ac79f9ef2da810f98d9485de6eb309a291882705
[linux-2.6.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
17  *              Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
88
89 #define XATTR_SELINUX_SUFFIX "selinux"
90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
91
92 #define NUM_SEL_MNT_OPTS 5
93
94 extern unsigned int policydb_loaded_version;
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern struct security_operations *security_ops;
97
98 /* SECMARK reference count */
99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
100
101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102 int selinux_enforcing;
103
104 static int __init enforcing_setup(char *str)
105 {
106         unsigned long enforcing;
107         if (!strict_strtoul(str, 0, &enforcing))
108                 selinux_enforcing = enforcing ? 1 : 0;
109         return 1;
110 }
111 __setup("enforcing=", enforcing_setup);
112 #endif
113
114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
116
117 static int __init selinux_enabled_setup(char *str)
118 {
119         unsigned long enabled;
120         if (!strict_strtoul(str, 0, &enabled))
121                 selinux_enabled = enabled ? 1 : 0;
122         return 1;
123 }
124 __setup("selinux=", selinux_enabled_setup);
125 #else
126 int selinux_enabled = 1;
127 #endif
128
129
130 /*
131  * Minimal support for a secondary security module,
132  * just to allow the use of the capability module.
133  */
134 static struct security_operations *secondary_ops;
135
136 /* Lists of inode and superblock security structures initialized
137    before the policy was loaded. */
138 static LIST_HEAD(superblock_security_head);
139 static DEFINE_SPINLOCK(sb_security_lock);
140
141 static struct kmem_cache *sel_inode_cache;
142
143 /**
144  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
145  *
146  * Description:
147  * This function checks the SECMARK reference counter to see if any SECMARK
148  * targets are currently configured, if the reference counter is greater than
149  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
150  * enabled, false (0) if SECMARK is disabled.
151  *
152  */
153 static int selinux_secmark_enabled(void)
154 {
155         return (atomic_read(&selinux_secmark_refcount) > 0);
156 }
157
158 /*
159  * initialise the security for the init task
160  */
161 static void cred_init_security(void)
162 {
163         struct cred *cred = (struct cred *) current->real_cred;
164         struct task_security_struct *tsec;
165
166         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
167         if (!tsec)
168                 panic("SELinux:  Failed to initialize initial task.\n");
169
170         tsec->osid = tsec->sid = SECINITSID_KERNEL;
171         cred->security = tsec;
172 }
173
174 /*
175  * get the security ID of a set of credentials
176  */
177 static inline u32 cred_sid(const struct cred *cred)
178 {
179         const struct task_security_struct *tsec;
180
181         tsec = cred->security;
182         return tsec->sid;
183 }
184
185 /*
186  * get the objective security ID of a task
187  */
188 static inline u32 task_sid(const struct task_struct *task)
189 {
190         u32 sid;
191
192         rcu_read_lock();
193         sid = cred_sid(__task_cred(task));
194         rcu_read_unlock();
195         return sid;
196 }
197
198 /*
199  * get the subjective security ID of the current task
200  */
201 static inline u32 current_sid(void)
202 {
203         const struct task_security_struct *tsec = current_cred()->security;
204
205         return tsec->sid;
206 }
207
208 /* Allocate and free functions for each kind of security blob. */
209
210 static int inode_alloc_security(struct inode *inode)
211 {
212         struct inode_security_struct *isec;
213         u32 sid = current_sid();
214
215         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
216         if (!isec)
217                 return -ENOMEM;
218
219         mutex_init(&isec->lock);
220         INIT_LIST_HEAD(&isec->list);
221         isec->inode = inode;
222         isec->sid = SECINITSID_UNLABELED;
223         isec->sclass = SECCLASS_FILE;
224         isec->task_sid = sid;
225         inode->i_security = isec;
226
227         return 0;
228 }
229
230 static void inode_free_security(struct inode *inode)
231 {
232         struct inode_security_struct *isec = inode->i_security;
233         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
234
235         spin_lock(&sbsec->isec_lock);
236         if (!list_empty(&isec->list))
237                 list_del_init(&isec->list);
238         spin_unlock(&sbsec->isec_lock);
239
240         inode->i_security = NULL;
241         kmem_cache_free(sel_inode_cache, isec);
242 }
243
244 static int file_alloc_security(struct file *file)
245 {
246         struct file_security_struct *fsec;
247         u32 sid = current_sid();
248
249         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
250         if (!fsec)
251                 return -ENOMEM;
252
253         fsec->sid = sid;
254         fsec->fown_sid = sid;
255         file->f_security = fsec;
256
257         return 0;
258 }
259
260 static void file_free_security(struct file *file)
261 {
262         struct file_security_struct *fsec = file->f_security;
263         file->f_security = NULL;
264         kfree(fsec);
265 }
266
267 static int superblock_alloc_security(struct super_block *sb)
268 {
269         struct superblock_security_struct *sbsec;
270
271         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
272         if (!sbsec)
273                 return -ENOMEM;
274
275         mutex_init(&sbsec->lock);
276         INIT_LIST_HEAD(&sbsec->list);
277         INIT_LIST_HEAD(&sbsec->isec_head);
278         spin_lock_init(&sbsec->isec_lock);
279         sbsec->sb = sb;
280         sbsec->sid = SECINITSID_UNLABELED;
281         sbsec->def_sid = SECINITSID_FILE;
282         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
283         sb->s_security = sbsec;
284
285         return 0;
286 }
287
288 static void superblock_free_security(struct super_block *sb)
289 {
290         struct superblock_security_struct *sbsec = sb->s_security;
291
292         spin_lock(&sb_security_lock);
293         if (!list_empty(&sbsec->list))
294                 list_del_init(&sbsec->list);
295         spin_unlock(&sb_security_lock);
296
297         sb->s_security = NULL;
298         kfree(sbsec);
299 }
300
301 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
302 {
303         struct sk_security_struct *ssec;
304
305         ssec = kzalloc(sizeof(*ssec), priority);
306         if (!ssec)
307                 return -ENOMEM;
308
309         ssec->peer_sid = SECINITSID_UNLABELED;
310         ssec->sid = SECINITSID_UNLABELED;
311         sk->sk_security = ssec;
312
313         selinux_netlbl_sk_security_reset(ssec);
314
315         return 0;
316 }
317
318 static void sk_free_security(struct sock *sk)
319 {
320         struct sk_security_struct *ssec = sk->sk_security;
321
322         sk->sk_security = NULL;
323         selinux_netlbl_sk_security_free(ssec);
324         kfree(ssec);
325 }
326
327 /* The security server must be initialized before
328    any labeling or access decisions can be provided. */
329 extern int ss_initialized;
330
331 /* The file system's label must be initialized prior to use. */
332
333 static char *labeling_behaviors[6] = {
334         "uses xattr",
335         "uses transition SIDs",
336         "uses task SIDs",
337         "uses genfs_contexts",
338         "not configured for labeling",
339         "uses mountpoint labeling",
340 };
341
342 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
343
344 static inline int inode_doinit(struct inode *inode)
345 {
346         return inode_doinit_with_dentry(inode, NULL);
347 }
348
349 enum {
350         Opt_error = -1,
351         Opt_context = 1,
352         Opt_fscontext = 2,
353         Opt_defcontext = 3,
354         Opt_rootcontext = 4,
355         Opt_labelsupport = 5,
356 };
357
358 static const match_table_t tokens = {
359         {Opt_context, CONTEXT_STR "%s"},
360         {Opt_fscontext, FSCONTEXT_STR "%s"},
361         {Opt_defcontext, DEFCONTEXT_STR "%s"},
362         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
363         {Opt_labelsupport, LABELSUPP_STR},
364         {Opt_error, NULL},
365 };
366
367 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
368
369 static int may_context_mount_sb_relabel(u32 sid,
370                         struct superblock_security_struct *sbsec,
371                         const struct cred *cred)
372 {
373         const struct task_security_struct *tsec = cred->security;
374         int rc;
375
376         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
377                           FILESYSTEM__RELABELFROM, NULL);
378         if (rc)
379                 return rc;
380
381         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
382                           FILESYSTEM__RELABELTO, NULL);
383         return rc;
384 }
385
386 static int may_context_mount_inode_relabel(u32 sid,
387                         struct superblock_security_struct *sbsec,
388                         const struct cred *cred)
389 {
390         const struct task_security_struct *tsec = cred->security;
391         int rc;
392         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
393                           FILESYSTEM__RELABELFROM, NULL);
394         if (rc)
395                 return rc;
396
397         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
398                           FILESYSTEM__ASSOCIATE, NULL);
399         return rc;
400 }
401
402 static int sb_finish_set_opts(struct super_block *sb)
403 {
404         struct superblock_security_struct *sbsec = sb->s_security;
405         struct dentry *root = sb->s_root;
406         struct inode *root_inode = root->d_inode;
407         int rc = 0;
408
409         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
410                 /* Make sure that the xattr handler exists and that no
411                    error other than -ENODATA is returned by getxattr on
412                    the root directory.  -ENODATA is ok, as this may be
413                    the first boot of the SELinux kernel before we have
414                    assigned xattr values to the filesystem. */
415                 if (!root_inode->i_op->getxattr) {
416                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
417                                "xattr support\n", sb->s_id, sb->s_type->name);
418                         rc = -EOPNOTSUPP;
419                         goto out;
420                 }
421                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
422                 if (rc < 0 && rc != -ENODATA) {
423                         if (rc == -EOPNOTSUPP)
424                                 printk(KERN_WARNING "SELinux: (dev %s, type "
425                                        "%s) has no security xattr handler\n",
426                                        sb->s_id, sb->s_type->name);
427                         else
428                                 printk(KERN_WARNING "SELinux: (dev %s, type "
429                                        "%s) getxattr errno %d\n", sb->s_id,
430                                        sb->s_type->name, -rc);
431                         goto out;
432                 }
433         }
434
435         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
436
437         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
438                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
439                        sb->s_id, sb->s_type->name);
440         else
441                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
442                        sb->s_id, sb->s_type->name,
443                        labeling_behaviors[sbsec->behavior-1]);
444
445         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
446             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
447             sbsec->behavior == SECURITY_FS_USE_NONE ||
448             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
449                 sbsec->flags &= ~SE_SBLABELSUPP;
450
451         /* Initialize the root inode. */
452         rc = inode_doinit_with_dentry(root_inode, root);
453
454         /* Initialize any other inodes associated with the superblock, e.g.
455            inodes created prior to initial policy load or inodes created
456            during get_sb by a pseudo filesystem that directly
457            populates itself. */
458         spin_lock(&sbsec->isec_lock);
459 next_inode:
460         if (!list_empty(&sbsec->isec_head)) {
461                 struct inode_security_struct *isec =
462                                 list_entry(sbsec->isec_head.next,
463                                            struct inode_security_struct, list);
464                 struct inode *inode = isec->inode;
465                 spin_unlock(&sbsec->isec_lock);
466                 inode = igrab(inode);
467                 if (inode) {
468                         if (!IS_PRIVATE(inode))
469                                 inode_doinit(inode);
470                         iput(inode);
471                 }
472                 spin_lock(&sbsec->isec_lock);
473                 list_del_init(&isec->list);
474                 goto next_inode;
475         }
476         spin_unlock(&sbsec->isec_lock);
477 out:
478         return rc;
479 }
480
481 /*
482  * This function should allow an FS to ask what it's mount security
483  * options were so it can use those later for submounts, displaying
484  * mount options, or whatever.
485  */
486 static int selinux_get_mnt_opts(const struct super_block *sb,
487                                 struct security_mnt_opts *opts)
488 {
489         int rc = 0, i;
490         struct superblock_security_struct *sbsec = sb->s_security;
491         char *context = NULL;
492         u32 len;
493         char tmp;
494
495         security_init_mnt_opts(opts);
496
497         if (!(sbsec->flags & SE_SBINITIALIZED))
498                 return -EINVAL;
499
500         if (!ss_initialized)
501                 return -EINVAL;
502
503         tmp = sbsec->flags & SE_MNTMASK;
504         /* count the number of mount options for this sb */
505         for (i = 0; i < 8; i++) {
506                 if (tmp & 0x01)
507                         opts->num_mnt_opts++;
508                 tmp >>= 1;
509         }
510         /* Check if the Label support flag is set */
511         if (sbsec->flags & SE_SBLABELSUPP)
512                 opts->num_mnt_opts++;
513
514         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
515         if (!opts->mnt_opts) {
516                 rc = -ENOMEM;
517                 goto out_free;
518         }
519
520         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
521         if (!opts->mnt_opts_flags) {
522                 rc = -ENOMEM;
523                 goto out_free;
524         }
525
526         i = 0;
527         if (sbsec->flags & FSCONTEXT_MNT) {
528                 rc = security_sid_to_context(sbsec->sid, &context, &len);
529                 if (rc)
530                         goto out_free;
531                 opts->mnt_opts[i] = context;
532                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
533         }
534         if (sbsec->flags & CONTEXT_MNT) {
535                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
536                 if (rc)
537                         goto out_free;
538                 opts->mnt_opts[i] = context;
539                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
540         }
541         if (sbsec->flags & DEFCONTEXT_MNT) {
542                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
543                 if (rc)
544                         goto out_free;
545                 opts->mnt_opts[i] = context;
546                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
547         }
548         if (sbsec->flags & ROOTCONTEXT_MNT) {
549                 struct inode *root = sbsec->sb->s_root->d_inode;
550                 struct inode_security_struct *isec = root->i_security;
551
552                 rc = security_sid_to_context(isec->sid, &context, &len);
553                 if (rc)
554                         goto out_free;
555                 opts->mnt_opts[i] = context;
556                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
557         }
558         if (sbsec->flags & SE_SBLABELSUPP) {
559                 opts->mnt_opts[i] = NULL;
560                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
561         }
562
563         BUG_ON(i != opts->num_mnt_opts);
564
565         return 0;
566
567 out_free:
568         security_free_mnt_opts(opts);
569         return rc;
570 }
571
572 static int bad_option(struct superblock_security_struct *sbsec, char flag,
573                       u32 old_sid, u32 new_sid)
574 {
575         char mnt_flags = sbsec->flags & SE_MNTMASK;
576
577         /* check if the old mount command had the same options */
578         if (sbsec->flags & SE_SBINITIALIZED)
579                 if (!(sbsec->flags & flag) ||
580                     (old_sid != new_sid))
581                         return 1;
582
583         /* check if we were passed the same options twice,
584          * aka someone passed context=a,context=b
585          */
586         if (!(sbsec->flags & SE_SBINITIALIZED))
587                 if (mnt_flags & flag)
588                         return 1;
589         return 0;
590 }
591
592 /*
593  * Allow filesystems with binary mount data to explicitly set mount point
594  * labeling information.
595  */
596 static int selinux_set_mnt_opts(struct super_block *sb,
597                                 struct security_mnt_opts *opts)
598 {
599         const struct cred *cred = current_cred();
600         int rc = 0, i;
601         struct superblock_security_struct *sbsec = sb->s_security;
602         const char *name = sb->s_type->name;
603         struct inode *inode = sbsec->sb->s_root->d_inode;
604         struct inode_security_struct *root_isec = inode->i_security;
605         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
606         u32 defcontext_sid = 0;
607         char **mount_options = opts->mnt_opts;
608         int *flags = opts->mnt_opts_flags;
609         int num_opts = opts->num_mnt_opts;
610
611         mutex_lock(&sbsec->lock);
612
613         if (!ss_initialized) {
614                 if (!num_opts) {
615                         /* Defer initialization until selinux_complete_init,
616                            after the initial policy is loaded and the security
617                            server is ready to handle calls. */
618                         spin_lock(&sb_security_lock);
619                         if (list_empty(&sbsec->list))
620                                 list_add(&sbsec->list, &superblock_security_head);
621                         spin_unlock(&sb_security_lock);
622                         goto out;
623                 }
624                 rc = -EINVAL;
625                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
626                         "before the security server is initialized\n");
627                 goto out;
628         }
629
630         /*
631          * Binary mount data FS will come through this function twice.  Once
632          * from an explicit call and once from the generic calls from the vfs.
633          * Since the generic VFS calls will not contain any security mount data
634          * we need to skip the double mount verification.
635          *
636          * This does open a hole in which we will not notice if the first
637          * mount using this sb set explict options and a second mount using
638          * this sb does not set any security options.  (The first options
639          * will be used for both mounts)
640          */
641         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
642             && (num_opts == 0))
643                 goto out;
644
645         /*
646          * parse the mount options, check if they are valid sids.
647          * also check if someone is trying to mount the same sb more
648          * than once with different security options.
649          */
650         for (i = 0; i < num_opts; i++) {
651                 u32 sid;
652
653                 if (flags[i] == SE_SBLABELSUPP)
654                         continue;
655                 rc = security_context_to_sid(mount_options[i],
656                                              strlen(mount_options[i]), &sid);
657                 if (rc) {
658                         printk(KERN_WARNING "SELinux: security_context_to_sid"
659                                "(%s) failed for (dev %s, type %s) errno=%d\n",
660                                mount_options[i], sb->s_id, name, rc);
661                         goto out;
662                 }
663                 switch (flags[i]) {
664                 case FSCONTEXT_MNT:
665                         fscontext_sid = sid;
666
667                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
668                                         fscontext_sid))
669                                 goto out_double_mount;
670
671                         sbsec->flags |= FSCONTEXT_MNT;
672                         break;
673                 case CONTEXT_MNT:
674                         context_sid = sid;
675
676                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
677                                         context_sid))
678                                 goto out_double_mount;
679
680                         sbsec->flags |= CONTEXT_MNT;
681                         break;
682                 case ROOTCONTEXT_MNT:
683                         rootcontext_sid = sid;
684
685                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
686                                         rootcontext_sid))
687                                 goto out_double_mount;
688
689                         sbsec->flags |= ROOTCONTEXT_MNT;
690
691                         break;
692                 case DEFCONTEXT_MNT:
693                         defcontext_sid = sid;
694
695                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
696                                         defcontext_sid))
697                                 goto out_double_mount;
698
699                         sbsec->flags |= DEFCONTEXT_MNT;
700
701                         break;
702                 default:
703                         rc = -EINVAL;
704                         goto out;
705                 }
706         }
707
708         if (sbsec->flags & SE_SBINITIALIZED) {
709                 /* previously mounted with options, but not on this attempt? */
710                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
711                         goto out_double_mount;
712                 rc = 0;
713                 goto out;
714         }
715
716         if (strcmp(sb->s_type->name, "proc") == 0)
717                 sbsec->flags |= SE_SBPROC;
718
719         /* Determine the labeling behavior to use for this filesystem type. */
720         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
721         if (rc) {
722                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
723                        __func__, sb->s_type->name, rc);
724                 goto out;
725         }
726
727         /* sets the context of the superblock for the fs being mounted. */
728         if (fscontext_sid) {
729                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
730                 if (rc)
731                         goto out;
732
733                 sbsec->sid = fscontext_sid;
734         }
735
736         /*
737          * Switch to using mount point labeling behavior.
738          * sets the label used on all file below the mountpoint, and will set
739          * the superblock context if not already set.
740          */
741         if (context_sid) {
742                 if (!fscontext_sid) {
743                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
744                                                           cred);
745                         if (rc)
746                                 goto out;
747                         sbsec->sid = context_sid;
748                 } else {
749                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
750                                                              cred);
751                         if (rc)
752                                 goto out;
753                 }
754                 if (!rootcontext_sid)
755                         rootcontext_sid = context_sid;
756
757                 sbsec->mntpoint_sid = context_sid;
758                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
759         }
760
761         if (rootcontext_sid) {
762                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
763                                                      cred);
764                 if (rc)
765                         goto out;
766
767                 root_isec->sid = rootcontext_sid;
768                 root_isec->initialized = 1;
769         }
770
771         if (defcontext_sid) {
772                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
773                         rc = -EINVAL;
774                         printk(KERN_WARNING "SELinux: defcontext option is "
775                                "invalid for this filesystem type\n");
776                         goto out;
777                 }
778
779                 if (defcontext_sid != sbsec->def_sid) {
780                         rc = may_context_mount_inode_relabel(defcontext_sid,
781                                                              sbsec, cred);
782                         if (rc)
783                                 goto out;
784                 }
785
786                 sbsec->def_sid = defcontext_sid;
787         }
788
789         rc = sb_finish_set_opts(sb);
790 out:
791         mutex_unlock(&sbsec->lock);
792         return rc;
793 out_double_mount:
794         rc = -EINVAL;
795         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
796                "security settings for (dev %s, type %s)\n", sb->s_id, name);
797         goto out;
798 }
799
800 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
801                                         struct super_block *newsb)
802 {
803         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
804         struct superblock_security_struct *newsbsec = newsb->s_security;
805
806         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
807         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
808         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
809
810         /*
811          * if the parent was able to be mounted it clearly had no special lsm
812          * mount options.  thus we can safely put this sb on the list and deal
813          * with it later
814          */
815         if (!ss_initialized) {
816                 spin_lock(&sb_security_lock);
817                 if (list_empty(&newsbsec->list))
818                         list_add(&newsbsec->list, &superblock_security_head);
819                 spin_unlock(&sb_security_lock);
820                 return;
821         }
822
823         /* how can we clone if the old one wasn't set up?? */
824         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
825
826         /* if fs is reusing a sb, just let its options stand... */
827         if (newsbsec->flags & SE_SBINITIALIZED)
828                 return;
829
830         mutex_lock(&newsbsec->lock);
831
832         newsbsec->flags = oldsbsec->flags;
833
834         newsbsec->sid = oldsbsec->sid;
835         newsbsec->def_sid = oldsbsec->def_sid;
836         newsbsec->behavior = oldsbsec->behavior;
837
838         if (set_context) {
839                 u32 sid = oldsbsec->mntpoint_sid;
840
841                 if (!set_fscontext)
842                         newsbsec->sid = sid;
843                 if (!set_rootcontext) {
844                         struct inode *newinode = newsb->s_root->d_inode;
845                         struct inode_security_struct *newisec = newinode->i_security;
846                         newisec->sid = sid;
847                 }
848                 newsbsec->mntpoint_sid = sid;
849         }
850         if (set_rootcontext) {
851                 const struct inode *oldinode = oldsb->s_root->d_inode;
852                 const struct inode_security_struct *oldisec = oldinode->i_security;
853                 struct inode *newinode = newsb->s_root->d_inode;
854                 struct inode_security_struct *newisec = newinode->i_security;
855
856                 newisec->sid = oldisec->sid;
857         }
858
859         sb_finish_set_opts(newsb);
860         mutex_unlock(&newsbsec->lock);
861 }
862
863 static int selinux_parse_opts_str(char *options,
864                                   struct security_mnt_opts *opts)
865 {
866         char *p;
867         char *context = NULL, *defcontext = NULL;
868         char *fscontext = NULL, *rootcontext = NULL;
869         int rc, num_mnt_opts = 0;
870
871         opts->num_mnt_opts = 0;
872
873         /* Standard string-based options. */
874         while ((p = strsep(&options, "|")) != NULL) {
875                 int token;
876                 substring_t args[MAX_OPT_ARGS];
877
878                 if (!*p)
879                         continue;
880
881                 token = match_token(p, tokens, args);
882
883                 switch (token) {
884                 case Opt_context:
885                         if (context || defcontext) {
886                                 rc = -EINVAL;
887                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
888                                 goto out_err;
889                         }
890                         context = match_strdup(&args[0]);
891                         if (!context) {
892                                 rc = -ENOMEM;
893                                 goto out_err;
894                         }
895                         break;
896
897                 case Opt_fscontext:
898                         if (fscontext) {
899                                 rc = -EINVAL;
900                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
901                                 goto out_err;
902                         }
903                         fscontext = match_strdup(&args[0]);
904                         if (!fscontext) {
905                                 rc = -ENOMEM;
906                                 goto out_err;
907                         }
908                         break;
909
910                 case Opt_rootcontext:
911                         if (rootcontext) {
912                                 rc = -EINVAL;
913                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
914                                 goto out_err;
915                         }
916                         rootcontext = match_strdup(&args[0]);
917                         if (!rootcontext) {
918                                 rc = -ENOMEM;
919                                 goto out_err;
920                         }
921                         break;
922
923                 case Opt_defcontext:
924                         if (context || defcontext) {
925                                 rc = -EINVAL;
926                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
927                                 goto out_err;
928                         }
929                         defcontext = match_strdup(&args[0]);
930                         if (!defcontext) {
931                                 rc = -ENOMEM;
932                                 goto out_err;
933                         }
934                         break;
935                 case Opt_labelsupport:
936                         break;
937                 default:
938                         rc = -EINVAL;
939                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
940                         goto out_err;
941
942                 }
943         }
944
945         rc = -ENOMEM;
946         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
947         if (!opts->mnt_opts)
948                 goto out_err;
949
950         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
951         if (!opts->mnt_opts_flags) {
952                 kfree(opts->mnt_opts);
953                 goto out_err;
954         }
955
956         if (fscontext) {
957                 opts->mnt_opts[num_mnt_opts] = fscontext;
958                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
959         }
960         if (context) {
961                 opts->mnt_opts[num_mnt_opts] = context;
962                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
963         }
964         if (rootcontext) {
965                 opts->mnt_opts[num_mnt_opts] = rootcontext;
966                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
967         }
968         if (defcontext) {
969                 opts->mnt_opts[num_mnt_opts] = defcontext;
970                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
971         }
972
973         opts->num_mnt_opts = num_mnt_opts;
974         return 0;
975
976 out_err:
977         kfree(context);
978         kfree(defcontext);
979         kfree(fscontext);
980         kfree(rootcontext);
981         return rc;
982 }
983 /*
984  * string mount options parsing and call set the sbsec
985  */
986 static int superblock_doinit(struct super_block *sb, void *data)
987 {
988         int rc = 0;
989         char *options = data;
990         struct security_mnt_opts opts;
991
992         security_init_mnt_opts(&opts);
993
994         if (!data)
995                 goto out;
996
997         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
998
999         rc = selinux_parse_opts_str(options, &opts);
1000         if (rc)
1001                 goto out_err;
1002
1003 out:
1004         rc = selinux_set_mnt_opts(sb, &opts);
1005
1006 out_err:
1007         security_free_mnt_opts(&opts);
1008         return rc;
1009 }
1010
1011 static void selinux_write_opts(struct seq_file *m,
1012                                struct security_mnt_opts *opts)
1013 {
1014         int i;
1015         char *prefix;
1016
1017         for (i = 0; i < opts->num_mnt_opts; i++) {
1018                 char *has_comma;
1019
1020                 if (opts->mnt_opts[i])
1021                         has_comma = strchr(opts->mnt_opts[i], ',');
1022                 else
1023                         has_comma = NULL;
1024
1025                 switch (opts->mnt_opts_flags[i]) {
1026                 case CONTEXT_MNT:
1027                         prefix = CONTEXT_STR;
1028                         break;
1029                 case FSCONTEXT_MNT:
1030                         prefix = FSCONTEXT_STR;
1031                         break;
1032                 case ROOTCONTEXT_MNT:
1033                         prefix = ROOTCONTEXT_STR;
1034                         break;
1035                 case DEFCONTEXT_MNT:
1036                         prefix = DEFCONTEXT_STR;
1037                         break;
1038                 case SE_SBLABELSUPP:
1039                         seq_putc(m, ',');
1040                         seq_puts(m, LABELSUPP_STR);
1041                         continue;
1042                 default:
1043                         BUG();
1044                 };
1045                 /* we need a comma before each option */
1046                 seq_putc(m, ',');
1047                 seq_puts(m, prefix);
1048                 if (has_comma)
1049                         seq_putc(m, '\"');
1050                 seq_puts(m, opts->mnt_opts[i]);
1051                 if (has_comma)
1052                         seq_putc(m, '\"');
1053         }
1054 }
1055
1056 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1057 {
1058         struct security_mnt_opts opts;
1059         int rc;
1060
1061         rc = selinux_get_mnt_opts(sb, &opts);
1062         if (rc) {
1063                 /* before policy load we may get EINVAL, don't show anything */
1064                 if (rc == -EINVAL)
1065                         rc = 0;
1066                 return rc;
1067         }
1068
1069         selinux_write_opts(m, &opts);
1070
1071         security_free_mnt_opts(&opts);
1072
1073         return rc;
1074 }
1075
1076 static inline u16 inode_mode_to_security_class(umode_t mode)
1077 {
1078         switch (mode & S_IFMT) {
1079         case S_IFSOCK:
1080                 return SECCLASS_SOCK_FILE;
1081         case S_IFLNK:
1082                 return SECCLASS_LNK_FILE;
1083         case S_IFREG:
1084                 return SECCLASS_FILE;
1085         case S_IFBLK:
1086                 return SECCLASS_BLK_FILE;
1087         case S_IFDIR:
1088                 return SECCLASS_DIR;
1089         case S_IFCHR:
1090                 return SECCLASS_CHR_FILE;
1091         case S_IFIFO:
1092                 return SECCLASS_FIFO_FILE;
1093
1094         }
1095
1096         return SECCLASS_FILE;
1097 }
1098
1099 static inline int default_protocol_stream(int protocol)
1100 {
1101         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1102 }
1103
1104 static inline int default_protocol_dgram(int protocol)
1105 {
1106         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1107 }
1108
1109 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1110 {
1111         switch (family) {
1112         case PF_UNIX:
1113                 switch (type) {
1114                 case SOCK_STREAM:
1115                 case SOCK_SEQPACKET:
1116                         return SECCLASS_UNIX_STREAM_SOCKET;
1117                 case SOCK_DGRAM:
1118                         return SECCLASS_UNIX_DGRAM_SOCKET;
1119                 }
1120                 break;
1121         case PF_INET:
1122         case PF_INET6:
1123                 switch (type) {
1124                 case SOCK_STREAM:
1125                         if (default_protocol_stream(protocol))
1126                                 return SECCLASS_TCP_SOCKET;
1127                         else
1128                                 return SECCLASS_RAWIP_SOCKET;
1129                 case SOCK_DGRAM:
1130                         if (default_protocol_dgram(protocol))
1131                                 return SECCLASS_UDP_SOCKET;
1132                         else
1133                                 return SECCLASS_RAWIP_SOCKET;
1134                 case SOCK_DCCP:
1135                         return SECCLASS_DCCP_SOCKET;
1136                 default:
1137                         return SECCLASS_RAWIP_SOCKET;
1138                 }
1139                 break;
1140         case PF_NETLINK:
1141                 switch (protocol) {
1142                 case NETLINK_ROUTE:
1143                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1144                 case NETLINK_FIREWALL:
1145                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1146                 case NETLINK_INET_DIAG:
1147                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1148                 case NETLINK_NFLOG:
1149                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1150                 case NETLINK_XFRM:
1151                         return SECCLASS_NETLINK_XFRM_SOCKET;
1152                 case NETLINK_SELINUX:
1153                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1154                 case NETLINK_AUDIT:
1155                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1156                 case NETLINK_IP6_FW:
1157                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1158                 case NETLINK_DNRTMSG:
1159                         return SECCLASS_NETLINK_DNRT_SOCKET;
1160                 case NETLINK_KOBJECT_UEVENT:
1161                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1162                 default:
1163                         return SECCLASS_NETLINK_SOCKET;
1164                 }
1165         case PF_PACKET:
1166                 return SECCLASS_PACKET_SOCKET;
1167         case PF_KEY:
1168                 return SECCLASS_KEY_SOCKET;
1169         case PF_APPLETALK:
1170                 return SECCLASS_APPLETALK_SOCKET;
1171         }
1172
1173         return SECCLASS_SOCKET;
1174 }
1175
1176 #ifdef CONFIG_PROC_FS
1177 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1178                                 u16 tclass,
1179                                 u32 *sid)
1180 {
1181         int buflen, rc;
1182         char *buffer, *path, *end;
1183
1184         buffer = (char *)__get_free_page(GFP_KERNEL);
1185         if (!buffer)
1186                 return -ENOMEM;
1187
1188         buflen = PAGE_SIZE;
1189         end = buffer+buflen;
1190         *--end = '\0';
1191         buflen--;
1192         path = end-1;
1193         *path = '/';
1194         while (de && de != de->parent) {
1195                 buflen -= de->namelen + 1;
1196                 if (buflen < 0)
1197                         break;
1198                 end -= de->namelen;
1199                 memcpy(end, de->name, de->namelen);
1200                 *--end = '/';
1201                 path = end;
1202                 de = de->parent;
1203         }
1204         rc = security_genfs_sid("proc", path, tclass, sid);
1205         free_page((unsigned long)buffer);
1206         return rc;
1207 }
1208 #else
1209 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1210                                 u16 tclass,
1211                                 u32 *sid)
1212 {
1213         return -EINVAL;
1214 }
1215 #endif
1216
1217 /* The inode's security attributes must be initialized before first use. */
1218 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1219 {
1220         struct superblock_security_struct *sbsec = NULL;
1221         struct inode_security_struct *isec = inode->i_security;
1222         u32 sid;
1223         struct dentry *dentry;
1224 #define INITCONTEXTLEN 255
1225         char *context = NULL;
1226         unsigned len = 0;
1227         int rc = 0;
1228
1229         if (isec->initialized)
1230                 goto out;
1231
1232         mutex_lock(&isec->lock);
1233         if (isec->initialized)
1234                 goto out_unlock;
1235
1236         sbsec = inode->i_sb->s_security;
1237         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1238                 /* Defer initialization until selinux_complete_init,
1239                    after the initial policy is loaded and the security
1240                    server is ready to handle calls. */
1241                 spin_lock(&sbsec->isec_lock);
1242                 if (list_empty(&isec->list))
1243                         list_add(&isec->list, &sbsec->isec_head);
1244                 spin_unlock(&sbsec->isec_lock);
1245                 goto out_unlock;
1246         }
1247
1248         switch (sbsec->behavior) {
1249         case SECURITY_FS_USE_XATTR:
1250                 if (!inode->i_op->getxattr) {
1251                         isec->sid = sbsec->def_sid;
1252                         break;
1253                 }
1254
1255                 /* Need a dentry, since the xattr API requires one.
1256                    Life would be simpler if we could just pass the inode. */
1257                 if (opt_dentry) {
1258                         /* Called from d_instantiate or d_splice_alias. */
1259                         dentry = dget(opt_dentry);
1260                 } else {
1261                         /* Called from selinux_complete_init, try to find a dentry. */
1262                         dentry = d_find_alias(inode);
1263                 }
1264                 if (!dentry) {
1265                         /*
1266                          * this is can be hit on boot when a file is accessed
1267                          * before the policy is loaded.  When we load policy we
1268                          * may find inodes that have no dentry on the
1269                          * sbsec->isec_head list.  No reason to complain as these
1270                          * will get fixed up the next time we go through
1271                          * inode_doinit with a dentry, before these inodes could
1272                          * be used again by userspace.
1273                          */
1274                         goto out_unlock;
1275                 }
1276
1277                 len = INITCONTEXTLEN;
1278                 context = kmalloc(len+1, GFP_NOFS);
1279                 if (!context) {
1280                         rc = -ENOMEM;
1281                         dput(dentry);
1282                         goto out_unlock;
1283                 }
1284                 context[len] = '\0';
1285                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1286                                            context, len);
1287                 if (rc == -ERANGE) {
1288                         kfree(context);
1289
1290                         /* Need a larger buffer.  Query for the right size. */
1291                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1292                                                    NULL, 0);
1293                         if (rc < 0) {
1294                                 dput(dentry);
1295                                 goto out_unlock;
1296                         }
1297                         len = rc;
1298                         context = kmalloc(len+1, GFP_NOFS);
1299                         if (!context) {
1300                                 rc = -ENOMEM;
1301                                 dput(dentry);
1302                                 goto out_unlock;
1303                         }
1304                         context[len] = '\0';
1305                         rc = inode->i_op->getxattr(dentry,
1306                                                    XATTR_NAME_SELINUX,
1307                                                    context, len);
1308                 }
1309                 dput(dentry);
1310                 if (rc < 0) {
1311                         if (rc != -ENODATA) {
1312                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1313                                        "%d for dev=%s ino=%ld\n", __func__,
1314                                        -rc, inode->i_sb->s_id, inode->i_ino);
1315                                 kfree(context);
1316                                 goto out_unlock;
1317                         }
1318                         /* Map ENODATA to the default file SID */
1319                         sid = sbsec->def_sid;
1320                         rc = 0;
1321                 } else {
1322                         rc = security_context_to_sid_default(context, rc, &sid,
1323                                                              sbsec->def_sid,
1324                                                              GFP_NOFS);
1325                         if (rc) {
1326                                 char *dev = inode->i_sb->s_id;
1327                                 unsigned long ino = inode->i_ino;
1328
1329                                 if (rc == -EINVAL) {
1330                                         if (printk_ratelimit())
1331                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1332                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1333                                                         "filesystem in question.\n", ino, dev, context);
1334                                 } else {
1335                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1336                                                "returned %d for dev=%s ino=%ld\n",
1337                                                __func__, context, -rc, dev, ino);
1338                                 }
1339                                 kfree(context);
1340                                 /* Leave with the unlabeled SID */
1341                                 rc = 0;
1342                                 break;
1343                         }
1344                 }
1345                 kfree(context);
1346                 isec->sid = sid;
1347                 break;
1348         case SECURITY_FS_USE_TASK:
1349                 isec->sid = isec->task_sid;
1350                 break;
1351         case SECURITY_FS_USE_TRANS:
1352                 /* Default to the fs SID. */
1353                 isec->sid = sbsec->sid;
1354
1355                 /* Try to obtain a transition SID. */
1356                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1357                 rc = security_transition_sid(isec->task_sid,
1358                                              sbsec->sid,
1359                                              isec->sclass,
1360                                              &sid);
1361                 if (rc)
1362                         goto out_unlock;
1363                 isec->sid = sid;
1364                 break;
1365         case SECURITY_FS_USE_MNTPOINT:
1366                 isec->sid = sbsec->mntpoint_sid;
1367                 break;
1368         default:
1369                 /* Default to the fs superblock SID. */
1370                 isec->sid = sbsec->sid;
1371
1372                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1373                         struct proc_inode *proci = PROC_I(inode);
1374                         if (proci->pde) {
1375                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1376                                 rc = selinux_proc_get_sid(proci->pde,
1377                                                           isec->sclass,
1378                                                           &sid);
1379                                 if (rc)
1380                                         goto out_unlock;
1381                                 isec->sid = sid;
1382                         }
1383                 }
1384                 break;
1385         }
1386
1387         isec->initialized = 1;
1388
1389 out_unlock:
1390         mutex_unlock(&isec->lock);
1391 out:
1392         if (isec->sclass == SECCLASS_FILE)
1393                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1394         return rc;
1395 }
1396
1397 /* Convert a Linux signal to an access vector. */
1398 static inline u32 signal_to_av(int sig)
1399 {
1400         u32 perm = 0;
1401
1402         switch (sig) {
1403         case SIGCHLD:
1404                 /* Commonly granted from child to parent. */
1405                 perm = PROCESS__SIGCHLD;
1406                 break;
1407         case SIGKILL:
1408                 /* Cannot be caught or ignored */
1409                 perm = PROCESS__SIGKILL;
1410                 break;
1411         case SIGSTOP:
1412                 /* Cannot be caught or ignored */
1413                 perm = PROCESS__SIGSTOP;
1414                 break;
1415         default:
1416                 /* All other signals. */
1417                 perm = PROCESS__SIGNAL;
1418                 break;
1419         }
1420
1421         return perm;
1422 }
1423
1424 /*
1425  * Check permission between a pair of credentials
1426  * fork check, ptrace check, etc.
1427  */
1428 static int cred_has_perm(const struct cred *actor,
1429                          const struct cred *target,
1430                          u32 perms)
1431 {
1432         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1433
1434         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1435 }
1436
1437 /*
1438  * Check permission between a pair of tasks, e.g. signal checks,
1439  * fork check, ptrace check, etc.
1440  * tsk1 is the actor and tsk2 is the target
1441  * - this uses the default subjective creds of tsk1
1442  */
1443 static int task_has_perm(const struct task_struct *tsk1,
1444                          const struct task_struct *tsk2,
1445                          u32 perms)
1446 {
1447         const struct task_security_struct *__tsec1, *__tsec2;
1448         u32 sid1, sid2;
1449
1450         rcu_read_lock();
1451         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1452         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1453         rcu_read_unlock();
1454         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1455 }
1456
1457 /*
1458  * Check permission between current and another task, e.g. signal checks,
1459  * fork check, ptrace check, etc.
1460  * current is the actor and tsk2 is the target
1461  * - this uses current's subjective creds
1462  */
1463 static int current_has_perm(const struct task_struct *tsk,
1464                             u32 perms)
1465 {
1466         u32 sid, tsid;
1467
1468         sid = current_sid();
1469         tsid = task_sid(tsk);
1470         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1471 }
1472
1473 #if CAP_LAST_CAP > 63
1474 #error Fix SELinux to handle capabilities > 63.
1475 #endif
1476
1477 /* Check whether a task is allowed to use a capability. */
1478 static int task_has_capability(struct task_struct *tsk,
1479                                const struct cred *cred,
1480                                int cap, int audit)
1481 {
1482         struct common_audit_data ad;
1483         struct av_decision avd;
1484         u16 sclass;
1485         u32 sid = cred_sid(cred);
1486         u32 av = CAP_TO_MASK(cap);
1487         int rc;
1488
1489         COMMON_AUDIT_DATA_INIT(&ad, CAP);
1490         ad.tsk = tsk;
1491         ad.u.cap = cap;
1492
1493         switch (CAP_TO_INDEX(cap)) {
1494         case 0:
1495                 sclass = SECCLASS_CAPABILITY;
1496                 break;
1497         case 1:
1498                 sclass = SECCLASS_CAPABILITY2;
1499                 break;
1500         default:
1501                 printk(KERN_ERR
1502                        "SELinux:  out of range capability %d\n", cap);
1503                 BUG();
1504         }
1505
1506         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1507         if (audit == SECURITY_CAP_AUDIT)
1508                 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1509         return rc;
1510 }
1511
1512 /* Check whether a task is allowed to use a system operation. */
1513 static int task_has_system(struct task_struct *tsk,
1514                            u32 perms)
1515 {
1516         u32 sid = task_sid(tsk);
1517
1518         return avc_has_perm(sid, SECINITSID_KERNEL,
1519                             SECCLASS_SYSTEM, perms, NULL);
1520 }
1521
1522 /* Check whether a task has a particular permission to an inode.
1523    The 'adp' parameter is optional and allows other audit
1524    data to be passed (e.g. the dentry). */
1525 static int inode_has_perm(const struct cred *cred,
1526                           struct inode *inode,
1527                           u32 perms,
1528                           struct common_audit_data *adp)
1529 {
1530         struct inode_security_struct *isec;
1531         struct common_audit_data ad;
1532         u32 sid;
1533
1534         if (unlikely(IS_PRIVATE(inode)))
1535                 return 0;
1536
1537         sid = cred_sid(cred);
1538         isec = inode->i_security;
1539
1540         if (!adp) {
1541                 adp = &ad;
1542                 COMMON_AUDIT_DATA_INIT(&ad, FS);
1543                 ad.u.fs.inode = inode;
1544         }
1545
1546         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1547 }
1548
1549 /* Same as inode_has_perm, but pass explicit audit data containing
1550    the dentry to help the auditing code to more easily generate the
1551    pathname if needed. */
1552 static inline int dentry_has_perm(const struct cred *cred,
1553                                   struct vfsmount *mnt,
1554                                   struct dentry *dentry,
1555                                   u32 av)
1556 {
1557         struct inode *inode = dentry->d_inode;
1558         struct common_audit_data ad;
1559
1560         COMMON_AUDIT_DATA_INIT(&ad, FS);
1561         ad.u.fs.path.mnt = mnt;
1562         ad.u.fs.path.dentry = dentry;
1563         return inode_has_perm(cred, inode, av, &ad);
1564 }
1565
1566 /* Check whether a task can use an open file descriptor to
1567    access an inode in a given way.  Check access to the
1568    descriptor itself, and then use dentry_has_perm to
1569    check a particular permission to the file.
1570    Access to the descriptor is implicitly granted if it
1571    has the same SID as the process.  If av is zero, then
1572    access to the file is not checked, e.g. for cases
1573    where only the descriptor is affected like seek. */
1574 static int file_has_perm(const struct cred *cred,
1575                          struct file *file,
1576                          u32 av)
1577 {
1578         struct file_security_struct *fsec = file->f_security;
1579         struct inode *inode = file->f_path.dentry->d_inode;
1580         struct common_audit_data ad;
1581         u32 sid = cred_sid(cred);
1582         int rc;
1583
1584         COMMON_AUDIT_DATA_INIT(&ad, FS);
1585         ad.u.fs.path = file->f_path;
1586
1587         if (sid != fsec->sid) {
1588                 rc = avc_has_perm(sid, fsec->sid,
1589                                   SECCLASS_FD,
1590                                   FD__USE,
1591                                   &ad);
1592                 if (rc)
1593                         goto out;
1594         }
1595
1596         /* av is zero if only checking access to the descriptor. */
1597         rc = 0;
1598         if (av)
1599                 rc = inode_has_perm(cred, inode, av, &ad);
1600
1601 out:
1602         return rc;
1603 }
1604
1605 /* Check whether a task can create a file. */
1606 static int may_create(struct inode *dir,
1607                       struct dentry *dentry,
1608                       u16 tclass)
1609 {
1610         const struct cred *cred = current_cred();
1611         const struct task_security_struct *tsec = cred->security;
1612         struct inode_security_struct *dsec;
1613         struct superblock_security_struct *sbsec;
1614         u32 sid, newsid;
1615         struct common_audit_data ad;
1616         int rc;
1617
1618         dsec = dir->i_security;
1619         sbsec = dir->i_sb->s_security;
1620
1621         sid = tsec->sid;
1622         newsid = tsec->create_sid;
1623
1624         COMMON_AUDIT_DATA_INIT(&ad, FS);
1625         ad.u.fs.path.dentry = dentry;
1626
1627         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1628                           DIR__ADD_NAME | DIR__SEARCH,
1629                           &ad);
1630         if (rc)
1631                 return rc;
1632
1633         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1634                 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1635                 if (rc)
1636                         return rc;
1637         }
1638
1639         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1640         if (rc)
1641                 return rc;
1642
1643         return avc_has_perm(newsid, sbsec->sid,
1644                             SECCLASS_FILESYSTEM,
1645                             FILESYSTEM__ASSOCIATE, &ad);
1646 }
1647
1648 /* Check whether a task can create a key. */
1649 static int may_create_key(u32 ksid,
1650                           struct task_struct *ctx)
1651 {
1652         u32 sid = task_sid(ctx);
1653
1654         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1655 }
1656
1657 #define MAY_LINK        0
1658 #define MAY_UNLINK      1
1659 #define MAY_RMDIR       2
1660
1661 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1662 static int may_link(struct inode *dir,
1663                     struct dentry *dentry,
1664                     int kind)
1665
1666 {
1667         struct inode_security_struct *dsec, *isec;
1668         struct common_audit_data ad;
1669         u32 sid = current_sid();
1670         u32 av;
1671         int rc;
1672
1673         dsec = dir->i_security;
1674         isec = dentry->d_inode->i_security;
1675
1676         COMMON_AUDIT_DATA_INIT(&ad, FS);
1677         ad.u.fs.path.dentry = dentry;
1678
1679         av = DIR__SEARCH;
1680         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1681         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1682         if (rc)
1683                 return rc;
1684
1685         switch (kind) {
1686         case MAY_LINK:
1687                 av = FILE__LINK;
1688                 break;
1689         case MAY_UNLINK:
1690                 av = FILE__UNLINK;
1691                 break;
1692         case MAY_RMDIR:
1693                 av = DIR__RMDIR;
1694                 break;
1695         default:
1696                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1697                         __func__, kind);
1698                 return 0;
1699         }
1700
1701         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1702         return rc;
1703 }
1704
1705 static inline int may_rename(struct inode *old_dir,
1706                              struct dentry *old_dentry,
1707                              struct inode *new_dir,
1708                              struct dentry *new_dentry)
1709 {
1710         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1711         struct common_audit_data ad;
1712         u32 sid = current_sid();
1713         u32 av;
1714         int old_is_dir, new_is_dir;
1715         int rc;
1716
1717         old_dsec = old_dir->i_security;
1718         old_isec = old_dentry->d_inode->i_security;
1719         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1720         new_dsec = new_dir->i_security;
1721
1722         COMMON_AUDIT_DATA_INIT(&ad, FS);
1723
1724         ad.u.fs.path.dentry = old_dentry;
1725         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1726                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1727         if (rc)
1728                 return rc;
1729         rc = avc_has_perm(sid, old_isec->sid,
1730                           old_isec->sclass, FILE__RENAME, &ad);
1731         if (rc)
1732                 return rc;
1733         if (old_is_dir && new_dir != old_dir) {
1734                 rc = avc_has_perm(sid, old_isec->sid,
1735                                   old_isec->sclass, DIR__REPARENT, &ad);
1736                 if (rc)
1737                         return rc;
1738         }
1739
1740         ad.u.fs.path.dentry = new_dentry;
1741         av = DIR__ADD_NAME | DIR__SEARCH;
1742         if (new_dentry->d_inode)
1743                 av |= DIR__REMOVE_NAME;
1744         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1745         if (rc)
1746                 return rc;
1747         if (new_dentry->d_inode) {
1748                 new_isec = new_dentry->d_inode->i_security;
1749                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1750                 rc = avc_has_perm(sid, new_isec->sid,
1751                                   new_isec->sclass,
1752                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1753                 if (rc)
1754                         return rc;
1755         }
1756
1757         return 0;
1758 }
1759
1760 /* Check whether a task can perform a filesystem operation. */
1761 static int superblock_has_perm(const struct cred *cred,
1762                                struct super_block *sb,
1763                                u32 perms,
1764                                struct common_audit_data *ad)
1765 {
1766         struct superblock_security_struct *sbsec;
1767         u32 sid = cred_sid(cred);
1768
1769         sbsec = sb->s_security;
1770         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1771 }
1772
1773 /* Convert a Linux mode and permission mask to an access vector. */
1774 static inline u32 file_mask_to_av(int mode, int mask)
1775 {
1776         u32 av = 0;
1777
1778         if ((mode & S_IFMT) != S_IFDIR) {
1779                 if (mask & MAY_EXEC)
1780                         av |= FILE__EXECUTE;
1781                 if (mask & MAY_READ)
1782                         av |= FILE__READ;
1783
1784                 if (mask & MAY_APPEND)
1785                         av |= FILE__APPEND;
1786                 else if (mask & MAY_WRITE)
1787                         av |= FILE__WRITE;
1788
1789         } else {
1790                 if (mask & MAY_EXEC)
1791                         av |= DIR__SEARCH;
1792                 if (mask & MAY_WRITE)
1793                         av |= DIR__WRITE;
1794                 if (mask & MAY_READ)
1795                         av |= DIR__READ;
1796         }
1797
1798         return av;
1799 }
1800
1801 /* Convert a Linux file to an access vector. */
1802 static inline u32 file_to_av(struct file *file)
1803 {
1804         u32 av = 0;
1805
1806         if (file->f_mode & FMODE_READ)
1807                 av |= FILE__READ;
1808         if (file->f_mode & FMODE_WRITE) {
1809                 if (file->f_flags & O_APPEND)
1810                         av |= FILE__APPEND;
1811                 else
1812                         av |= FILE__WRITE;
1813         }
1814         if (!av) {
1815                 /*
1816                  * Special file opened with flags 3 for ioctl-only use.
1817                  */
1818                 av = FILE__IOCTL;
1819         }
1820
1821         return av;
1822 }
1823
1824 /*
1825  * Convert a file to an access vector and include the correct open
1826  * open permission.
1827  */
1828 static inline u32 open_file_to_av(struct file *file)
1829 {
1830         u32 av = file_to_av(file);
1831
1832         if (selinux_policycap_openperm) {
1833                 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1834                 /*
1835                  * lnk files and socks do not really have an 'open'
1836                  */
1837                 if (S_ISREG(mode))
1838                         av |= FILE__OPEN;
1839                 else if (S_ISCHR(mode))
1840                         av |= CHR_FILE__OPEN;
1841                 else if (S_ISBLK(mode))
1842                         av |= BLK_FILE__OPEN;
1843                 else if (S_ISFIFO(mode))
1844                         av |= FIFO_FILE__OPEN;
1845                 else if (S_ISDIR(mode))
1846                         av |= DIR__OPEN;
1847                 else if (S_ISSOCK(mode))
1848                         av |= SOCK_FILE__OPEN;
1849                 else
1850                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1851                                 "unknown mode:%o\n", __func__, mode);
1852         }
1853         return av;
1854 }
1855
1856 /* Hook functions begin here. */
1857
1858 static int selinux_ptrace_access_check(struct task_struct *child,
1859                                      unsigned int mode)
1860 {
1861         int rc;
1862
1863         rc = cap_ptrace_access_check(child, mode);
1864         if (rc)
1865                 return rc;
1866
1867         if (mode == PTRACE_MODE_READ) {
1868                 u32 sid = current_sid();
1869                 u32 csid = task_sid(child);
1870                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1871         }
1872
1873         return current_has_perm(child, PROCESS__PTRACE);
1874 }
1875
1876 static int selinux_ptrace_traceme(struct task_struct *parent)
1877 {
1878         int rc;
1879
1880         rc = cap_ptrace_traceme(parent);
1881         if (rc)
1882                 return rc;
1883
1884         return task_has_perm(parent, current, PROCESS__PTRACE);
1885 }
1886
1887 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1888                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1889 {
1890         int error;
1891
1892         error = current_has_perm(target, PROCESS__GETCAP);
1893         if (error)
1894                 return error;
1895
1896         return cap_capget(target, effective, inheritable, permitted);
1897 }
1898
1899 static int selinux_capset(struct cred *new, const struct cred *old,
1900                           const kernel_cap_t *effective,
1901                           const kernel_cap_t *inheritable,
1902                           const kernel_cap_t *permitted)
1903 {
1904         int error;
1905
1906         error = cap_capset(new, old,
1907                                       effective, inheritable, permitted);
1908         if (error)
1909                 return error;
1910
1911         return cred_has_perm(old, new, PROCESS__SETCAP);
1912 }
1913
1914 /*
1915  * (This comment used to live with the selinux_task_setuid hook,
1916  * which was removed).
1917  *
1918  * Since setuid only affects the current process, and since the SELinux
1919  * controls are not based on the Linux identity attributes, SELinux does not
1920  * need to control this operation.  However, SELinux does control the use of
1921  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1922  */
1923
1924 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1925                            int cap, int audit)
1926 {
1927         int rc;
1928
1929         rc = cap_capable(tsk, cred, cap, audit);
1930         if (rc)
1931                 return rc;
1932
1933         return task_has_capability(tsk, cred, cap, audit);
1934 }
1935
1936 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1937 {
1938         int buflen, rc;
1939         char *buffer, *path, *end;
1940
1941         rc = -ENOMEM;
1942         buffer = (char *)__get_free_page(GFP_KERNEL);
1943         if (!buffer)
1944                 goto out;
1945
1946         buflen = PAGE_SIZE;
1947         end = buffer+buflen;
1948         *--end = '\0';
1949         buflen--;
1950         path = end-1;
1951         *path = '/';
1952         while (table) {
1953                 const char *name = table->procname;
1954                 size_t namelen = strlen(name);
1955                 buflen -= namelen + 1;
1956                 if (buflen < 0)
1957                         goto out_free;
1958                 end -= namelen;
1959                 memcpy(end, name, namelen);
1960                 *--end = '/';
1961                 path = end;
1962                 table = table->parent;
1963         }
1964         buflen -= 4;
1965         if (buflen < 0)
1966                 goto out_free;
1967         end -= 4;
1968         memcpy(end, "/sys", 4);
1969         path = end;
1970         rc = security_genfs_sid("proc", path, tclass, sid);
1971 out_free:
1972         free_page((unsigned long)buffer);
1973 out:
1974         return rc;
1975 }
1976
1977 static int selinux_sysctl(ctl_table *table, int op)
1978 {
1979         int error = 0;
1980         u32 av;
1981         u32 tsid, sid;
1982         int rc;
1983
1984         sid = current_sid();
1985
1986         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1987                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1988         if (rc) {
1989                 /* Default to the well-defined sysctl SID. */
1990                 tsid = SECINITSID_SYSCTL;
1991         }
1992
1993         /* The op values are "defined" in sysctl.c, thereby creating
1994          * a bad coupling between this module and sysctl.c */
1995         if (op == 001) {
1996                 error = avc_has_perm(sid, tsid,
1997                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1998         } else {
1999                 av = 0;
2000                 if (op & 004)
2001                         av |= FILE__READ;
2002                 if (op & 002)
2003                         av |= FILE__WRITE;
2004                 if (av)
2005                         error = avc_has_perm(sid, tsid,
2006                                              SECCLASS_FILE, av, NULL);
2007         }
2008
2009         return error;
2010 }
2011
2012 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2013 {
2014         const struct cred *cred = current_cred();
2015         int rc = 0;
2016
2017         if (!sb)
2018                 return 0;
2019
2020         switch (cmds) {
2021         case Q_SYNC:
2022         case Q_QUOTAON:
2023         case Q_QUOTAOFF:
2024         case Q_SETINFO:
2025         case Q_SETQUOTA:
2026                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2027                 break;
2028         case Q_GETFMT:
2029         case Q_GETINFO:
2030         case Q_GETQUOTA:
2031                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2032                 break;
2033         default:
2034                 rc = 0;  /* let the kernel handle invalid cmds */
2035                 break;
2036         }
2037         return rc;
2038 }
2039
2040 static int selinux_quota_on(struct dentry *dentry)
2041 {
2042         const struct cred *cred = current_cred();
2043
2044         return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
2045 }
2046
2047 static int selinux_syslog(int type)
2048 {
2049         int rc;
2050
2051         rc = cap_syslog(type);
2052         if (rc)
2053                 return rc;
2054
2055         switch (type) {
2056         case 3:         /* Read last kernel messages */
2057         case 10:        /* Return size of the log buffer */
2058                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2059                 break;
2060         case 6:         /* Disable logging to console */
2061         case 7:         /* Enable logging to console */
2062         case 8:         /* Set level of messages printed to console */
2063                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2064                 break;
2065         case 0:         /* Close log */
2066         case 1:         /* Open log */
2067         case 2:         /* Read from log */
2068         case 4:         /* Read/clear last kernel messages */
2069         case 5:         /* Clear ring buffer */
2070         default:
2071                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2072                 break;
2073         }
2074         return rc;
2075 }
2076
2077 /*
2078  * Check that a process has enough memory to allocate a new virtual
2079  * mapping. 0 means there is enough memory for the allocation to
2080  * succeed and -ENOMEM implies there is not.
2081  *
2082  * Do not audit the selinux permission check, as this is applied to all
2083  * processes that allocate mappings.
2084  */
2085 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2086 {
2087         int rc, cap_sys_admin = 0;
2088
2089         rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2090                              SECURITY_CAP_NOAUDIT);
2091         if (rc == 0)
2092                 cap_sys_admin = 1;
2093
2094         return __vm_enough_memory(mm, pages, cap_sys_admin);
2095 }
2096
2097 /* binprm security operations */
2098
2099 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2100 {
2101         const struct task_security_struct *old_tsec;
2102         struct task_security_struct *new_tsec;
2103         struct inode_security_struct *isec;
2104         struct common_audit_data ad;
2105         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2106         int rc;
2107
2108         rc = cap_bprm_set_creds(bprm);
2109         if (rc)
2110                 return rc;
2111
2112         /* SELinux context only depends on initial program or script and not
2113          * the script interpreter */
2114         if (bprm->cred_prepared)
2115                 return 0;
2116
2117         old_tsec = current_security();
2118         new_tsec = bprm->cred->security;
2119         isec = inode->i_security;
2120
2121         /* Default to the current task SID. */
2122         new_tsec->sid = old_tsec->sid;
2123         new_tsec->osid = old_tsec->sid;
2124
2125         /* Reset fs, key, and sock SIDs on execve. */
2126         new_tsec->create_sid = 0;
2127         new_tsec->keycreate_sid = 0;
2128         new_tsec->sockcreate_sid = 0;
2129
2130         if (old_tsec->exec_sid) {
2131                 new_tsec->sid = old_tsec->exec_sid;
2132                 /* Reset exec SID on execve. */
2133                 new_tsec->exec_sid = 0;
2134         } else {
2135                 /* Check for a default transition on this program. */
2136                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2137                                              SECCLASS_PROCESS, &new_tsec->sid);
2138                 if (rc)
2139                         return rc;
2140         }
2141
2142         COMMON_AUDIT_DATA_INIT(&ad, FS);
2143         ad.u.fs.path = bprm->file->f_path;
2144
2145         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2146                 new_tsec->sid = old_tsec->sid;
2147
2148         if (new_tsec->sid == old_tsec->sid) {
2149                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2150                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2151                 if (rc)
2152                         return rc;
2153         } else {
2154                 /* Check permissions for the transition. */
2155                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2156                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2157                 if (rc)
2158                         return rc;
2159
2160                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2161                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2162                 if (rc)
2163                         return rc;
2164
2165                 /* Check for shared state */
2166                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2167                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2168                                           SECCLASS_PROCESS, PROCESS__SHARE,
2169                                           NULL);
2170                         if (rc)
2171                                 return -EPERM;
2172                 }
2173
2174                 /* Make sure that anyone attempting to ptrace over a task that
2175                  * changes its SID has the appropriate permit */
2176                 if (bprm->unsafe &
2177                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2178                         struct task_struct *tracer;
2179                         struct task_security_struct *sec;
2180                         u32 ptsid = 0;
2181
2182                         rcu_read_lock();
2183                         tracer = tracehook_tracer_task(current);
2184                         if (likely(tracer != NULL)) {
2185                                 sec = __task_cred(tracer)->security;
2186                                 ptsid = sec->sid;
2187                         }
2188                         rcu_read_unlock();
2189
2190                         if (ptsid != 0) {
2191                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2192                                                   SECCLASS_PROCESS,
2193                                                   PROCESS__PTRACE, NULL);
2194                                 if (rc)
2195                                         return -EPERM;
2196                         }
2197                 }
2198
2199                 /* Clear any possibly unsafe personality bits on exec: */
2200                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2201         }
2202
2203         return 0;
2204 }
2205
2206 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2207 {
2208         const struct cred *cred = current_cred();
2209         const struct task_security_struct *tsec = cred->security;
2210         u32 sid, osid;
2211         int atsecure = 0;
2212
2213         sid = tsec->sid;
2214         osid = tsec->osid;
2215
2216         if (osid != sid) {
2217                 /* Enable secure mode for SIDs transitions unless
2218                    the noatsecure permission is granted between
2219                    the two SIDs, i.e. ahp returns 0. */
2220                 atsecure = avc_has_perm(osid, sid,
2221                                         SECCLASS_PROCESS,
2222                                         PROCESS__NOATSECURE, NULL);
2223         }
2224
2225         return (atsecure || cap_bprm_secureexec(bprm));
2226 }
2227
2228 extern struct vfsmount *selinuxfs_mount;
2229 extern struct dentry *selinux_null;
2230
2231 /* Derived from fs/exec.c:flush_old_files. */
2232 static inline void flush_unauthorized_files(const struct cred *cred,
2233                                             struct files_struct *files)
2234 {
2235         struct common_audit_data ad;
2236         struct file *file, *devnull = NULL;
2237         struct tty_struct *tty;
2238         struct fdtable *fdt;
2239         long j = -1;
2240         int drop_tty = 0;
2241
2242         tty = get_current_tty();
2243         if (tty) {
2244                 file_list_lock();
2245                 if (!list_empty(&tty->tty_files)) {
2246                         struct inode *inode;
2247
2248                         /* Revalidate access to controlling tty.
2249                            Use inode_has_perm on the tty inode directly rather
2250                            than using file_has_perm, as this particular open
2251                            file may belong to another process and we are only
2252                            interested in the inode-based check here. */
2253                         file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2254                         inode = file->f_path.dentry->d_inode;
2255                         if (inode_has_perm(cred, inode,
2256                                            FILE__READ | FILE__WRITE, NULL)) {
2257                                 drop_tty = 1;
2258                         }
2259                 }
2260                 file_list_unlock();
2261                 tty_kref_put(tty);
2262         }
2263         /* Reset controlling tty. */
2264         if (drop_tty)
2265                 no_tty();
2266
2267         /* Revalidate access to inherited open files. */
2268
2269         COMMON_AUDIT_DATA_INIT(&ad, FS);
2270
2271         spin_lock(&files->file_lock);
2272         for (;;) {
2273                 unsigned long set, i;
2274                 int fd;
2275
2276                 j++;
2277                 i = j * __NFDBITS;
2278                 fdt = files_fdtable(files);
2279                 if (i >= fdt->max_fds)
2280                         break;
2281                 set = fdt->open_fds->fds_bits[j];
2282                 if (!set)
2283                         continue;
2284                 spin_unlock(&files->file_lock);
2285                 for ( ; set ; i++, set >>= 1) {
2286                         if (set & 1) {
2287                                 file = fget(i);
2288                                 if (!file)
2289                                         continue;
2290                                 if (file_has_perm(cred,
2291                                                   file,
2292                                                   file_to_av(file))) {
2293                                         sys_close(i);
2294                                         fd = get_unused_fd();
2295                                         if (fd != i) {
2296                                                 if (fd >= 0)
2297                                                         put_unused_fd(fd);
2298                                                 fput(file);
2299                                                 continue;
2300                                         }
2301                                         if (devnull) {
2302                                                 get_file(devnull);
2303                                         } else {
2304                                                 devnull = dentry_open(
2305                                                         dget(selinux_null),
2306                                                         mntget(selinuxfs_mount),
2307                                                         O_RDWR, cred);
2308                                                 if (IS_ERR(devnull)) {
2309                                                         devnull = NULL;
2310                                                         put_unused_fd(fd);
2311                                                         fput(file);
2312                                                         continue;
2313                                                 }
2314                                         }
2315                                         fd_install(fd, devnull);
2316                                 }
2317                                 fput(file);
2318                         }
2319                 }
2320                 spin_lock(&files->file_lock);
2321
2322         }
2323         spin_unlock(&files->file_lock);
2324 }
2325
2326 /*
2327  * Prepare a process for imminent new credential changes due to exec
2328  */
2329 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2330 {
2331         struct task_security_struct *new_tsec;
2332         struct rlimit *rlim, *initrlim;
2333         int rc, i;
2334
2335         new_tsec = bprm->cred->security;
2336         if (new_tsec->sid == new_tsec->osid)
2337                 return;
2338
2339         /* Close files for which the new task SID is not authorized. */
2340         flush_unauthorized_files(bprm->cred, current->files);
2341
2342         /* Always clear parent death signal on SID transitions. */
2343         current->pdeath_signal = 0;
2344
2345         /* Check whether the new SID can inherit resource limits from the old
2346          * SID.  If not, reset all soft limits to the lower of the current
2347          * task's hard limit and the init task's soft limit.
2348          *
2349          * Note that the setting of hard limits (even to lower them) can be
2350          * controlled by the setrlimit check.  The inclusion of the init task's
2351          * soft limit into the computation is to avoid resetting soft limits
2352          * higher than the default soft limit for cases where the default is
2353          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2354          */
2355         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2356                           PROCESS__RLIMITINH, NULL);
2357         if (rc) {
2358                 for (i = 0; i < RLIM_NLIMITS; i++) {
2359                         rlim = current->signal->rlim + i;
2360                         initrlim = init_task.signal->rlim + i;
2361                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2362                 }
2363                 update_rlimit_cpu(rlim->rlim_cur);
2364         }
2365 }
2366
2367 /*
2368  * Clean up the process immediately after the installation of new credentials
2369  * due to exec
2370  */
2371 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2372 {
2373         const struct task_security_struct *tsec = current_security();
2374         struct itimerval itimer;
2375         u32 osid, sid;
2376         int rc, i;
2377
2378         osid = tsec->osid;
2379         sid = tsec->sid;
2380
2381         if (sid == osid)
2382                 return;
2383
2384         /* Check whether the new SID can inherit signal state from the old SID.
2385          * If not, clear itimers to avoid subsequent signal generation and
2386          * flush and unblock signals.
2387          *
2388          * This must occur _after_ the task SID has been updated so that any
2389          * kill done after the flush will be checked against the new SID.
2390          */
2391         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2392         if (rc) {
2393                 memset(&itimer, 0, sizeof itimer);
2394                 for (i = 0; i < 3; i++)
2395                         do_setitimer(i, &itimer, NULL);
2396                 spin_lock_irq(&current->sighand->siglock);
2397                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2398                         __flush_signals(current);
2399                         flush_signal_handlers(current, 1);
2400                         sigemptyset(&current->blocked);
2401                 }
2402                 spin_unlock_irq(&current->sighand->siglock);
2403         }
2404
2405         /* Wake up the parent if it is waiting so that it can recheck
2406          * wait permission to the new task SID. */
2407         read_lock(&tasklist_lock);
2408         wake_up_interruptible(&current->real_parent->signal->wait_chldexit);
2409         read_unlock(&tasklist_lock);
2410 }
2411
2412 /* superblock security operations */
2413
2414 static int selinux_sb_alloc_security(struct super_block *sb)
2415 {
2416         return superblock_alloc_security(sb);
2417 }
2418
2419 static void selinux_sb_free_security(struct super_block *sb)
2420 {
2421         superblock_free_security(sb);
2422 }
2423
2424 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2425 {
2426         if (plen > olen)
2427                 return 0;
2428
2429         return !memcmp(prefix, option, plen);
2430 }
2431
2432 static inline int selinux_option(char *option, int len)
2433 {
2434         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2435                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2436                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2437                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2438                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2439 }
2440
2441 static inline void take_option(char **to, char *from, int *first, int len)
2442 {
2443         if (!*first) {
2444                 **to = ',';
2445                 *to += 1;
2446         } else
2447                 *first = 0;
2448         memcpy(*to, from, len);
2449         *to += len;
2450 }
2451
2452 static inline void take_selinux_option(char **to, char *from, int *first,
2453                                        int len)
2454 {
2455         int current_size = 0;
2456
2457         if (!*first) {
2458                 **to = '|';
2459                 *to += 1;
2460         } else
2461                 *first = 0;
2462
2463         while (current_size < len) {
2464                 if (*from != '"') {
2465                         **to = *from;
2466                         *to += 1;
2467                 }
2468                 from += 1;
2469                 current_size += 1;
2470         }
2471 }
2472
2473 static int selinux_sb_copy_data(char *orig, char *copy)
2474 {
2475         int fnosec, fsec, rc = 0;
2476         char *in_save, *in_curr, *in_end;
2477         char *sec_curr, *nosec_save, *nosec;
2478         int open_quote = 0;
2479
2480         in_curr = orig;
2481         sec_curr = copy;
2482
2483         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2484         if (!nosec) {
2485                 rc = -ENOMEM;
2486                 goto out;
2487         }
2488
2489         nosec_save = nosec;
2490         fnosec = fsec = 1;
2491         in_save = in_end = orig;
2492
2493         do {
2494                 if (*in_end == '"')
2495                         open_quote = !open_quote;
2496                 if ((*in_end == ',' && open_quote == 0) ||
2497                                 *in_end == '\0') {
2498                         int len = in_end - in_curr;
2499
2500                         if (selinux_option(in_curr, len))
2501                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2502                         else
2503                                 take_option(&nosec, in_curr, &fnosec, len);
2504
2505                         in_curr = in_end + 1;
2506                 }
2507         } while (*in_end++);
2508
2509         strcpy(in_save, nosec_save);
2510         free_page((unsigned long)nosec_save);
2511 out:
2512         return rc;
2513 }
2514
2515 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2516 {
2517         const struct cred *cred = current_cred();
2518         struct common_audit_data ad;
2519         int rc;
2520
2521         rc = superblock_doinit(sb, data);
2522         if (rc)
2523                 return rc;
2524
2525         /* Allow all mounts performed by the kernel */
2526         if (flags & MS_KERNMOUNT)
2527                 return 0;
2528
2529         COMMON_AUDIT_DATA_INIT(&ad, FS);
2530         ad.u.fs.path.dentry = sb->s_root;
2531         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2532 }
2533
2534 static int selinux_sb_statfs(struct dentry *dentry)
2535 {
2536         const struct cred *cred = current_cred();
2537         struct common_audit_data ad;
2538
2539         COMMON_AUDIT_DATA_INIT(&ad, FS);
2540         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2541         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2542 }
2543
2544 static int selinux_mount(char *dev_name,
2545                          struct path *path,
2546                          char *type,
2547                          unsigned long flags,
2548                          void *data)
2549 {
2550         const struct cred *cred = current_cred();
2551
2552         if (flags & MS_REMOUNT)
2553                 return superblock_has_perm(cred, path->mnt->mnt_sb,
2554                                            FILESYSTEM__REMOUNT, NULL);
2555         else
2556                 return dentry_has_perm(cred, path->mnt, path->dentry,
2557                                        FILE__MOUNTON);
2558 }
2559
2560 static int selinux_umount(struct vfsmount *mnt, int flags)
2561 {
2562         const struct cred *cred = current_cred();
2563
2564         return superblock_has_perm(cred, mnt->mnt_sb,
2565                                    FILESYSTEM__UNMOUNT, NULL);
2566 }
2567
2568 /* inode security operations */
2569
2570 static int selinux_inode_alloc_security(struct inode *inode)
2571 {
2572         return inode_alloc_security(inode);
2573 }
2574
2575 static void selinux_inode_free_security(struct inode *inode)
2576 {
2577         inode_free_security(inode);
2578 }
2579
2580 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2581                                        char **name, void **value,
2582                                        size_t *len)
2583 {
2584         const struct cred *cred = current_cred();
2585         const struct task_security_struct *tsec = cred->security;
2586         struct inode_security_struct *dsec;
2587         struct superblock_security_struct *sbsec;
2588         u32 sid, newsid, clen;
2589         int rc;
2590         char *namep = NULL, *context;
2591
2592         dsec = dir->i_security;
2593         sbsec = dir->i_sb->s_security;
2594
2595         sid = tsec->sid;
2596         newsid = tsec->create_sid;
2597
2598         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2599                 rc = security_transition_sid(sid, dsec->sid,
2600                                              inode_mode_to_security_class(inode->i_mode),
2601                                              &newsid);
2602                 if (rc) {
2603                         printk(KERN_WARNING "%s:  "
2604                                "security_transition_sid failed, rc=%d (dev=%s "
2605                                "ino=%ld)\n",
2606                                __func__,
2607                                -rc, inode->i_sb->s_id, inode->i_ino);
2608                         return rc;
2609                 }
2610         }
2611
2612         /* Possibly defer initialization to selinux_complete_init. */
2613         if (sbsec->flags & SE_SBINITIALIZED) {
2614                 struct inode_security_struct *isec = inode->i_security;
2615                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2616                 isec->sid = newsid;
2617                 isec->initialized = 1;
2618         }
2619
2620         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2621                 return -EOPNOTSUPP;
2622
2623         if (name) {
2624                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2625                 if (!namep)
2626                         return -ENOMEM;
2627                 *name = namep;
2628         }
2629
2630         if (value && len) {
2631                 rc = security_sid_to_context_force(newsid, &context, &clen);
2632                 if (rc) {
2633                         kfree(namep);
2634                         return rc;
2635                 }
2636                 *value = context;
2637                 *len = clen;
2638         }
2639
2640         return 0;
2641 }
2642
2643 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2644 {
2645         return may_create(dir, dentry, SECCLASS_FILE);
2646 }
2647
2648 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2649 {
2650         return may_link(dir, old_dentry, MAY_LINK);
2651 }
2652
2653 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2654 {
2655         return may_link(dir, dentry, MAY_UNLINK);
2656 }
2657
2658 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2659 {
2660         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2661 }
2662
2663 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2664 {
2665         return may_create(dir, dentry, SECCLASS_DIR);
2666 }
2667
2668 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2669 {
2670         return may_link(dir, dentry, MAY_RMDIR);
2671 }
2672
2673 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2674 {
2675         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2676 }
2677
2678 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2679                                 struct inode *new_inode, struct dentry *new_dentry)
2680 {
2681         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2682 }
2683
2684 static int selinux_inode_readlink(struct dentry *dentry)
2685 {
2686         const struct cred *cred = current_cred();
2687
2688         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2689 }
2690
2691 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2692 {
2693         const struct cred *cred = current_cred();
2694
2695         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2696 }
2697
2698 static int selinux_inode_permission(struct inode *inode, int mask)
2699 {
2700         const struct cred *cred = current_cred();
2701
2702         if (!mask) {
2703                 /* No permission to check.  Existence test. */
2704                 return 0;
2705         }
2706
2707         return inode_has_perm(cred, inode,
2708                               file_mask_to_av(inode->i_mode, mask), NULL);
2709 }
2710
2711 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2712 {
2713         const struct cred *cred = current_cred();
2714         unsigned int ia_valid = iattr->ia_valid;
2715
2716         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2717         if (ia_valid & ATTR_FORCE) {
2718                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2719                               ATTR_FORCE);
2720                 if (!ia_valid)
2721                         return 0;
2722         }
2723
2724         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2725                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2726                 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2727
2728         return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2729 }
2730
2731 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2732 {
2733         const struct cred *cred = current_cred();
2734
2735         return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2736 }
2737
2738 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2739 {
2740         const struct cred *cred = current_cred();
2741
2742         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2743                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2744                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2745                         if (!capable(CAP_SETFCAP))
2746                                 return -EPERM;
2747                 } else if (!capable(CAP_SYS_ADMIN)) {
2748                         /* A different attribute in the security namespace.
2749                            Restrict to administrator. */
2750                         return -EPERM;
2751                 }
2752         }
2753
2754         /* Not an attribute we recognize, so just check the
2755            ordinary setattr permission. */
2756         return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2757 }
2758
2759 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2760                                   const void *value, size_t size, int flags)
2761 {
2762         struct inode *inode = dentry->d_inode;
2763         struct inode_security_struct *isec = inode->i_security;
2764         struct superblock_security_struct *sbsec;
2765         struct common_audit_data ad;
2766         u32 newsid, sid = current_sid();
2767         int rc = 0;
2768
2769         if (strcmp(name, XATTR_NAME_SELINUX))
2770                 return selinux_inode_setotherxattr(dentry, name);
2771
2772         sbsec = inode->i_sb->s_security;
2773         if (!(sbsec->flags & SE_SBLABELSUPP))
2774                 return -EOPNOTSUPP;
2775
2776         if (!is_owner_or_cap(inode))
2777                 return -EPERM;
2778
2779         COMMON_AUDIT_DATA_INIT(&ad, FS);
2780         ad.u.fs.path.dentry = dentry;
2781
2782         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2783                           FILE__RELABELFROM, &ad);
2784         if (rc)
2785                 return rc;
2786
2787         rc = security_context_to_sid(value, size, &newsid);
2788         if (rc == -EINVAL) {
2789                 if (!capable(CAP_MAC_ADMIN))
2790                         return rc;
2791                 rc = security_context_to_sid_force(value, size, &newsid);
2792         }
2793         if (rc)
2794                 return rc;
2795
2796         rc = avc_has_perm(sid, newsid, isec->sclass,
2797                           FILE__RELABELTO, &ad);
2798         if (rc)
2799                 return rc;
2800
2801         rc = security_validate_transition(isec->sid, newsid, sid,
2802                                           isec->sclass);
2803         if (rc)
2804                 return rc;
2805
2806         return avc_has_perm(newsid,
2807                             sbsec->sid,
2808                             SECCLASS_FILESYSTEM,
2809                             FILESYSTEM__ASSOCIATE,
2810                             &ad);
2811 }
2812
2813 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2814                                         const void *value, size_t size,
2815                                         int flags)
2816 {
2817         struct inode *inode = dentry->d_inode;
2818         struct inode_security_struct *isec = inode->i_security;
2819         u32 newsid;
2820         int rc;
2821
2822         if (strcmp(name, XATTR_NAME_SELINUX)) {
2823                 /* Not an attribute we recognize, so nothing to do. */
2824                 return;
2825         }
2826
2827         rc = security_context_to_sid_force(value, size, &newsid);
2828         if (rc) {
2829                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2830                        "for (%s, %lu), rc=%d\n",
2831                        inode->i_sb->s_id, inode->i_ino, -rc);
2832                 return;
2833         }
2834
2835         isec->sid = newsid;
2836         return;
2837 }
2838
2839 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2840 {
2841         const struct cred *cred = current_cred();
2842
2843         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2844 }
2845
2846 static int selinux_inode_listxattr(struct dentry *dentry)
2847 {
2848         const struct cred *cred = current_cred();
2849
2850         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2851 }
2852
2853 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2854 {
2855         if (strcmp(name, XATTR_NAME_SELINUX))
2856                 return selinux_inode_setotherxattr(dentry, name);
2857
2858         /* No one is allowed to remove a SELinux security label.
2859            You can change the label, but all data must be labeled. */
2860         return -EACCES;
2861 }
2862
2863 /*
2864  * Copy the inode security context value to the user.
2865  *
2866  * Permission check is handled by selinux_inode_getxattr hook.
2867  */
2868 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2869 {
2870         u32 size;
2871         int error;
2872         char *context = NULL;
2873         struct inode_security_struct *isec = inode->i_security;
2874
2875         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2876                 return -EOPNOTSUPP;
2877
2878         /*
2879          * If the caller has CAP_MAC_ADMIN, then get the raw context
2880          * value even if it is not defined by current policy; otherwise,
2881          * use the in-core value under current policy.
2882          * Use the non-auditing forms of the permission checks since
2883          * getxattr may be called by unprivileged processes commonly
2884          * and lack of permission just means that we fall back to the
2885          * in-core context value, not a denial.
2886          */
2887         error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2888                                 SECURITY_CAP_NOAUDIT);
2889         if (!error)
2890                 error = security_sid_to_context_force(isec->sid, &context,
2891                                                       &size);
2892         else
2893                 error = security_sid_to_context(isec->sid, &context, &size);
2894         if (error)
2895                 return error;
2896         error = size;
2897         if (alloc) {
2898                 *buffer = context;
2899                 goto out_nofree;
2900         }
2901         kfree(context);
2902 out_nofree:
2903         return error;
2904 }
2905
2906 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2907                                      const void *value, size_t size, int flags)
2908 {
2909         struct inode_security_struct *isec = inode->i_security;
2910         u32 newsid;
2911         int rc;
2912
2913         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2914                 return -EOPNOTSUPP;
2915
2916         if (!value || !size)
2917                 return -EACCES;
2918
2919         rc = security_context_to_sid((void *)value, size, &newsid);
2920         if (rc)
2921                 return rc;
2922
2923         isec->sid = newsid;
2924         return 0;
2925 }
2926
2927 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2928 {
2929         const int len = sizeof(XATTR_NAME_SELINUX);
2930         if (buffer && len <= buffer_size)
2931                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2932         return len;
2933 }
2934
2935 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2936 {
2937         struct inode_security_struct *isec = inode->i_security;
2938         *secid = isec->sid;
2939 }
2940
2941 /* file security operations */
2942
2943 static int selinux_revalidate_file_permission(struct file *file, int mask)
2944 {
2945         const struct cred *cred = current_cred();
2946         struct inode *inode = file->f_path.dentry->d_inode;
2947
2948         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2949         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2950                 mask |= MAY_APPEND;
2951
2952         return file_has_perm(cred, file,
2953                              file_mask_to_av(inode->i_mode, mask));
2954 }
2955
2956 static int selinux_file_permission(struct file *file, int mask)
2957 {
2958         struct inode *inode = file->f_path.dentry->d_inode;
2959         struct file_security_struct *fsec = file->f_security;
2960         struct inode_security_struct *isec = inode->i_security;
2961         u32 sid = current_sid();
2962
2963         if (!mask)
2964                 /* No permission to check.  Existence test. */
2965                 return 0;
2966
2967         if (sid == fsec->sid && fsec->isid == isec->sid &&
2968             fsec->pseqno == avc_policy_seqno())
2969                 /* No change since dentry_open check. */
2970                 return 0;
2971
2972         return selinux_revalidate_file_permission(file, mask);
2973 }
2974
2975 static int selinux_file_alloc_security(struct file *file)
2976 {
2977         return file_alloc_security(file);
2978 }
2979
2980 static void selinux_file_free_security(struct file *file)
2981 {
2982         file_free_security(file);
2983 }
2984
2985 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2986                               unsigned long arg)
2987 {
2988         const struct cred *cred = current_cred();
2989         u32 av = 0;
2990
2991         if (_IOC_DIR(cmd) & _IOC_WRITE)
2992                 av |= FILE__WRITE;
2993         if (_IOC_DIR(cmd) & _IOC_READ)
2994                 av |= FILE__READ;
2995         if (!av)
2996                 av = FILE__IOCTL;
2997
2998         return file_has_perm(cred, file, av);
2999 }
3000
3001 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3002 {
3003         const struct cred *cred = current_cred();
3004         int rc = 0;
3005
3006 #ifndef CONFIG_PPC32
3007         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3008                 /*
3009                  * We are making executable an anonymous mapping or a
3010                  * private file mapping that will also be writable.
3011                  * This has an additional check.
3012                  */
3013                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3014                 if (rc)
3015                         goto error;
3016         }
3017 #endif
3018
3019         if (file) {
3020                 /* read access is always possible with a mapping */
3021                 u32 av = FILE__READ;
3022
3023                 /* write access only matters if the mapping is shared */
3024                 if (shared && (prot & PROT_WRITE))
3025                         av |= FILE__WRITE;
3026
3027                 if (prot & PROT_EXEC)
3028                         av |= FILE__EXECUTE;
3029
3030                 return file_has_perm(cred, file, av);
3031         }
3032
3033 error:
3034         return rc;
3035 }
3036
3037 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3038                              unsigned long prot, unsigned long flags,
3039                              unsigned long addr, unsigned long addr_only)
3040 {
3041         int rc = 0;
3042         u32 sid = current_sid();
3043
3044         /*
3045          * notice that we are intentionally putting the SELinux check before
3046          * the secondary cap_file_mmap check.  This is such a likely attempt
3047          * at bad behaviour/exploit that we always want to get the AVC, even
3048          * if DAC would have also denied the operation.
3049          */
3050         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3051                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3052                                   MEMPROTECT__MMAP_ZERO, NULL);
3053                 if (rc)
3054                         return rc;
3055         }
3056
3057         /* do DAC check on address space usage */
3058         rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3059         if (rc || addr_only)
3060                 return rc;
3061
3062         if (selinux_checkreqprot)
3063                 prot = reqprot;
3064
3065         return file_map_prot_check(file, prot,
3066                                    (flags & MAP_TYPE) == MAP_SHARED);
3067 }
3068
3069 static int selinux_file_mprotect(struct vm_area_struct *vma,
3070                                  unsigned long reqprot,
3071                                  unsigned long prot)
3072 {
3073         const struct cred *cred = current_cred();
3074
3075         if (selinux_checkreqprot)
3076                 prot = reqprot;
3077
3078 #ifndef CONFIG_PPC32
3079         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3080                 int rc = 0;
3081                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3082                     vma->vm_end <= vma->vm_mm->brk) {
3083                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3084                 } else if (!vma->vm_file &&
3085                            vma->vm_start <= vma->vm_mm->start_stack &&
3086                            vma->vm_end >= vma->vm_mm->start_stack) {
3087                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3088                 } else if (vma->vm_file && vma->anon_vma) {
3089                         /*
3090                          * We are making executable a file mapping that has
3091                          * had some COW done. Since pages might have been
3092                          * written, check ability to execute the possibly
3093                          * modified content.  This typically should only
3094                          * occur for text relocations.
3095                          */
3096                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3097                 }
3098                 if (rc)
3099                         return rc;
3100         }
3101 #endif
3102
3103         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3104 }
3105
3106 static int selinux_file_lock(struct file *file, unsigned int cmd)
3107 {
3108         const struct cred *cred = current_cred();
3109
3110         return file_has_perm(cred, file, FILE__LOCK);
3111 }
3112
3113 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3114                               unsigned long arg)
3115 {
3116         const struct cred *cred = current_cred();
3117         int err = 0;
3118
3119         switch (cmd) {
3120         case F_SETFL:
3121                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3122                         err = -EINVAL;
3123                         break;
3124                 }
3125
3126                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3127                         err = file_has_perm(cred, file, FILE__WRITE);
3128                         break;
3129                 }
3130                 /* fall through */
3131         case F_SETOWN:
3132         case F_SETSIG:
3133         case F_GETFL:
3134         case F_GETOWN:
3135         case F_GETSIG:
3136                 /* Just check FD__USE permission */
3137                 err = file_has_perm(cred, file, 0);
3138                 break;
3139         case F_GETLK:
3140         case F_SETLK:
3141         case F_SETLKW:
3142 #if BITS_PER_LONG == 32
3143         case F_GETLK64:
3144         case F_SETLK64:
3145         case F_SETLKW64:
3146 #endif
3147                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3148                         err = -EINVAL;
3149                         break;
3150                 }
3151                 err = file_has_perm(cred, file, FILE__LOCK);
3152                 break;
3153         }
3154
3155         return err;
3156 }
3157
3158 static int selinux_file_set_fowner(struct file *file)
3159 {
3160         struct file_security_struct *fsec;
3161
3162         fsec = file->f_security;
3163         fsec->fown_sid = current_sid();
3164
3165         return 0;
3166 }
3167
3168 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3169                                        struct fown_struct *fown, int signum)
3170 {
3171         struct file *file;
3172         u32 sid = task_sid(tsk);
3173         u32 perm;
3174         struct file_security_struct *fsec;
3175
3176         /* struct fown_struct is never outside the context of a struct file */
3177         file = container_of(fown, struct file, f_owner);
3178
3179         fsec = file->f_security;
3180
3181         if (!signum)
3182                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3183         else
3184                 perm = signal_to_av(signum);
3185
3186         return avc_has_perm(fsec->fown_sid, sid,
3187                             SECCLASS_PROCESS, perm, NULL);
3188 }
3189
3190 static int selinux_file_receive(struct file *file)
3191 {
3192         const struct cred *cred = current_cred();
3193
3194         return file_has_perm(cred, file, file_to_av(file));
3195 }
3196
3197 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3198 {
3199         struct file_security_struct *fsec;
3200         struct inode *inode;
3201         struct inode_security_struct *isec;
3202
3203         inode = file->f_path.dentry->d_inode;
3204         fsec = file->f_security;
3205         isec = inode->i_security;
3206         /*
3207          * Save inode label and policy sequence number
3208          * at open-time so that selinux_file_permission
3209          * can determine whether revalidation is necessary.
3210          * Task label is already saved in the file security
3211          * struct as its SID.
3212          */
3213         fsec->isid = isec->sid;
3214         fsec->pseqno = avc_policy_seqno();
3215         /*
3216          * Since the inode label or policy seqno may have changed
3217          * between the selinux_inode_permission check and the saving
3218          * of state above, recheck that access is still permitted.
3219          * Otherwise, access might never be revalidated against the
3220          * new inode label or new policy.
3221          * This check is not redundant - do not remove.
3222          */
3223         return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3224 }
3225
3226 /* task security operations */
3227
3228 static int selinux_task_create(unsigned long clone_flags)
3229 {
3230         return current_has_perm(current, PROCESS__FORK);
3231 }
3232
3233 /*
3234  * detach and free the LSM part of a set of credentials
3235  */
3236 static void selinux_cred_free(struct cred *cred)
3237 {
3238         struct task_security_struct *tsec = cred->security;
3239         cred->security = NULL;
3240         kfree(tsec);
3241 }
3242
3243 /*
3244  * prepare a new set of credentials for modification
3245  */
3246 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3247                                 gfp_t gfp)
3248 {
3249         const struct task_security_struct *old_tsec;
3250         struct task_security_struct *tsec;
3251
3252         old_tsec = old->security;
3253
3254         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3255         if (!tsec)
3256                 return -ENOMEM;
3257
3258         new->security = tsec;
3259         return 0;
3260 }
3261
3262 /*
3263  * set the security data for a kernel service
3264  * - all the creation contexts are set to unlabelled
3265  */
3266 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3267 {
3268         struct task_security_struct *tsec = new->security;
3269         u32 sid = current_sid();
3270         int ret;
3271
3272         ret = avc_has_perm(sid, secid,
3273                            SECCLASS_KERNEL_SERVICE,
3274                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3275                            NULL);
3276         if (ret == 0) {
3277                 tsec->sid = secid;
3278                 tsec->create_sid = 0;
3279                 tsec->keycreate_sid = 0;
3280                 tsec->sockcreate_sid = 0;
3281         }
3282         return ret;
3283 }
3284
3285 /*
3286  * set the file creation context in a security record to the same as the
3287  * objective context of the specified inode
3288  */
3289 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3290 {
3291         struct inode_security_struct *isec = inode->i_security;
3292         struct task_security_struct *tsec = new->security;
3293         u32 sid = current_sid();
3294         int ret;
3295
3296         ret = avc_has_perm(sid, isec->sid,
3297                            SECCLASS_KERNEL_SERVICE,
3298                            KERNEL_SERVICE__CREATE_FILES_AS,
3299                            NULL);
3300
3301         if (ret == 0)
3302                 tsec->create_sid = isec->sid;
3303         return 0;
3304 }
3305
3306 static int selinux_kernel_module_request(void)
3307 {
3308         return task_has_system(current, SYSTEM__MODULE_REQUEST);
3309 }
3310
3311 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3312 {
3313         return current_has_perm(p, PROCESS__SETPGID);
3314 }
3315
3316 static int selinux_task_getpgid(struct task_struct *p)
3317 {
3318         return current_has_perm(p, PROCESS__GETPGID);
3319 }
3320
3321 static int selinux_task_getsid(struct task_struct *p)
3322 {
3323         return current_has_perm(p, PROCESS__GETSESSION);
3324 }
3325
3326 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3327 {
3328         *secid = task_sid(p);
3329 }
3330
3331 static int selinux_task_setnice(struct task_struct *p, int nice)
3332 {
3333         int rc;
3334
3335         rc = cap_task_setnice(p, nice);
3336         if (rc)
3337                 return rc;
3338
3339         return current_has_perm(p, PROCESS__SETSCHED);
3340 }
3341
3342 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3343 {
3344         int rc;
3345
3346         rc = cap_task_setioprio(p, ioprio);
3347         if (rc)
3348                 return rc;
3349
3350         return current_has_perm(p, PROCESS__SETSCHED);
3351 }
3352
3353 static int selinux_task_getioprio(struct task_struct *p)
3354 {
3355         return current_has_perm(p, PROCESS__GETSCHED);
3356 }
3357
3358 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3359 {
3360         struct rlimit *old_rlim = current->signal->rlim + resource;
3361
3362         /* Control the ability to change the hard limit (whether
3363            lowering or raising it), so that the hard limit can
3364            later be used as a safe reset point for the soft limit
3365            upon context transitions.  See selinux_bprm_committing_creds. */
3366         if (old_rlim->rlim_max != new_rlim->rlim_max)
3367                 return current_has_perm(current, PROCESS__SETRLIMIT);
3368
3369         return 0;
3370 }
3371
3372 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3373 {
3374         int rc;
3375
3376         rc = cap_task_setscheduler(p, policy, lp);
3377         if (rc)
3378                 return rc;
3379
3380         return current_has_perm(p, PROCESS__SETSCHED);
3381 }
3382
3383 static int selinux_task_getscheduler(struct task_struct *p)
3384 {
3385         return current_has_perm(p, PROCESS__GETSCHED);
3386 }
3387
3388 static int selinux_task_movememory(struct task_struct *p)
3389 {
3390         return current_has_perm(p, PROCESS__SETSCHED);
3391 }
3392
3393 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3394                                 int sig, u32 secid)
3395 {
3396         u32 perm;
3397         int rc;
3398
3399         if (!sig)
3400                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3401         else
3402                 perm = signal_to_av(sig);
3403         if (secid)
3404                 rc = avc_has_perm(secid, task_sid(p),
3405                                   SECCLASS_PROCESS, perm, NULL);
3406         else
3407                 rc = current_has_perm(p, perm);
3408         return rc;
3409 }
3410
3411 static int selinux_task_wait(struct task_struct *p)
3412 {
3413         return task_has_perm(p, current, PROCESS__SIGCHLD);
3414 }
3415
3416 static void selinux_task_to_inode(struct task_struct *p,
3417                                   struct inode *inode)
3418 {
3419         struct inode_security_struct *isec = inode->i_security;
3420         u32 sid = task_sid(p);
3421
3422         isec->sid = sid;
3423         isec->initialized = 1;
3424 }
3425
3426 /* Returns error only if unable to parse addresses */
3427 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3428                         struct common_audit_data *ad, u8 *proto)
3429 {
3430         int offset, ihlen, ret = -EINVAL;
3431         struct iphdr _iph, *ih;
3432
3433         offset = skb_network_offset(skb);
3434         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3435         if (ih == NULL)
3436                 goto out;
3437
3438         ihlen = ih->ihl * 4;
3439         if (ihlen < sizeof(_iph))
3440                 goto out;
3441
3442         ad->u.net.v4info.saddr = ih->saddr;
3443         ad->u.net.v4info.daddr = ih->daddr;
3444         ret = 0;
3445
3446         if (proto)
3447                 *proto = ih->protocol;
3448
3449         switch (ih->protocol) {
3450         case IPPROTO_TCP: {
3451                 struct tcphdr _tcph, *th;
3452
3453                 if (ntohs(ih->frag_off) & IP_OFFSET)
3454                         break;
3455
3456                 offset += ihlen;
3457                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3458                 if (th == NULL)
3459                         break;
3460
3461                 ad->u.net.sport = th->source;
3462                 ad->u.net.dport = th->dest;
3463                 break;
3464         }
3465
3466         case IPPROTO_UDP: {
3467                 struct udphdr _udph, *uh;
3468
3469                 if (ntohs(ih->frag_off) & IP_OFFSET)
3470                         break;
3471
3472                 offset += ihlen;
3473                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3474                 if (uh == NULL)
3475                         break;
3476
3477                 ad->u.net.sport = uh->source;
3478                 ad->u.net.dport = uh->dest;
3479                 break;
3480         }
3481
3482         case IPPROTO_DCCP: {
3483                 struct dccp_hdr _dccph, *dh;
3484
3485                 if (ntohs(ih->frag_off) & IP_OFFSET)
3486                         break;
3487
3488                 offset += ihlen;
3489                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3490                 if (dh == NULL)
3491                         break;
3492
3493                 ad->u.net.sport = dh->dccph_sport;
3494                 ad->u.net.dport = dh->dccph_dport;
3495                 break;
3496         }
3497
3498         default:
3499                 break;
3500         }
3501 out:
3502         return ret;
3503 }
3504
3505 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3506
3507 /* Returns error only if unable to parse addresses */
3508 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3509                         struct common_audit_data *ad, u8 *proto)
3510 {
3511         u8 nexthdr;
3512         int ret = -EINVAL, offset;
3513         struct ipv6hdr _ipv6h, *ip6;
3514
3515         offset = skb_network_offset(skb);
3516         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3517         if (ip6 == NULL)
3518                 goto out;
3519
3520         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3521         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3522         ret = 0;
3523
3524         nexthdr = ip6->nexthdr;
3525         offset += sizeof(_ipv6h);
3526         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3527         if (offset < 0)
3528                 goto out;
3529
3530         if (proto)
3531                 *proto = nexthdr;
3532
3533         switch (nexthdr) {
3534         case IPPROTO_TCP: {
3535                 struct tcphdr _tcph, *th;
3536
3537                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3538                 if (th == NULL)
3539                         break;
3540
3541                 ad->u.net.sport = th->source;
3542                 ad->u.net.dport = th->dest;
3543                 break;
3544         }
3545
3546         case IPPROTO_UDP: {
3547                 struct udphdr _udph, *uh;
3548
3549                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3550                 if (uh == NULL)
3551                         break;
3552
3553                 ad->u.net.sport = uh->source;
3554                 ad->u.net.dport = uh->dest;
3555                 break;
3556         }
3557
3558         case IPPROTO_DCCP: {
3559                 struct dccp_hdr _dccph, *dh;
3560
3561                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3562                 if (dh == NULL)
3563                         break;
3564
3565                 ad->u.net.sport = dh->dccph_sport;
3566                 ad->u.net.dport = dh->dccph_dport;
3567                 break;
3568         }
3569
3570         /* includes fragments */
3571         default:
3572                 break;
3573         }
3574 out:
3575         return ret;
3576 }
3577
3578 #endif /* IPV6 */
3579
3580 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3581                              char **_addrp, int src, u8 *proto)
3582 {
3583         char *addrp;
3584         int ret;
3585
3586         switch (ad->u.net.family) {
3587         case PF_INET:
3588                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3589                 if (ret)
3590                         goto parse_error;
3591                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3592                                        &ad->u.net.v4info.daddr);
3593                 goto okay;
3594
3595 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3596         case PF_INET6:
3597                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3598                 if (ret)
3599                         goto parse_error;
3600                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3601                                        &ad->u.net.v6info.daddr);
3602                 goto okay;
3603 #endif  /* IPV6 */
3604         default:
3605                 addrp = NULL;
3606                 goto okay;
3607         }
3608
3609 parse_error:
3610         printk(KERN_WARNING
3611                "SELinux: failure in selinux_parse_skb(),"
3612                " unable to parse packet\n");
3613         return ret;
3614
3615 okay:
3616         if (_addrp)
3617                 *_addrp = addrp;
3618         return 0;
3619 }
3620
3621 /**
3622  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3623  * @skb: the packet
3624  * @family: protocol family
3625  * @sid: the packet's peer label SID
3626  *
3627  * Description:
3628  * Check the various different forms of network peer labeling and determine
3629  * the peer label/SID for the packet; most of the magic actually occurs in
3630  * the security server function security_net_peersid_cmp().  The function
3631  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3632  * or -EACCES if @sid is invalid due to inconsistencies with the different
3633  * peer labels.
3634  *
3635  */
3636 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3637 {
3638         int err;
3639         u32 xfrm_sid;
3640         u32 nlbl_sid;
3641         u32 nlbl_type;
3642
3643         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3644         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3645
3646         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3647         if (unlikely(err)) {
3648                 printk(KERN_WARNING
3649                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3650                        " unable to determine packet's peer label\n");
3651                 return -EACCES;
3652         }
3653
3654         return 0;
3655 }
3656
3657 /* socket security operations */
3658 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3659                            u32 perms)
3660 {
3661         struct inode_security_struct *isec;
3662         struct common_audit_data ad;
3663         u32 sid;
3664         int err = 0;
3665
3666         isec = SOCK_INODE(sock)->i_security;
3667
3668         if (isec->sid == SECINITSID_KERNEL)
3669                 goto out;
3670         sid = task_sid(task);
3671
3672         COMMON_AUDIT_DATA_INIT(&ad, NET);
3673         ad.u.net.sk = sock->sk;
3674         err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
3675
3676 out:
3677         return err;
3678 }
3679
3680 static int selinux_socket_create(int family, int type,
3681                                  int protocol, int kern)
3682 {
3683         const struct cred *cred = current_cred();
3684         const struct task_security_struct *tsec = cred->security;
3685         u32 sid, newsid;
3686         u16 secclass;
3687         int err = 0;
3688
3689         if (kern)
3690                 goto out;
3691
3692         sid = tsec->sid;
3693         newsid = tsec->sockcreate_sid ?: sid;
3694
3695         secclass = socket_type_to_security_class(family, type, protocol);
3696         err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL);
3697
3698 out:
3699         return err;
3700 }
3701
3702 static int selinux_socket_post_create(struct socket *sock, int family,
3703                                       int type, int protocol, int kern)
3704 {
3705         const struct cred *cred = current_cred();
3706         const struct task_security_struct *tsec = cred->security;
3707         struct inode_security_struct *isec;
3708         struct sk_security_struct *sksec;
3709         u32 sid, newsid;
3710         int err = 0;
3711
3712         sid = tsec->sid;
3713         newsid = tsec->sockcreate_sid;
3714
3715         isec = SOCK_INODE(sock)->i_security;
3716
3717         if (kern)
3718                 isec->sid = SECINITSID_KERNEL;
3719         else if (newsid)
3720                 isec->sid = newsid;
3721         else
3722                 isec->sid = sid;
3723
3724         isec->sclass = socket_type_to_security_class(family, type, protocol);
3725         isec->initialized = 1;
3726
3727         if (sock->sk) {
3728                 sksec = sock->sk->sk_security;
3729                 sksec->sid = isec->sid;
3730                 sksec->sclass = isec->sclass;
3731                 err = selinux_netlbl_socket_post_create(sock->sk, family);
3732         }
3733
3734         return err;
3735 }
3736
3737 /* Range of port numbers used to automatically bind.
3738    Need to determine whether we should perform a name_bind
3739    permission check between the socket and the port number. */
3740
3741 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3742 {
3743         u16 family;
3744         int err;
3745
3746         err = socket_has_perm(current, sock, SOCKET__BIND);
3747         if (err)
3748                 goto out;
3749
3750         /*
3751          * If PF_INET or PF_INET6, check name_bind permission for the port.
3752          * Multiple address binding for SCTP is not supported yet: we just
3753          * check the first address now.
3754          */
3755         family = sock->sk->sk_family;
3756         if (family == PF_INET || family == PF_INET6) {
3757                 char *addrp;
3758                 struct inode_security_struct *isec;
3759                 struct common_audit_data ad;
3760                 struct sockaddr_in *addr4 = NULL;
3761                 struct sockaddr_in6 *addr6 = NULL;
3762                 unsigned short snum;
3763                 struct sock *sk = sock->sk;
3764                 u32 sid, node_perm;
3765
3766                 isec = SOCK_INODE(sock)->i_security;
3767
3768                 if (family == PF_INET) {
3769                         addr4 = (struct sockaddr_in *)address;
3770                         snum = ntohs(addr4->sin_port);
3771                         addrp = (char *)&addr4->sin_addr.s_addr;
3772                 } else {
3773                         addr6 = (struct sockaddr_in6 *)address;
3774                         snum = ntohs(addr6->sin6_port);
3775                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3776                 }
3777
3778                 if (snum) {
3779                         int low, high;
3780
3781                         inet_get_local_port_range(&low, &high);
3782
3783                         if (snum < max(PROT_SOCK, low) || snum > high) {
3784                                 err = sel_netport_sid(sk->sk_protocol,
3785                                                       snum, &sid);
3786                                 if (err)
3787                                         goto out;
3788                                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3789                                 ad.u.net.sport = htons(snum);
3790                                 ad.u.net.family = family;
3791                                 err = avc_has_perm(isec->sid, sid,
3792                                                    isec->sclass,
3793                                                    SOCKET__NAME_BIND, &ad);
3794                                 if (err)
3795                                         goto out;
3796                         }
3797                 }
3798
3799                 switch (isec->sclass) {
3800                 case SECCLASS_TCP_SOCKET:
3801                         node_perm = TCP_SOCKET__NODE_BIND;
3802                         break;
3803
3804                 case SECCLASS_UDP_SOCKET:
3805                         node_perm = UDP_SOCKET__NODE_BIND;
3806                         break;
3807
3808                 case SECCLASS_DCCP_SOCKET:
3809                         node_perm = DCCP_SOCKET__NODE_BIND;
3810                         break;
3811
3812                 default:
3813                         node_perm = RAWIP_SOCKET__NODE_BIND;
3814                         break;
3815                 }
3816
3817                 err = sel_netnode_sid(addrp, family, &sid);
3818                 if (err)
3819                         goto out;
3820
3821                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3822                 ad.u.net.sport = htons(snum);
3823                 ad.u.net.family = family;
3824
3825                 if (family == PF_INET)
3826                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3827                 else
3828                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3829
3830                 err = avc_has_perm(isec->sid, sid,
3831                                    isec->sclass, node_perm, &ad);
3832                 if (err)
3833                         goto out;
3834         }
3835 out:
3836         return err;
3837 }
3838
3839 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3840 {
3841         struct sock *sk = sock->sk;
3842         struct inode_security_struct *isec;
3843         int err;
3844
3845         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3846         if (err)
3847                 return err;
3848
3849         /*
3850          * If a TCP or DCCP socket, check name_connect permission for the port.
3851          */
3852         isec = SOCK_INODE(sock)->i_security;
3853         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3854             isec->sclass == SECCLASS_DCCP_SOCKET) {
3855                 struct common_audit_data ad;
3856                 struct sockaddr_in *addr4 = NULL;
3857                 struct sockaddr_in6 *addr6 = NULL;
3858                 unsigned short snum;
3859                 u32 sid, perm;
3860
3861                 if (sk->sk_family == PF_INET) {
3862                         addr4 = (struct sockaddr_in *)address;
3863                         if (addrlen < sizeof(struct sockaddr_in))
3864                                 return -EINVAL;
3865                         snum = ntohs(addr4->sin_port);
3866                 } else {
3867                         addr6 = (struct sockaddr_in6 *)address;
3868                         if (addrlen < SIN6_LEN_RFC2133)
3869                                 return -EINVAL;
3870                         snum = ntohs(addr6->sin6_port);
3871                 }
3872
3873                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3874                 if (err)
3875                         goto out;
3876
3877                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3878                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3879
3880                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3881                 ad.u.net.dport = htons(snum);
3882                 ad.u.net.family = sk->sk_family;
3883                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3884                 if (err)
3885                         goto out;
3886         }
3887
3888         err = selinux_netlbl_socket_connect(sk, address);
3889
3890 out:
3891         return err;
3892 }
3893
3894 static int selinux_socket_listen(struct socket *sock, int backlog)
3895 {
3896         return socket_has_perm(current, sock, SOCKET__LISTEN);
3897 }
3898
3899 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3900 {
3901         int err;
3902         struct inode_security_struct *isec;
3903         struct inode_security_struct *newisec;
3904
3905         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3906         if (err)
3907                 return err;
3908
3909         newisec = SOCK_INODE(newsock)->i_security;
3910
3911         isec = SOCK_INODE(sock)->i_security;
3912         newisec->sclass = isec->sclass;
3913         newisec->sid = isec->sid;
3914         newisec->initialized = 1;
3915
3916         return 0;
3917 }
3918
3919 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3920                                   int size)
3921 {
3922         return socket_has_perm(current, sock, SOCKET__WRITE);
3923 }
3924
3925 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3926                                   int size, int flags)
3927 {
3928         return socket_has_perm(current, sock, SOCKET__READ);
3929 }
3930
3931 static int selinux_socket_getsockname(struct socket *sock)
3932 {
3933         return socket_has_perm(current, sock, SOCKET__GETATTR);
3934 }
3935
3936 static int selinux_socket_getpeername(struct socket *sock)
3937 {
3938         return socket_has_perm(current, sock, SOCKET__GETATTR);
3939 }
3940
3941 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3942 {
3943         int err;
3944
3945         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3946         if (err)
3947                 return err;
3948
3949         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3950 }
3951
3952 static int selinux_socket_getsockopt(struct socket *sock, int level,
3953                                      int optname)
3954 {
3955         return socket_has_perm(current, sock, SOCKET__GETOPT);
3956 }
3957
3958 static int selinux_socket_shutdown(struct socket *sock, int how)
3959 {
3960         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3961 }
3962
3963 static int selinux_socket_unix_stream_connect(struct socket *sock,
3964                                               struct socket *other,
3965                                               struct sock *newsk)
3966 {
3967         struct sk_security_struct *ssec;
3968         struct inode_security_struct *isec;
3969         struct inode_security_struct *other_isec;
3970         struct common_audit_data ad;
3971         int err;
3972
3973         isec = SOCK_INODE(sock)->i_security;
3974         other_isec = SOCK_INODE(other)->i_security;
3975
3976         COMMON_AUDIT_DATA_INIT(&ad, NET);
3977         ad.u.net.sk = other->sk;
3978
3979         err = avc_has_perm(isec->sid, other_isec->sid,
3980                            isec->sclass,
3981                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3982         if (err)
3983                 return err;
3984
3985         /* connecting socket */
3986         ssec = sock->sk->sk_security;
3987         ssec->peer_sid = other_isec->sid;
3988
3989         /* server child socket */
3990         ssec = newsk->sk_security;
3991         ssec->peer_sid = isec->sid;
3992         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3993
3994         return err;
3995 }
3996
3997 static int selinux_socket_unix_may_send(struct socket *sock,
3998                                         struct socket *other)
3999 {
4000         struct inode_security_struct *isec;
4001         struct inode_security_struct *other_isec;
4002         struct common_audit_data ad;
4003         int err;
4004
4005         isec = SOCK_INODE(sock)->i_security;
4006         other_isec = SOCK_INODE(other)->i_security;
4007
4008         COMMON_AUDIT_DATA_INIT(&ad, NET);
4009         ad.u.net.sk = other->sk;
4010
4011         err = avc_has_perm(isec->sid, other_isec->sid,
4012                            isec->sclass, SOCKET__SENDTO, &ad);
4013         if (err)
4014                 return err;
4015
4016         return 0;
4017 }
4018
4019 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4020                                     u32 peer_sid,
4021                                     struct common_audit_data *ad)
4022 {
4023         int err;
4024         u32 if_sid;
4025         u32 node_sid;
4026
4027         err = sel_netif_sid(ifindex, &if_sid);
4028         if (err)
4029                 return err;
4030         err = avc_has_perm(peer_sid, if_sid,
4031                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4032         if (err)
4033                 return err;
4034
4035         err = sel_netnode_sid(addrp, family, &node_sid);
4036         if (err)
4037                 return err;
4038         return avc_has_perm(peer_sid, node_sid,
4039                             SECCLASS_NODE, NODE__RECVFROM, ad);
4040 }
4041
4042 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4043                                        u16 family)
4044 {
4045         int err = 0;
4046         struct sk_security_struct *sksec = sk->sk_security;
4047         u32 peer_sid;
4048         u32 sk_sid = sksec->sid;
4049         struct common_audit_data ad;
4050         char *addrp;
4051
4052         COMMON_AUDIT_DATA_INIT(&ad, NET);
4053         ad.u.net.netif = skb->iif;
4054         ad.u.net.family = family;
4055         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4056         if (err)
4057                 return err;
4058
4059         if (selinux_secmark_enabled()) {
4060                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4061                                    PACKET__RECV, &ad);
4062                 if (err)
4063                         return err;
4064         }
4065
4066         if (selinux_policycap_netpeer) {
4067                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4068                 if (err)
4069                         return err;
4070                 err = avc_has_perm(sk_sid, peer_sid,
4071                                    SECCLASS_PEER, PEER__RECV, &ad);
4072                 if (err)
4073                         selinux_netlbl_err(skb, err, 0);
4074         } else {
4075                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4076                 if (err)
4077                         return err;
4078                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4079         }
4080
4081         return err;
4082 }
4083
4084 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4085 {
4086         int err;
4087         struct sk_security_struct *sksec = sk->sk_security;
4088         u16 family = sk->sk_family;
4089         u32 sk_sid = sksec->sid;
4090         struct common_audit_data ad;
4091         char *addrp;
4092         u8 secmark_active;
4093         u8 peerlbl_active;
4094
4095         if (family != PF_INET && family != PF_INET6)
4096                 return 0;
4097
4098         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4099         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4100                 family = PF_INET;
4101
4102         /* If any sort of compatibility mode is enabled then handoff processing
4103          * to the selinux_sock_rcv_skb_compat() function to deal with the
4104          * special handling.  We do this in an attempt to keep this function
4105          * as fast and as clean as possible. */
4106         if (!selinux_policycap_netpeer)
4107                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4108
4109         secmark_active = selinux_secmark_enabled();
4110         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4111         if (!secmark_active && !peerlbl_active)
4112                 return 0;
4113
4114         COMMON_AUDIT_DATA_INIT(&ad, NET);
4115         ad.u.net.netif = skb->iif;
4116         ad.u.net.family = family;
4117         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4118         if (err)
4119                 return err;
4120
4121         if (peerlbl_active) {
4122                 u32 peer_sid;
4123
4124                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4125                 if (err)
4126                         return err;
4127                 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4128                                                peer_sid, &ad);
4129                 if (err) {
4130                         selinux_netlbl_err(skb, err, 0);
4131                         return err;
4132                 }
4133                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4134                                    PEER__RECV, &ad);
4135                 if (err)
4136                         selinux_netlbl_err(skb, err, 0);
4137         }
4138
4139         if (secmark_active) {
4140                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4141                                    PACKET__RECV, &ad);
4142                 if (err)
4143                         return err;
4144         }
4145
4146         return err;
4147 }
4148
4149 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4150                                             int __user *optlen, unsigned len)
4151 {
4152         int err = 0;
4153         char *scontext;
4154         u32 scontext_len;
4155         struct sk_security_struct *ssec;
4156         struct inode_security_struct *isec;
4157         u32 peer_sid = SECSID_NULL;
4158
4159         isec = SOCK_INODE(sock)->i_security;
4160
4161         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4162             isec->sclass == SECCLASS_TCP_SOCKET) {
4163                 ssec = sock->sk->sk_security;
4164                 peer_sid = ssec->peer_sid;
4165         }
4166         if (peer_sid == SECSID_NULL) {
4167                 err = -ENOPROTOOPT;
4168                 goto out;
4169         }
4170
4171         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4172
4173         if (err)
4174                 goto out;
4175
4176         if (scontext_len > len) {
4177                 err = -ERANGE;
4178                 goto out_len;
4179         }
4180
4181         if (copy_to_user(optval, scontext, scontext_len))
4182                 err = -EFAULT;
4183
4184 out_len:
4185         if (put_user(scontext_len, optlen))
4186                 err = -EFAULT;
4187
4188         kfree(scontext);
4189 out:
4190         return err;
4191 }
4192
4193 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4194 {
4195         u32 peer_secid = SECSID_NULL;
4196         u16 family;
4197
4198         if (skb && skb->protocol == htons(ETH_P_IP))
4199                 family = PF_INET;
4200         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4201                 family = PF_INET6;
4202         else if (sock)
4203                 family = sock->sk->sk_family;
4204         else
4205                 goto out;
4206
4207         if (sock && family == PF_UNIX)
4208                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4209         else if (skb)
4210                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4211
4212 out:
4213         *secid = peer_secid;
4214         if (peer_secid == SECSID_NULL)
4215                 return -EINVAL;
4216         return 0;
4217 }
4218
4219 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4220 {
4221         return sk_alloc_security(sk, family, priority);
4222 }
4223
4224 static void selinux_sk_free_security(struct sock *sk)
4225 {
4226         sk_free_security(sk);
4227 }
4228
4229 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4230 {
4231         struct sk_security_struct *ssec = sk->sk_security;
4232         struct sk_security_struct *newssec = newsk->sk_security;
4233
4234         newssec->sid = ssec->sid;
4235         newssec->peer_sid = ssec->peer_sid;
4236         newssec->sclass = ssec->sclass;
4237
4238         selinux_netlbl_sk_security_reset(newssec);
4239 }
4240
4241 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4242 {
4243         if (!sk)
4244                 *secid = SECINITSID_ANY_SOCKET;
4245         else {
4246                 struct sk_security_struct *sksec = sk->sk_security;
4247
4248                 *secid = sksec->sid;
4249         }
4250 }
4251
4252 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4253 {
4254         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4255         struct sk_security_struct *sksec = sk->sk_security;
4256
4257         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4258             sk->sk_family == PF_UNIX)
4259                 isec->sid = sksec->sid;
4260         sksec->sclass = isec->sclass;
4261 }
4262
4263 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4264                                      struct request_sock *req)
4265 {
4266         struct sk_security_struct *sksec = sk->sk_security;
4267         int err;
4268         u16 family = sk->sk_family;
4269         u32 newsid;
4270         u32 peersid;
4271
4272         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4273         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4274                 family = PF_INET;
4275
4276         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4277         if (err)
4278                 return err;
4279         if (peersid == SECSID_NULL) {
4280                 req->secid = sksec->sid;
4281                 req->peer_secid = SECSID_NULL;
4282         } else {
4283                 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4284                 if (err)
4285                         return err;
4286                 req->secid = newsid;
4287                 req->peer_secid = peersid;
4288         }
4289
4290         return selinux_netlbl_inet_conn_request(req, family);
4291 }
4292
4293 static void selinux_inet_csk_clone(struct sock *newsk,
4294                                    const struct request_sock *req)
4295 {
4296         struct sk_security_struct *newsksec = newsk->sk_security;
4297
4298         newsksec->sid = req->secid;
4299         newsksec->peer_sid = req->peer_secid;
4300         /* NOTE: Ideally, we should also get the isec->sid for the
4301            new socket in sync, but we don't have the isec available yet.
4302            So we will wait until sock_graft to do it, by which
4303            time it will have been created and available. */
4304
4305         /* We don't need to take any sort of lock here as we are the only
4306          * thread with access to newsksec */
4307         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4308 }
4309
4310 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4311 {
4312         u16 family = sk->sk_family;
4313         struct sk_security_struct *sksec = sk->sk_security;
4314
4315         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4316         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4317                 family = PF_INET;
4318
4319         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4320 }
4321
4322 static void selinux_req_classify_flow(const struct request_sock *req,
4323                                       struct flowi *fl)
4324 {
4325         fl->secid = req->secid;
4326 }
4327
4328 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4329 {
4330         int err = 0;
4331         u32 perm;
4332         struct nlmsghdr *nlh;
4333         struct socket *sock = sk->sk_socket;
4334         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4335
4336         if (skb->len < NLMSG_SPACE(0)) {
4337                 err = -EINVAL;
4338                 goto out;
4339         }
4340         nlh = nlmsg_hdr(skb);
4341
4342         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4343         if (err) {
4344                 if (err == -EINVAL) {
4345                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4346                                   "SELinux:  unrecognized netlink message"
4347                                   " type=%hu for sclass=%hu\n",
4348                                   nlh->nlmsg_type, isec->sclass);
4349                         if (!selinux_enforcing || security_get_allow_unknown())
4350                                 err = 0;
4351                 }
4352
4353                 /* Ignore */
4354                 if (err == -ENOENT)
4355                         err = 0;
4356                 goto out;
4357         }
4358
4359         err = socket_has_perm(current, sock, perm);
4360 out:
4361         return err;
4362 }
4363
4364 #ifdef CONFIG_NETFILTER
4365
4366 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4367                                        u16 family)
4368 {
4369         int err;
4370         char *addrp;
4371         u32 peer_sid;
4372         struct common_audit_data ad;
4373         u8 secmark_active;
4374         u8 netlbl_active;
4375         u8 peerlbl_active;
4376
4377         if (!selinux_policycap_netpeer)
4378                 return NF_ACCEPT;
4379
4380         secmark_active = selinux_secmark_enabled();
4381         netlbl_active = netlbl_enabled();
4382         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4383         if (!secmark_active && !peerlbl_active)
4384                 return NF_ACCEPT;
4385
4386         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4387                 return NF_DROP;
4388
4389         COMMON_AUDIT_DATA_INIT(&ad, NET);
4390         ad.u.net.netif = ifindex;
4391         ad.u.net.family = family;
4392         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4393                 return NF_DROP;
4394
4395         if (peerlbl_active) {
4396                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4397                                                peer_sid, &ad);
4398                 if (err) {
4399                         selinux_netlbl_err(skb, err, 1);
4400                         return NF_DROP;
4401                 }
4402         }
4403
4404         if (secmark_active)
4405                 if (avc_has_perm(peer_sid, skb->secmark,
4406                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4407                         return NF_DROP;
4408
4409         if (netlbl_active)
4410                 /* we do this in the FORWARD path and not the POST_ROUTING
4411                  * path because we want to make sure we apply the necessary
4412                  * labeling before IPsec is applied so we can leverage AH
4413                  * protection */
4414                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4415                         return NF_DROP;
4416
4417         return NF_ACCEPT;
4418 }
4419
4420 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4421                                          struct sk_buff *skb,
4422                                          const struct net_device *in,
4423                                          const struct net_device *out,
4424                                          int (*okfn)(struct sk_buff *))
4425 {
4426         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4427 }
4428
4429 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4430 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4431                                          struct sk_buff *skb,
4432                                          const struct net_device *in,
4433                                          const struct net_device *out,
4434                                          int (*okfn)(struct sk_buff *))
4435 {
4436         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4437 }
4438 #endif  /* IPV6 */
4439
4440 static unsigned int selinux_ip_output(struct sk_buff *skb,
4441                                       u16 family)
4442 {
4443         u32 sid;
4444
4445         if (!netlbl_enabled())
4446                 return NF_ACCEPT;
4447
4448         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4449          * because we want to make sure we apply the necessary labeling
4450          * before IPsec is applied so we can leverage AH protection */
4451         if (skb->sk) {
4452                 struct sk_security_struct *sksec = skb->sk->sk_security;
4453                 sid = sksec->sid;
4454         } else
4455                 sid = SECINITSID_KERNEL;
4456         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4457                 return NF_DROP;
4458
4459         return NF_ACCEPT;
4460 }
4461
4462 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4463                                         struct sk_buff *skb,
4464                                         const struct net_device *in,
4465                                         const struct net_device *out,
4466                                         int (*okfn)(struct sk_buff *))
4467 {
4468         return selinux_ip_output(skb, PF_INET);
4469 }
4470
4471 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4472                                                 int ifindex,
4473                                                 u16 family)
4474 {
4475         struct sock *sk = skb->sk;
4476         struct sk_security_struct *sksec;
4477         struct common_audit_data ad;
4478         char *addrp;
4479         u8 proto;
4480
4481         if (sk == NULL)
4482                 return NF_ACCEPT;
4483         sksec = sk->sk_security;
4484
4485         COMMON_AUDIT_DATA_INIT(&ad, NET);
4486         ad.u.net.netif = ifindex;
4487         ad.u.net.family = family;
4488         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4489                 return NF_DROP;
4490
4491         if (selinux_secmark_enabled())
4492                 if (avc_has_perm(sksec->sid, skb->secmark,
4493                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4494                         return NF_DROP;
4495
4496         if (selinux_policycap_netpeer)
4497                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4498                         return NF_DROP;
4499
4500         return NF_ACCEPT;
4501 }
4502
4503 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4504                                          u16 family)
4505 {
4506         u32 secmark_perm;
4507         u32 peer_sid;
4508         struct sock *sk;
4509         struct common_audit_data ad;
4510         char *addrp;
4511         u8 secmark_active;
4512         u8 peerlbl_active;
4513
4514         /* If any sort of compatibility mode is enabled then handoff processing
4515          * to the selinux_ip_postroute_compat() function to deal with the
4516          * special handling.  We do this in an attempt to keep this function
4517          * as fast and as clean as possible. */
4518         if (!selinux_policycap_netpeer)
4519                 return selinux_ip_postroute_compat(skb, ifindex, family);
4520 #ifdef CONFIG_XFRM
4521         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4522          * packet transformation so allow the packet to pass without any checks
4523          * since we'll have another chance to perform access control checks
4524          * when the packet is on it's final way out.
4525          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4526          *       is NULL, in this case go ahead and apply access control. */
4527         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4528                 return NF_ACCEPT;
4529 #endif
4530         secmark_active = selinux_secmark_enabled();
4531         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4532         if (!secmark_active && !peerlbl_active)
4533                 return NF_ACCEPT;
4534
4535         /* if the packet is being forwarded then get the peer label from the
4536          * packet itself; otherwise check to see if it is from a local
4537          * application or the kernel, if from an application get the peer label
4538          * from the sending socket, otherwise use the kernel's sid */
4539         sk = skb->sk;
4540         if (sk == NULL) {
4541                 switch (family) {
4542                 case PF_INET:
4543                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4544                                 secmark_perm = PACKET__FORWARD_OUT;
4545                         else
4546                                 secmark_perm = PACKET__SEND;
4547                         break;
4548                 case PF_INET6:
4549                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4550                                 secmark_perm = PACKET__FORWARD_OUT;
4551                         else
4552                                 secmark_perm = PACKET__SEND;
4553                         break;
4554                 default:
4555                         return NF_DROP;
4556                 }
4557                 if (secmark_perm == PACKET__FORWARD_OUT) {
4558                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4559                                 return NF_DROP;
4560                 } else
4561                         peer_sid = SECINITSID_KERNEL;
4562         } else {
4563                 struct sk_security_struct *sksec = sk->sk_security;
4564                 peer_sid = sksec->sid;
4565                 secmark_perm = PACKET__SEND;
4566         }
4567
4568         COMMON_AUDIT_DATA_INIT(&ad, NET);
4569         ad.u.net.netif = ifindex;
4570         ad.u.net.family = family;
4571         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4572                 return NF_DROP;
4573
4574         if (secmark_active)
4575                 if (avc_has_perm(peer_sid, skb->secmark,
4576                                  SECCLASS_PACKET, secmark_perm, &ad))
4577                         return NF_DROP;
4578
4579         if (peerlbl_active) {
4580                 u32 if_sid;
4581                 u32 node_sid;
4582
4583                 if (sel_netif_sid(ifindex, &if_sid))
4584                         return NF_DROP;
4585                 if (avc_has_perm(peer_sid, if_sid,
4586                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4587                         return NF_DROP;
4588
4589                 if (sel_netnode_sid(addrp, family, &node_sid))
4590                         return NF_DROP;
4591                 if (avc_has_perm(peer_sid, node_sid,
4592                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4593                         return NF_DROP;
4594         }
4595
4596         return NF_ACCEPT;
4597 }
4598
4599 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4600                                            struct sk_buff *skb,
4601                                            const struct net_device *in,
4602                                            const struct net_device *out,
4603                                            int (*okfn)(struct sk_buff *))
4604 {
4605         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4606 }
4607
4608 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4609 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4610                                            struct sk_buff *skb,
4611                                            const struct net_device *in,
4612                                            const struct net_device *out,
4613                                            int (*okfn)(struct sk_buff *))
4614 {
4615         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4616 }
4617 #endif  /* IPV6 */
4618
4619 #endif  /* CONFIG_NETFILTER */
4620
4621 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4622 {
4623         int err;
4624
4625         err = cap_netlink_send(sk, skb);
4626         if (err)
4627                 return err;
4628
4629         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4630                 err = selinux_nlmsg_perm(sk, skb);
4631
4632         return err;
4633 }
4634
4635 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4636 {
4637         int err;
4638         struct common_audit_data ad;
4639
4640         err = cap_netlink_recv(skb, capability);
4641         if (err)
4642                 return err;
4643
4644         COMMON_AUDIT_DATA_INIT(&ad, CAP);
4645         ad.u.cap = capability;
4646
4647         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4648                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4649 }
4650
4651 static int ipc_alloc_security(struct task_struct *task,
4652                               struct kern_ipc_perm *perm,
4653                               u16 sclass)
4654 {
4655         struct ipc_security_struct *isec;
4656         u32 sid;
4657
4658         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4659         if (!isec)
4660                 return -ENOMEM;
4661
4662         sid = task_sid(task);
4663         isec->sclass = sclass;
4664         isec->sid = sid;
4665         perm->security = isec;
4666
4667         return 0;
4668 }
4669
4670 static void ipc_free_security(struct kern_ipc_perm *perm)
4671 {
4672         struct ipc_security_struct *isec = perm->security;
4673         perm->security = NULL;
4674         kfree(isec);
4675 }
4676
4677 static int msg_msg_alloc_security(struct msg_msg *msg)
4678 {
4679         struct msg_security_struct *msec;
4680
4681         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4682         if (!msec)
4683                 return -ENOMEM;
4684
4685         msec->sid = SECINITSID_UNLABELED;
4686         msg->security = msec;
4687
4688         return 0;
4689 }
4690
4691 static void msg_msg_free_security(struct msg_msg *msg)
4692 {
4693         struct msg_security_struct *msec = msg->security;
4694
4695         msg->security = NULL;
4696         kfree(msec);
4697 }
4698
4699 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4700                         u32 perms)
4701 {
4702         struct ipc_security_struct *isec;
4703         struct common_audit_data ad;
4704         u32 sid = current_sid();
4705
4706         isec = ipc_perms->security;
4707
4708         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4709         ad.u.ipc_id = ipc_perms->key;
4710
4711         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4712 }
4713
4714 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4715 {
4716         return msg_msg_alloc_security(msg);
4717 }
4718
4719 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4720 {
4721         msg_msg_free_security(msg);
4722 }
4723
4724 /* message queue security operations */
4725 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4726 {
4727         struct ipc_security_struct *isec;
4728         struct common_audit_data ad;
4729         u32 sid = current_sid();
4730         int rc;
4731
4732         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4733         if (rc)
4734                 return rc;
4735
4736         isec = msq->q_perm.security;
4737
4738         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4739         ad.u.ipc_id = msq->q_perm.key;
4740
4741         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4742                           MSGQ__CREATE, &ad);
4743         if (rc) {
4744                 ipc_free_security(&msq->q_perm);
4745                 return rc;
4746         }
4747         return 0;
4748 }
4749
4750 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4751 {
4752         ipc_free_security(&msq->q_perm);
4753 }
4754
4755 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4756 {
4757         struct ipc_security_struct *isec;
4758         struct common_audit_data ad;
4759         u32 sid = current_sid();
4760
4761         isec = msq->q_perm.security;
4762
4763         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4764         ad.u.ipc_id = msq->q_perm.key;
4765
4766         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4767                             MSGQ__ASSOCIATE, &ad);
4768 }
4769
4770 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4771 {
4772         int err;
4773         int perms;
4774
4775         switch (cmd) {
4776         case IPC_INFO:
4777         case MSG_INFO:
4778                 /* No specific object, just general system-wide information. */
4779                 return task_has_system(current, SYSTEM__IPC_INFO);
4780         case IPC_STAT:
4781         case MSG_STAT:
4782                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4783                 break;
4784         case IPC_SET:
4785                 perms = MSGQ__SETATTR;
4786                 break;
4787         case IPC_RMID:
4788                 perms = MSGQ__DESTROY;
4789                 break;
4790         default:
4791                 return 0;
4792         }
4793
4794         err = ipc_has_perm(&msq->q_perm, perms);
4795         return err;
4796 }
4797
4798 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4799 {
4800         struct ipc_security_struct *isec;
4801         struct msg_security_struct *msec;
4802         struct common_audit_data ad;
4803         u32 sid = current_sid();
4804         int rc;
4805
4806         isec = msq->q_perm.security;
4807         msec = msg->security;
4808
4809         /*
4810          * First time through, need to assign label to the message
4811          */
4812         if (msec->sid == SECINITSID_UNLABELED) {
4813                 /*
4814                  * Compute new sid based on current process and
4815                  * message queue this message will be stored in
4816                  */
4817                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4818                                              &msec->sid);
4819                 if (rc)
4820                         return rc;
4821         }
4822
4823         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4824         ad.u.ipc_id = msq->q_perm.key;
4825
4826         /* Can this process write to the queue? */
4827         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4828                           MSGQ__WRITE, &ad);
4829         if (!rc)
4830                 /* Can this process send the message */
4831                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4832                                   MSG__SEND, &ad);
4833         if (!rc)
4834                 /* Can the message be put in the queue? */
4835                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4836                                   MSGQ__ENQUEUE, &ad);
4837
4838         return rc;
4839 }
4840
4841 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4842                                     struct task_struct *target,
4843                                     long type, int mode)
4844 {
4845         struct ipc_security_struct *isec;
4846         struct msg_security_struct *msec;
4847         struct common_audit_data ad;
4848         u32 sid = task_sid(target);
4849         int rc;
4850
4851         isec = msq->q_perm.security;
4852         msec = msg->security;
4853
4854         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4855         ad.u.ipc_id = msq->q_perm.key;
4856
4857         rc = avc_has_perm(sid, isec->sid,
4858                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4859         if (!rc)
4860                 rc = avc_has_perm(sid, msec->sid,
4861                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4862         return rc;
4863 }
4864
4865 /* Shared Memory security operations */
4866 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4867 {
4868         struct ipc_security_struct *isec;
4869         struct common_audit_data ad;
4870         u32 sid = current_sid();
4871         int rc;
4872
4873         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4874         if (rc)
4875                 return rc;
4876
4877         isec = shp->shm_perm.security;
4878
4879         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4880         ad.u.ipc_id = shp->shm_perm.key;
4881
4882         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4883                           SHM__CREATE, &ad);
4884         if (rc) {
4885                 ipc_free_security(&shp->shm_perm);
4886                 return rc;
4887         }
4888         return 0;
4889 }
4890
4891 static void selinux_shm_free_security(struct shmid_kernel *shp)
4892 {
4893         ipc_free_security(&shp->shm_perm);
4894 }
4895
4896 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4897 {
4898         struct ipc_security_struct *isec;
4899         struct common_audit_data ad;
4900         u32 sid = current_sid();
4901
4902         isec = shp->shm_perm.security;
4903
4904         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4905         ad.u.ipc_id = shp->shm_perm.key;
4906
4907         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4908                             SHM__ASSOCIATE, &ad);
4909 }
4910
4911 /* Note, at this point, shp is locked down */
4912 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4913 {
4914         int perms;
4915         int err;
4916
4917         switch (cmd) {
4918         case IPC_INFO:
4919         case SHM_INFO:
4920                 /* No specific object, just general system-wide information. */
4921                 return task_has_system(current, SYSTEM__IPC_INFO);
4922         case IPC_STAT:
4923         case SHM_STAT:
4924                 perms = SHM__GETATTR | SHM__ASSOCIATE;
4925                 break;
4926         case IPC_SET:
4927                 perms = SHM__SETATTR;
4928                 break;
4929         case SHM_LOCK:
4930         case SHM_UNLOCK:
4931                 perms = SHM__LOCK;
4932                 break;
4933         case IPC_RMID:
4934                 perms = SHM__DESTROY;
4935                 break;
4936         default:
4937                 return 0;
4938         }
4939
4940         err = ipc_has_perm(&shp->shm_perm, perms);
4941         return err;
4942 }
4943
4944 static int selinux_shm_shmat(struct shmid_kernel *shp,
4945                              char __user *shmaddr, int shmflg)
4946 {
4947         u32 perms;
4948
4949         if (shmflg & SHM_RDONLY)
4950                 perms = SHM__READ;
4951         else
4952                 perms = SHM__READ | SHM__WRITE;
4953
4954         return ipc_has_perm(&shp->shm_perm, perms);
4955 }
4956
4957 /* Semaphore security operations */
4958 static int selinux_sem_alloc_security(struct sem_array *sma)
4959 {
4960         struct ipc_security_struct *isec;
4961         struct common_audit_data ad;
4962         u32 sid = current_sid();
4963         int rc;
4964
4965         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4966         if (rc)
4967                 return rc;
4968
4969         isec = sma->sem_perm.security;
4970
4971         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4972         ad.u.ipc_id = sma->sem_perm.key;
4973
4974         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
4975                           SEM__CREATE, &ad);
4976         if (rc) {
4977                 ipc_free_security(&sma->sem_perm);
4978                 return rc;
4979         }
4980         return 0;
4981 }
4982
4983 static void selinux_sem_free_security(struct sem_array *sma)
4984 {
4985         ipc_free_security(&sma->sem_perm);
4986 }
4987
4988 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4989 {
4990         struct ipc_security_struct *isec;
4991         struct common_audit_data ad;
4992         u32 sid = current_sid();
4993
4994         isec = sma->sem_perm.security;
4995
4996         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4997         ad.u.ipc_id = sma->sem_perm.key;
4998
4999         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5000                             SEM__ASSOCIATE, &ad);
5001 }
5002
5003 /* Note, at this point, sma is locked down */
5004 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5005 {
5006         int err;
5007         u32 perms;
5008
5009         switch (cmd) {
5010         case IPC_INFO:
5011         case SEM_INFO:
5012                 /* No specific object, just general system-wide information. */
5013                 return task_has_system(current, SYSTEM__IPC_INFO);
5014         case GETPID:
5015         case GETNCNT:
5016         case GETZCNT:
5017                 perms = SEM__GETATTR;
5018                 break;
5019         case GETVAL:
5020         case GETALL:
5021                 perms = SEM__READ;
5022                 break;
5023         case SETVAL:
5024         case SETALL:
5025                 perms = SEM__WRITE;
5026                 break;
5027         case IPC_RMID:
5028                 perms = SEM__DESTROY;
5029                 break;
5030         case IPC_SET:
5031                 perms = SEM__SETATTR;
5032                 break;
5033         case IPC_STAT:
5034         case SEM_STAT:
5035                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5036                 break;
5037         default:
5038                 return 0;
5039         }
5040
5041         err = ipc_has_perm(&sma->sem_perm, perms);
5042         return err;
5043 }
5044
5045 static int selinux_sem_semop(struct sem_array *sma,
5046                              struct sembuf *sops, unsigned nsops, int alter)
5047 {
5048         u32 perms;
5049
5050         if (alter)
5051                 perms = SEM__READ | SEM__WRITE;
5052         else
5053                 perms = SEM__READ;
5054
5055         return ipc_has_perm(&sma->sem_perm, perms);
5056 }
5057
5058 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5059 {
5060         u32 av = 0;
5061
5062         av = 0;
5063         if (flag & S_IRUGO)
5064                 av |= IPC__UNIX_READ;
5065         if (flag & S_IWUGO)
5066                 av |= IPC__UNIX_WRITE;
5067
5068         if (av == 0)
5069                 return 0;
5070
5071         return ipc_has_perm(ipcp, av);
5072 }
5073
5074 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5075 {
5076         struct ipc_security_struct *isec = ipcp->security;
5077         *secid = isec->sid;
5078 }
5079
5080 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5081 {
5082         if (inode)
5083                 inode_doinit_with_dentry(inode, dentry);
5084 }
5085
5086 static int selinux_getprocattr(struct task_struct *p,
5087                                char *name, char **value)
5088 {
5089         const struct task_security_struct *__tsec;
5090         u32 sid;
5091         int error;
5092         unsigned len;
5093
5094         if (current != p) {
5095                 error = current_has_perm(p, PROCESS__GETATTR);
5096                 if (error)
5097                         return error;
5098         }
5099
5100         rcu_read_lock();
5101         __tsec = __task_cred(p)->security;
5102
5103         if (!strcmp(name, "current"))
5104                 sid = __tsec->sid;
5105         else if (!strcmp(name, "prev"))
5106                 sid = __tsec->osid;
5107         else if (!strcmp(name, "exec"))
5108                 sid = __tsec->exec_sid;
5109         else if (!strcmp(name, "fscreate"))
5110                 sid = __tsec->create_sid;
5111         else if (!strcmp(name, "keycreate"))
5112                 sid = __tsec->keycreate_sid;
5113         else if (!strcmp(name, "sockcreate"))
5114                 sid = __tsec->sockcreate_sid;
5115         else
5116                 goto invalid;
5117         rcu_read_unlock();
5118
5119         if (!sid)
5120                 return 0;
5121
5122         error = security_sid_to_context(sid, value, &len);
5123         if (error)
5124                 return error;
5125         return len;
5126
5127 invalid:
5128         rcu_read_unlock();
5129         return -EINVAL;
5130 }
5131
5132 static int selinux_setprocattr(struct task_struct *p,
5133                                char *name, void *value, size_t size)
5134 {
5135         struct task_security_struct *tsec;
5136         struct task_struct *tracer;
5137         struct cred *new;
5138         u32 sid = 0, ptsid;
5139         int error;
5140         char *str = value;
5141
5142         if (current != p) {
5143                 /* SELinux only allows a process to change its own
5144                    security attributes. */
5145                 return -EACCES;
5146         }
5147
5148         /*
5149          * Basic control over ability to set these attributes at all.
5150          * current == p, but we'll pass them separately in case the
5151          * above restriction is ever removed.
5152          */
5153         if (!strcmp(name, "exec"))
5154                 error = current_has_perm(p, PROCESS__SETEXEC);
5155         else if (!strcmp(name, "fscreate"))
5156                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5157         else if (!strcmp(name, "keycreate"))
5158                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5159         else if (!strcmp(name, "sockcreate"))
5160                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5161         else if (!strcmp(name, "current"))
5162                 error = current_has_perm(p, PROCESS__SETCURRENT);
5163         else
5164                 error = -EINVAL;
5165         if (error)
5166                 return error;
5167
5168         /* Obtain a SID for the context, if one was specified. */
5169         if (size && str[1] && str[1] != '\n') {
5170                 if (str[size-1] == '\n') {
5171                         str[size-1] = 0;
5172                         size--;
5173                 }
5174                 error = security_context_to_sid(value, size, &sid);
5175                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5176                         if (!capable(CAP_MAC_ADMIN))
5177                                 return error;
5178                         error = security_context_to_sid_force(value, size,
5179                                                               &sid);
5180                 }
5181                 if (error)
5182                         return error;
5183         }
5184
5185         new = prepare_creds();
5186         if (!new)
5187                 return -ENOMEM;
5188
5189         /* Permission checking based on the specified context is
5190            performed during the actual operation (execve,
5191            open/mkdir/...), when we know the full context of the
5192            operation.  See selinux_bprm_set_creds for the execve
5193            checks and may_create for the file creation checks. The
5194            operation will then fail if the context is not permitted. */
5195         tsec = new->security;
5196         if (!strcmp(name, "exec")) {
5197                 tsec->exec_sid = sid;
5198         } else if (!strcmp(name, "fscreate")) {
5199                 tsec->create_sid = sid;
5200         } else if (!strcmp(name, "keycreate")) {
5201                 error = may_create_key(sid, p);
5202                 if (error)
5203                         goto abort_change;
5204                 tsec->keycreate_sid = sid;
5205         } else if (!strcmp(name, "sockcreate")) {
5206                 tsec->sockcreate_sid = sid;
5207         } else if (!strcmp(name, "current")) {
5208                 error = -EINVAL;
5209                 if (sid == 0)
5210                         goto abort_change;
5211
5212                 /* Only allow single threaded processes to change context */
5213                 error = -EPERM;
5214                 if (!current_is_single_threaded()) {
5215                         error = security_bounded_transition(tsec->sid, sid);
5216                         if (error)
5217                                 goto abort_change;
5218                 }
5219
5220                 /* Check permissions for the transition. */
5221                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5222                                      PROCESS__DYNTRANSITION, NULL);
5223                 if (error)
5224                         goto abort_change;
5225
5226                 /* Check for ptracing, and update the task SID if ok.
5227                    Otherwise, leave SID unchanged and fail. */
5228                 ptsid = 0;
5229                 task_lock(p);
5230                 tracer = tracehook_tracer_task(p);
5231                 if (tracer)
5232                         ptsid = task_sid(tracer);
5233                 task_unlock(p);
5234
5235                 if (tracer) {
5236                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5237                                              PROCESS__PTRACE, NULL);
5238                         if (error)
5239                                 goto abort_change;
5240                 }
5241
5242                 tsec->sid = sid;
5243         } else {
5244                 error = -EINVAL;
5245                 goto abort_change;
5246         }
5247
5248         commit_creds(new);
5249         return size;
5250
5251 abort_change:
5252         abort_creds(new);
5253         return error;
5254 }
5255
5256 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5257 {
5258         return security_sid_to_context(secid, secdata, seclen);
5259 }
5260
5261 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5262 {
5263         return security_context_to_sid(secdata, seclen, secid);
5264 }
5265
5266 static void selinux_release_secctx(char *secdata, u32 seclen)
5267 {
5268         kfree(secdata);
5269 }
5270
5271 #ifdef CONFIG_KEYS
5272
5273 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5274                              unsigned long flags)
5275 {
5276         const struct task_security_struct *tsec;
5277         struct key_security_struct *ksec;
5278
5279         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5280         if (!ksec)
5281                 return -ENOMEM;
5282
5283         tsec = cred->security;
5284         if (tsec->keycreate_sid)
5285                 ksec->sid = tsec->keycreate_sid;
5286         else
5287                 ksec->sid = tsec->sid;
5288
5289         k->security = ksec;
5290         return 0;
5291 }
5292
5293 static void selinux_key_free(struct key *k)
5294 {
5295         struct key_security_struct *ksec = k->security;
5296
5297         k->security = NULL;
5298         kfree(ksec);
5299 }
5300
5301 static int selinux_key_permission(key_ref_t key_ref,
5302                                   const struct cred *cred,
5303                                   key_perm_t perm)
5304 {
5305         struct key *key;
5306         struct key_security_struct *ksec;
5307         u32 sid;
5308
5309         /* if no specific permissions are requested, we skip the
5310            permission check. No serious, additional covert channels
5311            appear to be created. */
5312         if (perm == 0)
5313                 return 0;
5314
5315         sid = cred_sid(cred);
5316
5317         key = key_ref_to_ptr(key_ref);
5318         ksec = key->security;
5319
5320         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5321 }
5322
5323 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5324 {
5325         struct key_security_struct *ksec = key->security;
5326         char *context = NULL;
5327         unsigned len;
5328         int rc;
5329
5330         rc = security_sid_to_context(ksec->sid, &context, &len);
5331         if (!rc)
5332                 rc = len;
5333         *_buffer = context;
5334         return rc;
5335 }
5336
5337 #endif
5338
5339 static struct security_operations selinux_ops = {
5340         .name =                         "selinux",
5341
5342         .ptrace_access_check =          selinux_ptrace_access_check,
5343         .ptrace_traceme =               selinux_ptrace_traceme,
5344         .capget =                       selinux_capget,
5345         .capset =                       selinux_capset,
5346         .sysctl =                       selinux_sysctl,
5347         .capable =                      selinux_capable,
5348         .quotactl =                     selinux_quotactl,
5349         .quota_on =                     selinux_quota_on,
5350         .syslog =                       selinux_syslog,
5351         .vm_enough_memory =             selinux_vm_enough_memory,
5352
5353         .netlink_send =                 selinux_netlink_send,
5354         .netlink_recv =                 selinux_netlink_recv,
5355
5356         .bprm_set_creds =               selinux_bprm_set_creds,
5357         .bprm_committing_creds =        selinux_bprm_committing_creds,
5358         .bprm_committed_creds =         selinux_bprm_committed_creds,
5359         .bprm_secureexec =              selinux_bprm_secureexec,
5360
5361         .sb_alloc_security =            selinux_sb_alloc_security,
5362         .sb_free_security =             selinux_sb_free_security,
5363         .sb_copy_data =                 selinux_sb_copy_data,
5364         .sb_kern_mount =                selinux_sb_kern_mount,
5365         .sb_show_options =              selinux_sb_show_options,
5366         .sb_statfs =                    selinux_sb_statfs,
5367         .sb_mount =                     selinux_mount,
5368         .sb_umount =                    selinux_umount,
5369         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5370         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5371         .sb_parse_opts_str =            selinux_parse_opts_str,
5372
5373
5374         .inode_alloc_security =         selinux_inode_alloc_security,
5375         .inode_free_security =          selinux_inode_free_security,
5376         .inode_init_security =          selinux_inode_init_security,
5377         .inode_create =                 selinux_inode_create,
5378         .inode_link =                   selinux_inode_link,
5379         .inode_unlink =                 selinux_inode_unlink,
5380         .inode_symlink =                selinux_inode_symlink,
5381         .inode_mkdir =                  selinux_inode_mkdir,
5382         .inode_rmdir =                  selinux_inode_rmdir,
5383         .inode_mknod =                  selinux_inode_mknod,
5384         .inode_rename =                 selinux_inode_rename,
5385         .inode_readlink =               selinux_inode_readlink,
5386         .inode_follow_link =            selinux_inode_follow_link,
5387         .inode_permission =             selinux_inode_permission,
5388         .inode_setattr =                selinux_inode_setattr,
5389         .inode_getattr =                selinux_inode_getattr,
5390         .inode_setxattr =               selinux_inode_setxattr,
5391         .inode_post_setxattr =          selinux_inode_post_setxattr,
5392         .inode_getxattr =               selinux_inode_getxattr,
5393         .inode_listxattr =              selinux_inode_listxattr,
5394         .inode_removexattr =            selinux_inode_removexattr,
5395         .inode_getsecurity =            selinux_inode_getsecurity,
5396         .inode_setsecurity =            selinux_inode_setsecurity,
5397         .inode_listsecurity =           selinux_inode_listsecurity,
5398         .inode_getsecid =               selinux_inode_getsecid,
5399
5400         .file_permission =              selinux_file_permission,
5401         .file_alloc_security =          selinux_file_alloc_security,
5402         .file_free_security =           selinux_file_free_security,
5403         .file_ioctl =                   selinux_file_ioctl,
5404         .file_mmap =                    selinux_file_mmap,
5405         .file_mprotect =                selinux_file_mprotect,
5406         .file_lock =                    selinux_file_lock,
5407         .file_fcntl =                   selinux_file_fcntl,
5408         .file_set_fowner =              selinux_file_set_fowner,
5409         .file_send_sigiotask =          selinux_file_send_sigiotask,
5410         .file_receive =                 selinux_file_receive,
5411
5412         .dentry_open =                  selinux_dentry_open,
5413
5414         .task_create =                  selinux_task_create,
5415         .cred_free =                    selinux_cred_free,
5416         .cred_prepare =                 selinux_cred_prepare,
5417         .kernel_act_as =                selinux_kernel_act_as,
5418         .kernel_create_files_as =       selinux_kernel_create_files_as,
5419         .kernel_module_request =        selinux_kernel_module_request,
5420         .task_setpgid =                 selinux_task_setpgid,
5421         .task_getpgid =                 selinux_task_getpgid,
5422         .task_getsid =                  selinux_task_getsid,
5423         .task_getsecid =                selinux_task_getsecid,
5424         .task_setnice =                 selinux_task_setnice,
5425         .task_setioprio =               selinux_task_setioprio,
5426         .task_getioprio =               selinux_task_getioprio,
5427         .task_setrlimit =               selinux_task_setrlimit,
5428         .task_setscheduler =            selinux_task_setscheduler,
5429         .task_getscheduler =            selinux_task_getscheduler,
5430         .task_movememory =              selinux_task_movememory,
5431         .task_kill =                    selinux_task_kill,
5432         .task_wait =                    selinux_task_wait,
5433         .task_to_inode =                selinux_task_to_inode,
5434
5435         .ipc_permission =               selinux_ipc_permission,
5436         .ipc_getsecid =                 selinux_ipc_getsecid,
5437
5438         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5439         .msg_msg_free_security =        selinux_msg_msg_free_security,
5440
5441         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5442         .msg_queue_free_security =      selinux_msg_queue_free_security,
5443         .msg_queue_associate =          selinux_msg_queue_associate,
5444         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5445         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5446         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5447
5448         .shm_alloc_security =           selinux_shm_alloc_security,
5449         .shm_free_security =            selinux_shm_free_security,
5450         .shm_associate =                selinux_shm_associate,
5451         .shm_shmctl =                   selinux_shm_shmctl,
5452         .shm_shmat =                    selinux_shm_shmat,
5453
5454         .sem_alloc_security =           selinux_sem_alloc_security,
5455         .sem_free_security =            selinux_sem_free_security,
5456         .sem_associate =                selinux_sem_associate,
5457         .sem_semctl =                   selinux_sem_semctl,
5458         .sem_semop =                    selinux_sem_semop,
5459
5460         .d_instantiate =                selinux_d_instantiate,
5461
5462         .getprocattr =                  selinux_getprocattr,
5463         .setprocattr =                  selinux_setprocattr,
5464
5465         .secid_to_secctx =              selinux_secid_to_secctx,
5466         .secctx_to_secid =              selinux_secctx_to_secid,
5467         .release_secctx =               selinux_release_secctx,
5468
5469         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5470         .unix_may_send =                selinux_socket_unix_may_send,
5471
5472         .socket_create =                selinux_socket_create,
5473         .socket_post_create =           selinux_socket_post_create,
5474         .socket_bind =                  selinux_socket_bind,
5475         .socket_connect =               selinux_socket_connect,
5476         .socket_listen =                selinux_socket_listen,
5477         .socket_accept =                selinux_socket_accept,
5478         .socket_sendmsg =               selinux_socket_sendmsg,
5479         .socket_recvmsg =               selinux_socket_recvmsg,
5480         .socket_getsockname =           selinux_socket_getsockname,
5481         .socket_getpeername =           selinux_socket_getpeername,
5482         .socket_getsockopt =            selinux_socket_getsockopt,
5483         .socket_setsockopt =            selinux_socket_setsockopt,
5484         .socket_shutdown =              selinux_socket_shutdown,
5485         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5486         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5487         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5488         .sk_alloc_security =            selinux_sk_alloc_security,
5489         .sk_free_security =             selinux_sk_free_security,
5490         .sk_clone_security =            selinux_sk_clone_security,
5491         .sk_getsecid =                  selinux_sk_getsecid,
5492         .sock_graft =                   selinux_sock_graft,
5493         .inet_conn_request =            selinux_inet_conn_request,
5494         .inet_csk_clone =               selinux_inet_csk_clone,
5495         .inet_conn_established =        selinux_inet_conn_established,
5496         .req_classify_flow =            selinux_req_classify_flow,
5497
5498 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5499         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5500         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5501         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5502         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5503         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5504         .xfrm_state_free_security =     selinux_xfrm_state_free,
5505         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5506         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5507         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5508         .xfrm_decode_session =          selinux_xfrm_decode_session,
5509 #endif
5510
5511 #ifdef CONFIG_KEYS
5512         .key_alloc =                    selinux_key_alloc,
5513         .key_free =                     selinux_key_free,
5514         .key_permission =               selinux_key_permission,
5515         .key_getsecurity =              selinux_key_getsecurity,
5516 #endif
5517
5518 #ifdef CONFIG_AUDIT
5519         .audit_rule_init =              selinux_audit_rule_init,
5520         .audit_rule_known =             selinux_audit_rule_known,
5521         .audit_rule_match =             selinux_audit_rule_match,
5522         .audit_rule_free =              selinux_audit_rule_free,
5523 #endif
5524 };
5525
5526 static __init int selinux_init(void)
5527 {
5528         if (!security_module_enable(&selinux_ops)) {
5529                 selinux_enabled = 0;
5530                 return 0;
5531         }
5532
5533         if (!selinux_enabled) {
5534                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5535                 return 0;
5536         }
5537
5538         printk(KERN_INFO "SELinux:  Initializing.\n");
5539
5540         /* Set the security state for the initial task. */
5541         cred_init_security();
5542
5543         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5544                                             sizeof(struct inode_security_struct),
5545                                             0, SLAB_PANIC, NULL);
5546         avc_init();
5547
5548         secondary_ops = security_ops;
5549         if (!secondary_ops)
5550                 panic("SELinux: No initial security operations\n");
5551         if (register_security(&selinux_ops))
5552                 panic("SELinux: Unable to register with kernel.\n");
5553
5554         if (selinux_enforcing)
5555                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5556         else
5557                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5558
5559         return 0;
5560 }
5561
5562 void selinux_complete_init(void)
5563 {
5564         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5565
5566         /* Set up any superblocks initialized prior to the policy load. */
5567         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5568         spin_lock(&sb_lock);
5569         spin_lock(&sb_security_lock);
5570 next_sb:
5571         if (!list_empty(&superblock_security_head)) {
5572                 struct superblock_security_struct *sbsec =
5573                                 list_entry(superblock_security_head.next,
5574                                            struct superblock_security_struct,
5575                                            list);
5576                 struct super_block *sb = sbsec->sb;
5577                 sb->s_count++;
5578                 spin_unlock(&sb_security_lock);
5579                 spin_unlock(&sb_lock);
5580                 down_read(&sb->s_umount);
5581                 if (sb->s_root)
5582                         superblock_doinit(sb, NULL);
5583                 drop_super(sb);
5584                 spin_lock(&sb_lock);
5585                 spin_lock(&sb_security_lock);
5586                 list_del_init(&sbsec->list);
5587                 goto next_sb;
5588         }
5589         spin_unlock(&sb_security_lock);
5590         spin_unlock(&sb_lock);
5591 }
5592
5593 /* SELinux requires early initialization in order to label
5594    all processes and objects when they are created. */
5595 security_initcall(selinux_init);
5596
5597 #if defined(CONFIG_NETFILTER)
5598
5599 static struct nf_hook_ops selinux_ipv4_ops[] = {
5600         {
5601                 .hook =         selinux_ipv4_postroute,
5602                 .owner =        THIS_MODULE,
5603                 .pf =           PF_INET,
5604                 .hooknum =      NF_INET_POST_ROUTING,
5605                 .priority =     NF_IP_PRI_SELINUX_LAST,
5606         },
5607         {
5608                 .hook =         selinux_ipv4_forward,
5609                 .owner =        THIS_MODULE,
5610                 .pf =           PF_INET,
5611                 .hooknum =      NF_INET_FORWARD,
5612                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5613         },
5614         {
5615                 .hook =         selinux_ipv4_output,
5616                 .owner =        THIS_MODULE,
5617                 .pf =           PF_INET,
5618                 .hooknum =      NF_INET_LOCAL_OUT,
5619                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5620         }
5621 };
5622
5623 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5624
5625 static struct nf_hook_ops selinux_ipv6_ops[] = {
5626         {
5627                 .hook =         selinux_ipv6_postroute,
5628                 .owner =        THIS_MODULE,
5629                 .pf =           PF_INET6,
5630                 .hooknum =      NF_INET_POST_ROUTING,
5631                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5632         },
5633         {
5634                 .hook =         selinux_ipv6_forward,
5635                 .owner =        THIS_MODULE,
5636                 .pf =           PF_INET6,
5637                 .hooknum =      NF_INET_FORWARD,
5638                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5639         }
5640 };
5641
5642 #endif  /* IPV6 */
5643
5644 static int __init selinux_nf_ip_init(void)
5645 {
5646         int err = 0;
5647
5648         if (!selinux_enabled)
5649                 goto out;
5650
5651         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5652
5653         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5654         if (err)
5655                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5656
5657 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5658         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5659         if (err)
5660                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5661 #endif  /* IPV6 */
5662
5663 out:
5664         return err;
5665 }
5666
5667 __initcall(selinux_nf_ip_init);
5668
5669 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5670 static void selinux_nf_ip_exit(void)
5671 {
5672         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5673
5674         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5675 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5676         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5677 #endif  /* IPV6 */
5678 }
5679 #endif
5680
5681 #else /* CONFIG_NETFILTER */
5682
5683 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5684 #define selinux_nf_ip_exit()
5685 #endif
5686
5687 #endif /* CONFIG_NETFILTER */
5688
5689 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5690 static int selinux_disabled;
5691
5692 int selinux_disable(void)
5693 {
5694         extern void exit_sel_fs(void);
5695
5696         if (ss_initialized) {
5697                 /* Not permitted after initial policy load. */
5698                 return -EINVAL;
5699         }
5700
5701         if (selinux_disabled) {
5702                 /* Only do this once. */
5703                 return -EINVAL;
5704         }
5705
5706         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5707
5708         selinux_disabled = 1;
5709         selinux_enabled = 0;
5710
5711         /* Try to destroy the avc node cache */
5712         avc_disable();
5713
5714         /* Reset security_ops to the secondary module, dummy or capability. */
5715         security_ops = secondary_ops;
5716
5717         /* Unregister netfilter hooks. */
5718         selinux_nf_ip_exit();
5719
5720         /* Unregister selinuxfs. */
5721         exit_sel_fs();
5722
5723         return 0;
5724 }
5725 #endif