6;
3535
3536         offset = skb_network_offset(skb);
3537         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3538         if (ip6 == NULL)
3539                 goto out;
3540
3541         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3542         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3543         ret = 0;
3544
3545         nexthdr = ip6->nexthdr;
3546         offset += sizeof(_ipv6h);
3547         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3548         if (offset < 0)
3549                 goto out;
3550
3551         if (proto)
3552                 *proto = nexthdr;
3553
3554         switch (nexthdr) {
3555         case IPPROTO_TCP: {
3556                 struct tcphdr _tcph, *th;
3557
3558                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3559                 if (th == NULL)
3560                         break;
3561
3562                 ad->u.net.sport = th->source;
3563                 ad->u.net.dport = th->dest;
3564                 break;
3565         }
3566
3567         case IPPROTO_UDP: {
3568                 struct udphdr _udph, *uh;
3569
3570                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3571                 if (uh == NULL)
3572                         break;
3573
3574                 ad->u.net.sport = uh->source;
3575                 ad->u.net.dport = uh->dest;
3576                 break;
3577         }
3578
3579         case IPPROTO_DCCP: {
3580                 struct dccp_hdr _dccph, *dh;
3581
3582                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3583                 if (dh == NULL)
3584                         break;
3585
3586                 ad->u.net.sport = dh->dccph_sport;
3587                 ad->u.net.dport = dh->dccph_dport;
3588                 break;
3589         }
3590
3591         /* includes fragments */
3592         default:
3593                 break;
3594         }
3595 out:
3596         return ret;
3597 }
3598
3599 #endif /* IPV6 */
3600
3601 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3602                              char **_addrp, int src, u8 *proto)
3603 {
3604         char *addrp;
3605         int ret;
3606
3607         switch (ad->u.net.family) {
3608         case PF_INET:
3609                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3610                 if (ret)
3611                         goto parse_error;
3612                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3613                                        &ad->u.net.v4info.daddr);
3614                 goto okay;
3615
3616 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3617         case PF_INET6:
3618                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3619                 if (ret)
3620                         goto parse_error;
3621                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3622                                        &ad->u.net.v6info.daddr);
3623                 goto okay;
3624 #endif  /* IPV6 */
3625         default:
3626                 addrp = NULL;
3627                 goto okay;
3628         }
3629
3630 parse_error:
3631         printk(KERN_WARNING
3632                "SELinux: failure in selinux_parse_skb(),"
3633                " unable to parse packet\n");
3634         return ret;
3635
3636 okay:
3637         if (_addrp)
3638                 *_addrp = addrp;
3639         return 0;
3640 }
3641
3642 /**
3643  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3644  * @skb: the packet
3645  * @family: protocol family
3646  * @sid: the packet's peer label SID
3647  *
3648  * Description:
3649  * Check the various different forms of network peer labeling and determine
3650  * the peer label/SID for the packet; most of the magic actually occurs in
3651  * the security server function security_net_peersid_cmp().  The function
3652  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3653  * or -EACCES if @sid is invalid due to inconsistencies with the different
3654  * peer labels.
3655  *
3656  */
3657 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3658 {
3659         int err;
3660         u32 xfrm_sid;
3661         u32 nlbl_sid;
3662         u32 nlbl_type;
3663
3664         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3665         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3666
3667         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3668         if (unlikely(err)) {
3669                 printk(KERN_WARNING
3670                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3671                        " unable to determine packet's peer label\n");
3672                 return -EACCES;
3673         }
3674
3675         return 0;
3676 }
3677
3678 /* socket security operations */
3679 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3680                            u32 perms)
3681 {
3682         struct inode_security_struct *isec;
3683         struct avc_audit_data ad;
3684         u32 sid;
3685         int err = 0;
3686
3687         isec = SOCK_INODE(sock)->i_security;
3688
3689         if (isec->sid == SECINITSID_KERNEL)
3690                 goto out;
3691         sid = task_sid(task);
3692
3693         AVC_AUDIT_DATA_INIT(&ad, NET);
3694         ad.u.net.sk = sock->sk;
3695         err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
3696
3697 out:
3698         return err;
3699 }
3700
3701 static int selinux_socket_create(int family, int type,
3702                                  int protocol, int kern)
3703 {
3704         const struct cred *cred = current_cred();
3705         const struct task_security_struct *tsec = cred->security;
3706         u32 sid, newsid;
3707         u16 secclass;
3708         int err = 0;
3709
3710         if (kern)
3711                 goto out;
3712
3713         sid = tsec->sid;
3714         newsid = tsec->sockcreate_sid ?: sid;
3715
3716         secclass = socket_type_to_security_class(family, type, protocol);
3717         err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL);
3718
3719 out:
3720         return err;
3721 }
3722
3723 static int selinux_socket_post_create(struct socket *sock, int family,
3724                                       int type, int protocol, int kern)
3725 {
3726         const struct cred *cred = current_cred();
3727         const struct task_security_struct *tsec = cred->security;
3728         struct inode_security_struct *isec;
3729         struct sk_security_struct *sksec;
3730         u32 sid, newsid;
3731         int err = 0;
3732
3733         sid = tsec->sid;
3734         newsid = tsec->sockcreate_sid;
3735
3736         isec = SOCK_INODE(sock)->i_security;
3737
3738         if (kern)
3739                 isec->sid = SECINITSID_KERNEL;
3740         else if (newsid)
3741                 isec->sid = newsid;
3742         else
3743                 isec->sid = sid;
3744
3745         isec->sclass = socket_type_to_security_class(family, type, protocol);
3746         isec->initialized = 1;
3747
3748         if (sock->sk) {
3749                 sksec = sock->sk->sk_security;
3750                 sksec->sid = isec->sid;
3751                 sksec->sclass = isec->sclass;
3752                 err = selinux_netlbl_socket_post_create(sock);
3753         }
3754
3755         return err;
3756 }
3757
3758 /* Range of port numbers used to automatically bind.
3759    Need to determine whether we should perform a name_bind
3760    permission check between the socket and the port number. */
3761
3762 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3763 {
3764         u16 family;
3765         int err;
3766
3767         err = socket_has_perm(current, sock, SOCKET__BIND);
3768         if (err)
3769                 goto out;
3770
3771         /*
3772          * If PF_INET or PF_INET6, check name_bind permission for the port.
3773          * Multiple address binding for SCTP is not supported yet: we just
3774          * check the first address now.
3775          */
3776         family = sock->sk->sk_family;
3777         if (family == PF_INET || family == PF_INET6) {
3778                 char *addrp;
3779                 struct inode_security_struct *isec;
3780                 struct avc_audit_data ad;
3781                 struct sockaddr_in *addr4 = NULL;
3782                 struct sockaddr_in6 *addr6 = NULL;
3783                 unsigned short snum;
3784                 struct sock *sk = sock->sk;
3785                 u32 sid, node_perm;
3786
3787                 isec = SOCK_INODE(sock)->i_security;
3788
3789                 if (family == PF_INET) {
3790                         addr4 = (struct sockaddr_in *)address;
3791                         snum = ntohs(addr4->sin_port);
3792                         addrp = (char *)&addr4->sin_addr.s_addr;
3793                 } else {
3794                         addr6 = (struct sockaddr_in6 *)address;
3795                         snum = ntohs(addr6->sin6_port);
3796                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3797                 }
3798
3799                 if (snum) {
3800                         int low, high;
3801
3802                         inet_get_local_port_range(&low, &high);
3803
3804                         if (snum < max(PROT_SOCK, low) || snum > high) {
3805                                 err = sel_netport_sid(sk->sk_protocol,
3806                                                       snum, &sid);
3807                                 if (err)
3808                                         goto out;
3809                                 AVC_AUDIT_DATA_INIT(&ad, NET);
3810                                 ad.u.net.sport = htons(snum);
3811                                 ad.u.net.family = family;
3812                                 err = avc_has_perm(isec->sid, sid,
3813                                                    isec->sclass,
3814                                                    SOCKET__NAME_BIND, &ad);
3815                                 if (err)
3816                                         goto out;
3817                         }
3818                 }
3819
3820                 switch (isec->sclass) {
3821                 case SECCLASS_TCP_SOCKET:
3822                         node_perm = TCP_SOCKET__NODE_BIND;
3823                         break;
3824
3825                 case SECCLASS_UDP_SOCKET:
3826                         node_perm = UDP_SOCKET__NODE_BIND;
3827                         break;
3828
3829                 case SECCLASS_DCCP_SOCKET:
3830                         node_perm = DCCP_SOCKET__NODE_BIND;
3831                         break;
3832
3833                 default:
3834                         node_perm = RAWIP_SOCKET__NODE_BIND;
3835                         break;
3836                 }
3837
3838                 err = sel_netnode_sid(addrp, family, &sid);
3839                 if (err)
3840                         goto out;
3841
3842                 AVC_AUDIT_DATA_INIT(&ad, NET);
3843                 ad.u.net.sport = htons(snum);
3844                 ad.u.net.family = family;
3845
3846                 if (family == PF_INET)
3847                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3848                 else
3849                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3850
3851                 err = avc_has_perm(isec->sid, sid,
3852                                    isec->sclass, node_perm, &ad);
3853                 if (err)
3854                         goto out;
3855         }
3856 out:
3857         return err;
3858 }
3859
3860 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3861 {
3862         struct sock *sk = sock->sk;
3863         struct inode_security_struct *isec;
3864         int err;
3865
3866         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3867         if (err)
3868                 return err;
3869
3870         /*
3871          * If a TCP or DCCP socket, check name_connect permission for the port.
3872          */
3873         isec = SOCK_INODE(sock)->i_security;
3874         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3875             isec->sclass == SECCLASS_DCCP_SOCKET) {
3876                 struct avc_audit_data ad;
3877                 struct sockaddr_in *addr4 = NULL;
3878                 struct sockaddr_in6 *addr6 = NULL;
3879                 unsigned short snum;
3880                 u32 sid, perm;
3881
3882                 if (sk->sk_family == PF_INET) {
3883                         addr4 = (struct sockaddr_in *)address;
3884                         if (addrlen < sizeof(struct sockaddr_in))
3885                                 return -EINVAL;
3886                         snum = ntohs(addr4->sin_port);
3887                 } else {
3888                         addr6 = (struct sockaddr_in6 *)address;
3889                         if (addrlen < SIN6_LEN_RFC2133)
3890                                 return -EINVAL;
3891                         snum = ntohs(addr6->sin6_port);
3892                 }
3893
3894                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3895                 if (err)
3896                         goto out;
3897
3898                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3899                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3900
3901                 AVC_AUDIT_DATA_INIT(&ad, NET);
3902                 ad.u.net.dport = htons(snum);
3903                 ad.u.net.family = sk->sk_family;
3904                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3905                 if (err)
3906                         goto out;
3907         }
3908
3909         err = selinux_netlbl_socket_connect(sk, address);
3910
3911 out:
3912         return err;
3913 }
3914
3915 static int selinux_socket_listen(struct socket *sock, int backlog)
3916 {
3917         return socket_has_perm(current, sock, SOCKET__LISTEN);
3918 }
3919
3920 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3921 {
3922         int err;
3923         struct inode_security_struct *isec;
3924         struct inode_security_struct *newisec;
3925
3926         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3927         if (err)
3928                 return err;
3929
3930         newisec = SOCK_INODE(newsock)->i_security;
3931
3932         isec = SOCK_INODE(sock)->i_security;
3933         newisec->sclass = isec->sclass;
3934         newisec->sid = isec->sid;
3935         newisec->initialized = 1;
3936
3937         return 0;
3938 }
3939
3940 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3941                                   int size)
3942 {
3943         int rc;
3944
3945         rc = socket_has_perm(current, sock, SOCKET__WRITE);
3946         if (rc)
3947                 return rc;
3948
3949         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3950 }
3951
3952 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3953                                   int size, int flags)
3954 {
3955         return socket_has_perm(current, sock, SOCKET__READ);
3956 }
3957
3958 static int selinux_socket_getsockname(struct socket *sock)
3959 {
3960         return socket_has_perm(current, sock, SOCKET__GETATTR);
3961 }
3962
3963 static int selinux_socket_getpeername(struct socket *sock)
3964 {
3965         return socket_has_perm(current, sock, SOCKET__GETATTR);
3966 }
3967
3968 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3969 {
3970         int err;
3971
3972         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3973         if (err)
3974                 return err;
3975
3976         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3977 }
3978
3979 static int selinux_socket_getsockopt(struct socket *sock, int level,
3980                                      int optname)
3981 {
3982         return socket_has_perm(current, sock, SOCKET__GETOPT);
3983 }
3984
3985 static int selinux_socket_shutdown(struct socket *sock, int how)
3986 {
3987         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3988 }
3989
3990 static int selinux_socket_unix_stream_connect(struct socket *sock,
3991                                               struct socket *other,
3992                                               struct sock *newsk)
3993 {
3994         struct sk_security_struct *ssec;
3995         struct inode_security_struct *isec;
3996         struct inode_security_struct *other_isec;
3997         struct avc_audit_data ad;
3998         int err;
3999
4000         err = secondary_ops->unix_stream_connect(sock, other, newsk);
4001         if (err)
4002                 return err;
4003
4004         isec = SOCK_INODE(sock)->i_security;
4005         other_isec = SOCK_INODE(other)->i_security;
4006
4007         AVC_AUDIT_DATA_INIT(&ad, NET);
4008         ad.u.net.sk = other->sk;
4009
4010         err = avc_has_perm(isec->sid, other_isec->sid,
4011                            isec->sclass,
4012                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4013         if (err)
4014                 return err;
4015
4016         /* connecting socket */
4017         ssec = sock->sk->sk_security;
4018         ssec->peer_sid = other_isec->sid;
4019
4020         /* server child socket */
4021         ssec = newsk->sk_security;
4022         ssec->peer_sid = isec->sid;
4023         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
4024
4025         return err;
4026 }
4027
4028 static int selinux_socket_unix_may_send(struct socket *sock,
4029                                         struct socket *other)
4030 {
4031         struct inode_security_struct *isec;
4032         struct inode_security_struct *other_isec;
4033         struct avc_audit_data ad;
4034         int err;
4035
4036         isec = SOCK_INODE(sock)->i_security;
4037         other_isec = SOCK_INODE(other)->i_security;
4038
4039         AVC_AUDIT_DATA_INIT(&ad, NET);
4040         ad.u.net.sk = other->sk;
4041
4042         err = avc_has_perm(isec->sid, other_isec->sid,
4043                            isec->sclass, SOCKET__SENDTO, &ad);
4044         if (err)
4045                 return err;
4046
4047         return 0;
4048 }
4049
4050 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4051                                     u32 peer_sid,
4052                                     struct avc_audit_data *ad)
4053 {
4054         int err;
4055         u32 if_sid;
4056         u32 node_sid;
4057
4058         err = sel_netif_sid(ifindex, &if_sid);
4059         if (err)
4060                 return err;
4061         err = avc_has_perm(peer_sid, if_sid,
4062                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4063         if (err)
4064                 return err;
4065
4066         err = sel_netnode_sid(addrp, family, &node_sid);
4067         if (err)
4068                 return err;
4069         return avc_has_perm(peer_sid, node_sid,
4070                             SECCLASS_NODE, NODE__RECVFROM, ad);
4071 }
4072
4073 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
4074                                                 struct sk_buff *skb,
4075                                                 struct avc_audit_data *ad,
4076                                                 u16 family,
4077                                                 char *addrp)
4078 {
4079         int err;
4080         struct sk_security_struct *sksec = sk->sk_security;
4081         u16 sk_class;
4082         u32 netif_perm, node_perm, recv_perm;
4083         u32 port_sid, node_sid, if_sid, sk_sid;
4084
4085         sk_sid = sksec->sid;
4086         sk_class = sksec->sclass;
4087
4088         switch (sk_class) {
4089         case SECCLASS_UDP_SOCKET:
4090                 netif_perm = NETIF__UDP_RECV;
4091                 node_perm = NODE__UDP_RECV;
4092                 recv_perm = UDP_SOCKET__RECV_MSG;
4093                 break;
4094         case SECCLASS_TCP_SOCKET:
4095                 netif_perm = NETIF__TCP_RECV;
4096                 node_perm = NODE__TCP_RECV;
4097                 recv_perm = TCP_SOCKET__RECV_MSG;
4098                 break;
4099         case SECCLASS_DCCP_SOCKET:
4100                 netif_perm = NETIF__DCCP_RECV;
4101                 node_perm = NODE__DCCP_RECV;
4102                 recv_perm = DCCP_SOCKET__RECV_MSG;
4103                 break;
4104         default:
4105                 netif_perm = NETIF__RAWIP_RECV;
4106                 node_perm = NODE__RAWIP_RECV;
4107                 recv_perm = 0;
4108                 break;
4109         }
4110
4111         err = sel_netif_sid(skb->iif, &if_sid);
4112         if (err)
4113                 return err;
4114         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4115         if (err)
4116                 return err;
4117
4118         err = sel_netnode_sid(addrp, family, &node_sid);
4119         if (err)
4120                 return err;
4121         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4122         if (err)
4123                 return err;
4124
4125         if (!recv_perm)
4126                 return 0;
4127         err = sel_netport_sid(sk->sk_protocol,
4128                               ntohs(ad->u.net.sport), &port_sid);
4129         if (unlikely(err)) {
4130                 printk(KERN_WARNING
4131                        "SELinux: failure in"
4132                        " selinux_sock_rcv_skb_iptables_compat(),"
4133                        " network port label not found\n");
4134                 return err;
4135         }
4136         return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
4137 }
4138
4139 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4140                                        u16 family)
4141 {
4142         int err = 0;
4143         struct sk_security_struct *sksec = sk->sk_security;
4144         u32 peer_sid;
4145         u32 sk_sid = sksec->sid;
4146         struct avc_audit_data ad;
4147         char *addrp;
4148
4149         AVC_AUDIT_DATA_INIT(&ad, NET);
4150         ad.u.net.netif = skb->iif;
4151         ad.u.net.family = family;
4152         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4153         if (err)
4154                 return err;
4155
4156         if (selinux_compat_net)
4157                 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, &ad,
4158                                                            family, addrp);
4159         else if (selinux_secmark_enabled())
4160                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4161                                    PACKET__RECV, &ad);
4162         if (err)
4163                 return err;
4164
4165         if (selinux_policycap_netpeer) {
4166                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4167                 if (err)
4168                         return err;
4169                 err = avc_has_perm(sk_sid, peer_sid,
4170                                    SECCLASS_PEER, PEER__RECV, &ad);
4171                 if (err)
4172                         selinux_netlbl_err(skb, err, 0);
4173         } else {
4174                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4175                 if (err)
4176                         return err;
4177                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4178         }
4179
4180         return err;
4181 }
4182
4183 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4184 {
4185         int err;
4186         struct sk_security_struct *sksec = sk->sk_security;
4187         u16 family = sk->sk_family;
4188         u32 sk_sid = sksec->sid;
4189         struct avc_audit_data ad;
4190         char *addrp;
4191         u8 secmark_active;
4192         u8 peerlbl_active;
4193
4194         if (family != PF_INET && family != PF_INET6)
4195                 return 0;
4196
4197         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4198         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4199                 family = PF_INET;
4200
4201         /* If any sort of compatibility mode is enabled then handoff processing
4202          * to the selinux_sock_rcv_skb_compat() function to deal with the
4203          * special handling.  We do this in an attempt to keep this function
4204          * as fast and as clean as possible. */
4205         if (selinux_compat_net || !selinux_policycap_netpeer)
4206                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4207
4208         secmark_active = selinux_secmark_enabled();
4209         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4210         if (!secmark_active && !peerlbl_active)
4211                 return 0;
4212
4213         AVC_AUDIT_DATA_INIT(&ad, NET);
4214         ad.u.net.netif = skb->iif;
4215         ad.u.net.family = family;
4216         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4217         if (err)
4218                 return err;
4219
4220         if (peerlbl_active) {
4221                 u32 peer_sid;
4222
4223                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4224                 if (err)
4225                         return err;
4226                 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4227                                                peer_sid, &ad);
4228                 if (err) {
4229                         selinux_netlbl_err(skb, err, 0);
4230                         return err;
4231                 }
4232                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4233                                    PEER__RECV, &ad);
4234                 if (err)
4235                         selinux_netlbl_err(skb, err, 0);
4236         }
4237
4238         if (secmark_active) {
4239                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4240                                    PACKET__RECV, &ad);
4241                 if (err)
4242                         return err;
4243         }
4244
4245         return err;
4246 }
4247
4248 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4249                                             int __user *optlen, unsigned len)
4250 {
4251         int err = 0;
4252         char *scontext;
4253         u32 scontext_len;
4254         struct sk_security_struct *ssec;
4255         struct inode_security_struct *isec;
4256         u32 peer_sid = SECSID_NULL;
4257
4258         isec = SOCK_INODE(sock)->i_security;
4259
4260         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4261             isec->sclass == SECCLASS_TCP_SOCKET) {
4262                 ssec = sock->sk->sk_security;
4263                 peer_sid = ssec->peer_sid;
4264         }
4265         if (peer_sid == SECSID_NULL) {
4266                 err = -ENOPROTOOPT;
4267                 goto out;
4268         }
4269
4270         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4271
4272         if (err)
4273                 goto out;
4274
4275         if (scontext_len > len) {
4276                 err = -ERANGE;
4277                 goto out_len;
4278         }
4279
4280         if (copy_to_user(optval, scontext, scontext_len))
4281                 err = -EFAULT;
4282
4283 out_len:
4284         if (put_user(scontext_len, optlen))
4285                 err = -EFAULT;
4286
4287         kfree(scontext);
4288 out:
4289         return err;
4290 }
4291
4292 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4293 {
4294         u32 peer_secid = SECSID_NULL;
4295         u16 family;
4296
4297         if (skb && skb->protocol == htons(ETH_P_IP))
4298                 family = PF_INET;
4299         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4300                 family = PF_INET6;
4301         else if (sock)
4302                 family = sock->sk->sk_family;
4303         else
4304                 goto out;
4305
4306         if (sock && family == PF_UNIX)
4307                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4308         else if (skb)
4309                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4310
4311 out:
4312         *secid = peer_secid;
4313         if (peer_secid == SECSID_NULL)
4314                 return -EINVAL;
4315         return 0;
4316 }
4317
4318 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4319 {
4320         return sk_alloc_security(sk, family, priority);
4321 }
4322
4323 static void selinux_sk_free_security(struct sock *sk)
4324 {
4325         sk_free_security(sk);
4326 }
4327
4328 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4329 {
4330         struct sk_security_struct *ssec = sk->sk_security;
4331         struct sk_security_struct *newssec = newsk->sk_security;
4332
4333         newssec->sid = ssec->sid;
4334         newssec->peer_sid = ssec->peer_sid;
4335         newssec->sclass = ssec->sclass;
4336
4337         selinux_netlbl_sk_security_reset(newssec, newsk->sk_family);
4338 }
4339
4340 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4341 {
4342         if (!sk)
4343                 *secid = SECINITSID_ANY_SOCKET;
4344         else {
4345                 struct sk_security_struct *sksec = sk->sk_security;
4346
4347                 *secid = sksec->sid;
4348         }
4349 }
4350
4351 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4352 {
4353         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4354         struct sk_security_struct *sksec = sk->sk_security;
4355
4356         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4357             sk->sk_family == PF_UNIX)
4358                 isec->sid = sksec->sid;
4359         sksec->sclass = isec->sclass;
4360 }
4361
4362 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4363                                      struct request_sock *req)
4364 {
4365         struct sk_security_struct *sksec = sk->sk_security;
4366         int err;
4367         u16 family = sk->sk_family;
4368         u32 newsid;
4369         u32 peersid;
4370
4371         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4372         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4373                 family = PF_INET;
4374
4375         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4376         if (err)
4377                 return err;
4378         if (peersid == SECSID_NULL) {
4379                 req->secid = sksec->sid;
4380                 req->peer_secid = SECSID_NULL;
4381                 return 0;
4382         }
4383
4384         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4385         if (err)
4386                 return err;
4387
4388         req->secid = newsid;
4389         req->peer_secid = peersid;
4390         return 0;
4391 }
4392
4393 static void selinux_inet_csk_clone(struct sock *newsk,
4394                                    const struct request_sock *req)
4395 {
4396         struct sk_security_struct *newsksec = newsk->sk_security;
4397
4398         newsksec->sid = req->secid;
4399         newsksec->peer_sid = req->peer_secid;
4400         /* NOTE: Ideally, we should also get the isec->sid for the
4401            new socket in sync, but we don't have the isec available yet.
4402            So we will wait until sock_graft to do it, by which
4403            time it will have been created and available. */
4404
4405         /* We don't need to take any sort of lock here as we are the only
4406          * thread with access to newsksec */
4407         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4408 }
4409
4410 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4411 {
4412         u16 family = sk->sk_family;
4413         struct sk_security_struct *sksec = sk->sk_security;
4414
4415         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4416         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4417                 family = PF_INET;
4418
4419         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4420
4421         selinux_netlbl_inet_conn_established(sk, family);
4422 }
4423
4424 static void selinux_req_classify_flow(const struct request_sock *req,
4425                                       struct flowi *fl)
4426 {
4427         fl->secid = req->secid;
4428 }
4429
4430 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4431 {
4432         int err = 0;
4433         u32 perm;
4434         struct nlmsghdr *nlh;
4435         struct socket *sock = sk->sk_socket;
4436         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4437
4438         if (skb->len < NLMSG_SPACE(0)) {
4439                 err = -EINVAL;
4440                 goto out;
4441         }
4442         nlh = nlmsg_hdr(skb);
4443
4444         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4445         if (err) {
4446                 if (err == -EINVAL) {
4447                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4448                                   "SELinux:  unrecognized netlink message"
4449                                   " type=%hu for sclass=%hu\n",
4450                                   nlh->nlmsg_type, isec->sclass);
4451                         if (!selinux_enforcing || security_get_allow_unknown())
4452                                 err = 0;
4453                 }
4454
4455                 /* Ignore */
4456                 if (err == -ENOENT)
4457                         err = 0;
4458                 goto out;
4459         }
4460
4461         err = socket_has_perm(current, sock, perm);
4462 out:
4463         return err;
4464 }
4465
4466 #ifdef CONFIG_NETFILTER
4467
4468 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4469                                        u16 family)
4470 {
4471         int err;
4472         char *addrp;
4473         u32 peer_sid;
4474         struct avc_audit_data ad;
4475         u8 secmark_active;
4476         u8 netlbl_active;
4477         u8 peerlbl_active;
4478
4479         if (!selinux_policycap_netpeer)
4480                 return NF_ACCEPT;
4481
4482         secmark_active = selinux_secmark_enabled();
4483         netlbl_active = netlbl_enabled();
4484         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4485         if (!secmark_active && !peerlbl_active)
4486                 return NF_ACCEPT;
4487
4488         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4489                 return NF_DROP;
4490
4491         AVC_AUDIT_DATA_INIT(&ad, NET);
4492         ad.u.net.netif = ifindex;
4493         ad.u.net.family = family;
4494         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4495                 return NF_DROP;
4496
4497         if (peerlbl_active) {
4498                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4499                                                peer_sid, &ad);
4500                 if (err) {
4501                         selinux_netlbl_err(skb, err, 1);
4502                         return NF_DROP;
4503                 }
4504         }
4505
4506         if (secmark_active)
4507                 if (avc_has_perm(peer_sid, skb->secmark,
4508                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4509                         return NF_DROP;
4510
4511         if (netlbl_active)
4512                 /* we do this in the FORWARD path and not the POST_ROUTING
4513                  * path because we want to make sure we apply the necessary
4514                  * labeling before IPsec is applied so we can leverage AH
4515                  * protection */
4516                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4517                         return NF_DROP;
4518
4519         return NF_ACCEPT;
4520 }
4521
4522 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4523                                          struct sk_buff *skb,
4524                                          const struct net_device *in,
4525                                          const struct net_device *out,
4526                                          int (*okfn)(struct sk_buff *))
4527 {
4528         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4529 }
4530
4531 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4532 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4533                                          struct sk_buff *skb,
4534                                          const struct net_device *in,
4535                                          const struct net_device *out,
4536                                          int (*okfn)(struct sk_buff *))
4537 {
4538         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4539 }
4540 #endif  /* IPV6 */
4541
4542 static unsigned int selinux_ip_output(struct sk_buff *skb,
4543                                       u16 family)
4544 {
4545         u32 sid;
4546
4547         if (!netlbl_enabled())
4548                 return NF_ACCEPT;
4549
4550         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4551          * because we want to make sure we apply the necessary labeling
4552          * before IPsec is applied so we can leverage AH protection */
4553         if (skb->sk) {
4554                 struct sk_security_struct *sksec = skb->sk->sk_security;
4555                 sid = sksec->sid;
4556         } else
4557                 sid = SECINITSID_KERNEL;
4558         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4559                 return NF_DROP;
4560
4561         return NF_ACCEPT;
4562 }
4563
4564 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4565                                         struct sk_buff *skb,
4566                                         const struct net_device *in,
4567                                         const struct net_device *out,
4568                                         int (*okfn)(struct sk_buff *))
4569 {
4570         return selinux_ip_output(skb, PF_INET);
4571 }
4572
4573 static int selinux_ip_postroute_iptables_compat(struct sock *sk,
4574                                                 int ifindex,
4575                                                 struct avc_audit_data *ad,
4576                                                 u16 family, char *addrp)
4577 {
4578         int err;
4579         struct sk_security_struct *sksec = sk->sk_security;
4580         u16 sk_class;
4581         u32 netif_perm, node_perm, send_perm;
4582         u32 port_sid, node_sid, if_sid, sk_sid;
4583
4584         sk_sid = sksec->sid;
4585         sk_class = sksec->sclass;
4586
4587         switch (sk_class) {
4588         case SECCLASS_UDP_SOCKET:
4589                 netif_perm = NETIF__UDP_SEND;
4590                 node_perm = NODE__UDP_SEND;
4591                 send_perm = UDP_SOCKET__SEND_MSG;
4592                 break;
4593         case SECCLASS_TCP_SOCKET:
4594                 netif_perm = NETIF__TCP_SEND;
4595                 node_perm = NODE__TCP_SEND;
4596                 send_perm = TCP_SOCKET__SEND_MSG;
4597                 break;
4598         case SECCLASS_DCCP_SOCKET:
4599                 netif_perm = NETIF__DCCP_SEND;
4600                 node_perm = NODE__DCCP_SEND;
4601                 send_perm = DCCP_SOCKET__SEND_MSG;
4602                 break;
4603         default:
4604                 netif_perm = NETIF__RAWIP_SEND;
4605                 node_perm = NODE__RAWIP_SEND;
4606                 send_perm = 0;
4607                 break;
4608         }
4609
4610         err = sel_netif_sid(ifindex, &if_sid);
4611         if (err)
4612                 return err;
4613         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4614                 return err;
4615
4616         err = sel_netnode_sid(addrp, family, &node_sid);
4617         if (err)
4618                 return err;
4619         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4620         if (err)
4621                 return err;
4622
4623         if (send_perm != 0)
4624                 return 0;
4625
4626         err = sel_netport_sid(sk->sk_protocol,
4627                               ntohs(ad->u.net.dport), &port_sid);
4628         if (unlikely(err)) {
4629                 printk(KERN_WARNING
4630                        "SELinux: failure in"
4631                        " selinux_ip_postroute_iptables_compat(),"
4632                        " network port label not found\n");
4633                 return err;
4634         }
4635         return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad);
4636 }
4637
4638 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4639                                                 int ifindex,
4640                                                 u16 family)
4641 {
4642         struct sock *sk = skb->sk;
4643         struct sk_security_struct *sksec;
4644         struct avc_audit_data ad;
4645         char *addrp;
4646         u8 proto;
4647
4648         if (sk == NULL)
4649                 return NF_ACCEPT;
4650         sksec = sk->sk_security;
4651
4652         AVC_AUDIT_DATA_INIT(&ad, NET);
4653         ad.u.net.netif = ifindex;
4654         ad.u.net.family = family;
4655         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4656                 return NF_DROP;
4657
4658         if (selinux_compat_net) {
4659                 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex,
4660                                                          &ad, family, addrp))
4661                         return NF_DROP;
4662         } else if (selinux_secmark_enabled()) {
4663                 if (avc_has_perm(sksec->sid, skb->secmark,
4664                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4665                         return NF_DROP;
4666         }
4667
4668         if (selinux_policycap_netpeer)
4669                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4670                         return NF_DROP;
4671
4672         return NF_ACCEPT;
4673 }
4674
4675 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4676                                          u16 family)
4677 {
4678         u32 secmark_perm;
4679         u32 peer_sid;
4680         struct sock *sk;
4681         struct avc_audit_data ad;
4682         char *addrp;
4683         u8 secmark_active;
4684         u8 peerlbl_active;
4685
4686         /* If any sort of compatibility mode is enabled then handoff processing
4687          * to the selinux_ip_postroute_compat() function to deal with the
4688          * special handling.  We do this in an attempt to keep this function
4689          * as fast and as clean as possible. */
4690         if (selinux_compat_net || !selinux_policycap_netpeer)
4691                 return selinux_ip_postroute_compat(skb, ifindex, family);
4692 #ifdef CONFIG_XFRM
4693         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4694          * packet transformation so allow the packet to pass without any checks
4695          * since we'll have another chance to perform access control checks
4696          * when the packet is on it's final way out.
4697          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4698          *       is NULL, in this case go ahead and apply access control. */
4699         if (skb->dst != NULL && skb->dst->xfrm != NULL)
4700                 return NF_ACCEPT;
4701 #endif
4702         secmark_active = selinux_secmark_enabled();
4703         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4704         if (!secmark_active && !peerlbl_active)
4705                 return NF_ACCEPT;
4706
4707         /* if the packet is being forwarded then get the peer label from the
4708          * packet itself; otherwise check to see if it is from a local
4709          * application or the kernel, if from an application get the peer label
4710          * from the sending socket, otherwise use the kernel's sid */
4711         sk = skb->sk;
4712         if (sk == NULL) {
4713                 switch (family) {
4714                 case PF_INET:
4715                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4716                                 secmark_perm = PACKET__FORWARD_OUT;
4717                         else
4718                                 secmark_perm = PACKET__SEND;
4719                         break;
4720                 case PF_INET6:
4721                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4722                                 secmark_perm = PACKET__FORWARD_OUT;
4723                         else
4724                                 secmark_perm = PACKET__SEND;
4725                         break;
4726                 default:
4727                         return NF_DROP;
4728                 }
4729                 if (secmark_perm == PACKET__FORWARD_OUT) {
4730                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4731                                 return NF_DROP;
4732                 } else
4733                         peer_sid = SECINITSID_KERNEL;
4734         } else {
4735                 struct sk_security_struct *sksec = sk->sk_security;
4736                 peer_sid = sksec->sid;
4737                 secmark_perm = PACKET__SEND;
4738         }
4739
4740         AVC_AUDIT_DATA_INIT(&ad, NET);
4741         ad.u.net.netif = ifindex;
4742         ad.u.net.family = family;
4743         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4744                 return NF_DROP;
4745
4746         if (secmark_active)
4747                 if (avc_has_perm(peer_sid, skb->secmark,
4748                                  SECCLASS_PACKET, secmark_perm, &ad))
4749                         return NF_DROP;
4750
4751         if (peerlbl_active) {
4752                 u32 if_sid;
4753                 u32 node_sid;
4754
4755                 if (sel_netif_sid(ifindex, &if_sid))
4756                         return NF_DROP;
4757                 if (avc_has_perm(peer_sid, if_sid,
4758                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4759                         return NF_DROP;
4760
4761                 if (sel_netnode_sid(addrp, family, &node_sid))
4762                         return NF_DROP;
4763                 if (avc_has_perm(peer_sid, node_sid,
4764                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4765                         return NF_DROP;
4766         }
4767
4768         return NF_ACCEPT;
4769 }
4770
4771 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4772                                            struct sk_buff *skb,
4773                                            const struct net_device *in,
4774                                            const struct net_device *out,
4775                                            int (*okfn)(struct sk_buff *))
4776 {
4777         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4778 }
4779
4780 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4781 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4782                                            struct sk_buff *skb,
4783                                            const struct net_device *in,
4784                                            const struct net_device *out,
4785                                            int (*okfn)(struct sk_buff *))
4786 {
4787         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4788 }
4789 #endif  /* IPV6 */
4790
4791 #endif  /* CONFIG_NETFILTER */
4792
4793 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4794 {
4795         int err;
4796
4797         err = secondary_ops->netlink_send(sk, skb);
4798         if (err)
4799                 return err;
4800
4801         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4802                 err = selinux_nlmsg_perm(sk, skb);
4803
4804         return err;
4805 }
4806
4807 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4808 {
4809         int err;
4810         struct avc_audit_data ad;
4811
4812         err = secondary_ops->netlink_recv(skb, capability);
4813         if (err)
4814                 return err;
4815
4816         AVC_AUDIT_DATA_INIT(&ad, CAP);
4817         ad.u.cap = capability;
4818
4819         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4820                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4821 }
4822
4823 static int ipc_alloc_security(struct task_struct *task,
4824                               struct kern_ipc_perm *perm,
4825                               u16 sclass)
4826 {
4827         struct ipc_security_struct *isec;
4828         u32 sid;
4829
4830         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4831         if (!isec)
4832                 return -ENOMEM;
4833
4834         sid = task_sid(task);
4835         isec->sclass = sclass;
4836         isec->sid = sid;
4837         perm->security = isec;
4838
4839         return 0;
4840 }
4841
4842 static void ipc_free_security(struct kern_ipc_perm *perm)
4843 {
4844         struct ipc_security_struct *isec = perm->security;
4845         perm->security = NULL;
4846         kfree(isec);
4847 }
4848
4849 static int msg_msg_alloc_security(struct msg_msg *msg)
4850 {
4851         struct msg_security_struct *msec;
4852
4853         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4854         if (!msec)
4855                 return -ENOMEM;
4856
4857         msec->sid = SECINITSID_UNLABELED;
4858         msg->security = msec;
4859
4860         return 0;
4861 }
4862
4863 static void msg_msg_free_security(struct msg_msg *msg)
4864 {
4865         struct msg_security_struct *msec = msg->security;
4866
4867         msg->security = NULL;
4868         kfree(msec);
4869 }
4870
4871 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4872                         u32 perms)
4873 {
4874         struct ipc_security_struct *isec;
4875         struct avc_audit_data ad;
4876         u32 sid = current_sid();
4877
4878         isec = ipc_perms->security;
4879
4880         AVC_AUDIT_DATA_INIT(&ad, IPC);
4881         ad.u.ipc_id = ipc_perms->key;
4882
4883         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4884 }
4885
4886 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4887 {
4888         return msg_msg_alloc_security(msg);
4889 }
4890
4891 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4892 {
4893         msg_msg_free_security(msg);
4894 }
4895
4896 /* message queue security operations */
4897 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4898 {
4899         struct ipc_security_struct *isec;
4900         struct avc_audit_data ad;
4901         u32 sid = current_sid();
4902         int rc;
4903
4904         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4905         if (rc)
4906                 return rc;
4907
4908         isec = msq->q_perm.security;
4909
4910         AVC_AUDIT_DATA_INIT(&ad, IPC);
4911         ad.u.ipc_id = msq->q_perm.key;
4912
4913         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4914                           MSGQ__CREATE, &ad);
4915         if (rc) {
4916                 ipc_free_security(&msq->q_perm);
4917                 return rc;
4918         }
4919         return 0;
4920 }
4921
4922 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4923 {
4924         ipc_free_security(&msq->q_perm);
4925 }
4926
4927 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4928 {
4929         struct ipc_security_struct *isec;
4930         struct avc_audit_data ad;
4931         u32 sid = current_sid();
4932
4933         isec = msq->q_perm.security;
4934
4935         AVC_AUDIT_DATA_INIT(&ad, IPC);
4936         ad.u.ipc_id = msq->q_perm.key;
4937
4938         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4939                             MSGQ__ASSOCIATE, &ad);
4940 }
4941
4942 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4943 {
4944         int err;
4945         int perms;
4946
4947         switch (cmd) {
4948         case IPC_INFO:
4949         case MSG_INFO:
4950                 /* No specific object, just general system-wide information. */
4951                 return task_has_system(current, SYSTEM__IPC_INFO);
4952         case IPC_STAT:
4953         case MSG_STAT:
4954                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4955                 break;
4956         case IPC_SET:
4957                 perms = MSGQ__SETATTR;
4958                 break;
4959         case IPC_RMID:
4960                 perms = MSGQ__DESTROY;
4961                 break;
4962         default:
4963                 return 0;
4964         }
4965
4966         err = ipc_has_perm(&msq->q_perm, perms);
4967         return err;
4968 }
4969
4970 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4971 {
4972         struct ipc_security_struct *isec;
4973         struct msg_security_struct *msec;
4974         struct avc_audit_data ad;
4975         u32 sid = current_sid();
4976         int rc;
4977
4978         isec = msq->q_perm.security;
4979         msec = msg->security;
4980
4981         /*
4982          * First time through, need to assign label to the message
4983          */
4984         if (msec->sid == SECINITSID_UNLABELED) {
4985                 /*
4986                  * Compute new sid based on current process and
4987                  * message queue this message will be stored in
4988                  */
4989                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4990                                              &msec->sid);
4991                 if (rc)
4992                         return rc;
4993         }
4994
4995         AVC_AUDIT_DATA_INIT(&ad, IPC);
4996         ad.u.ipc_id = msq->q_perm.key;
4997
4998         /* Can this process write to the queue? */
4999         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5000                           MSGQ__WRITE, &ad);
5001         if (!rc)
5002                 /* Can this process send the message */
5003                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5004                                   MSG__SEND, &ad);
5005         if (!rc)
5006                 /* Can the message be put in the queue? */
5007                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5008                                   MSGQ__ENQUEUE, &ad);
5009
5010         return rc;
5011 }
5012
5013 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5014                                     struct task_struct *target,
5015                                     long type, int mode)
5016 {
5017         struct ipc_security_struct *isec;
5018         struct msg_security_struct *msec;
5019         struct avc_audit_data ad;
5020         u32 sid = task_sid(target);
5021         int rc;
5022
5023         isec = msq->q_perm.security;
5024         msec = msg->security;
5025
5026         AVC_AUDIT_DATA_INIT(&ad, IPC);
5027         ad.u.ipc_id = msq->q_perm.key;
5028
5029         rc = avc_has_perm(sid, isec->sid,
5030                           SECCLASS_MSGQ, MSGQ__READ, &ad);
5031         if (!rc)
5032                 rc = avc_has_perm(sid, msec->sid,
5033                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
5034         return rc;
5035 }
5036
5037 /* Shared Memory security operations */
5038 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5039 {
5040         struct ipc_security_struct *isec;
5041         struct avc_audit_data ad;
5042         u32 sid = current_sid();
5043         int rc;
5044
5045         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5046         if (rc)
5047                 return rc;
5048
5049         isec = shp->shm_perm.security;
5050
5051         AVC_AUDIT_DATA_INIT(&ad, IPC);
5052         ad.u.ipc_id = shp->shm_perm.key;
5053
5054         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5055                           SHM__CREATE, &ad);
5056         if (rc) {
5057                 ipc_free_security(&shp->shm_perm);
5058                 return rc;
5059         }
5060         return 0;
5061 }
5062
5063 static void selinux_shm_free_security(struct shmid_kernel *shp)
5064 {
5065         ipc_free_security(&shp->shm_perm);
5066 }
5067
5068 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5069 {
5070         struct ipc_security_struct *isec;
5071         struct avc_audit_data ad;
5072         u32 sid = current_sid();
5073
5074         isec = shp->shm_perm.security;
5075
5076         AVC_AUDIT_DATA_INIT(&ad, IPC);
5077         ad.u.ipc_id = shp->shm_perm.key;
5078
5079         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5080                             SHM__ASSOCIATE, &ad);
5081 }
5082
5083 /* Note, at this point, shp is locked down */
5084 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5085 {
5086         int perms;
5087         int err;
5088
5089         switch (cmd) {
5090         case IPC_INFO:
5091         case SHM_INFO:
5092                 /* No specific object, just general system-wide information. */
5093                 return task_has_system(current, SYSTEM__IPC_INFO);
5094         case IPC_STAT:
5095         case SHM_STAT:
5096                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5097                 break;
5098         case IPC_SET:
5099                 perms = SHM__SETATTR;
5100                 break;
5101         case SHM_LOCK:
5102         case SHM_UNLOCK:
5103                 perms = SHM__LOCK;
5104                 break;
5105         case IPC_RMID:
5106                 perms = SHM__DESTROY;
5107                 break;
5108         default:
5109                 return 0;
5110         }
5111
5112         err = ipc_has_perm(&shp->shm_perm, perms);
5113         return err;
5114 }
5115
5116 static int selinux_shm_shmat(struct shmid_kernel *shp,
5117                              char __user *shmaddr, int shmflg)
5118 {
5119         u32 perms;
5120         int rc;
5121
5122         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
5123         if (rc)
5124                 return rc;
5125
5126         if (shmflg & SHM_RDONLY)
5127                 perms = SHM__READ;
5128         else
5129                 perms = SHM__READ | SHM__WRITE;
5130
5131         return ipc_has_perm(&shp->shm_perm, perms);
5132 }
5133
5134 /* Semaphore security operations */
5135 static int selinux_sem_alloc_security(struct sem_array *sma)
5136 {
5137         struct ipc_security_struct *isec;
5138         struct avc_audit_data ad;
5139         u32 sid = current_sid();
5140         int rc;
5141
5142         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5143         if (rc)
5144                 return rc;
5145
5146         isec = sma->sem_perm.security;
5147
5148         AVC_AUDIT_DATA_INIT(&ad, IPC);
5149         ad.u.ipc_id = sma->sem_perm.key;
5150
5151         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5152                           SEM__CREATE, &ad);
5153         if (rc) {
5154                 ipc_free_security(&sma->sem_perm);
5155                 return rc;
5156         }
5157         return 0;
5158 }
5159
5160 static void selinux_sem_free_security(struct sem_array *sma)
5161 {
5162         ipc_free_security(&sma->sem_perm);
5163 }
5164
5165 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5166 {
5167         struct ipc_security_struct *isec;
5168         struct avc_audit_data ad;
5169         u32 sid = current_sid();
5170
5171         isec = sma->sem_perm.security;
5172
5173         AVC_AUDIT_DATA_INIT(&ad, IPC);
5174         ad.u.ipc_id = sma->sem_perm.key;
5175
5176         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5177                             SEM__ASSOCIATE, &ad);
5178 }
5179
5180 /* Note, at this point, sma is locked down */
5181 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5182 {
5183         int err;
5184         u32 perms;
5185
5186         switch (cmd) {
5187         case IPC_INFO:
5188         case SEM_INFO:
5189                 /* No specific object, just general system-wide information. */
5190                 return task_has_system(current, SYSTEM__IPC_INFO);
5191         case GETPID:
5192         case GETNCNT:
5193         case GETZCNT:
5194                 perms = SEM__GETATTR;
5195                 break;
5196         case GETVAL:
5197         case GETALL:
5198                 perms = SEM__READ;
5199                 break;
5200         case SETVAL:
5201         case SETALL:
5202                 perms = SEM__WRITE;
5203                 break;
5204         case IPC_RMID:
5205                 perms = SEM__DESTROY;
5206                 break;
5207         case IPC_SET:
5208                 perms = SEM__SETATTR;
5209                 break;
5210         case IPC_STAT:
5211         case SEM_STAT:
5212                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5213                 break;
5214         default:
5215                 return 0;
5216         }
5217
5218         err = ipc_has_perm(&sma->sem_perm, perms);
5219         return err;
5220 }
5221
5222 static int selinux_sem_semop(struct sem_array *sma,
5223                              struct sembuf *sops, unsigned nsops, int alter)
5224 {
5225         u32 perms;
5226
5227         if (alter)
5228                 perms = SEM__READ | SEM__WRITE;
5229         else
5230                 perms = SEM__READ;
5231
5232         return ipc_has_perm(&sma->sem_perm, perms);
5233 }
5234
5235 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5236 {
5237         u32 av = 0;
5238
5239         av = 0;
5240         if (flag & S_IRUGO)
5241                 av |= IPC__UNIX_READ;
5242         if (flag & S_IWUGO)
5243                 av |= IPC__UNIX_WRITE;
5244
5245         if (av == 0)
5246                 return 0;
5247
5248         return ipc_has_perm(ipcp, av);
5249 }
5250
5251 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5252 {
5253         struct ipc_security_struct *isec = ipcp->security;
5254         *secid = isec->sid;
5255 }
5256
5257 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5258 {
5259         if (inode)
5260                 inode_doinit_with_dentry(inode, dentry);
5261 }
5262
5263 static int selinux_getprocattr(struct task_struct *p,
5264                                char *name, char **value)
5265 {
5266         const struct task_security_struct *__tsec;
5267         u32 sid;
5268         int error;
5269         unsigned len;
5270
5271         if (current != p) {
5272                 error = current_has_perm(p, PROCESS__GETATTR);
5273                 if (error)
5274                         return error;
5275         }
5276
5277         rcu_read_lock();
5278         __tsec = __task_cred(p)->security;
5279
5280         if (!strcmp(name, "current"))
5281                 sid = __tsec->sid;
5282         else if (!strcmp(name, "prev"))
5283                 sid = __tsec->osid;
5284         else if (!strcmp(name, "exec"))
5285                 sid = __tsec->exec_sid;
5286         else if (!strcmp(name, "fscreate"))
5287                 sid = __tsec->create_sid;
5288         else if (!strcmp(name, "keycreate"))
5289                 sid = __tsec->keycreate_sid;
5290         else if (!strcmp(name, "sockcreate"))
5291                 sid = __tsec->sockcreate_sid;
5292         else
5293                 goto invalid;
5294         rcu_read_unlock();
5295
5296         if (!sid)
5297                 return 0;
5298
5299         error = security_sid_to_context(sid, value, &len);
5300         if (error)
5301                 return error;
5302         return len;
5303
5304 invalid:
5305         rcu_read_unlock();
5306         return -EINVAL;
5307 }
5308
5309 static int selinux_setprocattr(struct task_struct *p,
5310                                char *name, void *value, size_t size)
5311 {
5312         struct task_security_struct *tsec;
5313         struct task_struct *tracer;
5314         struct cred *new;
5315         u32 sid = 0, ptsid;
5316         int error;
5317         char *str = value;
5318
5319         if (current != p) {
5320                 /* SELinux only allows a process to change its own
5321                    security attributes. */
5322                 return -EACCES;
5323         }
5324
5325         /*
5326          * Basic control over ability to set these attributes at all.
5327          * current == p, but we'll pass them separately in case the
5328          * above restriction is ever removed.
5329          */
5330         if (!strcmp(name, "exec"))
5331                 error = current_has_perm(p, PROCESS__SETEXEC);
5332         else if (!strcmp(name, "fscreate"))
5333                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5334         else if (!strcmp(name, "keycreate"))
5335                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5336         else if (!strcmp(name, "sockcreate"))
5337                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5338         else if (!strcmp(name, "current"))
5339                 error = current_has_perm(p, PROCESS__SETCURRENT);
5340         else
5341                 error = -EINVAL;
5342         if (error)
5343                 return error;
5344
5345         /* Obtain a SID for the context, if one was specified. */
5346         if (size && str[1] && str[1] != '\n') {
5347                 if (str[size-1] == '\n') {
5348                         str[size-1] = 0;
5349                         size--;
5350                 }
5351                 error = security_context_to_sid(value, size, &sid);
5352                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5353                         if (!capable(CAP_MAC_ADMIN))
5354                                 return error;
5355                         error = security_context_to_sid_force(value, size,
5356                                                               &sid);
5357                 }
5358                 if (error)
5359                         return error;
5360         }
5361
5362         new = prepare_creds();
5363         if (!new)
5364                 return -ENOMEM;
5365
5366         /* Permission checking based on the specified context is
5367            performed during the actual operation (execve,
5368            open/mkdir/...), when we know the full context of the
5369            operation.  See selinux_bprm_set_creds for the execve
5370            checks and may_create for the file creation checks. The
5371            operation will then fail if the context is not permitted. */
5372         tsec = new->security;
5373         if (!strcmp(name, "exec")) {
5374                 tsec->exec_sid = sid;
5375         } else if (!strcmp(name, "fscreate")) {
5376                 tsec->create_sid = sid;
5377         } else if (!strcmp(name, "keycreate")) {
5378                 error = may_create_key(sid, p);
5379                 if (error)
5380                         goto abort_change;
5381                 tsec->keycreate_sid = sid;
5382         } else if (!strcmp(name, "sockcreate")) {
5383                 tsec->sockcreate_sid = sid;
5384         } else if (!strcmp(name, "current")) {
5385                 error = -EINVAL;
5386                 if (sid == 0)
5387                         goto abort_change;
5388
5389                 /* Only allow single threaded processes to change context */
5390                 error = -EPERM;
5391                 if (!is_single_threaded(p)) {
5392                         error = security_bounded_transition(tsec->sid, sid);
5393                         if (error)
5394                                 goto abort_change;
5395                 }
5396
5397                 /* Check permissions for the transition. */
5398                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5399                                      PROCESS__DYNTRANSITION, NULL);
5400                 if (error)
5401                         goto abort_change;
5402
5403                 /* Check for ptracing, and update the task SID if ok.
5404                    Otherwise, leave SID unchanged and fail. */
5405                 ptsid = 0;
5406                 task_lock(p);
5407                 tracer = tracehook_tracer_task(p);
5408                 if (tracer)
5409                         ptsid = task_sid(tracer);
5410                 task_unlock(p);
5411
5412                 if (tracer) {
5413                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5414                                              PROCESS__PTRACE, NULL);
5415                         if (error)
5416                                 goto abort_change;
5417                 }
5418
5419                 tsec->sid = sid;
5420         } else {
5421                 error = -EINVAL;
5422                 goto abort_change;
5423         }
5424
5425         commit_creds(new);
5426         return size;
5427
5428 abort_change:
5429         abort_creds(new);
5430         return error;
5431 }
5432
5433 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5434 {
5435         return security_sid_to_context(secid, secdata, seclen);
5436 }
5437
5438 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5439 {
5440         return security_context_to_sid(secdata, seclen, secid);
5441 }
5442
5443 static void selinux_release_secctx(char *secdata, u32 seclen)
5444 {
5445         kfree(secdata);
5446 }
5447
5448 #ifdef CONFIG_KEYS
5449
5450 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5451                              unsigned long flags)
5452 {
5453         const struct task_security_struct *tsec;
5454         struct key_security_struct *ksec;
5455
5456         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5457         if (!ksec)
5458                 return -ENOMEM;
5459
5460         tsec = cred->security;
5461         if (tsec->keycreate_sid)
5462                 ksec->sid = tsec->keycreate_sid;
5463         else
5464                 ksec->sid = tsec->sid;
5465
5466         k->security = ksec;
5467         return 0;
5468 }
5469
5470 static void selinux_key_free(struct key *k)
5471 {
5472         struct key_security_struct *ksec = k->security;
5473
5474         k->security = NULL;
5475         kfree(ksec);
5476 }
5477
5478 static int selinux_key_permission(key_ref_t key_ref,
5479                                   const struct cred *cred,
5480                                   key_perm_t perm)
5481 {
5482         struct key *key;
5483         struct key_security_struct *ksec;
5484         u32 sid;
5485
5486         /* if no specific permissions are requested, we skip the
5487            permission check. No serious, additional covert channels
5488            appear to be created. */
5489         if (perm == 0)
5490                 return 0;
5491
5492         sid = cred_sid(cred);
5493
5494         key = key_ref_to_ptr(key_ref);
5495         ksec = key->security;
5496
5497         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5498 }
5499
5500 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5501 {
5502         struct key_security_struct *ksec = key->security;
5503         char *context = NULL;
5504         unsigned len;
5505         int rc;
5506
5507         rc = security_sid_to_context(ksec->sid, &context, &len);
5508         if (!rc)
5509                 rc = len;
5510         *_buffer = context;
5511         return rc;
5512 }
5513
5514 #endif
5515
5516 static struct security_operations selinux_ops = {
5517         .name =                         "selinux",
5518
5519         .ptrace_may_access =            selinux_ptrace_may_access,
5520         .ptrace_traceme =               selinux_ptrace_traceme,
5521         .capget =                       selinux_capget,
5522         .capset =                       selinux_capset,
5523         .sysctl =                       selinux_sysctl,
5524         .capable =                      selinux_capable,
5525         .quotactl =                     selinux_quotactl,
5526         .quota_on =                     selinux_quota_on,
5527         .syslog =                       selinux_syslog,
5528         .vm_enough_memory =             selinux_vm_enough_memory,
5529
5530         .netlink_send =                 selinux_netlink_send,
5531         .netlink_recv =                 selinux_netlink_recv,
5532
5533         .bprm_set_creds =               selinux_bprm_set_creds,
5534         .bprm_committing_creds =        selinux_bprm_committing_creds,
5535         .bprm_committed_creds =         selinux_bprm_committed_creds,
5536         .bprm_secureexec =              selinux_bprm_secureexec,
5537
5538         .sb_alloc_security =            selinux_sb_alloc_security,
5539         .sb_free_security =             selinux_sb_free_security,
5540         .sb_copy_data =                 selinux_sb_copy_data,
5541         .sb_kern_mount =                selinux_sb_kern_mount,
5542         .sb_show_options =              selinux_sb_show_options,
5543         .sb_statfs =                    selinux_sb_statfs,
5544         .sb_mount =                     selinux_mount,
5545         .sb_umount =                    selinux_umount,
5546         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5547         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5548         .sb_parse_opts_str =            selinux_parse_opts_str,
5549
5550
5551         .inode_alloc_security =         selinux_inode_alloc_security,
5552         .inode_free_security =          selinux_inode_free_security,
5553         .inode_init_security =          selinux_inode_init_security,
5554         .inode_create =                 selinux_inode_create,
5555         .inode_link =                   selinux_inode_link,
5556         .inode_unlink =                 selinux_inode_unlink,
5557         .inode_symlink =                selinux_inode_symlink,
5558         .inode_mkdir =                  selinux_inode_mkdir,
5559         .inode_rmdir =                  selinux_inode_rmdir,
5560         .inode_mknod =                  selinux_inode_mknod,
5561         .inode_rename =                 selinux_inode_rename,
5562         .inode_readlink =               selinux_inode_readlink,
5563         .inode_follow_link =            selinux_inode_follow_link,
5564         .inode_permission =             selinux_inode_permission,
5565         .inode_setattr =                selinux_inode_setattr,
5566         .inode_getattr =                selinux_inode_getattr,
5567         .inode_setxattr =               selinux_inode_setxattr,
5568         .inode_post_setxattr =          selinux_inode_post_setxattr,
5569         .inode_getxattr =               selinux_inode_getxattr,
5570         .inode_listxattr =              selinux_inode_listxattr,
5571         .inode_removexattr =            selinux_inode_removexattr,
5572         .inode_getsecurity =            selinux_inode_getsecurity,
5573         .inode_setsecurity =            selinux_inode_setsecurity,
5574         .inode_listsecurity =           selinux_inode_listsecurity,
5575         .inode_need_killpriv =          selinux_inode_need_killpriv,
5576         .inode_killpriv =               selinux_inode_killpriv,
5577         .inode_getsecid =               selinux_inode_getsecid,
5578
5579         .file_permission =              selinux_file_permission,
5580         .file_alloc_security =          selinux_file_alloc_security,
5581         .file_free_security =           selinux_file_free_security,
5582         .file_ioctl =                   selinux_file_ioctl,
5583         .file_mmap =                    selinux_file_mmap,
5584         .file_mprotect =                selinux_file_mprotect,
5585         .file_lock =                    selinux_file_lock,
5586         .file_fcntl =                   selinux_file_fcntl,
5587         .file_set_fowner =              selinux_file_set_fowner,
5588         .file_send_sigiotask =          selinux_file_send_sigiotask,
5589         .file_receive =                 selinux_file_receive,
5590
5591         .dentry_open =                  selinux_dentry_open,
5592
5593         .task_create =                  selinux_task_create,
5594         .cred_free =                    selinux_cred_free,
5595         .cred_prepare =                 selinux_cred_prepare,
5596         .kernel_act_as =                selinux_kernel_act_as,
5597         .kernel_create_files_as =       selinux_kernel_create_files_as,
5598         .task_setuid =                  selinux_task_setuid,
5599         .task_fix_setuid =              selinux_task_fix_setuid,
5600         .task_setgid =                  selinux_task_setgid,
5601         .task_setpgid =                 selinux_task_setpgid,
5602         .task_getpgid =                 selinux_task_getpgid,
5603         .task_getsid =                  selinux_task_getsid,
5604         .task_getsecid =                selinux_task_getsecid,
5605         .task_setgroups =               selinux_task_setgroups,
5606         .task_setnice =                 selinux_task_setnice,
5607         .task_setioprio =               selinux_task_setioprio,
5608         .task_getioprio =               selinux_task_getioprio,
5609         .task_setrlimit =               selinux_task_setrlimit,
5610         .task_setscheduler =            selinux_task_setscheduler,
5611         .task_getscheduler =            selinux_task_getscheduler,
5612         .task_movememory =              selinux_task_movememory,
5613         .task_kill =                    selinux_task_kill,
5614         .task_wait =                    selinux_task_wait,
5615         .task_prctl =                   selinux_task_prctl,
5616         .task_to_inode =                selinux_task_to_inode,
5617
5618         .ipc_permission =               selinux_ipc_permission,
5619         .ipc_getsecid =                 selinux_ipc_getsecid,
5620
5621         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5622         .msg_msg_free_security =        selinux_msg_msg_free_security,
5623
5624         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5625         .msg_queue_free_security =      selinux_msg_queue_free_security,
5626         .msg_queue_associate =          selinux_msg_queue_associate,
5627         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5628         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5629         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5630
5631         .shm_alloc_security =           selinux_shm_alloc_security,
5632         .shm_free_security =            selinux_shm_free_security,
5633         .shm_associate =                selinux_shm_associate,
5634         .shm_shmctl =                   selinux_shm_shmctl,
5635         .shm_shmat =                    selinux_shm_shmat,
5636
5637         .sem_alloc_security =           selinux_sem_alloc_security,
5638         .sem_free_security =            selinux_sem_free_security,
5639         .sem_associate =                selinux_sem_associate,
5640         .sem_semctl =                   selinux_sem_semctl,
5641         .sem_semop =                    selinux_sem_semop,
5642
5643         .d_instantiate =                selinux_d_instantiate,
5644
5645         .getprocattr =                  selinux_getprocattr,
5646         .setprocattr =                  selinux_setprocattr,
5647
5648         .secid_to_secctx =              selinux_secid_to_secctx,
5649         .secctx_to_secid =              selinux_secctx_to_secid,
5650         .release_secctx =               selinux_release_secctx,
5651
5652         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5653         .unix_may_send =                selinux_socket_unix_may_send,
5654
5655         .socket_create =                selinux_socket_create,
5656         .socket_post_create =           selinux_socket_post_create,
5657         .socket_bind =                  selinux_socket_bind,
5658         .socket_connect =               selinux_socket_connect,
5659         .socket_listen =                selinux_socket_listen,
5660         .socket_accept =                selinux_socket_accept,
5661         .socket_sendmsg =               selinux_socket_sendmsg,
5662         .socket_recvmsg =               selinux_socket_recvmsg,
5663         .socket_getsockname =           selinux_socket_getsockname,
5664         .socket_getpeername =           selinux_socket_getpeername,
5665         .socket_getsockopt =            selinux_socket_getsockopt,
5666         .socket_setsockopt =            selinux_socket_setsockopt,
5667         .socket_shutdown =              selinux_socket_shutdown,
5668         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5669         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5670         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5671         .sk_alloc_security =            selinux_sk_alloc_security,
5672         .sk_free_security =             selinux_sk_free_security,
5673         .sk_clone_security =            selinux_sk_clone_security,
5674         .sk_getsecid =                  selinux_sk_getsecid,
5675         .sock_graft =                   selinux_sock_graft,
5676         .inet_conn_request =            selinux_inet_conn_request,
5677         .inet_csk_clone =               selinux_inet_csk_clone,
5678         .inet_conn_established =        selinux_inet_conn_established,
5679         .req_classify_flow =            selinux_req_classify_flow,
5680
5681 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5682         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5683         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5684         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5685         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5686         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5687         .xfrm_state_free_security =     selinux_xfrm_state_free,
5688         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5689         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5690         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5691         .xfrm_decode_session =          selinux_xfrm_decode_session,
5692 #endif
5693
5694 #ifdef CONFIG_KEYS
5695         .key_alloc =                    selinux_key_alloc,
5696         .key_free =                     selinux_key_free,
5697         .key_permission =               selinux_key_permission,
5698         .key_getsecurity =              selinux_key_getsecurity,
5699 #endif
5700
5701 #ifdef CONFIG_AUDIT
5702         .audit_rule_init =              selinux_audit_rule_init,
5703         .audit_rule_known =             selinux_audit_rule_known,
5704         .audit_rule_match =             selinux_audit_rule_match,
5705         .audit_rule_free =              selinux_audit_rule_free,
5706 #endif
5707 };
5708
5709 static __init int selinux_init(void)
5710 {
5711         if (!security_module_enable(&selinux_ops)) {
5712                 selinux_enabled = 0;
5713                 return 0;
5714         }
5715
5716         if (!selinux_enabled) {
5717                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5718                 return 0;
5719         }
5720
5721         printk(KERN_INFO "SELinux:  Initializing.\n");
5722
5723         /* Set the security state for the initial task. */
5724         cred_init_security();
5725
5726         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5727                                             sizeof(struct inode_security_struct),
5728                                             0, SLAB_PANIC, NULL);
5729         avc_init();
5730
5731         secondary_ops = security_ops;
5732         if (!secondary_ops)
5733                 panic("SELinux: No initial security operations\n");
5734         if (register_security(&selinux_ops))
5735                 panic("SELinux: Unable to register with kernel.\n");
5736
5737         if (selinux_enforcing)
5738                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5739         else
5740                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5741
5742         return 0;
5743 }
5744
5745 void selinux_complete_init(void)
5746 {
5747         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5748
5749         /* Set up any superblocks initialized prior to the policy load. */
5750         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5751         spin_lock(&sb_lock);
5752         spin_lock(&sb_security_lock);
5753 next_sb:
5754         if (!list_empty(&superblock_security_head)) {
5755                 struct superblock_security_struct *sbsec =
5756                                 list_entry(superblock_security_head.next,
5757                                            struct superblock_security_struct,
5758                                            list);
5759                 struct super_block *sb = sbsec->sb;
5760                 sb->s_count++;
5761                 spin_unlock(&sb_security_lock);
5762                 spin_unlock(&sb_lock);
5763                 down_read(&sb->s_umount);
5764                 if (sb->s_root)
5765                         superblock_doinit(sb, NULL);
5766                 drop_super(sb);
5767                 spin_lock(&sb_lock);
5768                 spin_lock(&sb_security_lock);
5769                 list_del_init(&sbsec->list);
5770                 goto next_sb;
5771         }
5772         spin_unlock(&sb_security_lock);
5773         spin_unlock(&sb_lock);
5774 }
5775
5776 /* SELinux requires early initialization in order to label
5777    all processes and objects when they are created. */
5778 security_initcall(selinux_init);
5779
5780 #if defined(CONFIG_NETFILTER)
5781
5782 static struct nf_hook_ops selinux_ipv4_ops[] = {
5783         {
5784                 .hook =         selinux_ipv4_postroute,
5785                 .owner =        THIS_MODULE,
5786                 .pf =           PF_INET,
5787                 .hooknum =      NF_INET_POST_ROUTING,
5788                 .priority =     NF_IP_PRI_SELINUX_LAST,
5789         },
5790         {
5791                 .hook =         selinux_ipv4_forward,
5792                 .owner =        THIS_MODULE,
5793                 .pf =           PF_INET,
5794                 .hooknum =      NF_INET_FORWARD,
5795                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5796         },
5797         {
5798                 .hook =         selinux_ipv4_output,
5799                 .owner =        THIS_MODULE,
5800                 .pf =           PF_INET,
5801                 .hooknum =      NF_INET_LOCAL_OUT,
5802                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5803         }
5804 };
5805
5806 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5807
5808 static struct nf_hook_ops selinux_ipv6_ops[] = {
5809         {
5810                 .hook =         selinux_ipv6_postroute,
5811                 .owner =        THIS_MODULE,
5812                 .pf =           PF_INET6,
5813                 .hooknum =      NF_INET_POST_ROUTING,
5814                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5815         },
5816         {
5817                 .hook =         selinux_ipv6_forward,
5818                 .owner =        THIS_MODULE,
5819                 .pf =           PF_INET6,
5820                 .hooknum =      NF_INET_FORWARD,
5821                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5822         }
5823 };
5824
5825 #endif  /* IPV6 */
5826
5827 static int __init selinux_nf_ip_init(void)
5828 {
5829         int err = 0;
5830
5831         if (!selinux_enabled)
5832                 goto out;
5833
5834         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5835
5836         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5837         if (err)
5838                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5839
5840 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5841         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5842         if (err)
5843                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5844 #endif  /* IPV6 */
5845
5846 out:
5847         return err;
5848 }
5849
5850 __initcall(selinux_nf_ip_init);
5851
5852 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5853 static void selinux_nf_ip_exit(void)
5854 {
5855         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5856
5857         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5858 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5859         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5860 #endif  /* IPV6 */
5861 }
5862 #endif
5863
5864 #else /* CONFIG_NETFILTER */
5865
5866 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5867 #define selinux_nf_ip_exit()
5868 #endif
5869
5870 #endif /* CONFIG_NETFILTER */
5871
5872 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5873 static int selinux_disabled;
5874
5875 int selinux_disable(void)
5876 {
5877         extern void exit_sel_fs(void);
5878
5879         if (ss_initialized) {
5880                 /* Not permitted after initial policy load. */
5881                 return -EINVAL;
5882         }
5883
5884         if (selinux_disabled) {
5885                 /* Only do this once. */
5886                 return -EINVAL;
5887         }
5888
5889         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5890
5891         selinux_disabled = 1;
5892         selinux_enabled = 0;
5893
5894         /* Reset security_ops to the secondary module, dummy or capability. */
5895         security_ops = secondary_ops;
5896
5897         /* Unregister netfilter hooks. */
5898         selinux_nf_ip_exit();
5899
5900         /* Unregister selinuxfs. */
5901         exit_sel_fs();
5902
5903         return 0;
5904 }
5905 #endif