SELinux: properly handle empty tty_files list
[linux-2.6.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17  *              Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
88
89 #define XATTR_SELINUX_SUFFIX "selinux"
90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
91
92 #define NUM_SEL_MNT_OPTS 4
93
94 extern unsigned int policydb_loaded_version;
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern int selinux_compat_net;
97 extern struct security_operations *security_ops;
98
99 /* SECMARK reference count */
100 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
101
102 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
103 int selinux_enforcing;
104
105 static int __init enforcing_setup(char *str)
106 {
107         unsigned long enforcing;
108         if (!strict_strtoul(str, 0, &enforcing))
109                 selinux_enforcing = enforcing ? 1 : 0;
110         return 1;
111 }
112 __setup("enforcing=", enforcing_setup);
113 #endif
114
115 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
116 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
117
118 static int __init selinux_enabled_setup(char *str)
119 {
120         unsigned long enabled;
121         if (!strict_strtoul(str, 0, &enabled))
122                 selinux_enabled = enabled ? 1 : 0;
123         return 1;
124 }
125 __setup("selinux=", selinux_enabled_setup);
126 #else
127 int selinux_enabled = 1;
128 #endif
129
130
131 /*
132  * Minimal support for a secondary security module,
133  * just to allow the use of the capability module.
134  */
135 static struct security_operations *secondary_ops;
136
137 /* Lists of inode and superblock security structures initialized
138    before the policy was loaded. */
139 static LIST_HEAD(superblock_security_head);
140 static DEFINE_SPINLOCK(sb_security_lock);
141
142 static struct kmem_cache *sel_inode_cache;
143
144 /**
145  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
146  *
147  * Description:
148  * This function checks the SECMARK reference counter to see if any SECMARK
149  * targets are currently configured, if the reference counter is greater than
150  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
151  * enabled, false (0) if SECMARK is disabled.
152  *
153  */
154 static int selinux_secmark_enabled(void)
155 {
156         return (atomic_read(&selinux_secmark_refcount) > 0);
157 }
158
159 /* Allocate and free functions for each kind of security blob. */
160
161 static int task_alloc_security(struct task_struct *task)
162 {
163         struct task_security_struct *tsec;
164
165         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
166         if (!tsec)
167                 return -ENOMEM;
168
169         tsec->osid = tsec->sid = SECINITSID_UNLABELED;
170         task->security = tsec;
171
172         return 0;
173 }
174
175 static void task_free_security(struct task_struct *task)
176 {
177         struct task_security_struct *tsec = task->security;
178         task->security = NULL;
179         kfree(tsec);
180 }
181
182 static int inode_alloc_security(struct inode *inode)
183 {
184         struct task_security_struct *tsec = current->security;
185         struct inode_security_struct *isec;
186
187         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
188         if (!isec)
189                 return -ENOMEM;
190
191         mutex_init(&isec->lock);
192         INIT_LIST_HEAD(&isec->list);
193         isec->inode = inode;
194         isec->sid = SECINITSID_UNLABELED;
195         isec->sclass = SECCLASS_FILE;
196         isec->task_sid = tsec->sid;
197         inode->i_security = isec;
198
199         return 0;
200 }
201
202 static void inode_free_security(struct inode *inode)
203 {
204         struct inode_security_struct *isec = inode->i_security;
205         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
206
207         spin_lock(&sbsec->isec_lock);
208         if (!list_empty(&isec->list))
209                 list_del_init(&isec->list);
210         spin_unlock(&sbsec->isec_lock);
211
212         inode->i_security = NULL;
213         kmem_cache_free(sel_inode_cache, isec);
214 }
215
216 static int file_alloc_security(struct file *file)
217 {
218         struct task_security_struct *tsec = current->security;
219         struct file_security_struct *fsec;
220
221         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
222         if (!fsec)
223                 return -ENOMEM;
224
225         fsec->sid = tsec->sid;
226         fsec->fown_sid = tsec->sid;
227         file->f_security = fsec;
228
229         return 0;
230 }
231
232 static void file_free_security(struct file *file)
233 {
234         struct file_security_struct *fsec = file->f_security;
235         file->f_security = NULL;
236         kfree(fsec);
237 }
238
239 static int superblock_alloc_security(struct super_block *sb)
240 {
241         struct superblock_security_struct *sbsec;
242
243         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
244         if (!sbsec)
245                 return -ENOMEM;
246
247         mutex_init(&sbsec->lock);
248         INIT_LIST_HEAD(&sbsec->list);
249         INIT_LIST_HEAD(&sbsec->isec_head);
250         spin_lock_init(&sbsec->isec_lock);
251         sbsec->sb = sb;
252         sbsec->sid = SECINITSID_UNLABELED;
253         sbsec->def_sid = SECINITSID_FILE;
254         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
255         sb->s_security = sbsec;
256
257         return 0;
258 }
259
260 static void superblock_free_security(struct super_block *sb)
261 {
262         struct superblock_security_struct *sbsec = sb->s_security;
263
264         spin_lock(&sb_security_lock);
265         if (!list_empty(&sbsec->list))
266                 list_del_init(&sbsec->list);
267         spin_unlock(&sb_security_lock);
268
269         sb->s_security = NULL;
270         kfree(sbsec);
271 }
272
273 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
274 {
275         struct sk_security_struct *ssec;
276
277         ssec = kzalloc(sizeof(*ssec), priority);
278         if (!ssec)
279                 return -ENOMEM;
280
281         ssec->peer_sid = SECINITSID_UNLABELED;
282         ssec->sid = SECINITSID_UNLABELED;
283         sk->sk_security = ssec;
284
285         selinux_netlbl_sk_security_reset(ssec, family);
286
287         return 0;
288 }
289
290 static void sk_free_security(struct sock *sk)
291 {
292         struct sk_security_struct *ssec = sk->sk_security;
293
294         sk->sk_security = NULL;
295         selinux_netlbl_sk_security_free(ssec);
296         kfree(ssec);
297 }
298
299 /* The security server must be initialized before
300    any labeling or access decisions can be provided. */
301 extern int ss_initialized;
302
303 /* The file system's label must be initialized prior to use. */
304
305 static char *labeling_behaviors[6] = {
306         "uses xattr",
307         "uses transition SIDs",
308         "uses task SIDs",
309         "uses genfs_contexts",
310         "not configured for labeling",
311         "uses mountpoint labeling",
312 };
313
314 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
315
316 static inline int inode_doinit(struct inode *inode)
317 {
318         return inode_doinit_with_dentry(inode, NULL);
319 }
320
321 enum {
322         Opt_error = -1,
323         Opt_context = 1,
324         Opt_fscontext = 2,
325         Opt_defcontext = 3,
326         Opt_rootcontext = 4,
327 };
328
329 static const match_table_t tokens = {
330         {Opt_context, CONTEXT_STR "%s"},
331         {Opt_fscontext, FSCONTEXT_STR "%s"},
332         {Opt_defcontext, DEFCONTEXT_STR "%s"},
333         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
334         {Opt_error, NULL},
335 };
336
337 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
338
339 static int may_context_mount_sb_relabel(u32 sid,
340                         struct superblock_security_struct *sbsec,
341                         struct task_security_struct *tsec)
342 {
343         int rc;
344
345         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
346                           FILESYSTEM__RELABELFROM, NULL);
347         if (rc)
348                 return rc;
349
350         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
351                           FILESYSTEM__RELABELTO, NULL);
352         return rc;
353 }
354
355 static int may_context_mount_inode_relabel(u32 sid,
356                         struct superblock_security_struct *sbsec,
357                         struct task_security_struct *tsec)
358 {
359         int rc;
360         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
361                           FILESYSTEM__RELABELFROM, NULL);
362         if (rc)
363                 return rc;
364
365         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
366                           FILESYSTEM__ASSOCIATE, NULL);
367         return rc;
368 }
369
370 static int sb_finish_set_opts(struct super_block *sb)
371 {
372         struct superblock_security_struct *sbsec = sb->s_security;
373         struct dentry *root = sb->s_root;
374         struct inode *root_inode = root->d_inode;
375         int rc = 0;
376
377         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
378                 /* Make sure that the xattr handler exists and that no
379                    error other than -ENODATA is returned by getxattr on
380                    the root directory.  -ENODATA is ok, as this may be
381                    the first boot of the SELinux kernel before we have
382                    assigned xattr values to the filesystem. */
383                 if (!root_inode->i_op->getxattr) {
384                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
385                                "xattr support\n", sb->s_id, sb->s_type->name);
386                         rc = -EOPNOTSUPP;
387                         goto out;
388                 }
389                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
390                 if (rc < 0 && rc != -ENODATA) {
391                         if (rc == -EOPNOTSUPP)
392                                 printk(KERN_WARNING "SELinux: (dev %s, type "
393                                        "%s) has no security xattr handler\n",
394                                        sb->s_id, sb->s_type->name);
395                         else
396                                 printk(KERN_WARNING "SELinux: (dev %s, type "
397                                        "%s) getxattr errno %d\n", sb->s_id,
398                                        sb->s_type->name, -rc);
399                         goto out;
400                 }
401         }
402
403         sbsec->initialized = 1;
404
405         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
406                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
407                        sb->s_id, sb->s_type->name);
408         else
409                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
410                        sb->s_id, sb->s_type->name,
411                        labeling_behaviors[sbsec->behavior-1]);
412
413         /* Initialize the root inode. */
414         rc = inode_doinit_with_dentry(root_inode, root);
415
416         /* Initialize any other inodes associated with the superblock, e.g.
417            inodes created prior to initial policy load or inodes created
418            during get_sb by a pseudo filesystem that directly
419            populates itself. */
420         spin_lock(&sbsec->isec_lock);
421 next_inode:
422         if (!list_empty(&sbsec->isec_head)) {
423                 struct inode_security_struct *isec =
424                                 list_entry(sbsec->isec_head.next,
425                                            struct inode_security_struct, list);
426                 struct inode *inode = isec->inode;
427                 spin_unlock(&sbsec->isec_lock);
428                 inode = igrab(inode);
429                 if (inode) {
430                         if (!IS_PRIVATE(inode))
431                                 inode_doinit(inode);
432                         iput(inode);
433                 }
434                 spin_lock(&sbsec->isec_lock);
435                 list_del_init(&isec->list);
436                 goto next_inode;
437         }
438         spin_unlock(&sbsec->isec_lock);
439 out:
440         return rc;
441 }
442
443 /*
444  * This function should allow an FS to ask what it's mount security
445  * options were so it can use those later for submounts, displaying
446  * mount options, or whatever.
447  */
448 static int selinux_get_mnt_opts(const struct super_block *sb,
449                                 struct security_mnt_opts *opts)
450 {
451         int rc = 0, i;
452         struct superblock_security_struct *sbsec = sb->s_security;
453         char *context = NULL;
454         u32 len;
455         char tmp;
456
457         security_init_mnt_opts(opts);
458
459         if (!sbsec->initialized)
460                 return -EINVAL;
461
462         if (!ss_initialized)
463                 return -EINVAL;
464
465         /*
466          * if we ever use sbsec flags for anything other than tracking mount
467          * settings this is going to need a mask
468          */
469         tmp = sbsec->flags;
470         /* count the number of mount options for this sb */
471         for (i = 0; i < 8; i++) {
472                 if (tmp & 0x01)
473                         opts->num_mnt_opts++;
474                 tmp >>= 1;
475         }
476
477         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
478         if (!opts->mnt_opts) {
479                 rc = -ENOMEM;
480                 goto out_free;
481         }
482
483         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
484         if (!opts->mnt_opts_flags) {
485                 rc = -ENOMEM;
486                 goto out_free;
487         }
488
489         i = 0;
490         if (sbsec->flags & FSCONTEXT_MNT) {
491                 rc = security_sid_to_context(sbsec->sid, &context, &len);
492                 if (rc)
493                         goto out_free;
494                 opts->mnt_opts[i] = context;
495                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
496         }
497         if (sbsec->flags & CONTEXT_MNT) {
498                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
499                 if (rc)
500                         goto out_free;
501                 opts->mnt_opts[i] = context;
502                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
503         }
504         if (sbsec->flags & DEFCONTEXT_MNT) {
505                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
506                 if (rc)
507                         goto out_free;
508                 opts->mnt_opts[i] = context;
509                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
510         }
511         if (sbsec->flags & ROOTCONTEXT_MNT) {
512                 struct inode *root = sbsec->sb->s_root->d_inode;
513                 struct inode_security_struct *isec = root->i_security;
514
515                 rc = security_sid_to_context(isec->sid, &context, &len);
516                 if (rc)
517                         goto out_free;
518                 opts->mnt_opts[i] = context;
519                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
520         }
521
522         BUG_ON(i != opts->num_mnt_opts);
523
524         return 0;
525
526 out_free:
527         security_free_mnt_opts(opts);
528         return rc;
529 }
530
531 static int bad_option(struct superblock_security_struct *sbsec, char flag,
532                       u32 old_sid, u32 new_sid)
533 {
534         /* check if the old mount command had the same options */
535         if (sbsec->initialized)
536                 if (!(sbsec->flags & flag) ||
537                     (old_sid != new_sid))
538                         return 1;
539
540         /* check if we were passed the same options twice,
541          * aka someone passed context=a,context=b
542          */
543         if (!sbsec->initialized)
544                 if (sbsec->flags & flag)
545                         return 1;
546         return 0;
547 }
548
549 /*
550  * Allow filesystems with binary mount data to explicitly set mount point
551  * labeling information.
552  */
553 static int selinux_set_mnt_opts(struct super_block *sb,
554                                 struct security_mnt_opts *opts)
555 {
556         int rc = 0, i;
557         struct task_security_struct *tsec = current->security;
558         struct superblock_security_struct *sbsec = sb->s_security;
559         const char *name = sb->s_type->name;
560         struct inode *inode = sbsec->sb->s_root->d_inode;
561         struct inode_security_struct *root_isec = inode->i_security;
562         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
563         u32 defcontext_sid = 0;
564         char **mount_options = opts->mnt_opts;
565         int *flags = opts->mnt_opts_flags;
566         int num_opts = opts->num_mnt_opts;
567
568         mutex_lock(&sbsec->lock);
569
570         if (!ss_initialized) {
571                 if (!num_opts) {
572                         /* Defer initialization until selinux_complete_init,
573                            after the initial policy is loaded and the security
574                            server is ready to handle calls. */
575                         spin_lock(&sb_security_lock);
576                         if (list_empty(&sbsec->list))
577                                 list_add(&sbsec->list, &superblock_security_head);
578                         spin_unlock(&sb_security_lock);
579                         goto out;
580                 }
581                 rc = -EINVAL;
582                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
583                         "before the security server is initialized\n");
584                 goto out;
585         }
586
587         /*
588          * Binary mount data FS will come through this function twice.  Once
589          * from an explicit call and once from the generic calls from the vfs.
590          * Since the generic VFS calls will not contain any security mount data
591          * we need to skip the double mount verification.
592          *
593          * This does open a hole in which we will not notice if the first
594          * mount using this sb set explict options and a second mount using
595          * this sb does not set any security options.  (The first options
596          * will be used for both mounts)
597          */
598         if (sbsec->initialized && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
599             && (num_opts == 0))
600                 goto out;
601
602         /*
603          * parse the mount options, check if they are valid sids.
604          * also check if someone is trying to mount the same sb more
605          * than once with different security options.
606          */
607         for (i = 0; i < num_opts; i++) {
608                 u32 sid;
609                 rc = security_context_to_sid(mount_options[i],
610                                              strlen(mount_options[i]), &sid);
611                 if (rc) {
612                         printk(KERN_WARNING "SELinux: security_context_to_sid"
613                                "(%s) failed for (dev %s, type %s) errno=%d\n",
614                                mount_options[i], sb->s_id, name, rc);
615                         goto out;
616                 }
617                 switch (flags[i]) {
618                 case FSCONTEXT_MNT:
619                         fscontext_sid = sid;
620
621                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
622                                         fscontext_sid))
623                                 goto out_double_mount;
624
625                         sbsec->flags |= FSCONTEXT_MNT;
626                         break;
627                 case CONTEXT_MNT:
628                         context_sid = sid;
629
630                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
631                                         context_sid))
632                                 goto out_double_mount;
633
634                         sbsec->flags |= CONTEXT_MNT;
635                         break;
636                 case ROOTCONTEXT_MNT:
637                         rootcontext_sid = sid;
638
639                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
640                                         rootcontext_sid))
641                                 goto out_double_mount;
642
643                         sbsec->flags |= ROOTCONTEXT_MNT;
644
645                         break;
646                 case DEFCONTEXT_MNT:
647                         defcontext_sid = sid;
648
649                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
650                                         defcontext_sid))
651                                 goto out_double_mount;
652
653                         sbsec->flags |= DEFCONTEXT_MNT;
654
655                         break;
656                 default:
657                         rc = -EINVAL;
658                         goto out;
659                 }
660         }
661
662         if (sbsec->initialized) {
663                 /* previously mounted with options, but not on this attempt? */
664                 if (sbsec->flags && !num_opts)
665                         goto out_double_mount;
666                 rc = 0;
667                 goto out;
668         }
669
670         if (strcmp(sb->s_type->name, "proc") == 0)
671                 sbsec->proc = 1;
672
673         /* Determine the labeling behavior to use for this filesystem type. */
674         rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
675         if (rc) {
676                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
677                        __func__, sb->s_type->name, rc);
678                 goto out;
679         }
680
681         /* sets the context of the superblock for the fs being mounted. */
682         if (fscontext_sid) {
683
684                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, tsec);
685                 if (rc)
686                         goto out;
687
688                 sbsec->sid = fscontext_sid;
689         }
690
691         /*
692          * Switch to using mount point labeling behavior.
693          * sets the label used on all file below the mountpoint, and will set
694          * the superblock context if not already set.
695          */
696         if (context_sid) {
697                 if (!fscontext_sid) {
698                         rc = may_context_mount_sb_relabel(context_sid, sbsec, tsec);
699                         if (rc)
700                                 goto out;
701                         sbsec->sid = context_sid;
702                 } else {
703                         rc = may_context_mount_inode_relabel(context_sid, sbsec, tsec);
704                         if (rc)
705                                 goto out;
706                 }
707                 if (!rootcontext_sid)
708                         rootcontext_sid = context_sid;
709
710                 sbsec->mntpoint_sid = context_sid;
711                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
712         }
713
714         if (rootcontext_sid) {
715                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, tsec);
716                 if (rc)
717                         goto out;
718
719                 root_isec->sid = rootcontext_sid;
720                 root_isec->initialized = 1;
721         }
722
723         if (defcontext_sid) {
724                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
725                         rc = -EINVAL;
726                         printk(KERN_WARNING "SELinux: defcontext option is "
727                                "invalid for this filesystem type\n");
728                         goto out;
729                 }
730
731                 if (defcontext_sid != sbsec->def_sid) {
732                         rc = may_context_mount_inode_relabel(defcontext_sid,
733                                                              sbsec, tsec);
734                         if (rc)
735                                 goto out;
736                 }
737
738                 sbsec->def_sid = defcontext_sid;
739         }
740
741         rc = sb_finish_set_opts(sb);
742 out:
743         mutex_unlock(&sbsec->lock);
744         return rc;
745 out_double_mount:
746         rc = -EINVAL;
747         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
748                "security settings for (dev %s, type %s)\n", sb->s_id, name);
749         goto out;
750 }
751
752 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
753                                         struct super_block *newsb)
754 {
755         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
756         struct superblock_security_struct *newsbsec = newsb->s_security;
757
758         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
759         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
760         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
761
762         /*
763          * if the parent was able to be mounted it clearly had no special lsm
764          * mount options.  thus we can safely put this sb on the list and deal
765          * with it later
766          */
767         if (!ss_initialized) {
768                 spin_lock(&sb_security_lock);
769                 if (list_empty(&newsbsec->list))
770                         list_add(&newsbsec->list, &superblock_security_head);
771                 spin_unlock(&sb_security_lock);
772                 return;
773         }
774
775         /* how can we clone if the old one wasn't set up?? */
776         BUG_ON(!oldsbsec->initialized);
777
778         /* if fs is reusing a sb, just let its options stand... */
779         if (newsbsec->initialized)
780                 return;
781
782         mutex_lock(&newsbsec->lock);
783
784         newsbsec->flags = oldsbsec->flags;
785
786         newsbsec->sid = oldsbsec->sid;
787         newsbsec->def_sid = oldsbsec->def_sid;
788         newsbsec->behavior = oldsbsec->behavior;
789
790         if (set_context) {
791                 u32 sid = oldsbsec->mntpoint_sid;
792
793                 if (!set_fscontext)
794                         newsbsec->sid = sid;
795                 if (!set_rootcontext) {
796                         struct inode *newinode = newsb->s_root->d_inode;
797                         struct inode_security_struct *newisec = newinode->i_security;
798                         newisec->sid = sid;
799                 }
800                 newsbsec->mntpoint_sid = sid;
801         }
802         if (set_rootcontext) {
803                 const struct inode *oldinode = oldsb->s_root->d_inode;
804                 const struct inode_security_struct *oldisec = oldinode->i_security;
805                 struct inode *newinode = newsb->s_root->d_inode;
806                 struct inode_security_struct *newisec = newinode->i_security;
807
808                 newisec->sid = oldisec->sid;
809         }
810
811         sb_finish_set_opts(newsb);
812         mutex_unlock(&newsbsec->lock);
813 }
814
815 static int selinux_parse_opts_str(char *options,
816                                   struct security_mnt_opts *opts)
817 {
818         char *p;
819         char *context = NULL, *defcontext = NULL;
820         char *fscontext = NULL, *rootcontext = NULL;
821         int rc, num_mnt_opts = 0;
822
823         opts->num_mnt_opts = 0;
824
825         /* Standard string-based options. */
826         while ((p = strsep(&options, "|")) != NULL) {
827                 int token;
828                 substring_t args[MAX_OPT_ARGS];
829
830                 if (!*p)
831                         continue;
832
833                 token = match_token(p, tokens, args);
834
835                 switch (token) {
836                 case Opt_context:
837                         if (context || defcontext) {
838                                 rc = -EINVAL;
839                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
840                                 goto out_err;
841                         }
842                         context = match_strdup(&args[0]);
843                         if (!context) {
844                                 rc = -ENOMEM;
845                                 goto out_err;
846                         }
847                         break;
848
849                 case Opt_fscontext:
850                         if (fscontext) {
851                                 rc = -EINVAL;
852                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
853                                 goto out_err;
854                         }
855                         fscontext = match_strdup(&args[0]);
856                         if (!fscontext) {
857                                 rc = -ENOMEM;
858                                 goto out_err;
859                         }
860                         break;
861
862                 case Opt_rootcontext:
863                         if (rootcontext) {
864                                 rc = -EINVAL;
865                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
866                                 goto out_err;
867                         }
868                         rootcontext = match_strdup(&args[0]);
869                         if (!rootcontext) {
870                                 rc = -ENOMEM;
871                                 goto out_err;
872                         }
873                         break;
874
875                 case Opt_defcontext:
876                         if (context || defcontext) {
877                                 rc = -EINVAL;
878                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
879                                 goto out_err;
880                         }
881                         defcontext = match_strdup(&args[0]);
882                         if (!defcontext) {
883                                 rc = -ENOMEM;
884                                 goto out_err;
885                         }
886                         break;
887
888                 default:
889                         rc = -EINVAL;
890                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
891                         goto out_err;
892
893                 }
894         }
895
896         rc = -ENOMEM;
897         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
898         if (!opts->mnt_opts)
899                 goto out_err;
900
901         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
902         if (!opts->mnt_opts_flags) {
903                 kfree(opts->mnt_opts);
904                 goto out_err;
905         }
906
907         if (fscontext) {
908                 opts->mnt_opts[num_mnt_opts] = fscontext;
909                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
910         }
911         if (context) {
912                 opts->mnt_opts[num_mnt_opts] = context;
913                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
914         }
915         if (rootcontext) {
916                 opts->mnt_opts[num_mnt_opts] = rootcontext;
917                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
918         }
919         if (defcontext) {
920                 opts->mnt_opts[num_mnt_opts] = defcontext;
921                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
922         }
923
924         opts->num_mnt_opts = num_mnt_opts;
925         return 0;
926
927 out_err:
928         kfree(context);
929         kfree(defcontext);
930         kfree(fscontext);
931         kfree(rootcontext);
932         return rc;
933 }
934 /*
935  * string mount options parsing and call set the sbsec
936  */
937 static int superblock_doinit(struct super_block *sb, void *data)
938 {
939         int rc = 0;
940         char *options = data;
941         struct security_mnt_opts opts;
942
943         security_init_mnt_opts(&opts);
944
945         if (!data)
946                 goto out;
947
948         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
949
950         rc = selinux_parse_opts_str(options, &opts);
951         if (rc)
952                 goto out_err;
953
954 out:
955         rc = selinux_set_mnt_opts(sb, &opts);
956
957 out_err:
958         security_free_mnt_opts(&opts);
959         return rc;
960 }
961
962 static void selinux_write_opts(struct seq_file *m,
963                                struct security_mnt_opts *opts)
964 {
965         int i;
966         char *prefix;
967
968         for (i = 0; i < opts->num_mnt_opts; i++) {
969                 char *has_comma = strchr(opts->mnt_opts[i], ',');
970
971                 switch (opts->mnt_opts_flags[i]) {
972                 case CONTEXT_MNT:
973                         prefix = CONTEXT_STR;
974                         break;
975                 case FSCONTEXT_MNT:
976                         prefix = FSCONTEXT_STR;
977                         break;
978                 case ROOTCONTEXT_MNT:
979                         prefix = ROOTCONTEXT_STR;
980                         break;
981                 case DEFCONTEXT_MNT:
982                         prefix = DEFCONTEXT_STR;
983                         break;
984                 default:
985                         BUG();
986                 };
987                 /* we need a comma before each option */
988                 seq_putc(m, ',');
989                 seq_puts(m, prefix);
990                 if (has_comma)
991                         seq_putc(m, '\"');
992                 seq_puts(m, opts->mnt_opts[i]);
993                 if (has_comma)
994                         seq_putc(m, '\"');
995         }
996 }
997
998 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
999 {
1000         struct security_mnt_opts opts;
1001         int rc;
1002
1003         rc = selinux_get_mnt_opts(sb, &opts);
1004         if (rc) {
1005                 /* before policy load we may get EINVAL, don't show anything */
1006                 if (rc == -EINVAL)
1007                         rc = 0;
1008                 return rc;
1009         }
1010
1011         selinux_write_opts(m, &opts);
1012
1013         security_free_mnt_opts(&opts);
1014
1015         return rc;
1016 }
1017
1018 static inline u16 inode_mode_to_security_class(umode_t mode)
1019 {
1020         switch (mode & S_IFMT) {
1021         case S_IFSOCK:
1022                 return SECCLASS_SOCK_FILE;
1023         case S_IFLNK:
1024                 return SECCLASS_LNK_FILE;
1025         case S_IFREG:
1026                 return SECCLASS_FILE;
1027         case S_IFBLK:
1028                 return SECCLASS_BLK_FILE;
1029         case S_IFDIR:
1030                 return SECCLASS_DIR;
1031         case S_IFCHR:
1032                 return SECCLASS_CHR_FILE;
1033         case S_IFIFO:
1034                 return SECCLASS_FIFO_FILE;
1035
1036         }
1037
1038         return SECCLASS_FILE;
1039 }
1040
1041 static inline int default_protocol_stream(int protocol)
1042 {
1043         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1044 }
1045
1046 static inline int default_protocol_dgram(int protocol)
1047 {
1048         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1049 }
1050
1051 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1052 {
1053         switch (family) {
1054         case PF_UNIX:
1055                 switch (type) {
1056                 case SOCK_STREAM:
1057                 case SOCK_SEQPACKET:
1058                         return SECCLASS_UNIX_STREAM_SOCKET;
1059                 case SOCK_DGRAM:
1060                         return SECCLASS_UNIX_DGRAM_SOCKET;
1061                 }
1062                 break;
1063         case PF_INET:
1064         case PF_INET6:
1065                 switch (type) {
1066                 case SOCK_STREAM:
1067                         if (default_protocol_stream(protocol))
1068                                 return SECCLASS_TCP_SOCKET;
1069                         else
1070                                 return SECCLASS_RAWIP_SOCKET;
1071                 case SOCK_DGRAM:
1072                         if (default_protocol_dgram(protocol))
1073                                 return SECCLASS_UDP_SOCKET;
1074                         else
1075                                 return SECCLASS_RAWIP_SOCKET;
1076                 case SOCK_DCCP:
1077                         return SECCLASS_DCCP_SOCKET;
1078                 default:
1079                         return SECCLASS_RAWIP_SOCKET;
1080                 }
1081                 break;
1082         case PF_NETLINK:
1083                 switch (protocol) {
1084                 case NETLINK_ROUTE:
1085                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1086                 case NETLINK_FIREWALL:
1087                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1088                 case NETLINK_INET_DIAG:
1089                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1090                 case NETLINK_NFLOG:
1091                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1092                 case NETLINK_XFRM:
1093                         return SECCLASS_NETLINK_XFRM_SOCKET;
1094                 case NETLINK_SELINUX:
1095                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1096                 case NETLINK_AUDIT:
1097                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1098                 case NETLINK_IP6_FW:
1099                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1100                 case NETLINK_DNRTMSG:
1101                         return SECCLASS_NETLINK_DNRT_SOCKET;
1102                 case NETLINK_KOBJECT_UEVENT:
1103                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1104                 default:
1105                         return SECCLASS_NETLINK_SOCKET;
1106                 }
1107         case PF_PACKET:
1108                 return SECCLASS_PACKET_SOCKET;
1109         case PF_KEY:
1110                 return SECCLASS_KEY_SOCKET;
1111         case PF_APPLETALK:
1112                 return SECCLASS_APPLETALK_SOCKET;
1113         }
1114
1115         return SECCLASS_SOCKET;
1116 }
1117
1118 #ifdef CONFIG_PROC_FS
1119 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1120                                 u16 tclass,
1121                                 u32 *sid)
1122 {
1123         int buflen, rc;
1124         char *buffer, *path, *end;
1125
1126         buffer = (char *)__get_free_page(GFP_KERNEL);
1127         if (!buffer)
1128                 return -ENOMEM;
1129
1130         buflen = PAGE_SIZE;
1131         end = buffer+buflen;
1132         *--end = '\0';
1133         buflen--;
1134         path = end-1;
1135         *path = '/';
1136         while (de && de != de->parent) {
1137                 buflen -= de->namelen + 1;
1138                 if (buflen < 0)
1139                         break;
1140                 end -= de->namelen;
1141                 memcpy(end, de->name, de->namelen);
1142                 *--end = '/';
1143                 path = end;
1144                 de = de->parent;
1145         }
1146         rc = security_genfs_sid("proc", path, tclass, sid);
1147         free_page((unsigned long)buffer);
1148         return rc;
1149 }
1150 #else
1151 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1152                                 u16 tclass,
1153                                 u32 *sid)
1154 {
1155         return -EINVAL;
1156 }
1157 #endif
1158
1159 /* The inode's security attributes must be initialized before first use. */
1160 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1161 {
1162         struct superblock_security_struct *sbsec = NULL;
1163         struct inode_security_struct *isec = inode->i_security;
1164         u32 sid;
1165         struct dentry *dentry;
1166 #define INITCONTEXTLEN 255
1167         char *context = NULL;
1168         unsigned len = 0;
1169         int rc = 0;
1170
1171         if (isec->initialized)
1172                 goto out;
1173
1174         mutex_lock(&isec->lock);
1175         if (isec->initialized)
1176                 goto out_unlock;
1177
1178         sbsec = inode->i_sb->s_security;
1179         if (!sbsec->initialized) {
1180                 /* Defer initialization until selinux_complete_init,
1181                    after the initial policy is loaded and the security
1182                    server is ready to handle calls. */
1183                 spin_lock(&sbsec->isec_lock);
1184                 if (list_empty(&isec->list))
1185                         list_add(&isec->list, &sbsec->isec_head);
1186                 spin_unlock(&sbsec->isec_lock);
1187                 goto out_unlock;
1188         }
1189
1190         switch (sbsec->behavior) {
1191         case SECURITY_FS_USE_XATTR:
1192                 if (!inode->i_op->getxattr) {
1193                         isec->sid = sbsec->def_sid;
1194                         break;
1195                 }
1196
1197                 /* Need a dentry, since the xattr API requires one.
1198                    Life would be simpler if we could just pass the inode. */
1199                 if (opt_dentry) {
1200                         /* Called from d_instantiate or d_splice_alias. */
1201                         dentry = dget(opt_dentry);
1202                 } else {
1203                         /* Called from selinux_complete_init, try to find a dentry. */
1204                         dentry = d_find_alias(inode);
1205                 }
1206                 if (!dentry) {
1207                         printk(KERN_WARNING "SELinux: %s:  no dentry for dev=%s "
1208                                "ino=%ld\n", __func__, inode->i_sb->s_id,
1209                                inode->i_ino);
1210                         goto out_unlock;
1211                 }
1212
1213                 len = INITCONTEXTLEN;
1214                 context = kmalloc(len, GFP_NOFS);
1215                 if (!context) {
1216                         rc = -ENOMEM;
1217                         dput(dentry);
1218                         goto out_unlock;
1219                 }
1220                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1221                                            context, len);
1222                 if (rc == -ERANGE) {
1223                         /* Need a larger buffer.  Query for the right size. */
1224                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1225                                                    NULL, 0);
1226                         if (rc < 0) {
1227                                 dput(dentry);
1228                                 goto out_unlock;
1229                         }
1230                         kfree(context);
1231                         len = rc;
1232                         context = kmalloc(len, GFP_NOFS);
1233                         if (!context) {
1234                                 rc = -ENOMEM;
1235                                 dput(dentry);
1236                                 goto out_unlock;
1237                         }
1238                         rc = inode->i_op->getxattr(dentry,
1239                                                    XATTR_NAME_SELINUX,
1240                                                    context, len);
1241                 }
1242                 dput(dentry);
1243                 if (rc < 0) {
1244                         if (rc != -ENODATA) {
1245                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1246                                        "%d for dev=%s ino=%ld\n", __func__,
1247                                        -rc, inode->i_sb->s_id, inode->i_ino);
1248                                 kfree(context);
1249                                 goto out_unlock;
1250                         }
1251                         /* Map ENODATA to the default file SID */
1252                         sid = sbsec->def_sid;
1253                         rc = 0;
1254                 } else {
1255                         rc = security_context_to_sid_default(context, rc, &sid,
1256                                                              sbsec->def_sid,
1257                                                              GFP_NOFS);
1258                         if (rc) {
1259                                 printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1260                                        "returned %d for dev=%s ino=%ld\n",
1261                                        __func__, context, -rc,
1262                                        inode->i_sb->s_id, inode->i_ino);
1263                                 kfree(context);
1264                                 /* Leave with the unlabeled SID */
1265                                 rc = 0;
1266                                 break;
1267                         }
1268                 }
1269                 kfree(context);
1270                 isec->sid = sid;
1271                 break;
1272         case SECURITY_FS_USE_TASK:
1273                 isec->sid = isec->task_sid;
1274                 break;
1275         case SECURITY_FS_USE_TRANS:
1276                 /* Default to the fs SID. */
1277                 isec->sid = sbsec->sid;
1278
1279                 /* Try to obtain a transition SID. */
1280                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1281                 rc = security_transition_sid(isec->task_sid,
1282                                              sbsec->sid,
1283                                              isec->sclass,
1284                                              &sid);
1285                 if (rc)
1286                         goto out_unlock;
1287                 isec->sid = sid;
1288                 break;
1289         case SECURITY_FS_USE_MNTPOINT:
1290                 isec->sid = sbsec->mntpoint_sid;
1291                 break;
1292         default:
1293                 /* Default to the fs superblock SID. */
1294                 isec->sid = sbsec->sid;
1295
1296                 if (sbsec->proc && !S_ISLNK(inode->i_mode)) {
1297                         struct proc_inode *proci = PROC_I(inode);
1298                         if (proci->pde) {
1299                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1300                                 rc = selinux_proc_get_sid(proci->pde,
1301                                                           isec->sclass,
1302                                                           &sid);
1303                                 if (rc)
1304                                         goto out_unlock;
1305                                 isec->sid = sid;
1306                         }
1307                 }
1308                 break;
1309         }
1310
1311         isec->initialized = 1;
1312
1313 out_unlock:
1314         mutex_unlock(&isec->lock);
1315 out:
1316         if (isec->sclass == SECCLASS_FILE)
1317                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1318         return rc;
1319 }
1320
1321 /* Convert a Linux signal to an access vector. */
1322 static inline u32 signal_to_av(int sig)
1323 {
1324         u32 perm = 0;
1325
1326         switch (sig) {
1327         case SIGCHLD:
1328                 /* Commonly granted from child to parent. */
1329                 perm = PROCESS__SIGCHLD;
1330                 break;
1331         case SIGKILL:
1332                 /* Cannot be caught or ignored */
1333                 perm = PROCESS__SIGKILL;
1334                 break;
1335         case SIGSTOP:
1336                 /* Cannot be caught or ignored */
1337                 perm = PROCESS__SIGSTOP;
1338                 break;
1339         default:
1340                 /* All other signals. */
1341                 perm = PROCESS__SIGNAL;
1342                 break;
1343         }
1344
1345         return perm;
1346 }
1347
1348 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1349    fork check, ptrace check, etc. */
1350 static int task_has_perm(struct task_struct *tsk1,
1351                          struct task_struct *tsk2,
1352                          u32 perms)
1353 {
1354         struct task_security_struct *tsec1, *tsec2;
1355
1356         tsec1 = tsk1->security;
1357         tsec2 = tsk2->security;
1358         return avc_has_perm(tsec1->sid, tsec2->sid,
1359                             SECCLASS_PROCESS, perms, NULL);
1360 }
1361
1362 #if CAP_LAST_CAP > 63
1363 #error Fix SELinux to handle capabilities > 63.
1364 #endif
1365
1366 /* Check whether a task is allowed to use a capability. */
1367 static int task_has_capability(struct task_struct *tsk,
1368                                int cap)
1369 {
1370         struct task_security_struct *tsec;
1371         struct avc_audit_data ad;
1372         u16 sclass;
1373         u32 av = CAP_TO_MASK(cap);
1374
1375         tsec = tsk->security;
1376
1377         AVC_AUDIT_DATA_INIT(&ad, CAP);
1378         ad.tsk = tsk;
1379         ad.u.cap = cap;
1380
1381         switch (CAP_TO_INDEX(cap)) {
1382         case 0:
1383                 sclass = SECCLASS_CAPABILITY;
1384                 break;
1385         case 1:
1386                 sclass = SECCLASS_CAPABILITY2;
1387                 break;
1388         default:
1389                 printk(KERN_ERR
1390                        "SELinux:  out of range capability %d\n", cap);
1391                 BUG();
1392         }
1393         return avc_has_perm(tsec->sid, tsec->sid, sclass, av, &ad);
1394 }
1395
1396 /* Check whether a task is allowed to use a system operation. */
1397 static int task_has_system(struct task_struct *tsk,
1398                            u32 perms)
1399 {
1400         struct task_security_struct *tsec;
1401
1402         tsec = tsk->security;
1403
1404         return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1405                             SECCLASS_SYSTEM, perms, NULL);
1406 }
1407
1408 /* Check whether a task has a particular permission to an inode.
1409    The 'adp' parameter is optional and allows other audit
1410    data to be passed (e.g. the dentry). */
1411 static int inode_has_perm(struct task_struct *tsk,
1412                           struct inode *inode,
1413                           u32 perms,
1414                           struct avc_audit_data *adp)
1415 {
1416         struct task_security_struct *tsec;
1417         struct inode_security_struct *isec;
1418         struct avc_audit_data ad;
1419
1420         if (unlikely(IS_PRIVATE(inode)))
1421                 return 0;
1422
1423         tsec = tsk->security;
1424         isec = inode->i_security;
1425
1426         if (!adp) {
1427                 adp = &ad;
1428                 AVC_AUDIT_DATA_INIT(&ad, FS);
1429                 ad.u.fs.inode = inode;
1430         }
1431
1432         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1433 }
1434
1435 /* Same as inode_has_perm, but pass explicit audit data containing
1436    the dentry to help the auditing code to more easily generate the
1437    pathname if needed. */
1438 static inline int dentry_has_perm(struct task_struct *tsk,
1439                                   struct vfsmount *mnt,
1440                                   struct dentry *dentry,
1441                                   u32 av)
1442 {
1443         struct inode *inode = dentry->d_inode;
1444         struct avc_audit_data ad;
1445         AVC_AUDIT_DATA_INIT(&ad, FS);
1446         ad.u.fs.path.mnt = mnt;
1447         ad.u.fs.path.dentry = dentry;
1448         return inode_has_perm(tsk, inode, av, &ad);
1449 }
1450
1451 /* Check whether a task can use an open file descriptor to
1452    access an inode in a given way.  Check access to the
1453    descriptor itself, and then use dentry_has_perm to
1454    check a particular permission to the file.
1455    Access to the descriptor is implicitly granted if it
1456    has the same SID as the process.  If av is zero, then
1457    access to the file is not checked, e.g. for cases
1458    where only the descriptor is affected like seek. */
1459 static int file_has_perm(struct task_struct *tsk,
1460                                 struct file *file,
1461                                 u32 av)
1462 {
1463         struct task_security_struct *tsec = tsk->security;
1464         struct file_security_struct *fsec = file->f_security;
1465         struct inode *inode = file->f_path.dentry->d_inode;
1466         struct avc_audit_data ad;
1467         int rc;
1468
1469         AVC_AUDIT_DATA_INIT(&ad, FS);
1470         ad.u.fs.path = file->f_path;
1471
1472         if (tsec->sid != fsec->sid) {
1473                 rc = avc_has_perm(tsec->sid, fsec->sid,
1474                                   SECCLASS_FD,
1475                                   FD__USE,
1476                                   &ad);
1477                 if (rc)
1478                         return rc;
1479         }
1480
1481         /* av is zero if only checking access to the descriptor. */
1482         if (av)
1483                 return inode_has_perm(tsk, inode, av, &ad);
1484
1485         return 0;
1486 }
1487
1488 /* Check whether a task can create a file. */
1489 static int may_create(struct inode *dir,
1490                       struct dentry *dentry,
1491                       u16 tclass)
1492 {
1493         struct task_security_struct *tsec;
1494         struct inode_security_struct *dsec;
1495         struct superblock_security_struct *sbsec;
1496         u32 newsid;
1497         struct avc_audit_data ad;
1498         int rc;
1499
1500         tsec = current->security;
1501         dsec = dir->i_security;
1502         sbsec = dir->i_sb->s_security;
1503
1504         AVC_AUDIT_DATA_INIT(&ad, FS);
1505         ad.u.fs.path.dentry = dentry;
1506
1507         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1508                           DIR__ADD_NAME | DIR__SEARCH,
1509                           &ad);
1510         if (rc)
1511                 return rc;
1512
1513         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1514                 newsid = tsec->create_sid;
1515         } else {
1516                 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1517                                              &newsid);
1518                 if (rc)
1519                         return rc;
1520         }
1521
1522         rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1523         if (rc)
1524                 return rc;
1525
1526         return avc_has_perm(newsid, sbsec->sid,
1527                             SECCLASS_FILESYSTEM,
1528                             FILESYSTEM__ASSOCIATE, &ad);
1529 }
1530
1531 /* Check whether a task can create a key. */
1532 static int may_create_key(u32 ksid,
1533                           struct task_struct *ctx)
1534 {
1535         struct task_security_struct *tsec;
1536
1537         tsec = ctx->security;
1538
1539         return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1540 }
1541
1542 #define MAY_LINK        0
1543 #define MAY_UNLINK      1
1544 #define MAY_RMDIR       2
1545
1546 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1547 static int may_link(struct inode *dir,
1548                     struct dentry *dentry,
1549                     int kind)
1550
1551 {
1552         struct task_security_struct *tsec;
1553         struct inode_security_struct *dsec, *isec;
1554         struct avc_audit_data ad;
1555         u32 av;
1556         int rc;
1557
1558         tsec = current->security;
1559         dsec = dir->i_security;
1560         isec = dentry->d_inode->i_security;
1561
1562         AVC_AUDIT_DATA_INIT(&ad, FS);
1563         ad.u.fs.path.dentry = dentry;
1564
1565         av = DIR__SEARCH;
1566         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1567         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1568         if (rc)
1569                 return rc;
1570
1571         switch (kind) {
1572         case MAY_LINK:
1573                 av = FILE__LINK;
1574                 break;
1575         case MAY_UNLINK:
1576                 av = FILE__UNLINK;
1577                 break;
1578         case MAY_RMDIR:
1579                 av = DIR__RMDIR;
1580                 break;
1581         default:
1582                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1583                         __func__, kind);
1584                 return 0;
1585         }
1586
1587         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1588         return rc;
1589 }
1590
1591 static inline int may_rename(struct inode *old_dir,
1592                              struct dentry *old_dentry,
1593                              struct inode *new_dir,
1594                              struct dentry *new_dentry)
1595 {
1596         struct task_security_struct *tsec;
1597         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1598         struct avc_audit_data ad;
1599         u32 av;
1600         int old_is_dir, new_is_dir;
1601         int rc;
1602
1603         tsec = current->security;
1604         old_dsec = old_dir->i_security;
1605         old_isec = old_dentry->d_inode->i_security;
1606         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1607         new_dsec = new_dir->i_security;
1608
1609         AVC_AUDIT_DATA_INIT(&ad, FS);
1610
1611         ad.u.fs.path.dentry = old_dentry;
1612         rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1613                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1614         if (rc)
1615                 return rc;
1616         rc = avc_has_perm(tsec->sid, old_isec->sid,
1617                           old_isec->sclass, FILE__RENAME, &ad);
1618         if (rc)
1619                 return rc;
1620         if (old_is_dir && new_dir != old_dir) {
1621                 rc = avc_has_perm(tsec->sid, old_isec->sid,
1622                                   old_isec->sclass, DIR__REPARENT, &ad);
1623                 if (rc)
1624                         return rc;
1625         }
1626
1627         ad.u.fs.path.dentry = new_dentry;
1628         av = DIR__ADD_NAME | DIR__SEARCH;
1629         if (new_dentry->d_inode)
1630                 av |= DIR__REMOVE_NAME;
1631         rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1632         if (rc)
1633                 return rc;
1634         if (new_dentry->d_inode) {
1635                 new_isec = new_dentry->d_inode->i_security;
1636                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1637                 rc = avc_has_perm(tsec->sid, new_isec->sid,
1638                                   new_isec->sclass,
1639                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1640                 if (rc)
1641                         return rc;
1642         }
1643
1644         return 0;
1645 }
1646
1647 /* Check whether a task can perform a filesystem operation. */
1648 static int superblock_has_perm(struct task_struct *tsk,
1649                                struct super_block *sb,
1650                                u32 perms,
1651                                struct avc_audit_data *ad)
1652 {
1653         struct task_security_struct *tsec;
1654         struct superblock_security_struct *sbsec;
1655
1656         tsec = tsk->security;
1657         sbsec = sb->s_security;
1658         return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1659                             perms, ad);
1660 }
1661
1662 /* Convert a Linux mode and permission mask to an access vector. */
1663 static inline u32 file_mask_to_av(int mode, int mask)
1664 {
1665         u32 av = 0;
1666
1667         if ((mode & S_IFMT) != S_IFDIR) {
1668                 if (mask & MAY_EXEC)
1669                         av |= FILE__EXECUTE;
1670                 if (mask & MAY_READ)
1671                         av |= FILE__READ;
1672
1673                 if (mask & MAY_APPEND)
1674                         av |= FILE__APPEND;
1675                 else if (mask & MAY_WRITE)
1676                         av |= FILE__WRITE;
1677
1678         } else {
1679                 if (mask & MAY_EXEC)
1680                         av |= DIR__SEARCH;
1681                 if (mask & MAY_WRITE)
1682                         av |= DIR__WRITE;
1683                 if (mask & MAY_READ)
1684                         av |= DIR__READ;
1685         }
1686
1687         return av;
1688 }
1689
1690 /*
1691  * Convert a file mask to an access vector and include the correct open
1692  * open permission.
1693  */
1694 static inline u32 open_file_mask_to_av(int mode, int mask)
1695 {
1696         u32 av = file_mask_to_av(mode, mask);
1697
1698         if (selinux_policycap_openperm) {
1699                 /*
1700                  * lnk files and socks do not really have an 'open'
1701                  */
1702                 if (S_ISREG(mode))
1703                         av |= FILE__OPEN;
1704                 else if (S_ISCHR(mode))
1705                         av |= CHR_FILE__OPEN;
1706                 else if (S_ISBLK(mode))
1707                         av |= BLK_FILE__OPEN;
1708                 else if (S_ISFIFO(mode))
1709                         av |= FIFO_FILE__OPEN;
1710                 else if (S_ISDIR(mode))
1711                         av |= DIR__OPEN;
1712                 else
1713                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1714                                 "unknown mode:%x\n", __func__, mode);
1715         }
1716         return av;
1717 }
1718
1719 /* Convert a Linux file to an access vector. */
1720 static inline u32 file_to_av(struct file *file)
1721 {
1722         u32 av = 0;
1723
1724         if (file->f_mode & FMODE_READ)
1725                 av |= FILE__READ;
1726         if (file->f_mode & FMODE_WRITE) {
1727                 if (file->f_flags & O_APPEND)
1728                         av |= FILE__APPEND;
1729                 else
1730                         av |= FILE__WRITE;
1731         }
1732         if (!av) {
1733                 /*
1734                  * Special file opened with flags 3 for ioctl-only use.
1735                  */
1736                 av = FILE__IOCTL;
1737         }
1738
1739         return av;
1740 }
1741
1742 /* Hook functions begin here. */
1743
1744 static int selinux_ptrace_may_access(struct task_struct *child,
1745                                      unsigned int mode)
1746 {
1747         int rc;
1748
1749         rc = secondary_ops->ptrace_may_access(child, mode);
1750         if (rc)
1751                 return rc;
1752
1753         if (mode == PTRACE_MODE_READ) {
1754                 struct task_security_struct *tsec = current->security;
1755                 struct task_security_struct *csec = child->security;
1756                 return avc_has_perm(tsec->sid, csec->sid,
1757                                     SECCLASS_FILE, FILE__READ, NULL);
1758         }
1759
1760         return task_has_perm(current, child, PROCESS__PTRACE);
1761 }
1762
1763 static int selinux_ptrace_traceme(struct task_struct *parent)
1764 {
1765         int rc;
1766
1767         rc = secondary_ops->ptrace_traceme(parent);
1768         if (rc)
1769                 return rc;
1770
1771         return task_has_perm(parent, current, PROCESS__PTRACE);
1772 }
1773
1774 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1775                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1776 {
1777         int error;
1778
1779         error = task_has_perm(current, target, PROCESS__GETCAP);
1780         if (error)
1781                 return error;
1782
1783         return secondary_ops->capget(target, effective, inheritable, permitted);
1784 }
1785
1786 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1787                                 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1788 {
1789         int error;
1790
1791         error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1792         if (error)
1793                 return error;
1794
1795         return task_has_perm(current, target, PROCESS__SETCAP);
1796 }
1797
1798 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1799                                kernel_cap_t *inheritable, kernel_cap_t *permitted)
1800 {
1801         secondary_ops->capset_set(target, effective, inheritable, permitted);
1802 }
1803
1804 static int selinux_capable(struct task_struct *tsk, int cap)
1805 {
1806         int rc;
1807
1808         rc = secondary_ops->capable(tsk, cap);
1809         if (rc)
1810                 return rc;
1811
1812         return task_has_capability(tsk, cap);
1813 }
1814
1815 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1816 {
1817         int buflen, rc;
1818         char *buffer, *path, *end;
1819
1820         rc = -ENOMEM;
1821         buffer = (char *)__get_free_page(GFP_KERNEL);
1822         if (!buffer)
1823                 goto out;
1824
1825         buflen = PAGE_SIZE;
1826         end = buffer+buflen;
1827         *--end = '\0';
1828         buflen--;
1829         path = end-1;
1830         *path = '/';
1831         while (table) {
1832                 const char *name = table->procname;
1833                 size_t namelen = strlen(name);
1834                 buflen -= namelen + 1;
1835                 if (buflen < 0)
1836                         goto out_free;
1837                 end -= namelen;
1838                 memcpy(end, name, namelen);
1839                 *--end = '/';
1840                 path = end;
1841                 table = table->parent;
1842         }
1843         buflen -= 4;
1844         if (buflen < 0)
1845                 goto out_free;
1846         end -= 4;
1847         memcpy(end, "/sys", 4);
1848         path = end;
1849         rc = security_genfs_sid("proc", path, tclass, sid);
1850 out_free:
1851         free_page((unsigned long)buffer);
1852 out:
1853         return rc;
1854 }
1855
1856 static int selinux_sysctl(ctl_table *table, int op)
1857 {
1858         int error = 0;
1859         u32 av;
1860         struct task_security_struct *tsec;
1861         u32 tsid;
1862         int rc;
1863
1864         rc = secondary_ops->sysctl(table, op);
1865         if (rc)
1866                 return rc;
1867
1868         tsec = current->security;
1869
1870         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1871                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1872         if (rc) {
1873                 /* Default to the well-defined sysctl SID. */
1874                 tsid = SECINITSID_SYSCTL;
1875         }
1876
1877         /* The op values are "defined" in sysctl.c, thereby creating
1878          * a bad coupling between this module and sysctl.c */
1879         if (op == 001) {
1880                 error = avc_has_perm(tsec->sid, tsid,
1881                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1882         } else {
1883                 av = 0;
1884                 if (op & 004)
1885                         av |= FILE__READ;
1886                 if (op & 002)
1887                         av |= FILE__WRITE;
1888                 if (av)
1889                         error = avc_has_perm(tsec->sid, tsid,
1890                                              SECCLASS_FILE, av, NULL);
1891         }
1892
1893         return error;
1894 }
1895
1896 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1897 {
1898         int rc = 0;
1899
1900         if (!sb)
1901                 return 0;
1902
1903         switch (cmds) {
1904         case Q_SYNC:
1905         case Q_QUOTAON:
1906         case Q_QUOTAOFF:
1907         case Q_SETINFO:
1908         case Q_SETQUOTA:
1909                 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAMOD,
1910                                          NULL);
1911                 break;
1912         case Q_GETFMT:
1913         case Q_GETINFO:
1914         case Q_GETQUOTA:
1915                 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAGET,
1916                                          NULL);
1917                 break;
1918         default:
1919                 rc = 0;  /* let the kernel handle invalid cmds */
1920                 break;
1921         }
1922         return rc;
1923 }
1924
1925 static int selinux_quota_on(struct dentry *dentry)
1926 {
1927         return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1928 }
1929
1930 static int selinux_syslog(int type)
1931 {
1932         int rc;
1933
1934         rc = secondary_ops->syslog(type);
1935         if (rc)
1936                 return rc;
1937
1938         switch (type) {
1939         case 3:         /* Read last kernel messages */
1940         case 10:        /* Return size of the log buffer */
1941                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1942                 break;
1943         case 6:         /* Disable logging to console */
1944         case 7:         /* Enable logging to console */
1945         case 8:         /* Set level of messages printed to console */
1946                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1947                 break;
1948         case 0:         /* Close log */
1949         case 1:         /* Open log */
1950         case 2:         /* Read from log */
1951         case 4:         /* Read/clear last kernel messages */
1952         case 5:         /* Clear ring buffer */
1953         default:
1954                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1955                 break;
1956         }
1957         return rc;
1958 }
1959
1960 /*
1961  * Check that a process has enough memory to allocate a new virtual
1962  * mapping. 0 means there is enough memory for the allocation to
1963  * succeed and -ENOMEM implies there is not.
1964  *
1965  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1966  * if the capability is granted, but __vm_enough_memory requires 1 if
1967  * the capability is granted.
1968  *
1969  * Do not audit the selinux permission check, as this is applied to all
1970  * processes that allocate mappings.
1971  */
1972 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1973 {
1974         int rc, cap_sys_admin = 0;
1975         struct task_security_struct *tsec = current->security;
1976
1977         rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1978         if (rc == 0)
1979                 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1980                                           SECCLASS_CAPABILITY,
1981                                           CAP_TO_MASK(CAP_SYS_ADMIN),
1982                                           0,
1983                                           NULL);
1984
1985         if (rc == 0)
1986                 cap_sys_admin = 1;
1987
1988         return __vm_enough_memory(mm, pages, cap_sys_admin);
1989 }
1990
1991 /* binprm security operations */
1992
1993 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1994 {
1995         struct bprm_security_struct *bsec;
1996
1997         bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1998         if (!bsec)
1999                 return -ENOMEM;
2000
2001         bsec->sid = SECINITSID_UNLABELED;
2002         bsec->set = 0;
2003
2004         bprm->security = bsec;
2005         return 0;
2006 }
2007
2008 static int selinux_bprm_set_security(struct linux_binprm *bprm)
2009 {
2010         struct task_security_struct *tsec;
2011         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2012         struct inode_security_struct *isec;
2013         struct bprm_security_struct *bsec;
2014         u32 newsid;
2015         struct avc_audit_data ad;
2016         int rc;
2017
2018         rc = secondary_ops->bprm_set_security(bprm);
2019         if (rc)
2020                 return rc;
2021
2022         bsec = bprm->security;
2023
2024         if (bsec->set)
2025                 return 0;
2026
2027         tsec = current->security;
2028         isec = inode->i_security;
2029
2030         /* Default to the current task SID. */
2031         bsec->sid = tsec->sid;
2032
2033         /* Reset fs, key, and sock SIDs on execve. */
2034         tsec->create_sid = 0;
2035         tsec->keycreate_sid = 0;
2036         tsec->sockcreate_sid = 0;
2037
2038         if (tsec->exec_sid) {
2039                 newsid = tsec->exec_sid;
2040                 /* Reset exec SID on execve. */
2041                 tsec->exec_sid = 0;
2042         } else {
2043                 /* Check for a default transition on this program. */
2044                 rc = security_transition_sid(tsec->sid, isec->sid,
2045                                              SECCLASS_PROCESS, &newsid);
2046                 if (rc)
2047                         return rc;
2048         }
2049
2050         AVC_AUDIT_DATA_INIT(&ad, FS);
2051         ad.u.fs.path = bprm->file->f_path;
2052
2053         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2054                 newsid = tsec->sid;
2055
2056         if (tsec->sid == newsid) {
2057                 rc = avc_has_perm(tsec->sid, isec->sid,
2058                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2059                 if (rc)
2060                         return rc;
2061         } else {
2062                 /* Check permissions for the transition. */
2063                 rc = avc_has_perm(tsec->sid, newsid,
2064                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2065                 if (rc)
2066                         return rc;
2067
2068                 rc = avc_has_perm(newsid, isec->sid,
2069                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2070                 if (rc)
2071                         return rc;
2072
2073                 /* Clear any possibly unsafe personality bits on exec: */
2074                 current->personality &= ~PER_CLEAR_ON_SETID;
2075
2076                 /* Set the security field to the new SID. */
2077                 bsec->sid = newsid;
2078         }
2079
2080         bsec->set = 1;
2081         return 0;
2082 }
2083
2084 static int selinux_bprm_check_security(struct linux_binprm *bprm)
2085 {
2086         return secondary_ops->bprm_check_security(bprm);
2087 }
2088
2089
2090 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2091 {
2092         struct task_security_struct *tsec = current->security;
2093         int atsecure = 0;
2094
2095         if (tsec->osid != tsec->sid) {
2096                 /* Enable secure mode for SIDs transitions unless
2097                    the noatsecure permission is granted between
2098                    the two SIDs, i.e. ahp returns 0. */
2099                 atsecure = avc_has_perm(tsec->osid, tsec->sid,
2100                                          SECCLASS_PROCESS,
2101                                          PROCESS__NOATSECURE, NULL);
2102         }
2103
2104         return (atsecure || secondary_ops->bprm_secureexec(bprm));
2105 }
2106
2107 static void selinux_bprm_free_security(struct linux_binprm *bprm)
2108 {
2109         kfree(bprm->security);
2110         bprm->security = NULL;
2111 }
2112
2113 extern struct vfsmount *selinuxfs_mount;
2114 extern struct dentry *selinux_null;
2115
2116 /* Derived from fs/exec.c:flush_old_files. */
2117 static inline void flush_unauthorized_files(struct files_struct *files)
2118 {
2119         struct avc_audit_data ad;
2120         struct file *file, *devnull = NULL;
2121         struct tty_struct *tty;
2122         struct fdtable *fdt;
2123         long j = -1;
2124         int drop_tty = 0;
2125
2126         tty = get_current_tty();
2127         if (tty) {
2128                 file_list_lock();
2129                 if (!list_empty(&tty->tty_files)) {
2130                         struct inode *inode;
2131
2132                         /* Revalidate access to controlling tty.
2133                            Use inode_has_perm on the tty inode directly rather
2134                            than using file_has_perm, as this particular open
2135                            file may belong to another process and we are only
2136                            interested in the inode-based check here. */
2137                         file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2138                         inode = file->f_path.dentry->d_inode;
2139                         if (inode_has_perm(current, inode,
2140                                            FILE__READ | FILE__WRITE, NULL)) {
2141                                 drop_tty = 1;
2142                         }
2143                 }
2144                 file_list_unlock();
2145                 tty_kref_put(tty);
2146         }
2147         /* Reset controlling tty. */
2148         if (drop_tty)
2149                 no_tty();
2150
2151         /* Revalidate access to inherited open files. */
2152
2153         AVC_AUDIT_DATA_INIT(&ad, FS);
2154
2155         spin_lock(&files->file_lock);
2156         for (;;) {
2157                 unsigned long set, i;
2158                 int fd;
2159
2160                 j++;
2161                 i = j * __NFDBITS;
2162                 fdt = files_fdtable(files);
2163                 if (i >= fdt->max_fds)
2164                         break;
2165                 set = fdt->open_fds->fds_bits[j];
2166                 if (!set)
2167                         continue;
2168                 spin_unlock(&files->file_lock);
2169                 for ( ; set ; i++, set >>= 1) {
2170                         if (set & 1) {
2171                                 file = fget(i);
2172                                 if (!file)
2173                                         continue;
2174                                 if (file_has_perm(current,
2175                                                   file,
2176                                                   file_to_av(file))) {
2177                                         sys_close(i);
2178                                         fd = get_unused_fd();
2179                                         if (fd != i) {
2180                                                 if (fd >= 0)
2181                                                         put_unused_fd(fd);
2182                                                 fput(file);
2183                                                 continue;
2184                                         }
2185                                         if (devnull) {
2186                                                 get_file(devnull);
2187                                         } else {
2188                                                 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
2189                                                 if (IS_ERR(devnull)) {
2190                                                         devnull = NULL;
2191                                                         put_unused_fd(fd);
2192                                                         fput(file);
2193                                                         continue;
2194                                                 }
2195                                         }
2196                                         fd_install(fd, devnull);
2197                                 }
2198                                 fput(file);
2199                         }
2200                 }
2201                 spin_lock(&files->file_lock);
2202
2203         }
2204         spin_unlock(&files->file_lock);
2205 }
2206
2207 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
2208 {
2209         struct task_security_struct *tsec;
2210         struct bprm_security_struct *bsec;
2211         u32 sid;
2212         int rc;
2213
2214         secondary_ops->bprm_apply_creds(bprm, unsafe);
2215
2216         tsec = current->security;
2217
2218         bsec = bprm->security;
2219         sid = bsec->sid;
2220
2221         tsec->osid = tsec->sid;
2222         bsec->unsafe = 0;
2223         if (tsec->sid != sid) {
2224                 /* Check for shared state.  If not ok, leave SID
2225                    unchanged and kill. */
2226                 if (unsafe & LSM_UNSAFE_SHARE) {
2227                         rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
2228                                         PROCESS__SHARE, NULL);
2229                         if (rc) {
2230                                 bsec->unsafe = 1;
2231                                 return;
2232                         }
2233                 }
2234
2235                 /* Check for ptracing, and update the task SID if ok.
2236                    Otherwise, leave SID unchanged and kill. */
2237                 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2238                         struct task_struct *tracer;
2239                         struct task_security_struct *sec;
2240                         u32 ptsid = 0;
2241
2242                         rcu_read_lock();
2243                         tracer = tracehook_tracer_task(current);
2244                         if (likely(tracer != NULL)) {
2245                                 sec = tracer->security;
2246                                 ptsid = sec->sid;
2247                         }
2248                         rcu_read_unlock();
2249
2250                         if (ptsid != 0) {
2251                                 rc = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
2252                                                   PROCESS__PTRACE, NULL);
2253                                 if (rc) {
2254                                         bsec->unsafe = 1;
2255                                         return;
2256                                 }
2257                         }
2258                 }
2259                 tsec->sid = sid;
2260         }
2261 }
2262
2263 /*
2264  * called after apply_creds without the task lock held
2265  */
2266 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
2267 {
2268         struct task_security_struct *tsec;
2269         struct rlimit *rlim, *initrlim;
2270         struct itimerval itimer;
2271         struct bprm_security_struct *bsec;
2272         int rc, i;
2273
2274         tsec = current->security;
2275         bsec = bprm->security;
2276
2277         if (bsec->unsafe) {
2278                 force_sig_specific(SIGKILL, current);
2279                 return;
2280         }
2281         if (tsec->osid == tsec->sid)
2282                 return;
2283
2284         /* Close files for which the new task SID is not authorized. */
2285         flush_unauthorized_files(current->files);
2286
2287         /* Check whether the new SID can inherit signal state
2288            from the old SID.  If not, clear itimers to avoid
2289            subsequent signal generation and flush and unblock
2290            signals. This must occur _after_ the task SID has
2291           been updated so that any kill done after the flush
2292           will be checked against the new SID. */
2293         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2294                           PROCESS__SIGINH, NULL);
2295         if (rc) {
2296                 memset(&itimer, 0, sizeof itimer);
2297                 for (i = 0; i < 3; i++)
2298                         do_setitimer(i, &itimer, NULL);
2299                 flush_signals(current);
2300                 spin_lock_irq(&current->sighand->siglock);
2301                 flush_signal_handlers(current, 1);
2302                 sigemptyset(&current->blocked);
2303                 recalc_sigpending();
2304                 spin_unlock_irq(&current->sighand->siglock);
2305         }
2306
2307         /* Always clear parent death signal on SID transitions. */
2308         current->pdeath_signal = 0;
2309
2310         /* Check whether the new SID can inherit resource limits
2311            from the old SID.  If not, reset all soft limits to
2312            the lower of the current task's hard limit and the init
2313            task's soft limit.  Note that the setting of hard limits
2314            (even to lower them) can be controlled by the setrlimit
2315            check. The inclusion of the init task's soft limit into
2316            the computation is to avoid resetting soft limits higher
2317            than the default soft limit for cases where the default
2318            is lower than the hard limit, e.g. RLIMIT_CORE or
2319            RLIMIT_STACK.*/
2320         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
2321                           PROCESS__RLIMITINH, NULL);
2322         if (rc) {
2323                 for (i = 0; i < RLIM_NLIMITS; i++) {
2324                         rlim = current->signal->rlim + i;
2325                         initrlim = init_task.signal->rlim+i;
2326                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2327                 }
2328                 update_rlimit_cpu(rlim->rlim_cur);
2329         }
2330
2331         /* Wake up the parent if it is waiting so that it can
2332            recheck wait permission to the new task SID. */
2333         wake_up_interruptible(&current->parent->signal->wait_chldexit);
2334 }
2335
2336 /* superblock security operations */
2337
2338 static int selinux_sb_alloc_security(struct super_block *sb)
2339 {
2340         return superblock_alloc_security(sb);
2341 }
2342
2343 static void selinux_sb_free_security(struct super_block *sb)
2344 {
2345         superblock_free_security(sb);
2346 }
2347
2348 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2349 {
2350         if (plen > olen)
2351                 return 0;
2352
2353         return !memcmp(prefix, option, plen);
2354 }
2355
2356 static inline int selinux_option(char *option, int len)
2357 {
2358         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2359                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2360                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2361                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len));
2362 }
2363
2364 static inline void take_option(char **to, char *from, int *first, int len)
2365 {
2366         if (!*first) {
2367                 **to = ',';
2368                 *to += 1;
2369         } else
2370                 *first = 0;
2371         memcpy(*to, from, len);
2372         *to += len;
2373 }
2374
2375 static inline void take_selinux_option(char **to, char *from, int *first,
2376                                        int len)
2377 {
2378         int current_size = 0;
2379
2380         if (!*first) {
2381                 **to = '|';
2382                 *to += 1;
2383         } else
2384                 *first = 0;
2385
2386         while (current_size < len) {
2387                 if (*from != '"') {
2388                         **to = *from;
2389                         *to += 1;
2390                 }
2391                 from += 1;
2392                 current_size += 1;
2393         }
2394 }
2395
2396 static int selinux_sb_copy_data(char *orig, char *copy)
2397 {
2398         int fnosec, fsec, rc = 0;
2399         char *in_save, *in_curr, *in_end;
2400         char *sec_curr, *nosec_save, *nosec;
2401         int open_quote = 0;
2402
2403         in_curr = orig;
2404         sec_curr = copy;
2405
2406         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2407         if (!nosec) {
2408                 rc = -ENOMEM;
2409                 goto out;
2410         }
2411
2412         nosec_save = nosec;
2413         fnosec = fsec = 1;
2414         in_save = in_end = orig;
2415
2416         do {
2417                 if (*in_end == '"')
2418                         open_quote = !open_quote;
2419                 if ((*in_end == ',' && open_quote == 0) ||
2420                                 *in_end == '\0') {
2421                         int len = in_end - in_curr;
2422
2423                         if (selinux_option(in_curr, len))
2424                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2425                         else
2426                                 take_option(&nosec, in_curr, &fnosec, len);
2427
2428                         in_curr = in_end + 1;
2429                 }
2430         } while (*in_end++);
2431
2432         strcpy(in_save, nosec_save);
2433         free_page((unsigned long)nosec_save);
2434 out:
2435         return rc;
2436 }
2437
2438 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2439 {
2440         struct avc_audit_data ad;
2441         int rc;
2442
2443         rc = superblock_doinit(sb, data);
2444         if (rc)
2445                 return rc;
2446
2447         AVC_AUDIT_DATA_INIT(&ad, FS);
2448         ad.u.fs.path.dentry = sb->s_root;
2449         return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2450 }
2451
2452 static int selinux_sb_statfs(struct dentry *dentry)
2453 {
2454         struct avc_audit_data ad;
2455
2456         AVC_AUDIT_DATA_INIT(&ad, FS);
2457         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2458         return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2459 }
2460
2461 static int selinux_mount(char *dev_name,
2462                          struct path *path,
2463                          char *type,
2464                          unsigned long flags,
2465                          void *data)
2466 {
2467         int rc;
2468
2469         rc = secondary_ops->sb_mount(dev_name, path, type, flags, data);
2470         if (rc)
2471                 return rc;
2472
2473         if (flags & MS_REMOUNT)
2474                 return superblock_has_perm(current, path->mnt->mnt_sb,
2475                                            FILESYSTEM__REMOUNT, NULL);
2476         else
2477                 return dentry_has_perm(current, path->mnt, path->dentry,
2478                                        FILE__MOUNTON);
2479 }
2480
2481 static int selinux_umount(struct vfsmount *mnt, int flags)
2482 {
2483         int rc;
2484
2485         rc = secondary_ops->sb_umount(mnt, flags);
2486         if (rc)
2487                 return rc;
2488
2489         return superblock_has_perm(current, mnt->mnt_sb,
2490                                    FILESYSTEM__UNMOUNT, NULL);
2491 }
2492
2493 /* inode security operations */
2494
2495 static int selinux_inode_alloc_security(struct inode *inode)
2496 {
2497         return inode_alloc_security(inode);
2498 }
2499
2500 static void selinux_inode_free_security(struct inode *inode)
2501 {
2502         inode_free_security(inode);
2503 }
2504
2505 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2506                                        char **name, void **value,
2507                                        size_t *len)
2508 {
2509         struct task_security_struct *tsec;
2510         struct inode_security_struct *dsec;
2511         struct superblock_security_struct *sbsec;
2512         u32 newsid, clen;
2513         int rc;
2514         char *namep = NULL, *context;
2515
2516         tsec = current->security;
2517         dsec = dir->i_security;
2518         sbsec = dir->i_sb->s_security;
2519
2520         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2521                 newsid = tsec->create_sid;
2522         } else {
2523                 rc = security_transition_sid(tsec->sid, dsec->sid,
2524                                              inode_mode_to_security_class(inode->i_mode),
2525                                              &newsid);
2526                 if (rc) {
2527                         printk(KERN_WARNING "%s:  "
2528                                "security_transition_sid failed, rc=%d (dev=%s "
2529                                "ino=%ld)\n",
2530                                __func__,
2531                                -rc, inode->i_sb->s_id, inode->i_ino);
2532                         return rc;
2533                 }
2534         }
2535
2536         /* Possibly defer initialization to selinux_complete_init. */
2537         if (sbsec->initialized) {
2538                 struct inode_security_struct *isec = inode->i_security;
2539                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2540                 isec->sid = newsid;
2541                 isec->initialized = 1;
2542         }
2543
2544         if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2545                 return -EOPNOTSUPP;
2546
2547         if (name) {
2548                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2549                 if (!namep)
2550                         return -ENOMEM;
2551                 *name = namep;
2552         }
2553
2554         if (value && len) {
2555                 rc = security_sid_to_context_force(newsid, &context, &clen);
2556                 if (rc) {
2557                         kfree(namep);
2558                         return rc;
2559                 }
2560                 *value = context;
2561                 *len = clen;
2562         }
2563
2564         return 0;
2565 }
2566
2567 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2568 {
2569         return may_create(dir, dentry, SECCLASS_FILE);
2570 }
2571
2572 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2573 {
2574         int rc;
2575
2576         rc = secondary_ops->inode_link(old_dentry, dir, new_dentry);
2577         if (rc)
2578                 return rc;
2579         return may_link(dir, old_dentry, MAY_LINK);
2580 }
2581
2582 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2583 {
2584         int rc;
2585
2586         rc = secondary_ops->inode_unlink(dir, dentry);
2587         if (rc)
2588                 return rc;
2589         return may_link(dir, dentry, MAY_UNLINK);
2590 }
2591
2592 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2593 {
2594         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2595 }
2596
2597 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2598 {
2599         return may_create(dir, dentry, SECCLASS_DIR);
2600 }
2601
2602 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2603 {
2604         return may_link(dir, dentry, MAY_RMDIR);
2605 }
2606
2607 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2608 {
2609         int rc;
2610
2611         rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2612         if (rc)
2613                 return rc;
2614
2615         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2616 }
2617
2618 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2619                                 struct inode *new_inode, struct dentry *new_dentry)
2620 {
2621         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2622 }
2623
2624 static int selinux_inode_readlink(struct dentry *dentry)
2625 {
2626         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2627 }
2628
2629 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2630 {
2631         int rc;
2632
2633         rc = secondary_ops->inode_follow_link(dentry, nameidata);
2634         if (rc)
2635                 return rc;
2636         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2637 }
2638
2639 static int selinux_inode_permission(struct inode *inode, int mask)
2640 {
2641         int rc;
2642
2643         rc = secondary_ops->inode_permission(inode, mask);
2644         if (rc)
2645                 return rc;
2646
2647         if (!mask) {
2648                 /* No permission to check.  Existence test. */
2649                 return 0;
2650         }
2651
2652         return inode_has_perm(current, inode,
2653                                open_file_mask_to_av(inode->i_mode, mask), NULL);
2654 }
2655
2656 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2657 {
2658         int rc;
2659
2660         rc = secondary_ops->inode_setattr(dentry, iattr);
2661         if (rc)
2662                 return rc;
2663
2664         if (iattr->ia_valid & ATTR_FORCE)
2665                 return 0;
2666
2667         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2668                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2669                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2670
2671         return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2672 }
2673
2674 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2675 {
2676         return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2677 }
2678
2679 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2680 {
2681         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2682                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2683                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2684                         if (!capable(CAP_SETFCAP))
2685                                 return -EPERM;
2686                 } else if (!capable(CAP_SYS_ADMIN)) {
2687                         /* A different attribute in the security namespace.
2688                            Restrict to administrator. */
2689                         return -EPERM;
2690                 }
2691         }
2692
2693         /* Not an attribute we recognize, so just check the
2694            ordinary setattr permission. */
2695         return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2696 }
2697
2698 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2699                                   const void *value, size_t size, int flags)
2700 {
2701         struct task_security_struct *tsec = current->security;
2702         struct inode *inode = dentry->d_inode;
2703         struct inode_security_struct *isec = inode->i_security;
2704         struct superblock_security_struct *sbsec;
2705         struct avc_audit_data ad;
2706         u32 newsid;
2707         int rc = 0;
2708
2709         if (strcmp(name, XATTR_NAME_SELINUX))
2710                 return selinux_inode_setotherxattr(dentry, name);
2711
2712         sbsec = inode->i_sb->s_security;
2713         if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2714                 return -EOPNOTSUPP;
2715
2716         if (!is_owner_or_cap(inode))
2717                 return -EPERM;
2718
2719         AVC_AUDIT_DATA_INIT(&ad, FS);
2720         ad.u.fs.path.dentry = dentry;
2721
2722         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2723                           FILE__RELABELFROM, &ad);
2724         if (rc)
2725                 return rc;
2726
2727         rc = security_context_to_sid(value, size, &newsid);
2728         if (rc == -EINVAL) {
2729                 if (!capable(CAP_MAC_ADMIN))
2730                         return rc;
2731                 rc = security_context_to_sid_force(value, size, &newsid);
2732         }
2733         if (rc)
2734                 return rc;
2735
2736         rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2737                           FILE__RELABELTO, &ad);
2738         if (rc)
2739                 return rc;
2740
2741         rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2742                                           isec->sclass);
2743         if (rc)
2744                 return rc;
2745
2746         return avc_has_perm(newsid,
2747                             sbsec->sid,
2748                             SECCLASS_FILESYSTEM,
2749                             FILESYSTEM__ASSOCIATE,
2750                             &ad);
2751 }
2752
2753 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2754                                         const void *value, size_t size,
2755                                         int flags)
2756 {
2757         struct inode *inode = dentry->d_inode;
2758         struct inode_security_struct *isec = inode->i_security;
2759         u32 newsid;
2760         int rc;
2761
2762         if (strcmp(name, XATTR_NAME_SELINUX)) {
2763                 /* Not an attribute we recognize, so nothing to do. */
2764                 return;
2765         }
2766
2767         rc = security_context_to_sid_force(value, size, &newsid);
2768         if (rc) {
2769                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2770                        "for (%s, %lu), rc=%d\n",
2771                        inode->i_sb->s_id, inode->i_ino, -rc);
2772                 return;
2773         }
2774
2775         isec->sid = newsid;
2776         return;
2777 }
2778
2779 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2780 {
2781         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2782 }
2783
2784 static int selinux_inode_listxattr(struct dentry *dentry)
2785 {
2786         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2787 }
2788
2789 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2790 {
2791         if (strcmp(name, XATTR_NAME_SELINUX))
2792                 return selinux_inode_setotherxattr(dentry, name);
2793
2794         /* No one is allowed to remove a SELinux security label.
2795            You can change the label, but all data must be labeled. */
2796         return -EACCES;
2797 }
2798
2799 /*
2800  * Copy the inode security context value to the user.
2801  *
2802  * Permission check is handled by selinux_inode_getxattr hook.
2803  */
2804 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2805 {
2806         u32 size;
2807         int error;
2808         char *context = NULL;
2809         struct task_security_struct *tsec = current->security;
2810         struct inode_security_struct *isec = inode->i_security;
2811
2812         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2813                 return -EOPNOTSUPP;
2814
2815         /*
2816          * If the caller has CAP_MAC_ADMIN, then get the raw context
2817          * value even if it is not defined by current policy; otherwise,
2818          * use the in-core value under current policy.
2819          * Use the non-auditing forms of the permission checks since
2820          * getxattr may be called by unprivileged processes commonly
2821          * and lack of permission just means that we fall back to the
2822          * in-core context value, not a denial.
2823          */
2824         error = secondary_ops->capable(current, CAP_MAC_ADMIN);
2825         if (!error)
2826                 error = avc_has_perm_noaudit(tsec->sid, tsec->sid,
2827                                              SECCLASS_CAPABILITY2,
2828                                              CAPABILITY2__MAC_ADMIN,
2829                                              0,
2830                                              NULL);
2831         if (!error)
2832                 error = security_sid_to_context_force(isec->sid, &context,
2833                                                       &size);
2834         else
2835                 error = security_sid_to_context(isec->sid, &context, &size);
2836         if (error)
2837                 return error;
2838         error = size;
2839         if (alloc) {
2840                 *buffer = context;
2841                 goto out_nofree;
2842         }
2843         kfree(context);
2844 out_nofree:
2845         return error;
2846 }
2847
2848 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2849                                      const void *value, size_t size, int flags)
2850 {
2851         struct inode_security_struct *isec = inode->i_security;
2852         u32 newsid;
2853         int rc;
2854
2855         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2856                 return -EOPNOTSUPP;
2857
2858         if (!value || !size)
2859                 return -EACCES;
2860
2861         rc = security_context_to_sid((void *)value, size, &newsid);
2862         if (rc)
2863                 return rc;
2864
2865         isec->sid = newsid;
2866         return 0;
2867 }
2868
2869 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2870 {
2871         const int len = sizeof(XATTR_NAME_SELINUX);
2872         if (buffer && len <= buffer_size)
2873                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2874         return len;
2875 }
2876
2877 static int selinux_inode_need_killpriv(struct dentry *dentry)
2878 {
2879         return secondary_ops->inode_need_killpriv(dentry);
2880 }
2881
2882 static int selinux_inode_killpriv(struct dentry *dentry)
2883 {
2884         return secondary_ops->inode_killpriv(dentry);
2885 }
2886
2887 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2888 {
2889         struct inode_security_struct *isec = inode->i_security;
2890         *secid = isec->sid;
2891 }
2892
2893 /* file security operations */
2894
2895 static int selinux_revalidate_file_permission(struct file *file, int mask)
2896 {
2897         int rc;
2898         struct inode *inode = file->f_path.dentry->d_inode;
2899
2900         if (!mask) {
2901                 /* No permission to check.  Existence test. */
2902                 return 0;
2903         }
2904
2905         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2906         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2907                 mask |= MAY_APPEND;
2908
2909         rc = file_has_perm(current, file,
2910                            file_mask_to_av(inode->i_mode, mask));
2911         if (rc)
2912                 return rc;
2913
2914         return selinux_netlbl_inode_permission(inode, mask);
2915 }
2916
2917 static int selinux_file_permission(struct file *file, int mask)
2918 {
2919         struct inode *inode = file->f_path.dentry->d_inode;
2920         struct task_security_struct *tsec = current->security;
2921         struct file_security_struct *fsec = file->f_security;
2922         struct inode_security_struct *isec = inode->i_security;
2923
2924         if (!mask) {
2925                 /* No permission to check.  Existence test. */
2926                 return 0;
2927         }
2928
2929         if (tsec->sid == fsec->sid && fsec->isid == isec->sid
2930             && fsec->pseqno == avc_policy_seqno())
2931                 return selinux_netlbl_inode_permission(inode, mask);
2932
2933         return selinux_revalidate_file_permission(file, mask);
2934 }
2935
2936 static int selinux_file_alloc_security(struct file *file)
2937 {
2938         return file_alloc_security(file);
2939 }
2940
2941 static void selinux_file_free_security(struct file *file)
2942 {
2943         file_free_security(file);
2944 }
2945
2946 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2947                               unsigned long arg)
2948 {
2949         u32 av = 0;
2950
2951         if (_IOC_DIR(cmd) & _IOC_WRITE)
2952                 av |= FILE__WRITE;
2953         if (_IOC_DIR(cmd) & _IOC_READ)
2954                 av |= FILE__READ;
2955         if (!av)
2956                 av = FILE__IOCTL;
2957
2958         return file_has_perm(current, file, av);
2959 }
2960
2961 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2962 {
2963 #ifndef CONFIG_PPC32
2964         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2965                 /*
2966                  * We are making executable an anonymous mapping or a
2967                  * private file mapping that will also be writable.
2968                  * This has an additional check.
2969                  */
2970                 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2971                 if (rc)
2972                         return rc;
2973         }
2974 #endif
2975
2976         if (file) {
2977                 /* read access is always possible with a mapping */
2978                 u32 av = FILE__READ;
2979
2980                 /* write access only matters if the mapping is shared */
2981                 if (shared && (prot & PROT_WRITE))
2982                         av |= FILE__WRITE;
2983
2984                 if (prot & PROT_EXEC)
2985                         av |= FILE__EXECUTE;
2986
2987                 return file_has_perm(current, file, av);
2988         }
2989         return 0;
2990 }
2991
2992 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2993                              unsigned long prot, unsigned long flags,
2994                              unsigned long addr, unsigned long addr_only)
2995 {
2996         int rc = 0;
2997         u32 sid = ((struct task_security_struct *)(current->security))->sid;
2998
2999         if (addr < mmap_min_addr)
3000                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3001                                   MEMPROTECT__MMAP_ZERO, NULL);
3002         if (rc || addr_only)
3003                 return rc;
3004
3005         if (selinux_checkreqprot)
3006                 prot = reqprot;
3007
3008         return file_map_prot_check(file, prot,
3009                                    (flags & MAP_TYPE) == MAP_SHARED);
3010 }
3011
3012 static int selinux_file_mprotect(struct vm_area_struct *vma,
3013                                  unsigned long reqprot,
3014                                  unsigned long prot)
3015 {
3016         int rc;
3017
3018         rc = secondary_ops->file_mprotect(vma, reqprot, prot);
3019         if (rc)
3020                 return rc;
3021
3022         if (selinux_checkreqprot)
3023                 prot = reqprot;
3024
3025 #ifndef CONFIG_PPC32
3026         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3027                 rc = 0;
3028                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3029                     vma->vm_end <= vma->vm_mm->brk) {
3030                         rc = task_has_perm(current, current,
3031                                            PROCESS__EXECHEAP);
3032                 } else if (!vma->vm_file &&
3033                            vma->vm_start <= vma->vm_mm->start_stack &&
3034                            vma->vm_end >= vma->vm_mm->start_stack) {
3035                         rc = task_has_perm(current, current, PROCESS__EXECSTACK);
3036                 } else if (vma->vm_file && vma->anon_vma) {
3037                         /*
3038                          * We are making executable a file mapping that has
3039                          * had some COW done. Since pages might have been
3040                          * written, check ability to execute the possibly
3041                          * modified content.  This typically should only
3042                          * occur for text relocations.
3043                          */
3044                         rc = file_has_perm(current, vma->vm_file,
3045                                            FILE__EXECMOD);
3046                 }
3047                 if (rc)
3048                         return rc;
3049         }
3050 #endif
3051
3052         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3053 }
3054
3055 static int selinux_file_lock(struct file *file, unsigned int cmd)
3056 {
3057         return file_has_perm(current, file, FILE__LOCK);
3058 }
3059
3060 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3061                               unsigned long arg)
3062 {
3063         int err = 0;
3064
3065         switch (cmd) {
3066         case F_SETFL:
3067                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3068                         err = -EINVAL;
3069                         break;
3070                 }
3071
3072                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3073                         err = file_has_perm(current, file, FILE__WRITE);
3074                         break;
3075                 }
3076                 /* fall through */
3077         case F_SETOWN:
3078         case F_SETSIG:
3079         case F_GETFL:
3080         case F_GETOWN:
3081         case F_GETSIG:
3082                 /* Just check FD__USE permission */
3083                 err = file_has_perm(current, file, 0);
3084                 break;
3085         case F_GETLK:
3086         case F_SETLK:
3087         case F_SETLKW:
3088 #if BITS_PER_LONG == 32
3089         case F_GETLK64:
3090         case F_SETLK64:
3091         case F_SETLKW64:
3092 #endif
3093                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3094                         err = -EINVAL;
3095                         break;
3096                 }
3097                 err = file_has_perm(current, file, FILE__LOCK);
3098                 break;
3099         }
3100
3101         return err;
3102 }
3103
3104 static int selinux_file_set_fowner(struct file *file)
3105 {
3106         struct task_security_struct *tsec;
3107         struct file_security_struct *fsec;
3108
3109         tsec = current->security;
3110         fsec = file->f_security;
3111         fsec->fown_sid = tsec->sid;
3112
3113         return 0;
3114 }
3115
3116 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3117                                        struct fown_struct *fown, int signum)
3118 {
3119         struct file *file;
3120         u32 perm;
3121         struct task_security_struct *tsec;
3122         struct file_security_struct *fsec;
3123
3124         /* struct fown_struct is never outside the context of a struct file */
3125         file = container_of(fown, struct file, f_owner);
3126
3127         tsec = tsk->security;
3128         fsec = file->f_security;
3129
3130         if (!signum)
3131                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3132         else
3133                 perm = signal_to_av(signum);
3134
3135         return avc_has_perm(fsec->fown_sid, tsec->sid,
3136                             SECCLASS_PROCESS, perm, NULL);
3137 }
3138
3139 static int selinux_file_receive(struct file *file)
3140 {
3141         return file_has_perm(current, file, file_to_av(file));
3142 }
3143
3144 static int selinux_dentry_open(struct file *file)
3145 {
3146         struct file_security_struct *fsec;
3147         struct inode *inode;
3148         struct inode_security_struct *isec;
3149         inode = file->f_path.dentry->d_inode;
3150         fsec = file->f_security;
3151         isec = inode->i_security;
3152         /*
3153          * Save inode label and policy sequence number
3154          * at open-time so that selinux_file_permission
3155          * can determine whether revalidation is necessary.
3156          * Task label is already saved in the file security
3157          * struct as its SID.
3158          */
3159         fsec->isid = isec->sid;
3160         fsec->pseqno = avc_policy_seqno();
3161         /*
3162          * Since the inode label or policy seqno may have changed
3163          * between the selinux_inode_permission check and the saving
3164          * of state above, recheck that access is still permitted.
3165          * Otherwise, access might never be revalidated against the
3166          * new inode label or new policy.
3167          * This check is not redundant - do not remove.
3168          */
3169         return inode_has_perm(current, inode, file_to_av(file), NULL);
3170 }
3171
3172 /* task security operations */
3173
3174 static int selinux_task_create(unsigned long clone_flags)
3175 {
3176         int rc;
3177
3178         rc = secondary_ops->task_create(clone_flags);
3179         if (rc)
3180                 return rc;
3181
3182         return task_has_perm(current, current, PROCESS__FORK);
3183 }
3184
3185 static int selinux_task_alloc_security(struct task_struct *tsk)
3186 {
3187         struct task_security_struct *tsec1, *tsec2;
3188         int rc;
3189
3190         tsec1 = current->security;
3191
3192         rc = task_alloc_security(tsk);
3193         if (rc)
3194                 return rc;
3195         tsec2 = tsk->security;
3196
3197         tsec2->osid = tsec1->osid;
3198         tsec2->sid = tsec1->sid;
3199
3200         /* Retain the exec, fs, key, and sock SIDs across fork */
3201         tsec2->exec_sid = tsec1->exec_sid;
3202         tsec2->create_sid = tsec1->create_sid;
3203         tsec2->keycreate_sid = tsec1->keycreate_sid;
3204         tsec2->sockcreate_sid = tsec1->sockcreate_sid;
3205
3206         return 0;
3207 }
3208
3209 static void selinux_task_free_security(struct task_struct *tsk)
3210 {
3211         task_free_security(tsk);
3212 }
3213
3214 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3215 {
3216         /* Since setuid only affects the current process, and
3217            since the SELinux controls are not based on the Linux
3218            identity attributes, SELinux does not need to control
3219            this operation.  However, SELinux does control the use
3220            of the CAP_SETUID and CAP_SETGID capabilities using the
3221            capable hook. */
3222         return 0;
3223 }
3224
3225 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
3226 {
3227         return secondary_ops->task_post_setuid(id0, id1, id2, flags);
3228 }
3229
3230 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
3231 {
3232         /* See the comment for setuid above. */
3233         return 0;
3234 }
3235
3236 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3237 {
3238         return task_has_perm(current, p, PROCESS__SETPGID);
3239 }
3240
3241 static int selinux_task_getpgid(struct task_struct *p)
3242 {
3243         return task_has_perm(current, p, PROCESS__GETPGID);
3244 }
3245
3246 static int selinux_task_getsid(struct task_struct *p)
3247 {
3248         return task_has_perm(current, p, PROCESS__GETSESSION);
3249 }
3250
3251 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3252 {
3253         struct task_security_struct *tsec = p->security;
3254         *secid = tsec->sid;
3255 }
3256
3257 static int selinux_task_setgroups(struct group_info *group_info)
3258 {
3259         /* See the comment for setuid above. */
3260         return 0;
3261 }
3262
3263 static int selinux_task_setnice(struct task_struct *p, int nice)
3264 {
3265         int rc;
3266
3267         rc = secondary_ops->task_setnice(p, nice);
3268         if (rc)
3269                 return rc;
3270
3271         return task_has_perm(current, p, PROCESS__SETSCHED);
3272 }
3273
3274 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3275 {
3276         int rc;
3277
3278         rc = secondary_ops->task_setioprio(p, ioprio);
3279         if (rc)
3280                 return rc;
3281
3282         return task_has_perm(current, p, PROCESS__SETSCHED);
3283 }
3284
3285 static int selinux_task_getioprio(struct task_struct *p)
3286 {
3287         return task_has_perm(current, p, PROCESS__GETSCHED);
3288 }
3289
3290 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3291 {
3292         struct rlimit *old_rlim = current->signal->rlim + resource;
3293         int rc;
3294
3295         rc = secondary_ops->task_setrlimit(resource, new_rlim);
3296         if (rc)
3297                 return rc;
3298
3299         /* Control the ability to change the hard limit (whether
3300            lowering or raising it), so that the hard limit can
3301            later be used as a safe reset point for the soft limit
3302            upon context transitions. See selinux_bprm_apply_creds. */
3303         if (old_rlim->rlim_max != new_rlim->rlim_max)
3304                 return task_has_perm(current, current, PROCESS__SETRLIMIT);
3305
3306         return 0;
3307 }
3308
3309 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3310 {
3311         int rc;
3312
3313         rc = secondary_ops->task_setscheduler(p, policy, lp);
3314         if (rc)
3315                 return rc;
3316
3317         return task_has_perm(current, p, PROCESS__SETSCHED);
3318 }
3319
3320 static int selinux_task_getscheduler(struct task_struct *p)
3321 {
3322         return task_has_perm(current, p, PROCESS__GETSCHED);
3323 }
3324
3325 static int selinux_task_movememory(struct task_struct *p)
3326 {
3327         return task_has_perm(current, p, PROCESS__SETSCHED);
3328 }
3329
3330 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3331                                 int sig, u32 secid)
3332 {
3333         u32 perm;
3334         int rc;
3335         struct task_security_struct *tsec;
3336
3337         rc = secondary_ops->task_kill(p, info, sig, secid);
3338         if (rc)
3339                 return rc;
3340
3341         if (!sig)
3342                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3343         else
3344                 perm = signal_to_av(sig);
3345         tsec = p->security;
3346         if (secid)
3347                 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
3348         else
3349                 rc = task_has_perm(current, p, perm);
3350         return rc;
3351 }
3352
3353 static int selinux_task_prctl(int option,
3354                               unsigned long arg2,
3355                               unsigned long arg3,
3356                               unsigned long arg4,
3357                               unsigned long arg5,
3358                               long *rc_p)
3359 {
3360         /* The current prctl operations do not appear to require
3361            any SELinux controls since they merely observe or modify
3362            the state of the current process. */
3363         return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
3364 }
3365
3366 static int selinux_task_wait(struct task_struct *p)
3367 {
3368         return task_has_perm(p, current, PROCESS__SIGCHLD);
3369 }
3370
3371 static void selinux_task_reparent_to_init(struct task_struct *p)
3372 {
3373         struct task_security_struct *tsec;
3374
3375         secondary_ops->task_reparent_to_init(p);
3376
3377         tsec = p->security;
3378         tsec->osid = tsec->sid;
3379         tsec->sid = SECINITSID_KERNEL;
3380         return;
3381 }
3382
3383 static void selinux_task_to_inode(struct task_struct *p,
3384                                   struct inode *inode)
3385 {
3386         struct task_security_struct *tsec = p->security;
3387         struct inode_security_struct *isec = inode->i_security;
3388
3389         isec->sid = tsec->sid;
3390         isec->initialized = 1;
3391         return;
3392 }
3393
3394 /* Returns error only if unable to parse addresses */
3395 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3396                         struct avc_audit_data *ad, u8 *proto)
3397 {
3398         int offset, ihlen, ret = -EINVAL;
3399         struct iphdr _iph, *ih;
3400
3401         offset = skb_network_offset(skb);
3402         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3403         if (ih == NULL)
3404                 goto out;
3405
3406         ihlen = ih->ihl * 4;
3407         if (ihlen < sizeof(_iph))
3408                 goto out;
3409
3410         ad->u.net.v4info.saddr = ih->saddr;
3411         ad->u.net.v4info.daddr = ih->daddr;
3412         ret = 0;
3413
3414         if (proto)
3415                 *proto = ih->protocol;
3416
3417         switch (ih->protocol) {
3418         case IPPROTO_TCP: {
3419                 struct tcphdr _tcph, *th;
3420
3421                 if (ntohs(ih->frag_off) & IP_OFFSET)
3422                         break;
3423
3424                 offset += ihlen;
3425                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3426                 if (th == NULL)
3427                         break;
3428
3429                 ad->u.net.sport = th->source;
3430                 ad->u.net.dport = th->dest;
3431                 break;
3432         }
3433
3434         case IPPROTO_UDP: {
3435                 struct udphdr _udph, *uh;
3436
3437                 if (ntohs(ih->frag_off) & IP_OFFSET)
3438                         break;
3439
3440                 offset += ihlen;
3441                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3442                 if (uh == NULL)
3443                         break;
3444
3445                 ad->u.net.sport = uh->source;
3446                 ad->u.net.dport = uh->dest;
3447                 break;
3448         }
3449
3450         case IPPROTO_DCCP: {
3451                 struct dccp_hdr _dccph, *dh;
3452
3453                 if (ntohs(ih->frag_off) & IP_OFFSET)
3454                         break;
3455
3456                 offset += ihlen;
3457                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3458                 if (dh == NULL)
3459                         break;
3460
3461                 ad->u.net.sport = dh->dccph_sport;
3462                 ad->u.net.dport = dh->dccph_dport;
3463                 break;
3464         }
3465
3466         default:
3467                 break;
3468         }
3469 out:
3470         return ret;
3471 }
3472
3473 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3474
3475 /* Returns error only if unable to parse addresses */
3476 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3477                         struct avc_audit_data *ad, u8 *proto)
3478 {
3479         u8 nexthdr;
3480         int ret = -EINVAL, offset;
3481         struct ipv6hdr _ipv6h, *ip6;
3482
3483         offset = skb_network_offset(skb);
3484         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3485         if (ip6 == NULL)
3486                 goto out;
3487
3488         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3489         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3490         ret = 0;
3491
3492         nexthdr = ip6->nexthdr;
3493         offset += sizeof(_ipv6h);
3494         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3495         if (offset < 0)
3496                 goto out;
3497
3498         if (proto)
3499                 *proto = nexthdr;
3500
3501         switch (nexthdr) {
3502         case IPPROTO_TCP: {
3503                 struct tcphdr _tcph, *th;
3504
3505                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3506                 if (th == NULL)
3507                         break;
3508
3509                 ad->u.net.sport = th->source;
3510                 ad->u.net.dport = th->dest;
3511                 break;
3512         }
3513
3514         case IPPROTO_UDP: {
3515                 struct udphdr _udph, *uh;
3516
3517                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3518                 if (uh == NULL)
3519                         break;
3520
3521                 ad->u.net.sport = uh->source;
3522                 ad->u.net.dport = uh->dest;
3523                 break;
3524         }
3525
3526         case IPPROTO_DCCP: {
3527                 struct dccp_hdr _dccph, *dh;
3528
3529                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3530                 if (dh == NULL)
3531                         break;
3532
3533                 ad->u.net.sport = dh->dccph_sport;
3534                 ad->u.net.dport = dh->dccph_dport;
3535                 break;
3536         }
3537
3538         /* includes fragments */
3539         default:
3540                 break;
3541         }
3542 out:
3543         return ret;
3544 }
3545
3546 #endif /* IPV6 */
3547
3548 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3549                              char **_addrp, int src, u8 *proto)
3550 {
3551         char *addrp;
3552         int ret;
3553
3554         switch (ad->u.net.family) {
3555         case PF_INET:
3556                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3557                 if (ret)
3558                         goto parse_error;
3559                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3560                                        &ad->u.net.v4info.daddr);
3561                 goto okay;
3562
3563 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3564         case PF_INET6:
3565                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3566                 if (ret)
3567                         goto parse_error;
3568                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3569                                        &ad->u.net.v6info.daddr);
3570                 goto okay;
3571 #endif  /* IPV6 */
3572         default:
3573                 addrp = NULL;
3574                 goto okay;
3575         }
3576
3577 parse_error:
3578         printk(KERN_WARNING
3579                "SELinux: failure in selinux_parse_skb(),"
3580                " unable to parse packet\n");
3581         return ret;
3582
3583 okay:
3584         if (_addrp)
3585                 *_addrp = addrp;
3586         return 0;
3587 }
3588
3589 /**
3590  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3591  * @skb: the packet
3592  * @family: protocol family
3593  * @sid: the packet's peer label SID
3594  *
3595  * Description:
3596  * Check the various different forms of network peer labeling and determine
3597  * the peer label/SID for the packet; most of the magic actually occurs in
3598  * the security server function security_net_peersid_cmp().  The function
3599  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3600  * or -EACCES if @sid is invalid due to inconsistencies with the different
3601  * peer labels.
3602  *
3603  */
3604 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3605 {
3606         int err;
3607         u32 xfrm_sid;
3608         u32 nlbl_sid;
3609         u32 nlbl_type;
3610
3611         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3612         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3613
3614         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3615         if (unlikely(err)) {
3616                 printk(KERN_WARNING
3617                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3618                        " unable to determine packet's peer label\n");
3619                 return -EACCES;
3620         }
3621
3622         return 0;
3623 }
3624
3625 /* socket security operations */
3626 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3627                            u32 perms)
3628 {
3629         struct inode_security_struct *isec;
3630         struct task_security_struct *tsec;
3631         struct avc_audit_data ad;
3632         int err = 0;
3633
3634         tsec = task->security;
3635         isec = SOCK_INODE(sock)->i_security;
3636
3637         if (isec->sid == SECINITSID_KERNEL)
3638                 goto out;
3639
3640         AVC_AUDIT_DATA_INIT(&ad, NET);
3641         ad.u.net.sk = sock->sk;
3642         err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3643
3644 out:
3645         return err;
3646 }
3647
3648 static int selinux_socket_create(int family, int type,
3649                                  int protocol, int kern)
3650 {
3651         int err = 0;
3652         struct task_security_struct *tsec;
3653         u32 newsid;
3654
3655         if (kern)
3656                 goto out;
3657
3658         tsec = current->security;
3659         newsid = tsec->sockcreate_sid ? : tsec->sid;
3660         err = avc_has_perm(tsec->sid, newsid,
3661                            socket_type_to_security_class(family, type,
3662                            protocol), SOCKET__CREATE, NULL);
3663
3664 out:
3665         return err;
3666 }
3667
3668 static int selinux_socket_post_create(struct socket *sock, int family,
3669                                       int type, int protocol, int kern)
3670 {
3671         int err = 0;
3672         struct inode_security_struct *isec;
3673         struct task_security_struct *tsec;
3674         struct sk_security_struct *sksec;
3675         u32 newsid;
3676
3677         isec = SOCK_INODE(sock)->i_security;
3678
3679         tsec = current->security;
3680         newsid = tsec->sockcreate_sid ? : tsec->sid;
3681         isec->sclass = socket_type_to_security_class(family, type, protocol);
3682         isec->sid = kern ? SECINITSID_KERNEL : newsid;
3683         isec->initialized = 1;
3684
3685         if (sock->sk) {
3686                 sksec = sock->sk->sk_security;
3687                 sksec->sid = isec->sid;
3688                 sksec->sclass = isec->sclass;
3689                 err = selinux_netlbl_socket_post_create(sock);
3690         }
3691
3692         return err;
3693 }
3694
3695 /* Range of port numbers used to automatically bind.
3696    Need to determine whether we should perform a name_bind
3697    permission check between the socket and the port number. */
3698
3699 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3700 {
3701         u16 family;
3702         int err;
3703
3704         err = socket_has_perm(current, sock, SOCKET__BIND);
3705         if (err)
3706                 goto out;
3707
3708         /*
3709          * If PF_INET or PF_INET6, check name_bind permission for the port.
3710          * Multiple address binding for SCTP is not supported yet: we just
3711          * check the first address now.
3712          */
3713         family = sock->sk->sk_family;
3714         if (family == PF_INET || family == PF_INET6) {
3715                 char *addrp;
3716                 struct inode_security_struct *isec;
3717                 struct task_security_struct *tsec;
3718                 struct avc_audit_data ad;
3719                 struct sockaddr_in *addr4 = NULL;
3720                 struct sockaddr_in6 *addr6 = NULL;
3721                 unsigned short snum;
3722                 struct sock *sk = sock->sk;
3723                 u32 sid, node_perm;
3724
3725                 tsec = current->security;
3726                 isec = SOCK_INODE(sock)->i_security;
3727
3728                 if (family == PF_INET) {
3729                         addr4 = (struct sockaddr_in *)address;
3730                         snum = ntohs(addr4->sin_port);
3731                         addrp = (char *)&addr4->sin_addr.s_addr;
3732                 } else {
3733                         addr6 = (struct sockaddr_in6 *)address;
3734                         snum = ntohs(addr6->sin6_port);
3735                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3736                 }
3737
3738                 if (snum) {
3739                         int low, high;
3740
3741                         inet_get_local_port_range(&low, &high);
3742
3743                         if (snum < max(PROT_SOCK, low) || snum > high) {
3744                                 err = sel_netport_sid(sk->sk_protocol,
3745                                                       snum, &sid);
3746                                 if (err)
3747                                         goto out;
3748                                 AVC_AUDIT_DATA_INIT(&ad, NET);
3749                                 ad.u.net.sport = htons(snum);
3750                                 ad.u.net.family = family;
3751                                 err = avc_has_perm(isec->sid, sid,
3752                                                    isec->sclass,
3753                                                    SOCKET__NAME_BIND, &ad);
3754                                 if (err)
3755                                         goto out;
3756                         }
3757                 }
3758
3759                 switch (isec->sclass) {
3760                 case SECCLASS_TCP_SOCKET:
3761                         node_perm = TCP_SOCKET__NODE_BIND;
3762                         break;
3763
3764                 case SECCLASS_UDP_SOCKET:
3765                         node_perm = UDP_SOCKET__NODE_BIND;
3766                         break;
3767
3768                 case SECCLASS_DCCP_SOCKET:
3769                         node_perm = DCCP_SOCKET__NODE_BIND;
3770                         break;
3771
3772                 default:
3773                         node_perm = RAWIP_SOCKET__NODE_BIND;
3774                         break;
3775                 }
3776
3777                 err = sel_netnode_sid(addrp, family, &sid);
3778                 if (err)
3779                         goto out;
3780
3781                 AVC_AUDIT_DATA_INIT(&ad, NET);
3782                 ad.u.net.sport = htons(snum);
3783                 ad.u.net.family = family;
3784
3785                 if (family == PF_INET)
3786                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3787                 else
3788                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3789
3790                 err = avc_has_perm(isec->sid, sid,
3791                                    isec->sclass, node_perm, &ad);
3792                 if (err)
3793                         goto out;
3794         }
3795 out:
3796         return err;
3797 }
3798
3799 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3800 {
3801         struct sock *sk = sock->sk;
3802         struct inode_security_struct *isec;
3803         int err;
3804
3805         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3806         if (err)
3807                 return err;
3808
3809         /*
3810          * If a TCP or DCCP socket, check name_connect permission for the port.
3811          */
3812         isec = SOCK_INODE(sock)->i_security;
3813         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3814             isec->sclass == SECCLASS_DCCP_SOCKET) {
3815                 struct avc_audit_data ad;
3816                 struct sockaddr_in *addr4 = NULL;
3817                 struct sockaddr_in6 *addr6 = NULL;
3818                 unsigned short snum;
3819                 u32 sid, perm;
3820
3821                 if (sk->sk_family == PF_INET) {
3822                         addr4 = (struct sockaddr_in *)address;
3823                         if (addrlen < sizeof(struct sockaddr_in))
3824                                 return -EINVAL;
3825                         snum = ntohs(addr4->sin_port);
3826                 } else {
3827                         addr6 = (struct sockaddr_in6 *)address;
3828                         if (addrlen < SIN6_LEN_RFC2133)
3829                                 return -EINVAL;
3830                         snum = ntohs(addr6->sin6_port);
3831                 }
3832
3833                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3834                 if (err)
3835                         goto out;
3836
3837                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3838                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3839
3840                 AVC_AUDIT_DATA_INIT(&ad, NET);
3841                 ad.u.net.dport = htons(snum);
3842                 ad.u.net.family = sk->sk_family;
3843                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3844                 if (err)
3845                         goto out;
3846         }
3847
3848         err = selinux_netlbl_socket_connect(sk, address);
3849
3850 out:
3851         return err;
3852 }
3853
3854 static int selinux_socket_listen(struct socket *sock, int backlog)
3855 {
3856         return socket_has_perm(current, sock, SOCKET__LISTEN);
3857 }
3858
3859 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3860 {
3861         int err;
3862         struct inode_security_struct *isec;
3863         struct inode_security_struct *newisec;
3864
3865         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3866         if (err)
3867                 return err;
3868
3869         newisec = SOCK_INODE(newsock)->i_security;
3870
3871         isec = SOCK_INODE(sock)->i_security;
3872         newisec->sclass = isec->sclass;
3873         newisec->sid = isec->sid;
3874         newisec->initialized = 1;
3875
3876         return 0;
3877 }
3878
3879 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3880                                   int size)
3881 {
3882         int rc;
3883
3884         rc = socket_has_perm(current, sock, SOCKET__WRITE);
3885         if (rc)
3886                 return rc;
3887
3888         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3889 }
3890
3891 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3892                                   int size, int flags)
3893 {
3894         return socket_has_perm(current, sock, SOCKET__READ);
3895 }
3896
3897 static int selinux_socket_getsockname(struct socket *sock)
3898 {
3899         return socket_has_perm(current, sock, SOCKET__GETATTR);
3900 }
3901
3902 static int selinux_socket_getpeername(struct socket *sock)
3903 {
3904         return socket_has_perm(current, sock, SOCKET__GETATTR);
3905 }
3906
3907 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3908 {
3909         int err;
3910
3911         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3912         if (err)
3913                 return err;
3914
3915         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3916 }
3917
3918 static int selinux_socket_getsockopt(struct socket *sock, int level,
3919                                      int optname)
3920 {
3921         return socket_has_perm(current, sock, SOCKET__GETOPT);
3922 }
3923
3924 static int selinux_socket_shutdown(struct socket *sock, int how)
3925 {
3926         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3927 }
3928
3929 static int selinux_socket_unix_stream_connect(struct socket *sock,
3930                                               struct socket *other,
3931                                               struct sock *newsk)
3932 {
3933         struct sk_security_struct *ssec;
3934         struct inode_security_struct *isec;
3935         struct inode_security_struct *other_isec;
3936         struct avc_audit_data ad;
3937         int err;
3938
3939         err = secondary_ops->unix_stream_connect(sock, other, newsk);
3940         if (err)
3941                 return err;
3942
3943         isec = SOCK_INODE(sock)->i_security;
3944         other_isec = SOCK_INODE(other)->i_security;
3945
3946         AVC_AUDIT_DATA_INIT(&ad, NET);
3947         ad.u.net.sk = other->sk;
3948
3949         err = avc_has_perm(isec->sid, other_isec->sid,
3950                            isec->sclass,
3951                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3952         if (err)
3953                 return err;
3954
3955         /* connecting socket */
3956         ssec = sock->sk->sk_security;
3957         ssec->peer_sid = other_isec->sid;
3958
3959         /* server child socket */
3960         ssec = newsk->sk_security;
3961         ssec->peer_sid = isec->sid;
3962         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3963
3964         return err;
3965 }
3966
3967 static int selinux_socket_unix_may_send(struct socket *sock,
3968                                         struct socket *other)
3969 {
3970         struct inode_security_struct *isec;
3971         struct inode_security_struct *other_isec;
3972         struct avc_audit_data ad;
3973         int err;
3974
3975         isec = SOCK_INODE(sock)->i_security;
3976         other_isec = SOCK_INODE(other)->i_security;
3977
3978         AVC_AUDIT_DATA_INIT(&ad, NET);
3979         ad.u.net.sk = other->sk;
3980
3981         err = avc_has_perm(isec->sid, other_isec->sid,
3982                            isec->sclass, SOCKET__SENDTO, &ad);
3983         if (err)
3984                 return err;
3985
3986         return 0;
3987 }
3988
3989 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
3990                                     u32 peer_sid,
3991                                     struct avc_audit_data *ad)
3992 {
3993         int err;
3994         u32 if_sid;
3995         u32 node_sid;
3996
3997         err = sel_netif_sid(ifindex, &if_sid);
3998         if (err)
3999                 return err;
4000         err = avc_has_perm(peer_sid, if_sid,
4001                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4002         if (err)
4003                 return err;
4004
4005         err = sel_netnode_sid(addrp, family, &node_sid);
4006         if (err)
4007                 return err;
4008         return avc_has_perm(peer_sid, node_sid,
4009                             SECCLASS_NODE, NODE__RECVFROM, ad);
4010 }
4011
4012 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk,
4013                                                 struct sk_buff *skb,
4014                                                 struct avc_audit_data *ad,
4015                                                 u16 family,
4016                                                 char *addrp)
4017 {
4018         int err;
4019         struct sk_security_struct *sksec = sk->sk_security;
4020         u16 sk_class;
4021         u32 netif_perm, node_perm, recv_perm;
4022         u32 port_sid, node_sid, if_sid, sk_sid;
4023
4024         sk_sid = sksec->sid;
4025         sk_class = sksec->sclass;
4026
4027         switch (sk_class) {
4028         case SECCLASS_UDP_SOCKET:
4029                 netif_perm = NETIF__UDP_RECV;
4030                 node_perm = NODE__UDP_RECV;
4031                 recv_perm = UDP_SOCKET__RECV_MSG;
4032                 break;
4033         case SECCLASS_TCP_SOCKET:
4034                 netif_perm = NETIF__TCP_RECV;
4035                 node_perm = NODE__TCP_RECV;
4036                 recv_perm = TCP_SOCKET__RECV_MSG;
4037                 break;
4038         case SECCLASS_DCCP_SOCKET:
4039                 netif_perm = NETIF__DCCP_RECV;
4040                 node_perm = NODE__DCCP_RECV;
4041                 recv_perm = DCCP_SOCKET__RECV_MSG;
4042                 break;
4043         default:
4044                 netif_perm = NETIF__RAWIP_RECV;
4045                 node_perm = NODE__RAWIP_RECV;
4046                 recv_perm = 0;
4047                 break;
4048         }
4049
4050         err = sel_netif_sid(skb->iif, &if_sid);
4051         if (err)
4052                 return err;
4053         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4054         if (err)
4055                 return err;
4056
4057         err = sel_netnode_sid(addrp, family, &node_sid);
4058         if (err)
4059                 return err;
4060         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4061         if (err)
4062                 return err;
4063
4064         if (!recv_perm)
4065                 return 0;
4066         err = sel_netport_sid(sk->sk_protocol,
4067                               ntohs(ad->u.net.sport), &port_sid);
4068         if (unlikely(err)) {
4069                 printk(KERN_WARNING
4070                        "SELinux: failure in"
4071                        " selinux_sock_rcv_skb_iptables_compat(),"
4072                        " network port label not found\n");
4073                 return err;
4074         }
4075         return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad);
4076 }
4077
4078 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4079                                        u16 family)
4080 {
4081         int err;
4082         struct sk_security_struct *sksec = sk->sk_security;
4083         u32 peer_sid;
4084         u32 sk_sid = sksec->sid;
4085         struct avc_audit_data ad;
4086         char *addrp;
4087
4088         AVC_AUDIT_DATA_INIT(&ad, NET);
4089         ad.u.net.netif = skb->iif;
4090         ad.u.net.family = family;
4091         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4092         if (err)
4093                 return err;
4094
4095         if (selinux_compat_net)
4096                 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, &ad,
4097                                                            family, addrp);
4098         else
4099                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4100                                    PACKET__RECV, &ad);
4101         if (err)
4102                 return err;
4103
4104         if (selinux_policycap_netpeer) {
4105                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4106                 if (err)
4107                         return err;
4108                 err = avc_has_perm(sk_sid, peer_sid,
4109                                    SECCLASS_PEER, PEER__RECV, &ad);
4110                 if (err)
4111                         selinux_netlbl_err(skb, err, 0);
4112         } else {
4113                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4114                 if (err)
4115                         return err;
4116                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4117         }
4118
4119         return err;
4120 }
4121
4122 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4123 {
4124         int err;
4125         struct sk_security_struct *sksec = sk->sk_security;
4126         u16 family = sk->sk_family;
4127         u32 sk_sid = sksec->sid;
4128         struct avc_audit_data ad;
4129         char *addrp;
4130         u8 secmark_active;
4131         u8 peerlbl_active;
4132
4133         if (family != PF_INET && family != PF_INET6)
4134                 return 0;
4135
4136         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4137         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4138                 family = PF_INET;
4139
4140         /* If any sort of compatibility mode is enabled then handoff processing
4141          * to the selinux_sock_rcv_skb_compat() function to deal with the
4142          * special handling.  We do this in an attempt to keep this function
4143          * as fast and as clean as possible. */
4144         if (selinux_compat_net || !selinux_policycap_netpeer)
4145                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4146
4147         secmark_active = selinux_secmark_enabled();
4148         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4149         if (!secmark_active && !peerlbl_active)
4150                 return 0;
4151
4152         AVC_AUDIT_DATA_INIT(&ad, NET);
4153         ad.u.net.netif = skb->iif;
4154         ad.u.net.family = family;
4155         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4156         if (err)
4157                 return err;
4158
4159         if (peerlbl_active) {
4160                 u32 peer_sid;
4161
4162                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4163                 if (err)
4164                         return err;
4165                 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4166                                                peer_sid, &ad);
4167                 if (err) {
4168                         selinux_netlbl_err(skb, err, 0);
4169                         return err;
4170                 }
4171                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4172                                    PEER__RECV, &ad);
4173                 if (err)
4174                         selinux_netlbl_err(skb, err, 0);
4175         }
4176
4177         if (secmark_active) {
4178                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4179                                    PACKET__RECV, &ad);
4180                 if (err)
4181                         return err;
4182         }
4183
4184         return err;
4185 }
4186
4187 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4188                                             int __user *optlen, unsigned len)
4189 {
4190         int err = 0;
4191         char *scontext;
4192         u32 scontext_len;
4193         struct sk_security_struct *ssec;
4194         struct inode_security_struct *isec;
4195         u32 peer_sid = SECSID_NULL;
4196
4197         isec = SOCK_INODE(sock)->i_security;
4198
4199         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4200             isec->sclass == SECCLASS_TCP_SOCKET) {
4201                 ssec = sock->sk->sk_security;
4202                 peer_sid = ssec->peer_sid;
4203         }
4204         if (peer_sid == SECSID_NULL) {
4205                 err = -ENOPROTOOPT;
4206                 goto out;
4207         }
4208
4209         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4210
4211         if (err)
4212                 goto out;
4213
4214         if (scontext_len > len) {
4215                 err = -ERANGE;
4216                 goto out_len;
4217         }
4218
4219         if (copy_to_user(optval, scontext, scontext_len))
4220                 err = -EFAULT;
4221
4222 out_len:
4223         if (put_user(scontext_len, optlen))
4224                 err = -EFAULT;
4225
4226         kfree(scontext);
4227 out:
4228         return err;
4229 }
4230
4231 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4232 {
4233         u32 peer_secid = SECSID_NULL;
4234         u16 family;
4235
4236         if (skb && skb->protocol == htons(ETH_P_IP))
4237                 family = PF_INET;
4238         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4239                 family = PF_INET6;
4240         else if (sock)
4241                 family = sock->sk->sk_family;
4242         else
4243                 goto out;
4244
4245         if (sock && family == PF_UNIX)
4246                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4247         else if (skb)
4248                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4249
4250 out:
4251         *secid = peer_secid;
4252         if (peer_secid == SECSID_NULL)
4253                 return -EINVAL;
4254         return 0;
4255 }
4256
4257 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4258 {
4259         return sk_alloc_security(sk, family, priority);
4260 }
4261
4262 static void selinux_sk_free_security(struct sock *sk)
4263 {
4264         sk_free_security(sk);
4265 }
4266
4267 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4268 {
4269         struct sk_security_struct *ssec = sk->sk_security;
4270         struct sk_security_struct *newssec = newsk->sk_security;
4271
4272         newssec->sid = ssec->sid;
4273         newssec->peer_sid = ssec->peer_sid;
4274         newssec->sclass = ssec->sclass;
4275
4276         selinux_netlbl_sk_security_reset(newssec, newsk->sk_family);
4277 }
4278
4279 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4280 {
4281         if (!sk)
4282                 *secid = SECINITSID_ANY_SOCKET;
4283         else {
4284                 struct sk_security_struct *sksec = sk->sk_security;
4285
4286                 *secid = sksec->sid;
4287         }
4288 }
4289
4290 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4291 {
4292         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4293         struct sk_security_struct *sksec = sk->sk_security;
4294
4295         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4296             sk->sk_family == PF_UNIX)
4297                 isec->sid = sksec->sid;
4298         sksec->sclass = isec->sclass;
4299 }
4300
4301 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4302                                      struct request_sock *req)
4303 {
4304         struct sk_security_struct *sksec = sk->sk_security;
4305         int err;
4306         u16 family = sk->sk_family;
4307         u32 newsid;
4308         u32 peersid;
4309
4310         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4311         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4312                 family = PF_INET;
4313
4314         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4315         if (err)
4316                 return err;
4317         if (peersid == SECSID_NULL) {
4318                 req->secid = sksec->sid;
4319                 req->peer_secid = SECSID_NULL;
4320                 return 0;
4321         }
4322
4323         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4324         if (err)
4325                 return err;
4326
4327         req->secid = newsid;
4328         req->peer_secid = peersid;
4329         return 0;
4330 }
4331
4332 static void selinux_inet_csk_clone(struct sock *newsk,
4333                                    const struct request_sock *req)
4334 {
4335         struct sk_security_struct *newsksec = newsk->sk_security;
4336
4337         newsksec->sid = req->secid;
4338         newsksec->peer_sid = req->peer_secid;
4339         /* NOTE: Ideally, we should also get the isec->sid for the
4340            new socket in sync, but we don't have the isec available yet.
4341            So we will wait until sock_graft to do it, by which
4342            time it will have been created and available. */
4343
4344         /* We don't need to take any sort of lock here as we are the only
4345          * thread with access to newsksec */
4346         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
4347 }
4348
4349 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4350 {
4351         u16 family = sk->sk_family;
4352         struct sk_security_struct *sksec = sk->sk_security;
4353
4354         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4355         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4356                 family = PF_INET;
4357
4358         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4359
4360         selinux_netlbl_inet_conn_established(sk, family);
4361 }
4362
4363 static void selinux_req_classify_flow(const struct request_sock *req,
4364                                       struct flowi *fl)
4365 {
4366         fl->secid = req->secid;
4367 }
4368
4369 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4370 {
4371         int err = 0;
4372         u32 perm;
4373         struct nlmsghdr *nlh;
4374         struct socket *sock = sk->sk_socket;
4375         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4376
4377         if (skb->len < NLMSG_SPACE(0)) {
4378                 err = -EINVAL;
4379                 goto out;
4380         }
4381         nlh = nlmsg_hdr(skb);
4382
4383         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4384         if (err) {
4385                 if (err == -EINVAL) {
4386                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4387                                   "SELinux:  unrecognized netlink message"
4388                                   " type=%hu for sclass=%hu\n",
4389                                   nlh->nlmsg_type, isec->sclass);
4390                         if (!selinux_enforcing)
4391                                 err = 0;
4392                 }
4393
4394                 /* Ignore */
4395                 if (err == -ENOENT)
4396                         err = 0;
4397                 goto out;
4398         }
4399
4400         err = socket_has_perm(current, sock, perm);
4401 out:
4402         return err;
4403 }
4404
4405 #ifdef CONFIG_NETFILTER
4406
4407 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4408                                        u16 family)
4409 {
4410         int err;
4411         char *addrp;
4412         u32 peer_sid;
4413         struct avc_audit_data ad;
4414         u8 secmark_active;
4415         u8 netlbl_active;
4416         u8 peerlbl_active;
4417
4418         if (!selinux_policycap_netpeer)
4419                 return NF_ACCEPT;
4420
4421         secmark_active = selinux_secmark_enabled();
4422         netlbl_active = netlbl_enabled();
4423         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4424         if (!secmark_active && !peerlbl_active)
4425                 return NF_ACCEPT;
4426
4427         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4428                 return NF_DROP;
4429
4430         AVC_AUDIT_DATA_INIT(&ad, NET);
4431         ad.u.net.netif = ifindex;
4432         ad.u.net.family = family;
4433         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4434                 return NF_DROP;
4435
4436         if (peerlbl_active) {
4437                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4438                                                peer_sid, &ad);
4439                 if (err) {
4440                         selinux_netlbl_err(skb, err, 1);
4441                         return NF_DROP;
4442                 }
4443         }
4444
4445         if (secmark_active)
4446                 if (avc_has_perm(peer_sid, skb->secmark,
4447                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4448                         return NF_DROP;
4449
4450         if (netlbl_active)
4451                 /* we do this in the FORWARD path and not the POST_ROUTING
4452                  * path because we want to make sure we apply the necessary
4453                  * labeling before IPsec is applied so we can leverage AH
4454                  * protection */
4455                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4456                         return NF_DROP;
4457
4458         return NF_ACCEPT;
4459 }
4460
4461 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4462                                          struct sk_buff *skb,
4463                                          const struct net_device *in,
4464                                          const struct net_device *out,
4465                                          int (*okfn)(struct sk_buff *))
4466 {
4467         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4468 }
4469
4470 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4471 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4472                                          struct sk_buff *skb,
4473                                          const struct net_device *in,
4474                                          const struct net_device *out,
4475                                          int (*okfn)(struct sk_buff *))
4476 {
4477         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4478 }
4479 #endif  /* IPV6 */
4480
4481 static unsigned int selinux_ip_output(struct sk_buff *skb,
4482                                       u16 family)
4483 {
4484         u32 sid;
4485
4486         if (!netlbl_enabled())
4487                 return NF_ACCEPT;
4488
4489         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4490          * because we want to make sure we apply the necessary labeling
4491          * before IPsec is applied so we can leverage AH protection */
4492         if (skb->sk) {
4493                 struct sk_security_struct *sksec = skb->sk->sk_security;
4494                 sid = sksec->sid;
4495         } else
4496                 sid = SECINITSID_KERNEL;
4497         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4498                 return NF_DROP;
4499
4500         return NF_ACCEPT;
4501 }
4502
4503 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4504                                         struct sk_buff *skb,
4505                                         const struct net_device *in,
4506                                         const struct net_device *out,
4507                                         int (*okfn)(struct sk_buff *))
4508 {
4509         return selinux_ip_output(skb, PF_INET);
4510 }
4511
4512 static int selinux_ip_postroute_iptables_compat(struct sock *sk,
4513                                                 int ifindex,
4514                                                 struct avc_audit_data *ad,
4515                                                 u16 family, char *addrp)
4516 {
4517         int err;
4518         struct sk_security_struct *sksec = sk->sk_security;
4519         u16 sk_class;
4520         u32 netif_perm, node_perm, send_perm;
4521         u32 port_sid, node_sid, if_sid, sk_sid;
4522
4523         sk_sid = sksec->sid;
4524         sk_class = sksec->sclass;
4525
4526         switch (sk_class) {
4527         case SECCLASS_UDP_SOCKET:
4528                 netif_perm = NETIF__UDP_SEND;
4529                 node_perm = NODE__UDP_SEND;
4530                 send_perm = UDP_SOCKET__SEND_MSG;
4531                 break;
4532         case SECCLASS_TCP_SOCKET:
4533                 netif_perm = NETIF__TCP_SEND;
4534                 node_perm = NODE__TCP_SEND;
4535                 send_perm = TCP_SOCKET__SEND_MSG;
4536                 break;
4537         case SECCLASS_DCCP_SOCKET:
4538                 netif_perm = NETIF__DCCP_SEND;
4539                 node_perm = NODE__DCCP_SEND;
4540                 send_perm = DCCP_SOCKET__SEND_MSG;
4541                 break;
4542         default:
4543                 netif_perm = NETIF__RAWIP_SEND;
4544                 node_perm = NODE__RAWIP_SEND;
4545                 send_perm = 0;
4546                 break;
4547         }
4548
4549         err = sel_netif_sid(ifindex, &if_sid);
4550         if (err)
4551                 return err;
4552         err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
4553                 return err;
4554
4555         err = sel_netnode_sid(addrp, family, &node_sid);
4556         if (err)
4557                 return err;
4558         err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad);
4559         if (err)
4560                 return err;
4561
4562         if (send_perm != 0)
4563                 return 0;
4564
4565         err = sel_netport_sid(sk->sk_protocol,
4566                               ntohs(ad->u.net.dport), &port_sid);
4567         if (unlikely(err)) {
4568                 printk(KERN_WARNING
4569                        "SELinux: failure in"
4570                        " selinux_ip_postroute_iptables_compat(),"
4571                        " network port label not found\n");
4572                 return err;
4573         }
4574         return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad);
4575 }
4576
4577 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4578                                                 int ifindex,
4579                                                 u16 family)
4580 {
4581         struct sock *sk = skb->sk;
4582         struct sk_security_struct *sksec;
4583         struct avc_audit_data ad;
4584         char *addrp;
4585         u8 proto;
4586
4587         if (sk == NULL)
4588                 return NF_ACCEPT;
4589         sksec = sk->sk_security;
4590
4591         AVC_AUDIT_DATA_INIT(&ad, NET);
4592         ad.u.net.netif = ifindex;
4593         ad.u.net.family = family;
4594         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4595                 return NF_DROP;
4596
4597         if (selinux_compat_net) {
4598                 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex,
4599                                                          &ad, family, addrp))
4600                         return NF_DROP;
4601         } else {
4602                 if (avc_has_perm(sksec->sid, skb->secmark,
4603                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4604                         return NF_DROP;
4605         }
4606
4607         if (selinux_policycap_netpeer)
4608                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4609                         return NF_DROP;
4610
4611         return NF_ACCEPT;
4612 }
4613
4614 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4615                                          u16 family)
4616 {
4617         u32 secmark_perm;
4618         u32 peer_sid;
4619         struct sock *sk;
4620         struct avc_audit_data ad;
4621         char *addrp;
4622         u8 secmark_active;
4623         u8 peerlbl_active;
4624
4625         /* If any sort of compatibility mode is enabled then handoff processing
4626          * to the selinux_ip_postroute_compat() function to deal with the
4627          * special handling.  We do this in an attempt to keep this function
4628          * as fast and as clean as possible. */
4629         if (selinux_compat_net || !selinux_policycap_netpeer)
4630                 return selinux_ip_postroute_compat(skb, ifindex, family);
4631
4632         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4633          * packet transformation so allow the packet to pass without any checks
4634          * since we'll have another chance to perform access control checks
4635          * when the packet is on it's final way out.
4636          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4637          *       is NULL, in this case go ahead and apply access control. */
4638         if (skb->dst != NULL && skb->dst->xfrm != NULL)
4639                 return NF_ACCEPT;
4640
4641         secmark_active = selinux_secmark_enabled();
4642         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4643         if (!secmark_active && !peerlbl_active)
4644                 return NF_ACCEPT;
4645
4646         /* if the packet is being forwarded then get the peer label from the
4647          * packet itself; otherwise check to see if it is from a local
4648          * application or the kernel, if from an application get the peer label
4649          * from the sending socket, otherwise use the kernel's sid */
4650         sk = skb->sk;
4651         if (sk == NULL) {
4652                 switch (family) {
4653                 case PF_INET:
4654                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4655                                 secmark_perm = PACKET__FORWARD_OUT;
4656                         else
4657                                 secmark_perm = PACKET__SEND;
4658                         break;
4659                 case PF_INET6:
4660                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4661                                 secmark_perm = PACKET__FORWARD_OUT;
4662                         else
4663                                 secmark_perm = PACKET__SEND;
4664                         break;
4665                 default:
4666                         return NF_DROP;
4667                 }
4668                 if (secmark_perm == PACKET__FORWARD_OUT) {
4669                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4670                                 return NF_DROP;
4671                 } else
4672                         peer_sid = SECINITSID_KERNEL;
4673         } else {
4674                 struct sk_security_struct *sksec = sk->sk_security;
4675                 peer_sid = sksec->sid;
4676                 secmark_perm = PACKET__SEND;
4677         }
4678
4679         AVC_AUDIT_DATA_INIT(&ad, NET);
4680         ad.u.net.netif = ifindex;
4681         ad.u.net.family = family;
4682         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4683                 return NF_DROP;
4684
4685         if (secmark_active)
4686                 if (avc_has_perm(peer_sid, skb->secmark,
4687                                  SECCLASS_PACKET, secmark_perm, &ad))
4688                         return NF_DROP;
4689
4690         if (peerlbl_active) {
4691                 u32 if_sid;
4692                 u32 node_sid;
4693
4694                 if (sel_netif_sid(ifindex, &if_sid))
4695                         return NF_DROP;
4696                 if (avc_has_perm(peer_sid, if_sid,
4697                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4698                         return NF_DROP;
4699
4700                 if (sel_netnode_sid(addrp, family, &node_sid))
4701                         return NF_DROP;
4702                 if (avc_has_perm(peer_sid, node_sid,
4703                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4704                         return NF_DROP;
4705         }
4706
4707         return NF_ACCEPT;
4708 }
4709
4710 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4711                                            struct sk_buff *skb,
4712                                            const struct net_device *in,
4713                                            const struct net_device *out,
4714                                            int (*okfn)(struct sk_buff *))
4715 {
4716         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4717 }
4718
4719 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4720 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4721                                            struct sk_buff *skb,
4722                                            const struct net_device *in,
4723                                            const struct net_device *out,
4724                                            int (*okfn)(struct sk_buff *))
4725 {
4726         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4727 }
4728 #endif  /* IPV6 */
4729
4730 #endif  /* CONFIG_NETFILTER */
4731
4732 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4733 {
4734         int err;
4735
4736         err = secondary_ops->netlink_send(sk, skb);
4737         if (err)
4738                 return err;
4739
4740         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4741                 err = selinux_nlmsg_perm(sk, skb);
4742
4743         return err;
4744 }
4745
4746 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4747 {
4748         int err;
4749         struct avc_audit_data ad;
4750
4751         err = secondary_ops->netlink_recv(skb, capability);
4752         if (err)
4753                 return err;
4754
4755         AVC_AUDIT_DATA_INIT(&ad, CAP);
4756         ad.u.cap = capability;
4757
4758         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4759                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4760 }
4761
4762 static int ipc_alloc_security(struct task_struct *task,
4763                               struct kern_ipc_perm *perm,
4764                               u16 sclass)
4765 {
4766         struct task_security_struct *tsec = task->security;
4767         struct ipc_security_struct *isec;
4768
4769         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4770         if (!isec)
4771                 return -ENOMEM;
4772
4773         isec->sclass = sclass;
4774         isec->sid = tsec->sid;
4775         perm->security = isec;
4776
4777         return 0;
4778 }
4779
4780 static void ipc_free_security(struct kern_ipc_perm *perm)
4781 {
4782         struct ipc_security_struct *isec = perm->security;
4783         perm->security = NULL;
4784         kfree(isec);
4785 }
4786
4787 static int msg_msg_alloc_security(struct msg_msg *msg)
4788 {
4789         struct msg_security_struct *msec;
4790
4791         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4792         if (!msec)
4793                 return -ENOMEM;
4794
4795         msec->sid = SECINITSID_UNLABELED;
4796         msg->security = msec;
4797
4798         return 0;
4799 }
4800
4801 static void msg_msg_free_security(struct msg_msg *msg)
4802 {
4803         struct msg_security_struct *msec = msg->security;
4804
4805         msg->security = NULL;
4806         kfree(msec);
4807 }
4808
4809 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4810                         u32 perms)
4811 {
4812         struct task_security_struct *tsec;
4813         struct ipc_security_struct *isec;
4814         struct avc_audit_data ad;
4815
4816         tsec = current->security;
4817         isec = ipc_perms->security;
4818
4819         AVC_AUDIT_DATA_INIT(&ad, IPC);
4820         ad.u.ipc_id = ipc_perms->key;
4821
4822         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4823 }
4824
4825 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4826 {
4827         return msg_msg_alloc_security(msg);
4828 }
4829
4830 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4831 {
4832         msg_msg_free_security(msg);
4833 }
4834
4835 /* message queue security operations */
4836 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4837 {
4838         struct task_security_struct *tsec;
4839         struct ipc_security_struct *isec;
4840         struct avc_audit_data ad;
4841         int rc;
4842
4843         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4844         if (rc)
4845                 return rc;
4846
4847         tsec = current->security;
4848         isec = msq->q_perm.security;
4849
4850         AVC_AUDIT_DATA_INIT(&ad, IPC);
4851         ad.u.ipc_id = msq->q_perm.key;
4852
4853         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4854                           MSGQ__CREATE, &ad);
4855         if (rc) {
4856                 ipc_free_security(&msq->q_perm);
4857                 return rc;
4858         }
4859         return 0;
4860 }
4861
4862 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4863 {
4864         ipc_free_security(&msq->q_perm);
4865 }
4866
4867 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4868 {
4869         struct task_security_struct *tsec;
4870         struct ipc_security_struct *isec;
4871         struct avc_audit_data ad;
4872
4873         tsec = current->security;
4874         isec = msq->q_perm.security;
4875
4876         AVC_AUDIT_DATA_INIT(&ad, IPC);
4877         ad.u.ipc_id = msq->q_perm.key;
4878
4879         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4880                             MSGQ__ASSOCIATE, &ad);
4881 }
4882
4883 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4884 {
4885         int err;
4886         int perms;
4887
4888         switch (cmd) {
4889         case IPC_INFO:
4890         case MSG_INFO:
4891                 /* No specific object, just general system-wide information. */
4892                 return task_has_system(current, SYSTEM__IPC_INFO);
4893         case IPC_STAT:
4894         case MSG_STAT:
4895                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4896                 break;
4897         case IPC_SET:
4898                 perms = MSGQ__SETATTR;
4899                 break;
4900         case IPC_RMID:
4901                 perms = MSGQ__DESTROY;
4902                 break;
4903         default:
4904                 return 0;
4905         }
4906
4907         err = ipc_has_perm(&msq->q_perm, perms);
4908         return err;
4909 }
4910
4911 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4912 {
4913         struct task_security_struct *tsec;
4914         struct ipc_security_struct *isec;
4915         struct msg_security_struct *msec;
4916         struct avc_audit_data ad;
4917         int rc;
4918
4919         tsec = current->security;
4920         isec = msq->q_perm.security;
4921         msec = msg->security;
4922
4923         /*
4924          * First time through, need to assign label to the message
4925          */
4926         if (msec->sid == SECINITSID_UNLABELED) {
4927                 /*
4928                  * Compute new sid based on current process and
4929                  * message queue this message will be stored in
4930                  */
4931                 rc = security_transition_sid(tsec->sid,
4932                                              isec->sid,
4933                                              SECCLASS_MSG,
4934                                              &msec->sid);
4935                 if (rc)
4936                         return rc;
4937         }
4938
4939         AVC_AUDIT_DATA_INIT(&ad, IPC);
4940         ad.u.ipc_id = msq->q_perm.key;
4941
4942         /* Can this process write to the queue? */
4943         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4944                           MSGQ__WRITE, &ad);
4945         if (!rc)
4946                 /* Can this process send the message */
4947                 rc = avc_has_perm(tsec->sid, msec->sid,
4948                                   SECCLASS_MSG, MSG__SEND, &ad);
4949         if (!rc)
4950                 /* Can the message be put in the queue? */
4951                 rc = avc_has_perm(msec->sid, isec->sid,
4952                                   SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4953
4954         return rc;
4955 }
4956
4957 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4958                                     struct task_struct *target,
4959                                     long type, int mode)
4960 {
4961         struct task_security_struct *tsec;
4962         struct ipc_security_struct *isec;
4963         struct msg_security_struct *msec;
4964         struct avc_audit_data ad;
4965         int rc;
4966
4967         tsec = target->security;
4968         isec = msq->q_perm.security;
4969         msec = msg->security;
4970
4971         AVC_AUDIT_DATA_INIT(&ad, IPC);
4972         ad.u.ipc_id = msq->q_perm.key;
4973
4974         rc = avc_has_perm(tsec->sid, isec->sid,
4975                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4976         if (!rc)
4977                 rc = avc_has_perm(tsec->sid, msec->sid,
4978                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4979         return rc;
4980 }
4981
4982 /* Shared Memory security operations */
4983 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4984 {
4985         struct task_security_struct *tsec;
4986         struct ipc_security_struct *isec;
4987         struct avc_audit_data ad;
4988         int rc;
4989
4990         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4991         if (rc)
4992                 return rc;
4993
4994         tsec = current->security;
4995         isec = shp->shm_perm.security;
4996
4997         AVC_AUDIT_DATA_INIT(&ad, IPC);
4998         ad.u.ipc_id = shp->shm_perm.key;
4999
5000         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
5001                           SHM__CREATE, &ad);
5002         if (rc) {
5003                 ipc_free_security(&shp->shm_perm);
5004                 return rc;
5005         }
5006         return 0;
5007 }
5008
5009 static void selinux_shm_free_security(struct shmid_kernel *shp)
5010 {
5011         ipc_free_security(&shp->shm_perm);
5012 }
5013
5014 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5015 {
5016         struct task_security_struct *tsec;
5017         struct ipc_security_struct *isec;
5018         struct avc_audit_data ad;
5019
5020         tsec = current->security;
5021         isec = shp->shm_perm.security;
5022
5023         AVC_AUDIT_DATA_INIT(&ad, IPC);
5024         ad.u.ipc_id = shp->shm_perm.key;
5025
5026         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
5027                             SHM__ASSOCIATE, &ad);
5028 }
5029
5030 /* Note, at this point, shp is locked down */
5031 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5032 {
5033         int perms;
5034         int err;
5035
5036         switch (cmd) {
5037         case IPC_INFO:
5038         case SHM_INFO:
5039                 /* No specific object, just general system-wide information. */
5040                 return task_has_system(current, SYSTEM__IPC_INFO);
5041         case IPC_STAT:
5042         case SHM_STAT:
5043                 perms = SHM__GETATTR | SHM__ASSOCIATE;
5044                 break;
5045         case IPC_SET:
5046                 perms = SHM__SETATTR;
5047                 break;
5048         case SHM_LOCK:
5049         case SHM_UNLOCK:
5050                 perms = SHM__LOCK;
5051                 break;
5052         case IPC_RMID:
5053                 perms = SHM__DESTROY;
5054                 break;
5055         default:
5056                 return 0;
5057         }
5058
5059         err = ipc_has_perm(&shp->shm_perm, perms);
5060         return err;
5061 }
5062
5063 static int selinux_shm_shmat(struct shmid_kernel *shp,
5064                              char __user *shmaddr, int shmflg)
5065 {
5066         u32 perms;
5067         int rc;
5068
5069         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
5070         if (rc)
5071                 return rc;
5072
5073         if (shmflg & SHM_RDONLY)
5074                 perms = SHM__READ;
5075         else
5076                 perms = SHM__READ | SHM__WRITE;
5077
5078         return ipc_has_perm(&shp->shm_perm, perms);
5079 }
5080
5081 /* Semaphore security operations */
5082 static int selinux_sem_alloc_security(struct sem_array *sma)
5083 {
5084         struct task_security_struct *tsec;
5085         struct ipc_security_struct *isec;
5086         struct avc_audit_data ad;
5087         int rc;
5088
5089         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5090         if (rc)
5091                 return rc;
5092
5093         tsec = current->security;
5094         isec = sma->sem_perm.security;
5095
5096         AVC_AUDIT_DATA_INIT(&ad, IPC);
5097         ad.u.ipc_id = sma->sem_perm.key;
5098
5099         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
5100                           SEM__CREATE, &ad);
5101         if (rc) {
5102                 ipc_free_security(&sma->sem_perm);
5103                 return rc;
5104         }
5105         return 0;
5106 }
5107
5108 static void selinux_sem_free_security(struct sem_array *sma)
5109 {
5110         ipc_free_security(&sma->sem_perm);
5111 }
5112
5113 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5114 {
5115         struct task_security_struct *tsec;
5116         struct ipc_security_struct *isec;
5117         struct avc_audit_data ad;
5118
5119         tsec = current->security;
5120         isec = sma->sem_perm.security;
5121
5122         AVC_AUDIT_DATA_INIT(&ad, IPC);
5123         ad.u.ipc_id = sma->sem_perm.key;
5124
5125         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
5126                             SEM__ASSOCIATE, &ad);
5127 }
5128
5129 /* Note, at this point, sma is locked down */
5130 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5131 {
5132         int err;
5133         u32 perms;
5134
5135         switch (cmd) {
5136         case IPC_INFO:
5137         case SEM_INFO:
5138                 /* No specific object, just general system-wide information. */
5139                 return task_has_system(current, SYSTEM__IPC_INFO);
5140         case GETPID:
5141         case GETNCNT:
5142         case GETZCNT:
5143                 perms = SEM__GETATTR;
5144                 break;
5145         case GETVAL:
5146         case GETALL:
5147                 perms = SEM__READ;
5148                 break;
5149         case SETVAL:
5150         case SETALL:
5151                 perms = SEM__WRITE;
5152                 break;
5153         case IPC_RMID:
5154                 perms = SEM__DESTROY;
5155                 break;
5156         case IPC_SET:
5157                 perms = SEM__SETATTR;
5158                 break;
5159         case IPC_STAT:
5160         case SEM_STAT:
5161                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5162                 break;
5163         default:
5164                 return 0;
5165         }
5166
5167         err = ipc_has_perm(&sma->sem_perm, perms);
5168         return err;
5169 }
5170
5171 static int selinux_sem_semop(struct sem_array *sma,
5172                              struct sembuf *sops, unsigned nsops, int alter)
5173 {
5174         u32 perms;
5175
5176         if (alter)
5177                 perms = SEM__READ | SEM__WRITE;
5178         else
5179                 perms = SEM__READ;
5180
5181         return ipc_has_perm(&sma->sem_perm, perms);
5182 }
5183
5184 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5185 {
5186         u32 av = 0;
5187
5188         av = 0;
5189         if (flag & S_IRUGO)
5190                 av |= IPC__UNIX_READ;
5191         if (flag & S_IWUGO)
5192                 av |= IPC__UNIX_WRITE;
5193
5194         if (av == 0)
5195                 return 0;
5196
5197         return ipc_has_perm(ipcp, av);
5198 }
5199
5200 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5201 {
5202         struct ipc_security_struct *isec = ipcp->security;
5203         *secid = isec->sid;
5204 }
5205
5206 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5207 {
5208         if (inode)
5209                 inode_doinit_with_dentry(inode, dentry);
5210 }
5211
5212 static int selinux_getprocattr(struct task_struct *p,
5213                                char *name, char **value)
5214 {
5215         struct task_security_struct *tsec;
5216         u32 sid;
5217         int error;
5218         unsigned len;
5219
5220         if (current != p) {
5221                 error = task_has_perm(current, p, PROCESS__GETATTR);
5222                 if (error)
5223                         return error;
5224         }
5225
5226         tsec = p->security;
5227
5228         if (!strcmp(name, "current"))
5229                 sid = tsec->sid;
5230         else if (!strcmp(name, "prev"))
5231                 sid = tsec->osid;
5232         else if (!strcmp(name, "exec"))
5233                 sid = tsec->exec_sid;
5234         else if (!strcmp(name, "fscreate"))
5235                 sid = tsec->create_sid;
5236         else if (!strcmp(name, "keycreate"))
5237                 sid = tsec->keycreate_sid;
5238         else if (!strcmp(name, "sockcreate"))
5239                 sid = tsec->sockcreate_sid;
5240         else
5241                 return -EINVAL;
5242
5243         if (!sid)
5244                 return 0;
5245
5246         error = security_sid_to_context(sid, value, &len);
5247         if (error)
5248                 return error;
5249         return len;
5250 }
5251
5252 static int selinux_setprocattr(struct task_struct *p,
5253                                char *name, void *value, size_t size)
5254 {
5255         struct task_security_struct *tsec;
5256         struct task_struct *tracer;
5257         u32 sid = 0;
5258         int error;
5259         char *str = value;
5260
5261         if (current != p) {
5262                 /* SELinux only allows a process to change its own
5263                    security attributes. */
5264                 return -EACCES;
5265         }
5266
5267         /*
5268          * Basic control over ability to set these attributes at all.
5269          * current == p, but we'll pass them separately in case the
5270          * above restriction is ever removed.
5271          */
5272         if (!strcmp(name, "exec"))
5273                 error = task_has_perm(current, p, PROCESS__SETEXEC);
5274         else if (!strcmp(name, "fscreate"))
5275                 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
5276         else if (!strcmp(name, "keycreate"))
5277                 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
5278         else if (!strcmp(name, "sockcreate"))
5279                 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
5280         else if (!strcmp(name, "current"))
5281                 error = task_has_perm(current, p, PROCESS__SETCURRENT);
5282         else
5283                 error = -EINVAL;
5284         if (error)
5285                 return error;
5286
5287         /* Obtain a SID for the context, if one was specified. */
5288         if (size && str[1] && str[1] != '\n') {
5289                 if (str[size-1] == '\n') {
5290                         str[size-1] = 0;
5291                         size--;
5292                 }
5293                 error = security_context_to_sid(value, size, &sid);
5294                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5295                         if (!capable(CAP_MAC_ADMIN))
5296                                 return error;
5297                         error = security_context_to_sid_force(value, size,
5298                                                               &sid);
5299                 }
5300                 if (error)
5301                         return error;
5302         }
5303
5304         /* Permission checking based on the specified context is
5305            performed during the actual operation (execve,
5306            open/mkdir/...), when we know the full context of the
5307            operation.  See selinux_bprm_set_security for the execve
5308            checks and may_create for the file creation checks. The
5309            operation will then fail if the context is not permitted. */
5310         tsec = p->security;
5311         if (!strcmp(name, "exec"))
5312                 tsec->exec_sid = sid;
5313         else if (!strcmp(name, "fscreate"))
5314                 tsec->create_sid = sid;
5315         else if (!strcmp(name, "keycreate")) {
5316                 error = may_create_key(sid, p);
5317                 if (error)
5318                         return error;
5319                 tsec->keycreate_sid = sid;
5320         } else if (!strcmp(name, "sockcreate"))
5321                 tsec->sockcreate_sid = sid;
5322         else if (!strcmp(name, "current")) {
5323                 struct av_decision avd;
5324
5325                 if (sid == 0)
5326                         return -EINVAL;
5327                 /*
5328                  * SELinux allows to change context in the following case only.
5329                  *  - Single threaded processes.
5330                  *  - Multi threaded processes intend to change its context into
5331                  *    more restricted domain (defined by TYPEBOUNDS statement).
5332                  */
5333                 if (atomic_read(&p->mm->mm_users) != 1) {
5334                         struct task_struct *g, *t;
5335                         struct mm_struct *mm = p->mm;
5336                         read_lock(&tasklist_lock);
5337                         do_each_thread(g, t) {
5338                                 if (t->mm == mm && t != p) {
5339                                         read_unlock(&tasklist_lock);
5340                                         error = security_bounded_transition(tsec->sid, sid);
5341                                         if (!error)
5342                                                 goto boundary_ok;
5343
5344                                         return error;
5345                                 }
5346                         } while_each_thread(g, t);
5347                         read_unlock(&tasklist_lock);
5348                 }
5349 boundary_ok:
5350
5351                 /* Check permissions for the transition. */
5352                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5353                                      PROCESS__DYNTRANSITION, NULL);
5354                 if (error)
5355                         return error;
5356
5357                 /* Check for ptracing, and update the task SID if ok.
5358                    Otherwise, leave SID unchanged and fail. */
5359                 task_lock(p);
5360                 rcu_read_lock();
5361                 tracer = tracehook_tracer_task(p);
5362                 if (tracer != NULL) {
5363                         struct task_security_struct *ptsec = tracer->security;
5364                         u32 ptsid = ptsec->sid;
5365                         rcu_read_unlock();
5366                         error = avc_has_perm_noaudit(ptsid, sid,
5367                                                      SECCLASS_PROCESS,
5368                                                      PROCESS__PTRACE, 0, &avd);
5369                         if (!error)
5370                                 tsec->sid = sid;
5371                         task_unlock(p);
5372                         avc_audit(ptsid, sid, SECCLASS_PROCESS,
5373                                   PROCESS__PTRACE, &avd, error, NULL);
5374                         if (error)
5375                                 return error;
5376                 } else {
5377                         rcu_read_unlock();
5378                         tsec->sid = sid;
5379                         task_unlock(p);
5380                 }
5381         } else
5382                 return -EINVAL;
5383
5384         return size;
5385 }
5386
5387 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5388 {
5389         return security_sid_to_context(secid, secdata, seclen);
5390 }
5391
5392 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5393 {
5394         return security_context_to_sid(secdata, seclen, secid);
5395 }
5396
5397 static void selinux_release_secctx(char *secdata, u32 seclen)
5398 {
5399         kfree(secdata);
5400 }
5401
5402 #ifdef CONFIG_KEYS
5403
5404 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
5405                              unsigned long flags)
5406 {
5407         struct task_security_struct *tsec = tsk->security;
5408         struct key_security_struct *ksec;
5409
5410         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5411         if (!ksec)
5412                 return -ENOMEM;
5413
5414         if (tsec->keycreate_sid)
5415                 ksec->sid = tsec->keycreate_sid;
5416         else
5417                 ksec->sid = tsec->sid;
5418         k->security = ksec;
5419
5420         return 0;
5421 }
5422
5423 static void selinux_key_free(struct key *k)
5424 {
5425         struct key_security_struct *ksec = k->security;
5426
5427         k->security = NULL;
5428         kfree(ksec);
5429 }
5430
5431 static int selinux_key_permission(key_ref_t key_ref,
5432                             struct task_struct *ctx,
5433                             key_perm_t perm)
5434 {
5435         struct key *key;
5436         struct task_security_struct *tsec;
5437         struct key_security_struct *ksec;
5438
5439         key = key_ref_to_ptr(key_ref);
5440
5441         tsec = ctx->security;
5442         ksec = key->security;
5443
5444         /* if no specific permissions are requested, we skip the
5445            permission check. No serious, additional covert channels
5446            appear to be created. */
5447         if (perm == 0)
5448                 return 0;
5449
5450         return avc_has_perm(tsec->sid, ksec->sid,
5451                             SECCLASS_KEY, perm, NULL);
5452 }
5453
5454 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5455 {
5456         struct key_security_struct *ksec = key->security;
5457         char *context = NULL;
5458         unsigned len;
5459         int rc;
5460
5461         rc = security_sid_to_context(ksec->sid, &context, &len);
5462         if (!rc)
5463                 rc = len;
5464         *_buffer = context;
5465         return rc;
5466 }
5467
5468 #endif
5469
5470 static struct security_operations selinux_ops = {
5471         .name =                         "selinux",
5472
5473         .ptrace_may_access =            selinux_ptrace_may_access,
5474         .ptrace_traceme =               selinux_ptrace_traceme,
5475         .capget =                       selinux_capget,
5476         .capset_check =                 selinux_capset_check,
5477         .capset_set =                   selinux_capset_set,
5478         .sysctl =                       selinux_sysctl,
5479         .capable =                      selinux_capable,
5480         .quotactl =                     selinux_quotactl,
5481         .quota_on =                     selinux_quota_on,
5482         .syslog =                       selinux_syslog,
5483         .vm_enough_memory =             selinux_vm_enough_memory,
5484
5485         .netlink_send =                 selinux_netlink_send,
5486         .netlink_recv =                 selinux_netlink_recv,
5487
5488         .bprm_alloc_security =          selinux_bprm_alloc_security,
5489         .bprm_free_security =           selinux_bprm_free_security,
5490         .bprm_apply_creds =             selinux_bprm_apply_creds,
5491         .bprm_post_apply_creds =        selinux_bprm_post_apply_creds,
5492         .bprm_set_security =            selinux_bprm_set_security,
5493         .bprm_check_security =          selinux_bprm_check_security,
5494         .bprm_secureexec =              selinux_bprm_secureexec,
5495
5496         .sb_alloc_security =            selinux_sb_alloc_security,
5497         .sb_free_security =             selinux_sb_free_security,
5498         .sb_copy_data =                 selinux_sb_copy_data,
5499         .sb_kern_mount =                selinux_sb_kern_mount,
5500         .sb_show_options =              selinux_sb_show_options,
5501         .sb_statfs =                    selinux_sb_statfs,
5502         .sb_mount =                     selinux_mount,
5503         .sb_umount =                    selinux_umount,
5504         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5505         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5506         .sb_parse_opts_str =            selinux_parse_opts_str,
5507
5508
5509         .inode_alloc_security =         selinux_inode_alloc_security,
5510         .inode_free_security =          selinux_inode_free_security,
5511         .inode_init_security =          selinux_inode_init_security,
5512         .inode_create =                 selinux_inode_create,
5513         .inode_link =                   selinux_inode_link,
5514         .inode_unlink =                 selinux_inode_unlink,
5515         .inode_symlink =                selinux_inode_symlink,
5516         .inode_mkdir =                  selinux_inode_mkdir,
5517         .inode_rmdir =                  selinux_inode_rmdir,
5518         .inode_mknod =                  selinux_inode_mknod,
5519         .inode_rename =                 selinux_inode_rename,
5520         .inode_readlink =               selinux_inode_readlink,
5521         .inode_follow_link =            selinux_inode_follow_link,
5522         .inode_permission =             selinux_inode_permission,
5523         .inode_setattr =                selinux_inode_setattr,
5524         .inode_getattr =                selinux_inode_getattr,
5525         .inode_setxattr =               selinux_inode_setxattr,
5526         .inode_post_setxattr =          selinux_inode_post_setxattr,
5527         .inode_getxattr =               selinux_inode_getxattr,
5528         .inode_listxattr =              selinux_inode_listxattr,
5529         .inode_removexattr =            selinux_inode_removexattr,
5530         .inode_getsecurity =            selinux_inode_getsecurity,
5531         .inode_setsecurity =            selinux_inode_setsecurity,
5532         .inode_listsecurity =           selinux_inode_listsecurity,
5533         .inode_need_killpriv =          selinux_inode_need_killpriv,
5534         .inode_killpriv =               selinux_inode_killpriv,
5535         .inode_getsecid =               selinux_inode_getsecid,
5536
5537         .file_permission =              selinux_file_permission,
5538         .file_alloc_security =          selinux_file_alloc_security,
5539         .file_free_security =           selinux_file_free_security,
5540         .file_ioctl =                   selinux_file_ioctl,
5541         .file_mmap =                    selinux_file_mmap,
5542         .file_mprotect =                selinux_file_mprotect,
5543         .file_lock =                    selinux_file_lock,
5544         .file_fcntl =                   selinux_file_fcntl,
5545         .file_set_fowner =              selinux_file_set_fowner,
5546         .file_send_sigiotask =          selinux_file_send_sigiotask,
5547         .file_receive =                 selinux_file_receive,
5548
5549         .dentry_open =                  selinux_dentry_open,
5550
5551         .task_create =                  selinux_task_create,
5552         .task_alloc_security =          selinux_task_alloc_security,
5553         .task_free_security =           selinux_task_free_security,
5554         .task_setuid =                  selinux_task_setuid,
5555         .task_post_setuid =             selinux_task_post_setuid,
5556         .task_setgid =                  selinux_task_setgid,
5557         .task_setpgid =                 selinux_task_setpgid,
5558         .task_getpgid =                 selinux_task_getpgid,
5559         .task_getsid =                  selinux_task_getsid,
5560         .task_getsecid =                selinux_task_getsecid,
5561         .task_setgroups =               selinux_task_setgroups,
5562         .task_setnice =                 selinux_task_setnice,
5563         .task_setioprio =               selinux_task_setioprio,
5564         .task_getioprio =               selinux_task_getioprio,
5565         .task_setrlimit =               selinux_task_setrlimit,
5566         .task_setscheduler =            selinux_task_setscheduler,
5567         .task_getscheduler =            selinux_task_getscheduler,
5568         .task_movememory =              selinux_task_movememory,
5569         .task_kill =                    selinux_task_kill,
5570         .task_wait =                    selinux_task_wait,
5571         .task_prctl =                   selinux_task_prctl,
5572         .task_reparent_to_init =        selinux_task_reparent_to_init,
5573         .task_to_inode =                selinux_task_to_inode,
5574
5575         .ipc_permission =               selinux_ipc_permission,
5576         .ipc_getsecid =                 selinux_ipc_getsecid,
5577
5578         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5579         .msg_msg_free_security =        selinux_msg_msg_free_security,
5580
5581         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5582         .msg_queue_free_security =      selinux_msg_queue_free_security,
5583         .msg_queue_associate =          selinux_msg_queue_associate,
5584         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5585         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5586         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5587
5588         .shm_alloc_security =           selinux_shm_alloc_security,
5589         .shm_free_security =            selinux_shm_free_security,
5590         .shm_associate =                selinux_shm_associate,
5591         .shm_shmctl =                   selinux_shm_shmctl,
5592         .shm_shmat =                    selinux_shm_shmat,
5593
5594         .sem_alloc_security =           selinux_sem_alloc_security,
5595         .sem_free_security =            selinux_sem_free_security,
5596         .sem_associate =                selinux_sem_associate,
5597         .sem_semctl =                   selinux_sem_semctl,
5598         .sem_semop =                    selinux_sem_semop,
5599
5600         .d_instantiate =                selinux_d_instantiate,
5601
5602         .getprocattr =                  selinux_getprocattr,
5603         .setprocattr =                  selinux_setprocattr,
5604
5605         .secid_to_secctx =              selinux_secid_to_secctx,
5606         .secctx_to_secid =              selinux_secctx_to_secid,
5607         .release_secctx =               selinux_release_secctx,
5608
5609         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5610         .unix_may_send =                selinux_socket_unix_may_send,
5611
5612         .socket_create =                selinux_socket_create,
5613         .socket_post_create =           selinux_socket_post_create,
5614         .socket_bind =                  selinux_socket_bind,
5615         .socket_connect =               selinux_socket_connect,
5616         .socket_listen =                selinux_socket_listen,
5617         .socket_accept =                selinux_socket_accept,
5618         .socket_sendmsg =               selinux_socket_sendmsg,
5619         .socket_recvmsg =               selinux_socket_recvmsg,
5620         .socket_getsockname =           selinux_socket_getsockname,
5621         .socket_getpeername =           selinux_socket_getpeername,
5622         .socket_getsockopt =            selinux_socket_getsockopt,
5623         .socket_setsockopt =            selinux_socket_setsockopt,
5624         .socket_shutdown =              selinux_socket_shutdown,
5625         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5626         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5627         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5628         .sk_alloc_security =            selinux_sk_alloc_security,
5629         .sk_free_security =             selinux_sk_free_security,
5630         .sk_clone_security =            selinux_sk_clone_security,
5631         .sk_getsecid =                  selinux_sk_getsecid,
5632         .sock_graft =                   selinux_sock_graft,
5633         .inet_conn_request =            selinux_inet_conn_request,
5634         .inet_csk_clone =               selinux_inet_csk_clone,
5635         .inet_conn_established =        selinux_inet_conn_established,
5636         .req_classify_flow =            selinux_req_classify_flow,
5637
5638 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5639         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5640         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5641         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5642         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5643         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5644         .xfrm_state_free_security =     selinux_xfrm_state_free,
5645         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5646         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5647         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5648         .xfrm_decode_session =          selinux_xfrm_decode_session,
5649 #endif
5650
5651 #ifdef CONFIG_KEYS
5652         .key_alloc =                    selinux_key_alloc,
5653         .key_free =                     selinux_key_free,
5654         .key_permission =               selinux_key_permission,
5655         .key_getsecurity =              selinux_key_getsecurity,
5656 #endif
5657
5658 #ifdef CONFIG_AUDIT
5659         .audit_rule_init =              selinux_audit_rule_init,
5660         .audit_rule_known =             selinux_audit_rule_known,
5661         .audit_rule_match =             selinux_audit_rule_match,
5662         .audit_rule_free =              selinux_audit_rule_free,
5663 #endif
5664 };
5665
5666 static __init int selinux_init(void)
5667 {
5668         struct task_security_struct *tsec;
5669
5670         if (!security_module_enable(&selinux_ops)) {
5671                 selinux_enabled = 0;
5672                 return 0;
5673         }
5674
5675         if (!selinux_enabled) {
5676                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5677                 return 0;
5678         }
5679
5680         printk(KERN_INFO "SELinux:  Initializing.\n");
5681
5682         /* Set the security state for the initial task. */
5683         if (task_alloc_security(current))
5684                 panic("SELinux:  Failed to initialize initial task.\n");
5685         tsec = current->security;
5686         tsec->osid = tsec->sid = SECINITSID_KERNEL;
5687
5688         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5689                                             sizeof(struct inode_security_struct),
5690                                             0, SLAB_PANIC, NULL);
5691         avc_init();
5692
5693         secondary_ops = security_ops;
5694         if (!secondary_ops)
5695                 panic("SELinux: No initial security operations\n");
5696         if (register_security(&selinux_ops))
5697                 panic("SELinux: Unable to register with kernel.\n");
5698
5699         if (selinux_enforcing)
5700                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5701         else
5702                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5703
5704         return 0;
5705 }
5706
5707 void selinux_complete_init(void)
5708 {
5709         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5710
5711         /* Set up any superblocks initialized prior to the policy load. */
5712         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5713         spin_lock(&sb_lock);
5714         spin_lock(&sb_security_lock);
5715 next_sb:
5716         if (!list_empty(&superblock_security_head)) {
5717                 struct superblock_security_struct *sbsec =
5718                                 list_entry(superblock_security_head.next,
5719                                            struct superblock_security_struct,
5720                                            list);
5721                 struct super_block *sb = sbsec->sb;
5722                 sb->s_count++;
5723                 spin_unlock(&sb_security_lock);
5724                 spin_unlock(&sb_lock);
5725                 down_read(&sb->s_umount);
5726                 if (sb->s_root)
5727                         superblock_doinit(sb, NULL);
5728                 drop_super(sb);
5729                 spin_lock(&sb_lock);
5730                 spin_lock(&sb_security_lock);
5731                 list_del_init(&sbsec->list);
5732                 goto next_sb;
5733         }
5734         spin_unlock(&sb_security_lock);
5735         spin_unlock(&sb_lock);
5736 }
5737
5738 /* SELinux requires early initialization in order to label
5739    all processes and objects when they are created. */
5740 security_initcall(selinux_init);
5741
5742 #if defined(CONFIG_NETFILTER)
5743
5744 static struct nf_hook_ops selinux_ipv4_ops[] = {
5745         {
5746                 .hook =         selinux_ipv4_postroute,
5747                 .owner =        THIS_MODULE,
5748                 .pf =           PF_INET,
5749                 .hooknum =      NF_INET_POST_ROUTING,
5750                 .priority =     NF_IP_PRI_SELINUX_LAST,
5751         },
5752         {
5753                 .hook =         selinux_ipv4_forward,
5754                 .owner =        THIS_MODULE,
5755                 .pf =           PF_INET,
5756                 .hooknum =      NF_INET_FORWARD,
5757                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5758         },
5759         {
5760                 .hook =         selinux_ipv4_output,
5761                 .owner =        THIS_MODULE,
5762                 .pf =           PF_INET,
5763                 .hooknum =      NF_INET_LOCAL_OUT,
5764                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5765         }
5766 };
5767
5768 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5769
5770 static struct nf_hook_ops selinux_ipv6_ops[] = {
5771         {
5772                 .hook =         selinux_ipv6_postroute,
5773                 .owner =        THIS_MODULE,
5774                 .pf =           PF_INET6,
5775                 .hooknum =      NF_INET_POST_ROUTING,
5776                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5777         },
5778         {
5779                 .hook =         selinux_ipv6_forward,
5780                 .owner =        THIS_MODULE,
5781                 .pf =           PF_INET6,
5782                 .hooknum =      NF_INET_FORWARD,
5783                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5784         }
5785 };
5786
5787 #endif  /* IPV6 */
5788
5789 static int __init selinux_nf_ip_init(void)
5790 {
5791         int err = 0;
5792
5793         if (!selinux_enabled)
5794                 goto out;
5795
5796         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5797
5798         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5799         if (err)
5800                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5801
5802 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5803         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5804         if (err)
5805                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5806 #endif  /* IPV6 */
5807
5808 out:
5809         return err;
5810 }
5811
5812 __initcall(selinux_nf_ip_init);
5813
5814 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5815 static void selinux_nf_ip_exit(void)
5816 {
5817         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5818
5819         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5820 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5821         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5822 #endif  /* IPV6 */
5823 }
5824 #endif
5825
5826 #else /* CONFIG_NETFILTER */
5827
5828 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5829 #define selinux_nf_ip_exit()
5830 #endif
5831
5832 #endif /* CONFIG_NETFILTER */
5833
5834 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5835 static int selinux_disabled;
5836
5837 int selinux_disable(void)
5838 {
5839         extern void exit_sel_fs(void);
5840
5841         if (ss_initialized) {
5842                 /* Not permitted after initial policy load. */
5843                 return -EINVAL;
5844         }
5845
5846         if (selinux_disabled) {
5847                 /* Only do this once. */
5848                 return -EINVAL;
5849         }
5850
5851         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5852
5853         selinux_disabled = 1;
5854         selinux_enabled = 0;
5855
5856         /* Reset security_ops to the secondary module, dummy or capability. */
5857         security_ops = secondary_ops;
5858
5859         /* Unregister netfilter hooks. */
5860         selinux_nf_ip_exit();
5861
5862         /* Unregister selinuxfs. */
5863         exit_sel_fs();
5864
5865         return 0;
5866 }
5867 #endif